
Pairing-Based Onion Routing with Improved Forward Secrecy ∗

Aniket Kate Greg M. Zaverucha Ian Goldberg

David R. Cheriton School of Computer Science

University of Waterloo

Waterloo, ON, Canada N2L 3G1

{akate,gzaveruc,iang}@cs.uwaterloo.ca

Abstract

This paper presents new protocols for onion routing anonymity networks. We define a
provably secure privacy-preserving key agreement scheme in an identity-based infrastructure
setting, and use it to forge new onion routing circuit constructions. These constructions, based
on a user’s selection, offer immediate or eventual forward secrecy at each node in a circuit and
require significantly less computation and communication than the telescoping mechanism used
by Tor. Further, the use of the identity-based infrastructure also leads to a reduction in the
required amount of authenticated directory information. Therefore, our constructions provide
practical ways to allow onion routing anonymity networks to scale gracefully.

Keywords: onion routing, Tor, pairing-based cryptography, anonymous key agreement, forward
secrecy

1 Introduction

Over the years, a large number of anonymity networks have been proposed and some have been
implemented. Common to many of them is onion routing [RSG98], a technique whereby a message
is wrapped in multiple layers of encryption, forming an onion. As the message is delivered via a
number of intermediate onion routers (ORs), or nodes, each node decrypts one of the layers, and
forwards the message to the next node. This idea goes back to Chaum [Cha81] and has been used
to build both low- and high-latency communication networks.

A common realization of an onion routing system is to arrange a collection of nodes that will
relay traffic for users of the system. Users then randomly choose a path through the network of
onion routers and construct a circuit—a sequence of nodes which will route traffic. After the circuit
is constructed, each of the nodes in the circuit shares a symmetric key with the user, which will be
used to encrypt the layers of future onions.

Pairing-based cryptography (see [KM05] for a detailed discussion) has drawn an overwhelming
amount of research attention in the last few years. In one of the pioneering works in the field,
Sakai, Ohgishi, and Kasahara [SOK00] presented a non-interactive key agreement scheme in the
identity-based setting. In this article, we enhance their protocol to develop provably secure one-
or two-way (also referred to as unilateral or bilateral) privacy-preserving authentication and key
agreement schemes. After one-way authentication between Anonymous and Bob, Anonymous has

∗This is an extended version of our paper “Pairing-Based Onion Routing”, which appeared in the proceedings of
the 7th Privacy Enhancing Technologies Symposium (LNCS vol. 4776).

1

confirmed Bob’s identity and Bob learns nothing about Anonymous, except perhaps that he or she
is a valid user of a particular system. In a two-way scheme, each user can confirm the other is a
valid user without learning who the other is.

We then use our one-way anonymous key agreement protocol to build onion routing circuits for
anonymity networks like Tor [DMS04] and prove security-related properties of the new construction.
Our protocol, which first appeared in [KZG07], constructs a circuit in a single pass and also provides
a practical way to achieve eventual forward secrecy. Observing the performance trade-off between
immediate and eventual forward secrecy in onion routing circuit construction, we also develop a λ-
pass circuit construction, which obtains immediate forward secrecy at λ nodes. The performance of
our circuit construction protocols surpass that of Tor, requiring significantly less computation and
fewer network communications. Further, they do not require the public keys of onion routers to be
authenticated and consequently, reduce the load on directory servers and improves the scalability
of anonymity networks.

Previous work related to pairing-based key exchange, as well as to anonymity networks, is cov-
ered in Section 2. We describe the cryptographic protocols in Section 3, and an onion routing
system built with a Boneh-Franklin identity-based infrastructure in Section 4. In Section 5, we
present our λ-pass circuit construction and discuss the security of our onion routing circuit con-
structions in Section 6. Some of the more practical issues in such a system are discussed in Section
7 and we compare our computational and communication costs to those of Tor in Section 8.

2 Related Work

The concept of onion routing plays a key role in many efforts to provide anonymous communication
[Dai98, DMS04, FM02, RSG98, RP02] while a number of other papers discuss formalizations and
the security of onion routing [CL05, MVdV04, Möl03, STRL00]. To date, the largest onion routing
system is Tor, which has approximately 1000 onion routers and hundreds of thousands of users
[The08]. These numbers (and their growth) underscore the demand for anonymity online.

In the original Onion Routing project [GRS96, RSG98, STRL00] (which was superseded by Tor)
circuit construction was done as follows. The user created an onion where each layer contained the
symmetric key for one node and the location of the next node, all encrypted with the original node’s
public key. Each node decrypts a layer, keeps the symmetric key and forwards the rest of the onion
along to the next node. The main drawback of this approach is that it does not provide forward
secrecy (as defined in [DMS04]). Suppose a circuit is constructed from the user to the sequence of
nodes A ⇔ B ⇔ C, and that A is malicious. If A records the traffic, and at an arbitrary time in
the future compromises B (at which point he learns the next hop is C), and then compromises C,
the complete route is known, and A learns who the user has communicated with. A possible fix
for this problem is to frequently change the public keys of each node. This limits the amount of
time A has to compromise B and C, but requires that the users of the system frequently contact
the directory server to retrieve authentic keys.

Later systems constructed circuits incrementally and interactively (this process is sometimes
called telescoping). The idea is to use the node’s public key only to initiate a communication during
which a temporary session key is established via the Diffie-Hellman key exchange. Tor constructs
circuits in this way, using the Tor authentication protocol (TAP). TAP is described and proven
secure in previous work of the last author [Gol06].

Trade-offs exist between the two methods of constructing circuits. Forward secrecy is the main
advantage of telescoping, but telescoping also handles nodes that are not accepting connections; if
the third node is down during the construction of a circuit, for example, the first two remain, and

2

the user only needs to choose an alternate third. Information about the status and availability of
nodes is therefore less important. The drawback of telescoping is the cost; establishing a circuit of
length ℓ requires O(ℓ2) network communications, and O(ℓ2) symmetric encryptions/decryptions.

Øverlier and Syverson [ØS07] improve the efficiency of telescoping-based circuit construction
using a half-certified Diffie-Hellman key exchange [MOV97, Sec. 12.6]. They further define an
efficient single-pass circuit construction and a few variants. The proposed variants offer different
levels of forward secrecy, which is traded off against computation and communication. For example,
their eventual forward secret variants use frequent rotation of nodes’ public keys, presenting the
same issues as in first-generation onion routing; their immediate forward secrecy variant uses the
same amount of communication as the current Tor (O(ℓ2)), but less computation.

In related efforts, Camenisch and Lysyanskaya [CL05] formally define the requirements of a
secure onion routing construction in the universal composability (UC) framework [Can01] and
present a generic construction of onion routing circuits. Although formally secure, their construction
is less efficientthan other constructions due to the additional mechanisms required to prove security
in the UC framework. While no attacks are known when these mechanisms are removed, the proof
no longer holds.

The work of Okamoto and Okamoto [OO05] presents schemes for anonymous authentication and
key agreement. In Rahman et. al. [RIO+06], an anonymous authentication protocol is presented
as part of an anonymous communication system for mobile ad-hoc networks. The protocols in
both papers are complex, and limited motivation is given for design choices. Further, both papers
neglect to discuss the security of their proposed protocols. The protocols we present in Section 3.2
are a great deal simpler than previous protocols. This allows them to be more easily understood,
and simplifies the discussion of their security, which appears in Section 3.3. A recent article [Hua07]
presents a pseudonym-based encryption scheme similar to our anonymous key protocol in Section
3.2, but differs in its method of private-key extraction as well as in the motivation behind its use.

All these protocols owe a lot to the non-interactive key exchange protocol of Sakai, Ohgishi
and Kasahara [SOK00]. In the next section, we will review their scheme after covering relevant
background material.

3 Pairing-Based Key Agreement with User Anonymity

In one of the pioneering works of pairing-based cryptography, Sakai et al. suggested an identity-
based non-interactive key agreement scheme using bilinear pairings [SOK00]. In this section, we
extend this key agreement scheme. We replace the identities of the participants by pseudonyms
and our new scheme provides unconditional anonymity to participating users.

3.1 Preliminaries

We briefly review bilinear pairings and the original non-interactive key agreement scheme of Sakai
et al. For a detailed presentation of pairings and cryptographic applications thereof see Blake et
al. [Bla05] and references therein.

3.1.1 Bilinear Pairings

Consider two additive cyclic groups G and Ĝ and a multiplicative cyclic group GT , all of the same
prime order n. A bilinear map e is a map e : G × Ĝ → GT with following properties.

1. Bilinearity: For all P ∈ G, Q ∈ Ĝ and a, b ∈ Zn, e(aP, bQ) = e(P,Q)ab.

3

2. Non-degeneracy: The map does not send all pairs in G × Ĝ to unity in GT .

3. Computability: There is an efficient algorithm to compute e(P,Q) for any P ∈ G and
Q ∈ Ĝ.

Our protocols, like many pairing-based cryptographic protocols, use a special form of bilinear
map called a symmetric pairing which has G = Ĝ. For such pairings e(P,Q) = e(Q,P) for
any P,Q ∈ G. The modified Weil pairing over elliptic curve groups [Ver01] is an example of a
symmetric bilinear pairing. In the rest of the paper, unless otherwise specified, all bilinear pairings
are symmetric.

3.1.2 The Bilinear Diffie-Hellman Assumption

With a groups G and GT and a pairing e of the above type, the Bilinear Diffie-Hellman (BDH)
problem is to compute e(P,P)abc ∈ GT given a generator P of G and elements aP, bP, cP for
a, b, c ∈ Z

∗
n. An equivalent formulation of the problem, due to the bilinearity of the map, is to

compute e(A,B)c given a generator P of G, and elements A, B and cP in G.
If there is no efficient algorithm to solve the BDH problem for 〈G, GT , e〉, they are said to satisfy

the BDH assumption.

3.1.3 Boneh-Franklin Setup and Non-Interactive Key Agreement

In a Boneh-Franklin Identity-Based Encryption (BF-IBE) setup [BF01], a trusted authority, called
a private key generator (PKG), generates private keys (di) for clients using the clients’ well-known
identities (IDi) and a master secret s. A client with identity IDi receives the private key di =
sH(IDi) ∈ G, where H : {0, 1}∗ → G

∗ is a full-domain cryptographic hash function and G
∗ denotes

the set of all elements in G except the identity.
Sakai et al. observed that, with such a setup, any two clients of the same PKG can compute a

shared key using only the identity of the other participant and their own private keys. Only the
two clients and the PKG can compute this key. For two clients with identities IDA and IDB , the
shared key is given by KAB = e(QA, QB)s = e(QA, dB) = e(dA, QB) where QA = H(IDA) and
QB = H(IDB).

Dupont and Enge proved this protocol is secure in the random oracle model assuming the BDH
problem in 〈G, GT , e〉 is hard [DE06].

3.2 Anonymous Key Agreement

We observe that by replacing the identity hashes with pseudonyms generated by users, a key
agreement protocol with unconditional anonymity is possible. In our protocol, each participant can
confirm that the other participant is a client of the same PKG, but cannot determine his identity.
Each client can, on her own, randomly generate many possible pseudonyms and the corresponding
private keys.

Suppose Alice, with (identity, private key) pair (IDA, dA), is seeking anonymity. She generates a
random number rA ∈ Z

∗
n and creates the pseudonym and corresponding private key (PA = rAQA =

rAH(IDA), rAdA = sPA). In a key agreement protocol, she sends the pseudonym PA instead of
her actual identity to another participating client, who may or may not be anonymous. For two
participants (say Alice and Bob) with pseudonyms PA and PB , the shared session key is given as

KAB = e(PA, PB)s = e(QA, QB)rArBs

4

where rA and rB are random numbers generated respectively by Alice and Bob. If Bob does not
wish to be anonymous, he can just use rB = 1 instead of a random value, resulting in PB = QB. If
persistent pseudonymity is desired instead of anonymity, the random values can easily be reused.

Two participants can perform a session key agreement by exchanging pseudonyms. Further, two
participants can also perform an authenticated key agreement by modifying any secure symmetric-
key based mutual authentication protocol and simply replacing their identities by their pseudonyms.

3.2.1 One-Way Anonymous Key Agreement

Anonymous communication often requires anonymity for just one of the participants; the other
participant works as a service provider and the anonymous participant needs to confirm her iden-
tity. In the key agreement protocol, the service provider uses her actual identity rather than a
pseudonym. Further, in this one-way anonymity setting two participants can agree on a session
key in a non-interactive manner. A non-interactive scheme to achieve this is defined next.

Suppose Alice and Bob are clients of a PKG. As before, Alice has identity IDA and private key
dA = sQA = sH(IDA). Alice wishes to remain anonymous to Bob, but she knows Bob’s identity
IDB .

1. Alice computes QB = H(IDB). She chooses a random integer rA ∈ Z
∗
n, generates the corre-

sponding pseudonym PA = rAQA and private key rAdA = sPA, and computes the session key
KAB = e(sPA, QB) = e(QA, QB)srA . She sends her pseudonym PA to Bob.

2. Bob, using PA and his private key dB , computes the session key KAB = e(PA, dB) =
e(QA, QB)srA .

Note that in step 1, Alice can also include a message for Bob symmetrically encrypted with the
session key; we will use this in Section 4. Note also that in practice, the session key is often derived
from KAB , and is not just KAB itself.

3.2.2 Key Authentication and Confirmation

In most one-way anonymous communication situations, it is also required to authenticate the non-
anonymous service provider. With the non-interactive protocols of this section, the key is implicitly
authenticated; Alice is assured that only Bob can compute the key. If Alice must be sure Bob has in
fact computed the key, explicit key confirmation can be achieved by incorporating any symmetric-
key based challenge-response protocol.

3.3 Security and Anonymity

In this section, we discuss the security and anonymity of our key agreement schemes in the random
oracle model. We make the following claims:

Unconditional Anonymity It is impossible for the other participant in a protocol run, the PKG,
or any third party to learn the identity of an anonymous participant in a protocol run.

Session Key Secrecy It is infeasible for anyone other than the two participants or the PKG to
determine a session key generated during a protocol run.

No Impersonation It is infeasible for a malicious client of the PKG to impersonate another (non-
anonymous) client in a protocol run. In the case of persistent pseudonymity, it is not feasible
for a malicious entity to communicate using a different entity’s pseudonym.

Next, we prove each of our claims.

5

3.3.1 Unconditional Anonymity

Here, we prove that it is impossible for an adversary A to learn the identity of an anonymous
participant in a protocol run. Informally, for an anonymous client with identity IDA, the pseudonym
PA = rAQA ∈ G is the only parameter exchanged during the protocol that is derived from her
identity. Because G is a cyclic group of prime order, QA is a generator, so multiplying by the
random rA perfectly blinds the underlying identity from the adversary A, which can be the other
participant in the protocol run, the PKG for the system or any third party. To formalize our proof,
we consider the following game between an adversary and a challenger.

Setup The adversary A publishes the system parameters: a cyclic additive group G of prime order
n and a hash function H : {0, 1}∗ → G

∗.

Challenge A chooses two identity strings IDA and IDB and sends them to the challenger. The
challenger computes QA = H(IDA) and QB = H(IDB). He then uniformly at random chooses
r ∈ Z

∗
n and b ∈ {0, 1}, then

1. if b = 0, computes a pseudonym P = rQA or

2. if b = 1, computes a pseudonym P = rQB

and sends P to A.

Guess A wins the game if she can guess the correct value of b with probability significantly greater
than 1/2.

As G is a cyclic prime order group, both QA and QB are generators of G. For the uniform
random element r ∈ Z

∗
n, the pseudonym P equal to rQA or rQB is also a uniform random element

of G
∗. Therefore, an attacker cannot determine which of the two ways the challenger generated P

and consequently cannot guess the value of b with probability greater than 1/2 to win this game.
The inability of the attacker to win this game for system parameters of their choosing, even with
unbounded computation power, proves our unconditional anonymity claim.

3.3.2 Session Key Secrecy

Dupont and Enge [DE06] prove the security of the key agreement scheme of Sakai et al. in the
random oracle model. According to their proof, an attacker cannot compute the shared key if the
BDH assumption holds on 〈G, GT , e〉, and H is modelled by a random oracle. Here, we modify
their proof to prove that it is infeasible for anyone other than the two participants or the PKG to
determine a session key generated during a protocol run of the one-way or two-way anonymous key
agreement.

Consider the following game to prove key secrecy in the one-way anonymous case.

Setup The challenger generates groups G and GT of prime order n, a cryptographic hash function
H : {0, 1}∗ → G

∗, a symmetric bilinear pairing e : G × G 7→ GT and a master secret s ∈ Z
∗
n.

Extraction Queries The adversary A1 issues q extraction queries for identities ID1, ID2, . . . , IDq

to the challenger. The challenger queries H to compute the corresponding private keys
sH(ID1), sH(ID2), . . . , sH(IDq) and sends them back to A1.

Challenge Once A1 informs the challenger that it has collected enough information, the challenger
picks an element PA ∈ G

∗ and sends it to A1.

6

Guess A1 outputs a binary string (an identity) IDB and KAB ∈ GT .

The attacker’s advantage can be defined as

Adv(A1) = Prob(e(PA,H(IDB))s = KAB)

We say A1 (t1, ǫ1)-wins the game, if it runs in time at most t1 and has advantage ǫ1.
Next, consider the following game to prove key secrecy in the two-way anonymous case.

Setup The challenger generates groups G and GT of order n, a cryptographic hash function H :
{0, 1}∗ → G

∗, a symmetric bilinear pairing e : G × G 7→ GT and a master secret s ∈ Z
∗
n.

Extraction Queries The adversary A2 issues q extraction queries for identities ID1, ID2, . . . , IDq ∈
G to the challenger. The challenger queries H to compute the corresponding private keys
sH(ID1), sH(ID2), . . . , sH(IDq) and sends them back to A2.

Challenge Once A2 informs the challenger that it has collected enough information, the challenger
picks two elements PA and PB in G

∗ and sends them to A2.

Guess A2 outputs KAB ∈ GT .

The attacker’s advantage can be defined as

Adv(A2) = Prob(e(PA, PB)s = KAB)

We say A2 (t2, ǫ2)-wins a game, if it runs in time at most t2 and has advantage ǫ2.
Suppose that there is an adversary A1 who (t1, ǫ1)-wins the one-way anonymous game and an

adversary A2 who (t2, ǫ2)-wins the two-way anonymous game. We now show that an algorithm B
can make use of A1 or A2 to solve a random instance of the BDH problem.

Theorem 3.1. Let the hash function H be modelled by a random oracle. Suppose there exist
adversaries A1 and A2 such that the adversary A1 (t1, ǫ1)-wins the one-way anonymous protocol
security game and the adversary A2 (t2, ǫ2)-wins the two-way anonymous protocol security game.
Then there exists an algorithm B which solves the BDH problem

• using the adversary A1 with probability ǫ1
e(1+q) in time t1 + wq + tT + tinv or

• using the adversary A2 with probability ǫ2 in time t2 + wq.

Here e is the base of natural logarithms, w is a small constant, q is an upper bound on the number
of extraction queries performed by an adversary, tT is the time required for exponentiation in GT

and tinv is the time required to invert an element of Z
∗
n.

Proof. Let (P, aP, bP, cP) ∈ G be a random and uniformly distributed instance of the BDH problem,
which algorithm B receives as input. To find the solution e(P,P)abc, B simulates the challenger
for A1 or A2. This means that B must simulate the random oracle H and answer the private key
extraction queries by A1 or A2. As the steps for H-queries and extraction queries are the same in
both A1 or A2, we denote both of them by A.

H-queries At any time, A can query the random oracle H. To respond to these queries, B
maintains an initially empty list L of tuples (X,Q, h, β) ∈ {0, 1}∗ × G

∗ × Z
∗
n × {0, 1}. When

A queries for the hash value of some bit-string Xi, algorithm B responds as follows:

7

1. If L contains a tuple (Xi, Qi, hi, βi), B responds by sending Qi.

2. Otherwise, B generates at random βi ∈ {0, 1}, so that Prob(βi = 0) = δ, where δ depends
on B’s choice for the attacker (A1 or A2) and will be determined below.

3. Algorithm B picks a random hi ∈ Z
∗
n. If βi = 0, set Qi = hiP , else set Qi = hi(bP). Note

that either way, Qi is uniformly random in G
∗ and independent of A’s current view.

4. Finally, algorithm B adds the tuple (Xi, Qi, hi, βi) to the list L and responds with Qi.

Extraction queries A can ask for extraction queries for identity strings. For an input string IDi

for private key extraction, B responds as follows:

1. Algorithm B runs the above H-query algorithm for input Xi = IDi to obtain (IDi, Qi, hi, βi).

2. If βi = 1 then B reports failure.

3. Otherwise, B computes the private key hi(cP) = cQi and sends it to algorithm A.

Challenge After completing the extraction queries, B challenges A1 with PA = aP or A2 with
PA = aP and PB = bP .

Guess A1 outputs (IDB ,KAB) ∈ {0, 1}∗ × GT or A2 outputs KAB ∈ GT . In the case of adversary
A2, B outputs σ = KAB as its guess for the solution to the BDH problem. For the adversary
A1, algorithm B performs following steps:

1. B obtains the tuple (IDB , QB , hB , βB) from the list L. Absence of the tuple (IDB , QB , hB , βB)
in the list L indicates that A1 did not ask the random oracle for H(IDB). As the proba-
bility of the adversary’s success in this case is negligible1, we safely assume the presence
of the tuple (IDB , QB , hB , cB).

2. If βB = 1, B outputs σ = K
h−1

B

AB as its guess for the BDH instance.

3. If βB = 0, B reports failure.

Suppose that B does not report failure and outputs σ while using A1. As βB = 1, H(IDB) =

hB(bP) and with probability ǫ1, σ = e(aP, hB(bP))ch
−1
B = e(P,P)abc. Therefore B will guess

correctly with probability ǫ1, when it does not abort. The probability that B does not abort while
extracting a single private key query is δ; for q queries, the probability is δq. The probability that B
does not abort while guessing the BDH solution is 1− δ. Therefore, the overall probability of non-
abortion is δq(1−δ). Maximizing this probability, the optimal value can be obtained at δ = q

1+q
and

by choosing the value of δ optimally, the overall probability of non-abortion is qq

(1+q)q+1 . Therefore,

B outputs the correct solution to the BDH instance with probability at least ǫ1qq

(1+q)q+1 ≥ 1
e(1+q)

as (1 − 1
q+1)q ≥ 1/e. The solution is computed in time t1 + wq + tT + tinv, where t1 is the time

required by A, w is the time required to answer an extraction query (generate a random element
r and compute the r-th multiple of cP), q is an upper bound on the number of such queries, and
tT + tinv is the time to invert an element of Z

∗
n and to compute an exponentiation of KAB ∈ GT in

the guessing phase.
For adversary A2, we simply set the value of δ to 1. Suppose that B does not report failure and

outputs σ while using A2. With probability ǫ2, σ = e(aP, bP)c = e(P,P)abc, which is the correct
solution to the BDH problem. The solution is computed in time t2 + wq.

1If A1 does not query the random oracle for H(IDB), the probability it can guess this value is negligible. As there
is a bijection between x and e(PA, x) for a given PA, the probability that A1 can output KAB = e(PA, H(IDB)) is
also negligible. Thus, A1’s advantage in this case is negligible.

8

Note that it is possible to prove the security of the two-way anonymous key agreement protocol
without random oracles, if we do not consider the query extraction phase. Assume that only one
identity hash and private key pair (U, sU) is publicly available and each user uses the same pair
to generate a pseudonym and corresponding private key. Given an adversary A to (t, ǫ)-compute
KAB = e(PA, PB)s when challenged by PA and PB , a random instance (P, aP, bP, cP) of the BDH
problem can be solved in time t with probability ǫ by publishing (P, cP) as the publicly available
identity hash and private key and challenging A with PA = aP and PB = bP .

3.3.3 No Impersonation

We claim that it is infeasible for a malicious client of the PKG to impersonate another (non-
anonymous) client in a protocol run. To successfully impersonate a non-anonymous participant
IDN in our one-way anonymous key agreement protocol, given a pseudonym and IDN , an ad-
versary needs to determine the corresponding session key. We observe that the adversary game
for non-anonymous participant impersonation is the same as the key secrecy game of the one-way
anonymous key agreement in Section 3.3.2 and consequently the corresponding theorem and proof
carry over.

In the case of persistent pseudonymity, we claim that it is not feasible for a malicious entity
to communicate using a different entity’s pseudonym. Here, the malicious entity needs to find the
shared secret key for a persistent pseudonym generated and used by some other anonymous entity
and an arbitrary identity or pseudonym for which it does not know the private key. In the one-way
anonymous communication protocol, the corresponding adversary game remains the same as that
for impersonation of the non-anonymous entity, and in the two-way anonymous case, the game
is the same as the one used to prove key secrecy. Consequently, the theorem and proof for the
corresponding game are same as those used to prove key secrecy in Section 3.3.2.

3.4 Distributed PKG

The PKG in the BF-IBE framework, with the master key, has the power to decrypt all messages
encrypted for clients. As our schemes use the same setup as BF-IBE, the PKG can compute a
session key from the publicly available pseudonyms and the master key s. Due to this, compromise
of the PKG is a single point of failure for security.

Boneh and Franklin suggest the use of a distributed PKG instead a single PKG to mitigate
this problem. Their distributed PKG uses t out of m Shamir secret sharing [Sha79], which involves
distributing the master key information among m PKGs, such that any t+1 of them, but no fewer,
can compute the master key or generate a private key for a client. Instead of this basic arrangement,
we suggest use of a verifiable and proactively secure distributed PKG over the Internet [KG07],
where a master key is generated in a completely distributed way with each of m PKGs contributing
a random share. The distributed design is additionally more robust; at any given time only t + 1
of the m PKGs must be online in order for a client to retrieve his private key.

3.5 Applications of Our Anonymity Schemes

Our anonymous key agreement schemes can be used to perform anonymous communication in any
setting having a BF-IBE setup. In recent years, numerous BF-IBE based solutions have been
suggested for various practical situations such as ad-hoc networks [CL06, KKA03, SK05]. Our
anonymous key agreement schemes can be used in all of these setups without any extra effort. As
an example, we refer readers to the secure anonymous communication scheme for delay tolerant

9

networks [KZH07]. In the present article, we focus on a new pairing-based onion routing proto-
col which achieves forward secrecy and constructs circuits without telescoping. We describe this
protocol in the next section.

4 Pairing-Based Onion Routing

Low-latency onion routing requires one-way anonymous key agreement and forward secrecy. In
this section, we describe a new pairing-based onion routing protocol using the non-interactive key
agreement scheme defined in Section 3.2.

Our onion routing protocol has a significant advantage over the original onion routing protocol
[GRS96] as well as the protocol used in Tor [DMS04]; it provides a practical way to achieve forward
secrecy without building circuits by telescoping. Though this is possible with the original onion
routing protocol, that method involves regularly communicating authenticated copies of ORs’ public
keys to the system users; forward secrecy is achieved by periodically rotating these keys. This does
not scale well; every time the public keys are changed all users must contact a directory server
to retrieve the new authenticated keys. However, our onion routing protocol uses ORs’ identities,
which users can obtain or derive without repeatedly contacting a central server, thus providing
practical forward secrecy without telescoping.

4.1 Design Goals and Threat Model

As our protocol only differs from existing onion routing protocols in the circuit construction phase,
our threat model is that of Tor. For example, adversaries have complete control over some part
(but not all) of the network, as well as control over some of the nodes themselves.

We aim at frustrating attackers from linking multiple communications to or from a single user.
Like Tor, we do not try to develop a system secure against a global observer, which can in theory
follow end-to-end traffic. Further, it should not be feasible for any node to determine the identity
of any node in a circuit other than its two adjacent nodes. Finally, we require forward secrecy:
after some amount of time, the session keys used to protect node identities and the contents of
messages are irrecoverable, even if all participants in the network are subsequently compromised.

4.2 Pairing-Based Onion Routing Protocol

An onion routing protocol involves a service provider, a set of onion routers, and users. In our
protocol, a user does not build the circuit incrementally via telescoping, but rather in a single
pass. The user chooses ℓ ORs from the available pool and generates separate pseudonyms for
communicating with each of them. The user computes the corresponding session keys and uses
them to construct a message with ℓ nested layers of encryption. This process uses the protocol
given in Section 3.2 ℓ times.

The service provider works as the PKG for the ORs and provides private keys for their identities.

4.2.1 Forward Secrecy

There are two time-scale parameters in our protocol: the master key validity period (MKVP) and
the private key validity period (PKVP). Both of these values relate to the forward secrecy of the
system. The PKVP specifies how much exposure time a circuit has against compromises of the
ORs that use it. That is, until the PKVP elapses, the ORs have enough information to collectively
decrypt circuit construction onions sent during that PKVP. After each PKVP, ORs discard their

10

current private keys and obtain new keys from the PKGs. This period can be short, perhaps on
the order of an hour.

The MKVP specifies the circuit’s exposure time against compromises of the (distributed) PKG
which reveal the master secret s. Because changing s involves the participation of all of the ORs
as well as the PKGs, we suggest the MKVP be somewhat longer than the PKVP, perhaps on the
order of a day. Remember that in the t of m distributed PKG, if at least m− t PKG members are
honest and not compromised, no one will ever learn the value of a master secret.

4.2.2 Protocol Description

As discussed above, we propose the use of a distributed PKG, but for simplicity, our discussion will
consider the PKG to be a single entity. Using a distributed PKG affects only the setup and key
generation steps.

Setup Given the security requirements, the PKG generates a digital signature key pair (for any
secure digital signature scheme). It also generates a prime n, two groups G (written additively)
and GT (written multiplicatively) of order n and a bilinear map e : G × G → GT . Finally,
the PKG chooses a full-domain cryptographic hash function H : {0, 1}∗ → G

∗. The PKG
publishes all of these values except its private signature key.

Key Generation For each MKVP, the PKG generates a random master key s ∈ Z
∗
n and a random

U ∈ G, and calculates sU . The PKG publishes a signed copy of (vm, U, sU), where vm is a
timestamp for the MKVP in question. This U is a common value to be shared by all users
of the system.

For every valid OR with identity ORi, and for every PKVP v that overlaps with the MKVP,
the PKG generates the private key dvi = sH(v||ORi). The PKG distributes these private keys,
as well as a copy of the signed (vm, U, sU), to the appropriate ORs over a secure authenticated
forward-secret channel. If an OR becomes compromised, the PKG can revoke it by simply
no longer calculating its values of dvi.

Note that this key distribution can be batched; that is, the PKG can precompute the
master keys and private keys in advance (say a week at a time), and deliver them to the ORs
in batches of any size from one PKVP at a time on up. This batching reduces the amount of
time the PKG has to be online, and does not sacrifice forward secrecy. On the other hand,
large batches will delay the time until a revocation becomes effective.

User Setup Once every MKVP vm, each user must obtain a new signed tuple (vm, U, sU) from
any OR or from a public website. Once every PKVP v, the user computes the following
pairing for each OR i and stores the results locally:

γvi = e(sU,Qvi) = e(U,Qvi)
s where Qvi = H(v||ORi)

Circuit Construction During a PKVP v, a user U chooses ℓ ORs (say OR1, OR2, . . . , ORℓ) and
constructs a circuit U ⇔ OR1 ⇔ OR2 ⇔ · · · ⇔ ORℓ with the following steps.

1. For each ORi in the circuit, the user generates a random integer ri ∈ Z
∗
n and computes

the pseudonym PUi = riU and the value γvi
ri = e(U,Qvi)

sri . From γvi
ri two session

11

User

〈U, sU〉

ORA

〈A, sQvA〉

ORB

〈B, sQvB〉

ORC

〈C, sQvC 〉

rAU, {B, rBU, {C, rCU, {∅}KUC
}KUB

}KUA

rBU, {C, rCU, {∅}KUC
}KUB

rC U, {∅}KUC

{Confirm}KCU

{{Confirm}KCU
}KBU

{{{Confirm}KCU
}KBU

}KAU

Figure 1: A user builds a circuit with three ORs.

keys are derived: a forward session key KUi and a backward session key KiU . Finally,
the following onion is built and sent to OR1, the first OR in the circuit:

r1U, {OR2, r2U, {· · · {ORℓ, rℓU, {∅}KUℓ
} · · · }KU2

}KU1

Here {· · · }KUi
is symmetric-key encryption and ∅ is an empty message which informs

ORℓ that it is the exit node.

2. After receiving the onion, the OR with identity ORi uses the received riU and its currently
valid private key dvi to compute e(riU, dvi) = e(U,Qi)

ris = γvi
ri . It derives the forward

session key KUi and the backward session key KiU . It decrypts the outermost onion layer
{· · · }KUi

to obtain the user’s next pseudonym, the nested ciphertext, and the identity
of the next node in the circuit. The OR then forwards the pseudonym and ciphertext to
the next node. To avoid replay attacks, it also stores pseudonyms (see Section 7). The
process ends when an OR (ORℓ in this case) gets ∅.

3. The exit node ORℓ sends a confirmation message encrypted with the backward session key
{Confirm}KℓU

to the previous OR in the circuit. Each OR encrypts the confirmation
with its backward session key and sends it to the previous node, until the ciphertext
reaches the user. The user decrypts the ciphertext layers to verify the confirmation.

4. If the user does not receive the confirmation in a specified time, she selects a different
set of ORs and repeats the protocol.

The circuit construction is further illustrated in Figure 1, where a user builds a three-node
circuit.

Anonymous Communication After the circuit is constructed, communication proceeds in the
same manner as Tor. The user sends onions through the circuit with each layer encrypted
with the forward keys KUi, and each hop decrypts one layer. Replies are encrypted at each
hop with the backward key KiU , and the user decrypts the received onion.

Note that as an optimization, one or more messages can be bundled inside the original
circuit construction onion, in place of ∅.

We analyze the security for the above protocol in Section 6.

12

4.3 Advantages Over First-Generation Onion Routing

As discussed earlier, it is possible to achieve forward secrecy in first-generation onion routing by
periodically replacing the public-private key pairs of the ORs. Following the change, the service
provider publishes signed copies of the new OR public keys after getting authentic copies from the
ORs. However, this requires all users to regularly obtain fresh authenticated public key information
for all ORs.

In contrast, with our system, each user only needs to obtain the single authenticated value
(vm, U, sU), and only once every MKVP. The user can then calculate the required γvi values on
her own until the end of that period, thus reducing the load on the service provider. This load is
further reduced by having the service provider never communicate directly with users at all, but
only with the ORs.

As a consequence, our pairing-based onion routing is a more practical solution for low-latency
anonymous communication.

4.4 Advantages Over Telescoping in Tor

The Tor network, in practice, uses the telescoping approach based on the Diffie-Hellman key ex-
change to form an anonymity circuit. We find the following advantages for our protocol over the
telescoping approach.

• Although our above-defined protocol requires occasional private key generation for ORs to
achieve forward secrecy, it saves communication cost at every circuit construction by avoiding
telescoping. We discuss our communication and computational advantages in Section 8.5.

• The absence of telescoping in our protocol provides flexibility to the user to modify a circuit
on the fly. For example, suppose a user U has constructed a circuit (U ⇔ OR1 ⇔ OR2 ⇔ · · · ⇔
ORi ⇔ · · · ⇔ ORℓ). In our protocol, she can bundle instructions to immediately replace ORi

with OR′i in the next message, while keeping the remaining circuit intact. Her circuit would
then be (U ⇔ OR1 ⇔ OR2 ⇔ · · · ⇔ OR′i ⇔ · · · ⇔ ORℓ).

4.5 Issues with the Proposed Scheme

The certifying authorities in the Tor system need to be less trusted than the PKG in our scheme. It
is also possible for t + 1 malicious PKGs to passively listen to all of the traffic as they can compute
private keys for all ORs. A geographically and politically distributed implementation of m PKGs
certainly reduces this possibility.

To passively decrypt an OR’s messages, an adversary of the Tor system must know the OR’s
private key, as well as the current Diffie-Hellman key (established for each circuit). In our scheme,
as it is non-interactive, an adversary who knows only the OR’s private key can decrypt all of the
messages for that OR. This may be an acceptable trade-off, considering the advantages gained from
the non-interactive protocol.

Further, this onion routing circuit construction provides forward secrecy, only after ORs’ private
keys are rotated. In other words (as defined by Øverlier and Syverson [ØS07]), it only provides
eventual forward secrecy rather than immediate forward secrecy. Consequently, it has shorter PKVP
as compared to the key replacement period in Tor and PKGs (any t + 1 of them) need to be online
with greater reliability. If fewer than t + 1 PKGs are available, the whole system is paralysed after
the current batch. In the next section, we resolve this issue, without a significant increase in circuit
construction time, by introducing a partially interactive onion routing circuit construction.

13

5 λ-pass Onion Routing

Tor achieves immediate forward secrecy using telescoping. Telescoping can also be considered as
an ℓ-pass circuit construction, where ℓ is the circuit length, with immediate forward secrecy at each
of the OR nodes. In practice however, it is sufficient to have immediate forward secrecy at fewer
than ℓ nodes, as an adversary will be stymied when it encounters any such node. In this section,
we define λ-pass onion routing circuit construction, which achieves immediate forward secrecy at
λ nodes (for 2 < λ ≤ ℓ) with reduced circuit construction cost over telescoping.

5.1 Impossibility of Immediate Forward Secrecy in Single-pass Circuit Con-

struction

To motivate multiple pass circuit construction, we will describe why it is impossible to obtain
immediate forward secrecy in any single-pass circuit construction, regardless of the cryptographic
setting.

In an immediately forward secret circuit construction, compromise of OR private keys after a
circuit is built should not allow any information about the circuit path to be recovered. Further,
after the circuit is destroyed and the keys are dropped, it should not be possible for any honest
user and an OR to re-compute their shared keys for that session. To achieve these properties, both
parties must contribute some randomness to the creation of the the session key and they must
drop these random values once the session keys are generated. Consequently, before the user can
generate the forward session key, the random values (in some modified form) have to be exchanged
between the user and the OR. The modified forms should enable the only the authentic receiver
to compute the session key. In an immediate forward secret circuit construction like Tor, these
session-dependent random values are realized using the Diffie-Hellman exponents (x, y), while the
Diffie-Hellman parameters (gx, gy) provide the publicly exchanged forms of the randomness.

In any single-pass circuit construction, an OR does not reply immediately after receiving an
onion (except for exit nodes). Therefore, addition of any randomness from the OR in the forward
session key is not possible, before that session key can be used to convey the OR its successor.
Consequently, any time later in the same PKVP, an adversary can compromise the OR, use the
OR’s private key to generate the session keys and exploit those to find the next node in the circuit
path. Further, although it is possible for nodes to send their part of randomness for session keys
along with the (backward) confirmation onion, this does not provide any advantage as the adversary
can always find the circuit path by decrypting the forward onion. Thus we see that it is not possible
to obtain immediate forward secrecy in a single-pass circuit construction.

5.2 λ-pass Circuit Construction

As replies from the last node of single-pass circuit constructions are direct, immediate forward
secrecy is easy to achieve at this node. Øverlier and Syverson [ØS07] observe that there is always
forward secrecy at the entry node, as the link between the user and the entry node in the circuit
is encrypted using TLS. Therefore, our circuit construction defined in Section 4 can easily be a
2-pass circuit construction with immediate forward secrecy at the entry node and the exit node.
Here, we consider λ − 2 additional single-pass circuit constructions to achieve immediate forward
secrecy at λ nodes. We note that Øverlier and Syverson [ØS07, Protocol 3] propose a similar circuit
construction, but their focus is on dealing with replay attacks. Our λ-pass protocol adds message
flows to provide partial immediate forward secrecy, whereas their protocol uses an increased number
of flows to prevent replay of construction onions.

14

5.2.1 Protocol Description

Although our λ-pass circuit construction can be applied in any public-key setting, for simplicity,
here we present it for pairing-based onion routing, as defined in Section 4.

Setup, Key Generation, User Setup These are as described in Section 4.2.2.

Circuit Construction During a PKVP v, a user U chooses a set of ORs (say OR1, OR2, . . . , ORℓ)
and constructs a circuit U ⇔ OR1 ⇔ OR2 ⇔ · · · ⇔ ORℓ with the following steps.

1. The user selects λ indices 1 = Λ1 < Λ2 < · · · < Λλ−1 < Λλ = ℓ.

2. As in Section 4.2.2, for each ORi in the circuit, the user generates a random integer ri ∈ Z
∗
n

and computes the pseudonym PUi = riU and the value γvi
ri = e(U,Qvi)

sri . From γvi
ri

two session keys are derived: a forward session key KUi and a backward session key KiU .
At this stage, the user forgets the random values ri for all but rΛ1

, rΛ2
, . . . , rΛλ

.

3. The user forms a TLS connection with ORΛ1
= OR1, which generates the session keys

KU1 and K1U . This TLS connection must use one of the ephemeral Diffie-Hellman
ciphersuites guaranteeing forward secrecy for this first connection [DR06].

4. The user then creates the following onion and sends it to OR1.

{OR2, r2U, {· · · {ORΛ2
, rΛ2

U, {∅}KUΛ2
} · · · }KU2

}KU1

Here {· · · }KUi
is symmetric-key encryption and ∅ is an empty message which informs

ORΛ1
that it is the exit node.

5. OR1 uses KU1 and decrypts the onion to determine the next node OR2. The later nodes
ORi with i ≥ 2, use riU and their currently valid private keys dvi to compute e(riU, dvi) =
e(U,Qi)

ris = γvi
ri . They derive the forward session keys KUi and the backward session

keys KiU . They decrypt the outermost onion layer {· · · }KUi
to obtain the user’s next

pseudonym, the nested ciphertext, and the identity of the next node in the circuit. The
ORs then forward the pseudonym and ciphertext to the next node. To avoid replay
attacks, they also store pseudonyms (see Section 7). The process ends when ORΛ2

gets
∅.

6. The last node in the partial circuit ORΛ2
generates a random integer rU2

∈ Z
∗
n, and com-

putes a pseudonym rU2
QvΛ2

. It then generates γ
rΛ2

vΛ2

rU2 and derives modified forward and
backward session keys (K∗

UΛ2
and K∗

Λ2U) and sends a confirmation message encrypted
with the backward session key {Confirm}KΛ2U

along with the pseudonym rU2
QvΛ2

to
the previous OR in the circuit. To obtain immediate forward secrecy, it also forgets the
random integer rU2

and the value γ
rΛ2

vΛ2

rU2 right away, and will forget K∗
UΛ2

and K∗
Λ2U

immediately after the circuit is no longer in use.

7. Each OR encrypts the confirmation with its backward session key and sends it to the
previous node, until the ciphertext reaches the user. The user decrypts the ciphertext
layers to verify the confirmation and in the process, generates the modified session keys
for ORΛ2

using the received pseudonym rU2
QvΛ2

and the stored random value rΛ2
. After

this, the user drops the random value rΛ2
.

8. Now, the partial circuit U ⇔ A · · · ⇔ ORΛ2
is used to extend the circuit to ORΛ3

by
sending the following onion to OR1.

{{· · · {ORΛ2+1, rΛ2+1U, {· · · {ORΛ3
, rΛ3

U, {∅}KUΛ3
} · · · }KUΛ2+1

}KUΛ2
· · · }KU2

}KU1

15

User

〈U, sU〉

ORA = ORλ1

〈A, sQvA〉

ORB = ORλ2

〈B, sQvB〉

ORC

〈C, sQvC〉

ORD = ORλ3

〈D, sQvD〉

TLS Connection

{B, rBU, {∅}KUB
}KUA

rBU, {∅}KUB

rU2
B, {Conf2}K∗

BU
{rU2

B, {Conf2}K∗

BU

}KAU

{{C, rCU, {D, rDU,

{∅}KUD
}KUC

}
K∗

UB

}KUA
{C, rCU, {D, rDU,

{∅}KUD
}KUC

}
K∗

UB rCU, {D, rDU,

{∅}KUD
}KUC

rDU, {∅}KUD

rU3
D,

{Conf3}K∗

DU{rU3
D,

{Conf3}K∗

DU

}KCU
{{rU3

D,

{Conf3}K∗

DU

}KCU
}

K∗

BU{{{rU3
D,

{Conf3}K∗

DU

}KCU
}

K∗

BU

}KAU

Figure 2: A user builds a circuit with four ORs and λ = 3.

9. The user completes λ passes to construct the complete circuit U ⇔ OR1 ⇔ OR2 ⇔ · · · ⇔
ORℓ.

10. If the user does not receive any of the λ confirmations in specified times, she selects a
different set of ORs and repeats the protocol.

Anonymous Communication is as described in Section 4.2.2.

This circuit construction is further illustrated in Figure 2, where a user builds a four-node
circuit with λ = 3.

We observe that the security and anonymity properties of this protocol are straight-forward
extensions to those of our single-pass construction in Section 4; we elaborate on security in Section
6.

5.2.2 Value of λ and node-placement

For λ = ℓ, the above circuit becomes a telescoping circuit construction (like Tor) and for λ = 2,
with minor modifications, it is essentially the single-pass construction of Section 4. Considering
an adversary who controls some of the OR network (but not all, as in our threat model, Section
4.1), it is certainly advantageous to keep 2 < λ < ℓ. We observe that assuming only cryptographic
attacks, it is sufficient to have λ = 3; that is, immediate forward secrecy at the entry node, exit
node and one of the nodes in between. In this case, the adversary’s successive compromise of the
ORs in a circuit is thwarted once it reaches the immediate forward secrecy node. In other words,
assuming that the adversary can compromise all ORs in the network, it cannot link the two parts
of the circuit divided at the immediate forward secret node. However, with traffic analysis and
correlation attacks, this might not be sufficient as the attacker could access all traffic to and from

16

an immediate forward secrecy node. In practice, choosing the value of λ requires an estimate of
how many nodes the adversary can compromise, as well as how much traffic he can observe.

An immediate question is the placement of the immediate forward secrecy nodes in the circuit
path. It is easy to observe that a circuit with two adjacent immediate forward secrecy nodes is more
difficult to attack using traffic analysis than one where those two nodes are separated. Further,
as the ultimate goal of onion routing is anonymity for the sender and receiver, it is good to have
immediate forward secrecy nodes at the start and at the end of the circuit. Therefore, we suggest
⌈λ/2⌉ immediate forward secrecy nodes at the start of the circuit and remaining ⌊λ/2⌋ immediate
forward secrecy nodes at the end of the circuit. In cases when the recipient does not require
anonymity (e.g. it is a webserver), the efficiency of the construction can be improved by placing
the first λ− 1 nodes closest to the sender; that is, by selecting Λi = i for 1 ≤ i ≤ λ− 1 and Λλ = ℓ.
An attacker who observes the onion past the last forward secrecy node may be able to decrypt the
remaining layers, but the first λ − 1 forward secrecy nodes have already provided anonymity for
the sender.

Once the random parameters rUi
and rΛi

are dropped by the ORΛi
and the user U respectively,

deriving their session keys becomes the BDH problem, even if ORΛi
gets compromised during the

PKVP. Therefore, we achieve immediate forward secrecy at λ ORs and the PKVP could be longer,
or made equal to the MKVP. The latter would also eliminate the need to attach validity periods
to OR identities.

6 Security Analysis

Camenisch and Lysyanskaya [CL05] give a protocol for onion routing with provable security in the
universal composability (UC) model [Can01]. The UC model imposes additional overhead on their
protocol. We aim for a simpler and more efficient protocol at the expense of provability in the
UC model. Nevertheless, we prove some security properties of our protocol. Here is a list of the
properties we consider; detailed definitions will follow.

Cryptographic unlinkability This property ensures that a circuit, which has at least one honest
node, provides unlinkability between a sender and a receiver. This property allows us to use
a strong attack model; anonymity is still possible when the adversary controls all but one
of the routers in the path. By the term cryptographic unlinkability we exclude network-level
linking attacks.

Integrity and correctness These properties are defined by Camenisch and Lysyanskaya [CL05].
An onion routing scheme has the correctness property if a message reaches the intended
recipient whenever the an onion is i) formed correctly, ii) processed by the right routers in the
right order, and iii) these routers follow the protocol. Integrity is achieved if onions longer
than some upper limit on the length can be recognized by routers. We observe that our circuit
construction trivially achieves these correctness and integrity properties.

Key secrecy An attacker controlling all but one honest node in a circuit should not be able to
recover the secret key shared between the user and the honest node. Since this is effectively
a run of the protocol in Section 3.2 between the user and the honest node, the security proof
in Section 3.3.2 applies here as well.

Circuit position secrecy Other works on the subject [CL05, Möl03] desire the following prop-
erty, which we term circuit position secrecy. When a router receives an onion, it should not

17

be possible for it to learn which position it has in a circuit (unless it is the entry or exit node).
We discuss some ways to provide circuit position secrecy.

Note that when proving security using the above properties, our λ-pass circuit construction in
Section 5.2, can be considered equivalent to λ passes of our single-pass circuit construction protocol.
Therefore, we do not consider it seperately in our security discussion.

6.1 Cryptographic Unlinkability

Suppose an adversary controls all routers in a circuit of length ℓ except for one honest router, H.
By collapsing the adversarial routers into a single entity, we can distill this scenario into:

User U → A1 → H → A2 → Recipient R

where nodes A1 and A2 are controlled by the adversary. When U sends an onion to A1, it is
processed and forwarded to H who processes it and forwards it to A2. If A2 can determine that
the onion received from H was also processed by A1, then U and R can be linked. Traffic analysis
and timing/correlation attacks may be able to link U and R, but in this section we show that there
is no cryptographic linking possible.

When there are multiple users in the system (a basic assumption for all anonymity systems),
the problem can be illustrated as follows.

U → A1 A2 → R
ց
ր H ր

ց

U ′ → A′
1 A′

2 → R′

We will show that this problem is equivalent to distinguishing ciphertexts.
The situation depicted above is captured by the following security game, which we call the

cryptographic unlinkability game.

Setup The challenger C performs the setup described by the onion routing protocol. The adversary
A chooses m, IDA1

, IDA′
1
, IDA2

, IDA′
2
, IDH . C sends the private keys for IDA1

, IDA′
1
, IDA2

, IDA′
2
,

to A. It is assumed that router identities are of a fixed length to avoid attacks based on the
ciphertext sizes.

Create onions The challenger chooses b ∈ {0, 1} at random.
If b = 0, C sends to A:

O1 for circuit U → A1 → H → A2

= IDA1
, rA1

U, {IDH , rHU, {IDA2
, rA2

U, {m}KUA2
}KUH

}KUA1

O′
1 for circuit U → A′

1 → H → A′
2

= IDA′
1
, rA′

1
U, {IDH , r′HU, {IDA′

2
, rA′

2
U, {m}KUA′

2

}KUH′}KUA′
1

and if b = 1, C sends to A:

O1 for circuit U → A1 → H → A′
2

= IDA1
, rA1

U, {IDH , rHU, {IDA′
2
, rA′

2
U, {m}KUA′

2

}KUH
}KUA1

O′
1 for circuit U → A′

1 → H → A2

= IDA′
1
, rA′

1
U, {IDH , r′HU, {IDA2

, rA2
U, {m}KUA2

}KUH′}KUA′
1

.

18

A1 processing The node A1 processes the onions O1 and O′
1 before passing them along to H (A1

may or may not follow the protocol). The resulting onions OH and O′
H respectively are then

returned to C.

H processing C removes the layer encrypted for H. If the decryptions are invalid the game is
aborted (C will know since it created the onions). If the decryptions are valid, C returns
the resulting O2, O

′
2 to A. Here, O2 and O′

2 are the output onions destined for A2 and A′
2

respectively.

Guess A must determine which input onion corresponds to which output onion by outputting a
guess bit b′. We say that the adversary A (t, ǫ)-wins the game if A outputs b′ in time t such
that

Prob(b = b′) = 1/2 + ǫ .

Winning this cryptographic unlinkability game can be reduced to distinguishing ciphertexts. To
achieve that, we first present the IND-CPA game for (indistinguishability in a chosen plaintext
attack).

Setup Let EK be a symmetric encryption function which uses key K. C chooses K at random
from the keyspace associated with E.

Extraction Queries An adversary ACPA is given oracle access to EK . She can obtain ciphertexts
for polynomially bounded number of plaintext messages of her choice any time during the
game.

Challenge The ACPA chooses two equal length plaintexts m0, m1, and sends them to C. C chooses
b ∈ {0, 1} at random, and sends EK(mb) to ACPA.

Guess ACPA outputs a guess b′ ∈ {0, 1}. We say that ACPA (t, ǫ)-wins the IND-CPA game if
ACPA returns b′ in time t such that

Prob(b = b′) = 1/2 + ǫ .

A similar game, which we call the simultaneous-IND-CPA game, arises from the crypto-
graphic unlinkability problem described above.

Setup Let EK be an encryption function which uses key K. C chooses K1,K2 at random from
the keyspace associated with E.

Extraction Queries An adversary ASimul-CPA is given oracle access to EK1
and EK2

. She obtains
ciphertexts for polynomially bounded number of plaintext messages of her choice any time
during the game.

Challenge ASimul-CPA chooses equal length plaintexts m0, m1, and sends them to C. C chooses
b ∈ {0, 1} at random, and sends EK1

(mb) and EK2
(mb) to ASimul-CPA.

Guess ASimul-CPA outputs a guess b′ ∈ {0, 1}. We say that ASimul-CPA (t, ǫ)-wins the simultaneous-

IND-CPA game if ASimul-CPA returns b′ in time t such that

Prob(b = b′) = 1/2 + ǫ .

We say an encryption function E is (simultaneous-)IND-CPA if for any adversary A which
(t, ǫ)-wins the (simultaneous-)IND-CPA game, ǫ is negligible if t is polynomial.

19

Lemma 6.1. If E is a family of pseudorandom permutations, then E is IND-CPA if and only if
it is simultaneous-IND-CPA.

Proof. First assume an adversary ACPA, which can (t, ǫ)-win an IND-CPA game (m0,m1, EK(mb)).
Given an access to such an adversary, an simultaneous-IND-CPA game (m0,m1, EK1

(mb),
EK2

(mb)) can be (t, ǫ)-won simply by sending the query (m0,m1, EK1
(mb)) to the adversary ACPA.

Therefore, E is simultaneous-IND-CPA ⇒ E is IND-CPA.
Now assume E is a family of pseudorandom permutations and is IND-CPA, and suppose there

is an adversary ASimul-CPA, which (t, γ)-wins the simultaneous-IND-CPA game (m0,m1, EK1
(mb),

EK2
(mb)) for non-negligible γ. For an IND-CPA input (m0,m1, EK(mi)), we present ASimul-CPA

with the simultaneous-IND-CPA instance (m0,m1, EK(mi), $) where $ is a random string of
length |EK(mi)|, and with oracle access to EK2

for a randomly chosen key K2. Suppose ASimul-CPA

returns i with probability 1/2+κ. It follows that ASimul-CPA can be used to distinguish encryptions
of E with key K2 from randomly chosen strings with probability 1/2 + µ, where µ = |γ − κ|. Since
E is assumed to be a psuedorandom permutation, µ must be negligible, and κ ≥ γ − µ. Therefore,
E is IND-CPA ⇒ E is simultaneous-IND-CPA.

Theorem 6.2. If E is a family of pseudorandom permutations which is IND-CPA, then for
any adversary which (t, ǫ)-wins the cryptographic unlinkability game, if t is polynomial, then ǫ is
negligible.

Proof. Suppose A is playing the unlinkability game; we focus on the Guess step. A has OH and
O′

H (the onions processed by C), which are not encryptions of m (which he chose), but encryptions
M1 = {m}KUA1

and M2 = {m}KUA2
known to A. This gives us an instance of simultaneous-IND-

CPA except A did not get to choose the messages. If A (t, ǫ)-solves this instance for non-negligible
ǫ, A can certainly (t, ǫ)-solve instances where A chooses M1,M2. By Lemma 6.1 A solves an
instance of IND-CPA as well.

Therefore, if our encryption function is indistinguishable in a chosen plaintext attack, then
our onion routing protocol has cryptographic unlinkability (in our model of multiple users and
one honest router per circuit). Since key secrecy is proven for our construction, any symmetric key
encryption which provides indistinguishability given key secrecy will give our protocol cryptographic
unlinkability.

6.2 Circuit Position Secrecy

We now treat the issue of preventing routers from learning which position they have in a circuit,
when an adversary controls all but one router. Note that an adversary who controls all but one
router in a circuit, and who knows the circuit length is always able to deduce which position his
routers have in some circuit. Adversarial nodes “sandwiched” between two honest nodes learn
nothing about their position.

The technique used to keep the circuit position secret in the construction of Camenisch and
Lysyanskaya [CL05] can be used with the protocol of Section 4. The method handles the fact
that the onion gets smaller as it moves down the path, allowing routers to learn their position.
Intuitively, the idea is to send a group of equal size onions, each one encrypting data destined for
one of the nodes along the path. There is no intermediate data between layers of the onions, but
only at their centres. In a three-node circuit, we would have a one-layer, two-layer and three-layer
onion, and each router would remove a layer from each. After receiving its data, the router replaces
the onion it was able to read with a random string, and forwards that string and the other two
onions to the next router.

20

7 Systems Issues

In this section, we describe how components of an onion routing system such as Tor would behave in
a pairing-based setting. To implement pairings, we must choose groups where pairings are known,
and are efficiently computable. Once these groups are fixed we can estimate the computational
cost required to construct a circuit. The next section will compare the costs of our schemes to the
cost of setting up a circuit in Tor.

PKG

As discussed in Section 3.4, the PKG should be distributed across servers run by independent
parties. To provide robustness, a “t of m” secret sharing scheme may be employed; this would
mean that an OR need only contact t + 1 of m “pieces” of the PKG to learn its complete private
key. Naturally, private key information must always be communicated over a secure channel.
We note that end users of the system will have no reason to contact the PKG; the PKG only
communicates with ORs, and sends one private key (an element of G) per PKVP to each. The load
on the PKG should therefore be quite manageable. For added protection from attack, the PKG
could even situate itself as a “hidden service” [DMS04, Sec. 5], so that only known ORs could even
connect to it, and no one would know where many of the pieces were located.

Channel Security

The security and forward secrecy depends on the channel between the PKG and the OR used
to compute the private key. With a non-distributed PKG, an attacker can compromise an OR’s
private key by compromising this channel. The distributed PKG provides robustness here as well,
since the attacker must subvert t+1 secure channels to reconstruct the private key from the shares.

Onion Router Identities

Users calculate γvi based on each router’s identity IDi. This identity can be as simple as a port
number and a hostname or IP address. In that case, the BF-IBE setup ensures that if a user knows
how to contact an OR, she automatically knows its public key.

The value γvi is also based on the current PKVP v. To avoid requiring tight synchronization
between the clocks of ORs and users, ORs should keep their private keys dvi around for a short
time after the official end of the PKVP, but must securely discard them after that.

Replay Prevention

To avoid attacks where adversaries replay old circuit construction onions, ORs should store the
pseudonyms they receive for the duration of a PKVP and drop onions which re-use a pseudonym.
After circuit construction, replay attacks can be prevented with existing methods [DM08].

Directory Servers

Directory servers can be used to provide signed information about the list of available ORs to the
users of the system. The directory servers in Tor, for example, provide a list of the ORs along
with their public keys, status, capabilities and policies. In our pairing-based setting, of course, the
public keys are unnecessary.

21

8 Performance

In this section, we consider the cost of single pass and λ-pass circuit constructions from a user
through ℓ onion routers. We estimate the computational cost, and count the number of AES-
encrypted network communications. We compare the performance of our systems to that of Tor.

8.1 Security Levels and Parameter Sizes

Before comparing the costs of the cryptography in the schemes we determine the parameter sizes
required to provide the same level of security currently provided by Tor.

Tor uses public key parameters to provide security at the 80-bit level [Gol06]. The discrete
log problem is in a 1024-bit field, and the RSA problem uses a 1024-bit modulus. The symmetric
parameters provide significantly more security, by using AES with a 128-bit key.

We must choose appropriate groups G and GT over which our pairing will be defined in order to
offer similar strength. The current favourite choice is the group of torsion points of an elliptic curve
group over a finite field, with either the Weil or Tate pairing. To achieve an 80-bit security level, the
elliptic curve discrete log problem an attacker faces must be in a group of at least 160 bits. Due to
the reduction of Menezes, Okamoto and Vanstone [MOV91], we must also ensure that discrete logs
are intractable in the target group, GT . In our case, GT = Fpk , where k is the embedding degree
of our curve taken over Fp. We must then choose our curve E, a prime p, and embedding degree k
such that E(Fp) has a cyclic subgroup of prime order n ≈ 2160, and pk is around 21024. This can
be achieved in a variety of ways, but two common choices are k = 2, p ≈ 2512 and k = 6, p ≈ 2171.
Pairing implementations with both sets of parameters are available in the PBC library [Lyn08].
Efficiency studies suggest that k = 2 and the Tate pairing can offer better performance at this
security level [KM05], so we make that choice.

8.2 Cost of Building a Circuit with Tor

Tor builds circuits by telescoping. A user Uriel chooses a Tor node (say Alice), and establishes a
secure channel using an encrypted Diffie-Hellman exchange. She then picks a second node, Bob,
and over this secure channel, establishes a new secure channel to Bob with another (end-to-end)
encrypted Diffie-Hellman exchange. She proceeds in this manner until the circuit is of some desired
length ℓ. For details, see the Tor specification [DM08]. Note that Uriel cannot use the same Diffie-
Hellman parameters with different nodes, lest those nodes be able to determine that the same user
was communicating with each of them.

Each Diffie-Hellman exchange requires Uriel to perform two modular exponentiations with 1024-
bit moduli and 320-bit exponents. Likewise, each server also performs two of these exponentiations.
Uriel RSA-encrypts the Diffie-Hellman parameter she sends to the server, and the server decrypts
it. The AES and hashing operations involved have negligible costs compared to these.

Uriel’s circuit construction to Alice takes two messages: one from Uriel to Alice, and one from
Alice to Uriel. When Uriel extends this circuit to Bob (via Alice), there are four additional messages:
Uriel to Alice, Alice to Bob, Bob to Alice, and Alice to Uriel. Continuing in this way, we see that
the total number of messages required for Tor to construct a circuit of length ℓ is ℓ(ℓ + 1). Note
that each of these messages needs to be encrypted and decrypted at each hop.

8.3 Cost of Building a Circuit with Paring-Based Onion Routing

In order to create a circuit of length ℓ with our single-pass circuit construction, the user Uriel
must choose ℓ random elements ri of Z

∗
n. As above, Uriel should not reuse these values. She then

22

Table 1: Comparison of costs of setting up a circuit of length ℓ. The values in the Tor column
are based on the Tor specification [DM08]. PB-OR represents our pairing-based onion routing
schemes. efs-OR indicates eventual forward secret ORs, while ifs-OR indicates immediate forward
secret ones. Λavg represents the average of the indices of the λ immediate forward secret nodes.

Operation Time Tor PB-OR λ-Pass PB-OR
(ms) user OR user OR user efs-OR ifs-OR

Pairing 2.9 0 0 0 1 λ 1 1

RSA decryption 2.7 0 1 0 0 0 0 0

Exponentiation (Tor) 1.5 2ℓ 2 0 0 0 0 0

Multiplication in G 1.0 0 0 ℓ 0 ℓ 0 1

Exponentiation in GT 0.2 0 0 ℓ 0 ℓ 0 1

RSA encryption 0.1 ℓ 0 0 0 0 0 0

Total time (ms) 3.1ℓ 5.7 1.2ℓ 2.9 1.2ℓ + 2.9λ 2.9 4.1

Total AES-encrypted messages ℓ(ℓ + 1) 2ℓ 2λΛavg

computes rSU and γS
rS , and derives the forward and backward keys KUS and KSU from γS

rS , for
each server S in the circuit. Note that the γS values were precomputed, and cost nothing during
each circuit creation. Each server computes e(rSU, dS) = γS

rS for its current private key dS and
derives KUS and KSU .

Uriel creates one message, as in Figure 1, and sends it to the first server in the chain. This
server decrypts a layer and sends the result to the second server in the chain, and so on, for a
total of ℓ hop-by-hop encrypted messages. At the end of the chain, the last server replies with a
confirmation message that travels back through the chain, producing ℓ more messages, for a total
of 2ℓ.

8.4 Cost of Building a λ-Pass Paring-Based Onion Routing Circuit

Our λ-pass paring-based onion routing circuit construction is similar to that of our single-pass
construction. Additional tasks that the immediate forward secret nodes must do are generation of
a random integer rUi

, computation of the pseudonym rUi
QvΛi

, and computation of γ
rΛi

vΛi

rUi . Uriel
correspondingly has to perform λ pairing computations to generate modified session keys using the
received pseudonyms rUi

QvΛi
from λ immediate forward secret nodes. The number of messages

and corresponding AES encryptions depends on the positions of the λ immediate forward secret
nodes in the circuit. It is equal to 2

∑λ
i=1 Λi = 2λΛavg, where Λavg is the average of the indicies of

the immediate forward secret nodes in the circuit.

8.5 Comparison and Discussion

We summarize the results of the previous three sections in Table 1. We count the number of
“bignum” operations for each of the client and the servers, both for Tor and for our pairing-
based onion routing protocols. We ignore the comparatively negligible computational costs of
AES operations and hashing. For each bignum operation, we include a benchmark timing. These
timings were gathered on a 3.0 GHz Pentium D desktop using the PBC pairing-based cryptography
library [Lyn08].

23

We can see that the total computation time to construct a circuit of length ℓ using our single-
pass method is 61% less on the user side and 49% less on the OR side as compared to using
Tor. In addition, this circuit construction uses only a linear number of AES-encrypted messages,
while Tor uses a quadratic number. As compared to single-pass circuit construction, our λ-pass
circuit construction requires an additional λ pairing computations by the user, requiring a total of
1.2ℓ+2.9λ ms, and on average 2.9+1.2λ/ℓ ms for each of the ORs. For proposed values of λ = 3, 4,
or 5, these are certainly reasonable times, considering the advantage of immediate forward secrecy,
and having PKVP = MKVP.

9 Conclusion

We have presented new pairing-based approaches for circuit construction in onion routing anonymity
networks. We first extended the protocol of Sakai et al. [SOK00] to allow for one-way or two-way
anonymous or pseudonymous key agreement. We then used this extension to produce new circuit
construction protocols.

Our single pass circuit construction uses significantly less computation and communication than
the corresponding protocol in Tor, and reduces the load on the network support infrastructure. To
achieve immediate forward secrecy instead of eventual forward secrecy, we have also defined λ-pass
circuit construction. These improvements can be used to improve the efficiency and to enhance the
scalability of low-latency anonymity networks.

Acknowledgements.

We would like to thank the Natural Sciences and Engineering Research Council of Canada for
supporting this research with a Discovery Grant (Kate, Goldberg) and a PGS-D postgraduate
scholarship (Zaverucha). We are also grateful for funding provided in the form of David R. Cheriton
Graduate Scholarships (Kate, Zaverucha). We thank the anonymous reviewers of PETS 2007 for
their constructive feedback, which improved an earlier version of this paper. Finally, we would also
like to thank Sk. Md. Mizanur Rahman for providing us with an advance copy of the proceedings
version of [RIO+06].

References

[BF01] D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing,
Advances in Cryptology—CRYPTO 2001, 2001, pp. 213–229.

[Bla05] I. Blake (ed.), Advances in elliptic curve cryptography, London Mathematical Society
Lecture Note Series, no. 317, Cambridge University Press, 2005.

[Can01] R. Canetti, Universally Composable Security: A New Paradigm for Cryptographic
Protocols, 42nd Annual Symposium on Foundations of Computer Science (FOCS
2001), 2001, pp. 136–145.

[Cha81] D. Chaum, Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms,
Communications of the ACM 4 (1981), no. 2, 84–88.

[CL05] J. Camenisch and A. Lysyanskaya, A Formal Treatment of Onion Routing, Advances
in Cryptology—CRYPTO 2005, 2005, pp. 169–187.

24

[CL06] H. Chien and R. Lin, Identity-based Key Agreement Protocol for Mobile Ad-hoc
Networks Using Bilinear Pairing, IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC’06), 2006, pp. 520–529.

[Dai98] W. Dai, PipeNet 1.1, Post to Cypherpunks mailing list, November 1998.

[DE06] R. Dupont and A. Enge, Provably secure non-interactive key distribution based on
pairings, Discrete Applied Mathematics 154 (2006), no. 2, 270–276.

[DM08] R. Dingledine and N. Mathewson, The Tor Protocol Specification,
http://tor.eff.org/svn/trunk/doc/spec/tor-spec.txt, 2008, Accessed February
2008.

[DMS04] R. Dingledine, N. Mathewson, and P. Syverson, Tor: The Second-Generation Onion
Router, Proceedings of the 13th USENIX Security Symposium, 2004.

[DR06] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol (Version
1.1), Request for Comments (RFC) 4346, http://www.ietf.org/rfc/rfc4346.txt,
April 2006.

[FM02] M. J. Freedman and R. Morris, Tarzan: A Peer-to-Peer Anonymizing Network Layer,
Proceedings of the 9th ACM Conference on Computer and Communications Security
(CCS 2002), 2002.

[Gol06] I. Goldberg, On the Security of the Tor Authentication Protocol, Proceedings of the
Sixth Workshop on Privacy Enhancing Technologies (PET 2006), June 2006,
pp. 316–331.

[GRS96] D. Goldschlag, M. Reed, and P. Syverson, Hiding Routing Information, Proceedings of
Information Hiding: First International Workshop, 1996, pp. 137–150.

[Hua07] D. Huang, Pseudonym-based cryptography for anonymous communications in mobile
ad hoc networks, International Journal of Security and Networks 2 (2007), no. 3–4,
272–283.

[KG07] A. Kate and I. Goldberg, A Distributed Private-key Generator for Identity-Based
Cryptography, Tech. Report CACR 2007-33, Centre for Applied Cryptographic
Research, 2007, Available at
http://www.cacr.math.uwaterloo.ca/techreports/2007/cacr2007-33.pdf.

[KKA03] A. Khalili, J. Katz, and W. Arbaugh, Toward Secure Key Distribution in Truly
Ad-Hoc Networks, IEEE Workshop on Security and Assurance in Ad-Hoc Networks
2003, 2003, pp. 342–346.

[KM05] N. Koblitz and A. Menezes, Pairing-Based Cryptography at High Security Levels, 10th
IMA International Conference on Cryptography and Coding, 2005, pp. 13–36.

[KZG07] A. Kate, G. M. Zaverucha, and I. Goldberg, Pairing-Based Onion Routing, 7th
Privacy Enhancing Technologies Symposium (PETS 2007), 2007.

[KZH07] A. Kate, G. M. Zaverucha, and U. Hengartner, Anonymity and Security in Delay
Tolerant Networks, 3rd International Conference on Security and Privacy in
Communication Networks (SecureComm 2007), 2007.

25

[Lyn08] B. Lynn, PBC Library – The Pairing-Based Cryptography Library,
http://crypto.stanford.edu/pbc/, 2008, Accessed February 2008.

[Möl03] B. Möller, Provably Secure Public-Key Encryption for Length-Preserving Chaumian
Mixes, CT-RSA 2003, 2003.

[MOV91] A. Menezes, T. Okamoto, and S. Vanstone, Reducing Elliptic Curve Logarithms to
Logarithms in a Finite Field, 23rd annual ACM Symposium on Theory of Computing
(STOC 1991), 1991, pp. 80–89.

[MOV97] A. Menezes, P. Van Oorschot, and S. Vanstone, Handbook of applied cryptography, 1st
ed., CRC Press, 1997.

[MVdV04] S. Mauw, J. Verschuren, and E. de Vink, A Formalization of Anonymity and Onion
Routing, ESORICS 2004, 2004, pp. 109–124.

[OO05] E. Okamoto and T. Okamoto, Cryptosystems Based on Elliptic Curve Pairing,
Modeling Decisions for Artificial Intelligence—MDAI 2005, 2005, pp. 13–23.

[ØS07] L. Øverlier and P. Syverson, Improving efficiency and simplicity of Tor circuit
establishment and hidden services, 7th Privacy Enhancing Technologies Symposium
(PETS 2007), 2007.

[RIO+06] S. Rahman, A. Inomata, T. Okamoto, M. Mambo, and E. Okamoto, Anonymous
Secure Communication in Wireless Mobile Ad-hoc Networks, First International
Conference on Ubiquitous Convergence Technology (ICUCT2006), 2006.

[RP02] M. Rennhard and B. Plattner, Introducing MorphMix: Peer-to-Peer based Anonymous
Internet Usage with Collusion Detection, Proceedings of the Workshop on Privacy in
the Electronic Society (WPES 2002), 2002.

[RSG98] M. Reed, P. Syverson, and D. Goldschlag, Anonymous Connections and Onion
Routing, IEEE Journal on Selected Areas in Communications 16 (1998), no. 4,
482–494.

[Sha79] A. Shamir, How to Share a Secret, Commun. ACM 22 (1979), no. 11, 612–613.

[SK05] A. Seth and S. Keshav, Practical Security for Disconnected Nodes, IEEE ICNP
Workshop on Secure Network Protocols (NPSec 2005), 2005, pp. 31–36.

[SOK00] R. Sakai, K. Ohgishi, and M. Kasahara, Cryptosystems based on pairing, Symposium
on Cryptography and Information Security (SCIS 2000), 2000.

[STRL00] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr, Towards an Analysis of Onion
Routing Security, Designing Privacy Enhancing Technologies: Workshop on Design
Issues in Anonymity and Unobservability, 2000, pp. 96–114.

[The08] The Tor Project, Tor: anonymity online, http://tor.eff.org/, 2008, Accessed
February 2008.

[Ver01] E. Verheul, Evidence that XTR Is More Secure than Supersingular Elliptic Curve
Cryptosystems, Advances in Cryptology—Eurocrypt 2001, 2001, pp. 195–210.

26

