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Abstract

We study the problem of Perfectly Reliable Message Transmission (PRMT) and Perfectly
Secure Message Transmission (PSMT) between two nodes S and R in an undirected synchronous
network, a part of which is under the influence of an all powerful mobile Byzantine adversary. In
ACISP’2007 Srinathan et. al. has proved that the connectivity requirement for PSMT protocols
is same for both static and mobile adversary thus showing that mobility of the adversary has no
effect on the possibility of PSMT (also PRMT) protocols. Similarly in CRYPTO 2004, Srinathan
et. al. has shown that the lower bound on the communication complexity of any multiphase
PSMT protocol is same for static and mobile adversary. The authors have also designed a O(t)
phase1 protocol satisfying this bound where t is the maximum number of nodes corrupted by
the Byzantine adversary. In this work, we design a three phase bit optimal PSMT protocol
using a novel technique, whose communication complexity matches the lower bound proved in
CRYPTO 2004 and thus significantly reducing the number of phases from O(t) to three. Further
using our novel technique, we design a three phase bit optimal PRMT protocol which achieves
reliability with constant factor overhead against a mobile adversary. These are the first ever
constant phase optimal PRMT and PSMT protocols against mobile Byzantine adversary. We
also characterize PSMT protocols in directed networks tolerating mobile adversary.

All the existing PRMT and PSMT protocols abstracts the paths between S and R as wires,
neglecting the intermediate nodes in the paths. However, this causes significant over estimation
in the communication complexity as well as round complexity2 of protocols. Here, we consider
the underlying paths as a whole instead of abstracting them as wires and derive a tight bound
on the number of rounds required to achieve reliable communication from S to R tolerating
a mobile adversary with arbitrary roaming speed3. We show how our constant phase PRMT
and PSMT protocols can be easily adapted to design round optimal and bit optimal PRMT and
PSMT protocols provided the network is given as a collection of vertex disjoint paths.

Keywords: Information Theoretic Security, Communication Efficiency, Mobile Adversary.
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1A phase is a send from S to R or R to S or both
2Round is different from phase. Round is a send from one node to its immediate neighbor in the network.
3By roaming speed we mean the speed with which the adversary changes the set of corrupted node
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1 Introduction

Consider the following problem: a sender S and a receiver R, who want to “talk” to each other via
an underlying communication network that they do not trust. Note that if S and R are connected
directly via a private and authenticated link (like in the generic solutions for secure multiparty
computation [2, 7, 14, 19]), secure communication is trivially guaranteed. However, in reality, it
is not economical to directly connect every two players in the network. The sender’s distrust in
the underlying communication network is usually modeled by a virtual entity called the adversary
that has unbounded computing power and can corrupt some of the players (nodes) in the network.
In spite of the presence of such an adversary in the network, S wishes to send a message m chosen
from a finite field F, reliably to R, in a guaranteed manner. This problem is called perfectly reliable
message transmission (PRMT). The problem of perfectly secure message transmission (PSMT) has
an additional constraint that the adversary should get no information about m. Security against
such an unbounded powerful adversary is called information theoretic or perfect security. Since
the adversary has unbounded computing power, we cannot use public key cryptography, digital
signature, etc to solve PRMT/PSMT problem because they assume that adversary has polynomial
time computing power.

There have been a variety of adversary models used in the literature, each one catering to a
different real-life setting. Dolev et al [5], who introduced and studied the problem of PSMT assume
that the adversary can corrupt up to any t nodes in the network and that the adversary is static
Byzantine, i.e., a player once corrupted remains so subsequently. If a node P is under the control
of Byzantine adversary, then the adversary fully dictates the action of P. The adversary will have
full access to the internal state and computation of P and can force P to deviate from the protocol
arbitrarily. More recent efforts using the same (static) adversarial model for the problem of PSMT
include [15, 17, 10, 4, 13].

However, as first noticed in [12], the static model implicitly assumes that the number of dishonest
players in the network is independent of the protocol’s execution time. This is usually not true
in practice. Furthermore, since a corrupted player could be corrected given sufficient time, [12]
proposed the mobile adversary model wherein the adversary could move around the network whilst
still corrupting up to t players at any given instant. Subsequently, extensive research efforts on
tolerating mobile adversaries have resulted in what is now well-known as proactive security [9, 8, 6,
1].

1.1 Existing Results

It is known that for the existence of any r-phase (r ≥ 2) PRMT/PSMT protocol, n ≥ 2t+1 vertex
disjoint paths (also called as wires) between S and R [5] is necessary and sufficient to tolerate
a t-active static adversary. Also, as reported in [17], any r phase (r ≥ 2) PSMT protocol has a
communication complexity of Ω

(
n`

n−2t

)
to securely send ` field elements against a t-active static

adversary. While for PSMT we have a proven lower bound for communication complexity, for
PRMT it can be as small as Ω(l) for communicating message of ` field elements. The authors
of [13] have designed a three phase PRMT protocol which satisfies the above defined bound and
sends a message containing ` field elements by communicating O(`) field elements. Such a protocol
is called bit-optimal PRMT protocol. In addition, the authors [13] also reported a three phase
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PSMT protocol, whose communication complexity is O
(

n`
n−2t

)
(asymptotically touching the lower

bound specified for multiphase PSMT) and hence it is bit optimal against a static adversary.
Unlike static adversary, a t-active mobile adversary can corrupt different set of t wires during

different phases of the protocol. Thus, a wire once corrupted, may not remain corrupted in subse-
quent phases. Intuitively, it is more difficult to tolerate a t-active mobile adversary in comparison
to a t-active static adversary. However, in [18], it is shown that n ≥ 2t + 1 wires between S and R
is necessary and sufficient for the possibility of any r-phase (r ≥ 2) PRMT/PSMT protocol against
a t-active mobile adversary. Thus mobility of adversary does not affects its tolerability. In [17], the
communication complexity of any r-phase (r ≥ 2) PSMT protocol is stated to be Ω

(
n`

n−2t

)
, where

` is the message to be sent securely against a t-active mobile adversary. The authors of the same
paper has also designed a O(t) phase PSMT protocol satisfying the bound.

1.2 Our Contribution, Its Motivation and Significance

One of the implicit assumptions made in all the works done on static adversary model is that
the players once faulty, remain so subsequently for the rest of the protocol execution. While such
assumption is justified with respect to short-lived and fast protocols, it is invariably too conservative
in adequately capturing the fault patterns in large and time-consuming protocols.This observations
naturally motivates the study of PRMT and PSMT with mobile adversary settings which we do in
this work. The following are the main contribution of this paper:

(a) A bit-optimal three phase PRMT protocol, which sends a message of ` field elements by
communicating O(`) field elements and thus achieves reliability with constant factor overhead
in three phases even in the presence of mobile adversary.

(b) A bit-optimal three phase PSMT protocol satisfying the bound for communication complexity
proved in [17].

Both these protocols uses a novel technique, very different from the techniques adapted in the three
phase bit-optimal PRMT and PSMT protocol proposed in [13] tolerating a static adversary.

(c) We give the first ever characterization of PSMT protocols in directed networks tolerating
mobile adversary.

All existing PRMT and PSMT protocols abstract the underlying network as vertex disjoint paths,
called wires, between S and R, thus neglecting the intermediate nodes in these paths. However, as
shown in [16], such an abstraction gives an incorrect estimation on the communication complexity
and round complexity of PRMT and PSMT protocols, in many practical scenarios. Hence, it is
essential to consider all the intermediate nodes in each wire for the design and analysis of PRMT
and PSMT protocols. Also, considering the intermediate nodes/details of each wire motivates to use
more finer notion of round in comparison to phase. Accordingly, the behavior of mobile adversary
is re-defined to allow the adversary to corrupt any set of t nodes after every ρ ≥ 1 rounds, where ρ
is called the roaming speed of the adversary. In this work, our contribution also encompasses:

(d) Computation of a tight bound on the minimum number of rounds rmin, required for the
existence of any PRMT protocol tolerating mobile adversary, with roaming speed of ρ = 1.
The same for an adversary with arbitrary roaming speed ρ ≥ 2.

3



(e) Finally, adaptation of our constant phase PRMT and PSMT protocols into round optimal
and communication optimal PRMT and PSMT protocols in a given network, provided the
network is given as a collection of disjoint paths.

As mentioned earlier, abstraction of network as wires leads to incorrect estimation on communica-
tion and round complexity of protocols. But still wired abstraction eases deriving lower bounds on
communication complexity and finding out the connectivity requirement for PRMT/PSMT prob-
lem and also simplifies the analysis of protocols. The same reason answers for why we have designed
phase-based protocols for PRMT and PSMT and later adapted them to work in terms of rounds.

2 PRMT and PSMT Tolerating Mobile Adversary (in Terms of
Phases)

Here we design constant phase bit-optimal PRMT and PSMT protocols in undirected network. We
first define the network settings and computational model used for designing phase-based protocols.

2.1 Network Settings and Computational Model

Recall that a phase is a send from S to R or vice-versa. While designing protocols in terms of
phases, following the approach of [5], we abstract the network as a collection of vertex disjoint paths
called wires between S and R, neglecting the intermediate nodes in these paths. A t-active mobile
adversary can corrupt different set of t wires during different phases of the protocol. Hence a wire
w, which is corrupted in some phase, may not remain corrupted during subsequent phases and can
behave honestly. Also by corrupting a wire w during a particular phase, adversary does not get
any information which was transmitted over w in earlier phase(s) (unless w was corrupted in earlier
phase(s) also). Thus, if t = 1 and adversary has corrupted wire w during first phase and wire w′ 6= w
during second phase, then adversary will combinedly know the information transmitted through
w (w′) during first (second) phase. Also w′ (w) will behave honestly during first (second) phase.
We assume that S and R are connected by n ≥ 2t + 1 bi-directional wires w1, w2, . . . wn, which is
necessary and sufficient for PRMT/PSMT protocols against a t-active mobile adversary [17, 16].
Any information which is sent over all the n wires is said to be “broadcast”. Any information which
is “broadcast” over n > 2t wires will always be recovered correctly at the receiving end by taking
the majority.

2.2 Black Box Used in Our Protocols

We now briefly describe the black boxes used in our protocols.

2.2.1 Extracting Randomness

Consider the following problem: S and R agree on a n-tuple x = [x1, x2, . . . xn] ∈ Fn such that the
adversary knows n − f components of x, but has no information (in information theoretic sense)
about the other f components of x. However, S and R do not necessarily know which values are
known to the adversary. But they want to agree on a sequence of f elements y1, y2, . . . yf ∈ F
such that y1, y2, . . . yf is information theoretically secure. This is achieved by EXTRANDn,f (x)
proposed in [17].
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Lemma 1 ( [17]) The adversary has no information about [y1 y2 . . . yf ] computed in EXTRAND.

Algorithm EXTRANDn,f (x). Let V be a n×f Vandermonde matrix with members in F, which
is a part of protocol specification. S and R both locally compute the product [y1 y2 . . . yf ] =
[x1 x2 . . . xn]V .

2.2.2 Communicating Conflict Graph

Consider the following scenario: S and R are connected by n = 2t+1 bi-directional wires. S selects
at random n polynomials pi(x), 1 ≤ i ≤ n over F, each of degree t. Next through wire wi, 1 ≤ i ≤ n,
S sends to R the polynomial pi(x) and for each j, 1 ≤ j ≤ n, the value of pj(αi) denoted by rji,
where αi’s are arbitrary distinct publicly specified members of F.

Let R receives polynomial p′i(x) and the values r′ji along wi. R tries to find as many faults as he
can find that occurred in the previous phase and communicates his findings reliably to S. Towards
this, R constructs a directed graph called conflict graph H = (W, E), where W = {w1, w2, . . . , wn}
and arc (wi, wj) ∈ E if r′ij 6= p′i(αj); i.e., if the value of the received polynomial p′i(x) evaluated
at x = αj , does not match the corresponding received value r′ij . There can be Θ(n2) arcs in the
conflict graph. For each (wi, wj) ∈ E, R adds a four tuple {wi, wj , p

′
i(αj), r′ij} to a list X. R then

broadcasts X to S. S reliably receives X. For each {wi, wj , p
′
i(αj), r′ij} ∈ X, S verifies r′ij

?= rij

and p′i(αj)
?= pi(αj). Depending upon the outcome of the test, S concludes that either R has

received incorrect r′ij over wire wj or R has received incorrect p′i(x) over wire wi (or both) and
hence accordingly adds wi or wj (or both) to a list Lfault. S then broadcasts Lfault to R. Now we
can say the following:

Theorem 1 S will always be able to identify the wires over which R has received faulty polynomial
during first phase. Moreover, S will be able to reliably send this information to R.

Proof: Suppose wire wi has been corrupted in first phase; i.e., pi(x) 6= p′i(x). Then the two
polynomials can intersect at, at most t points, since both are of degree t. Since there are at least
t + 1 honest wires, it may happen that pi(x) = p′i(x) for at most t αk’s corresponding to t honest
wires, so there is at least one honest wire wj , such that rij = r′ij and p′i(αj) 6= r′ij , which will
contradict wi and so the arc (wi, wj) will be present in the conflict graph and hence the four tuple
{αi, αj , p

′
i(αj), r′ij} will be present in the list X. Since X is broadcast over 2t + 1 wires, S will

correctly receive X and eventually knows all the corrupted polynomials; i.e., S knows all the wires
wi over which the R has received corrupted polynomial pi(x) and adds them to Lfault and then
reliably sends Lfault to R by broadcasting. 2

Theorem 2 The communication complexity of broadcasting the list X is O(n3).

Proof: The proof follows from the fact that there can be Θ(n2) arcs in the conflict graph and
corresponding to each arc, there exist a four tuple in X. 2

Remark 1 An efficient way of sending the conflict graph (which contains O(n2) edges) by commu-
nicating O(n2) field elements was introduced in [17] and subsequently used in [13]. The method deals
with finding maximum matching of conflict graph and a few notions from coding theory. However,
the same technique can not be adopted here against mobile adversary, as it can choose to corrupt
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different set of t wires in different phases. So, we introduce a novel technique called Union tech-
nique (described in the next section) which enables us to send n conflict graphs by communicating
O(n3) field elements. Later we use this technique to design bit-optimal PRMT/PSMT protocols
against a mobile adversary.

2.3 PRMT with Constant Factor Overhead Tolerating Mobile Adversary

We propose a three phase PRMT protocol PRMT Optimal which sends a message containing
n(t + 1)2 = O(n3) field elements by communicating O(n3) field elements against a t-active mobile
Byzantine adversary, where S and R are connected by n = 2t + 1 bi-directional wires. Thus,
PRMT Optimal achieves reliability with constant factor overhead in constant phases and thus
is bit-optimal. In [13], a three phase bit-optimal PRMT protocol had been presented against a
static adversary which sends O(n2) messages by communicating O(n2). Thus, extra adversarial
power of mobility does not hinder to achieve bit-optimality in the same number of phases (three)
except that the optimality is achieved for larger message size!! Before describing the protocol
PRMT Optimal, we describe a novel technique used in our protocol which we call as Union
Technique for combining n conflict graphs.

Union Technique: Recall the same scenario described in section 2.2.2. In first phase R receives
n polynomials p′i(x), 1 ≤ i ≤ n, each of degree t (out of which at most t can be corrupted) and
n values corresponding to each polynomial (out of which at most t can be corrupted) denoted by
r′ij . Let B denote the set of n polynomials and their n values as received by R. Using B, R can
construct a conflict graph. Now, in our three phase PRMT protocol PRMT Optimal , during
Phase I, instead of a single set B, R receives n such sets denoted as Bk, 1 ≤ k ≤ n, where Bk

contains n polynomials p′ki(x), 1 ≤ i ≤ n and n values for each p′ki(x) denoted by r′ki,j , 1 ≤ j ≤ n.
The flow of information over n wires during Phase I is given in Table 1.

Table 1: Data Flow over n wires in Phase I of PRMT Optimal

Wire B1 . . . Bk . . . Bn

w1 P11(x) r11,1, r12,1, . . . r1n,1 . . . Pk1(x) rk1,1, rk2,1, . . . rkn,1 . . . Pn1(x) rn1,1, rn2,1, . . . rnn,1

w2 P12(x) r11,2, r12,2, . . . r1n,2 . . . Pk2(x) rk1,2, rk2,2, . . . rkn,2 . . . Pn2(x) rn1,2, rn2,2, . . . rnn,2

. . . . . . . . . . . . . . . . . .

wi P1i(x) r11,i, r12,i, . . . r1n,i . . . Pki(x) rk1,i, rk2,i, . . . rkn,i . . . Pni(x) rn1,i, rn2,i, . . . rnn,i

. . . . . . . . . . . . . . . . . .

wn P1n(x) r11,n, r12,n, . . . r1n,n . . . Pkn(x) rk1,n, rk2,n, . . . rkn,n . . . Pnn(x) rn1,n, rn2,n, . . . rnn,n

R then constructs conflict graph Hk using the set Bk. For each Hk, we can say the following
from Theorem 1: if during Phase I, R receives a corrupted polynomial p′ki(x) 6= pki(x) over wi,
then there exist at least one directed arc (wi, wj) in Hk, where wj is an honest wire (out of the
t+1 honest wires not under the control of the adversary). If R broadcasts all conflict graphs, then
from Theorem 1, both S and R would come to know the identity of all faulty wires wi over which
R has received at least one faulty p′ki(x), 1 ≤ k ≤ n during Phase I. However, from Theorem 2,
broadcasting all of them requires communicating O(n4) field elements. So we now introduce a
very intelligent method of combining n conflict graphs into a single directed conflict graph H. By
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broadcasting H to S, R can ensure that S will be able to identify all wi’s over which R has received
at least one faulty polynomial p′ki(x). The combined directed conflict graph H = (V,E) will have
vertices and edges as follows: V = {w1, w2, . . . , wn} and E = {(wi, wj)} where arc (wi, wj) ∈ E if
(wi, wj) occurs in at least one Hk, 1 ≤ k ≤ n. Since an arc (wi, wj) can occur in multiple Hk’s, R
considers (wi, wj) from the minimum indexed Hγ among all such Hk’s, keeping a note that (wi, wj)
is added from Hγ . For each (wi, wj) ∈ E, R adds a five tuple {wi, wj , γ, p′γi(αj), r′γi,j} to a list X,
provided (wi, wj) is taken from Hγ . This indicates that in the set Bγ , the value of the polynomial
p′γi(x) received over wi, when evaluated at αj , does not match with the corresponding value r′γi,j

received over wj . It is easy to see that there can be Θ(n2) edges in H and hence Θ(n2) tuples in
X. In the next theorem, we prove that S can identify all faulty wires over which R received at
least one faulty polynomial after receiving X.

Theorem 3 In the Union Technique, if R broadcasts X to S, then S identifies all faulty wires
wi over which R has received at least one corrupted polynomial p′ki(x).

Proof: Suppose during Phase I, R receives a faulty polynomial p′ki(x) over wi. Then from Theo-
rem 1, there exists at least one arc (wi, wj) ∈ Hk, where wj is an honest wire. Since the combined
conflict graph H is formed by considering all the arcs in the individual Hk’s, 1 ≤ k ≤ n, list X
must have a five tuple {wi, wj , γ, p′γi(αj), r′γi,j}. Now there are two possibilities: (i) γ = k which
indicates the five tuple exactly corresponds to the arc (wi, wj) ∈ Hk. else (ii) γ < k which indicates
the five tuple corresponds to the arc (wi, wj) ∈ Hγ which in turn implies polynomial p′γi(x) has
also been corrupted. Hence, adding five tuple for the arc (wi, wj) ∈ Hγ in H will not effect in
identifying wi as a wire delivering at least one faulty polynomial. This follows from the fact that
no unchanged polynomial over wi can be contradicted by honest wire wj . Thus, for each faulty wi

delivering at least one incorrect polynomial during Phase I, there exists a five tuple in X. Hence,
when R broadcasts X, S will identify all faulty wires over which R received at least one faulty
polynomial p′ki(x) after performing local verification. 2

Now we are well-equipped to understand Protocol PRMT Optimal. Intuitively, the proto-
cols works as follows: S selects n bivariate polynomials whose coefficients are the message to be
sent. S then generates n sets Bk, 1 ≤ k ≤ n from n bivariate polynomials and communicates
them to R in Phase I. On receiving n Bk’s, R first constructs n conflict graphs Hk’s and then
combine all of them to a single graph H and broadcast H to S in Phase II. In Phase III S
identifies all faulty wires from the knowledge of H and sends them across to R. Finally, R recovers
the message by reconstructing all the n bivariate polynomials using the identity of the faulty wires
communicated by S. We now proceed to show the correctness of the protocol.

Theorem 4 In the protocol PRMT Optimal, R will always be able to correctly recover the mes-
sage.

Proof: In PRMT Optimal, to recover m, R should be able to interpolate each bivariate polyno-
mial qk(x, y), 1 ≤ k ≤ n. Since each qk(x, y) is of degree t in both x and y, R requires t + 1 correct
qk(x, αi) = pki(x)’s to recover qk(x, y). Since among n wires at most t can be corrupted, R will
receive at least t + 1 correct pki(x)’s. Now R wants to know the identity of t + 1 correct pki(x)’s.
During Phase II, R constructs n conflict graph Hk, 1 ≤ k ≤ n and combine them into a single
conflict graph H using Union Technique, forms X and broadcasts it to S. From Theorem 3, on
receiving X, S identifies all faulty wires over which R has received at least one faulty polynomial
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Protocol PRMT Optimal : A Three Phase Optimal PRMT Protocol Against Mobile Adversary

Let the sequence of n(t + 1)2 field elements that S wishes to transmit be denoted by mk,ij , 0 ≤ i, j ≤ t
and 1 ≤ k ≤ n.

Phase I: (S to R)

• Using the mk,ij values, S defines n bivariate polynomials qk(x, y), 1 ≤ k ≤ n as follows: qk(x, y) =
∑ i=t

j=t

i=0,j=0 mk,ijx
iyj

• S then evaluates each qk(x, y), 1 ≤ k ≤ n at n publicly known distinct values α1, α2, . . . , αn to obtain total n2

polynomials denoted as pki(x), 1 ≤ k ≤ n, 1 ≤ i ≤ n over F, each of degree t where pki(x) = qk(x, αi). Over
wire wi, 1 ≤ i ≤ n, S sends the polynomials pki(x), 1 ≤ k ≤ n and the values pkj(αi), denoted by rkj,i, for
1 ≤ k, j ≤ n (see Table 1).

Phase II (R to S)

• Let R receives over wire wi, 1 ≤ i ≤ n the polynomials p′ki(x) and the values r′kj,i, 1 ≤ k, j ≤ n. R then
considers the polynomials p′11(x), p′12(x), . . . , p′1n(x) and the values r′1j,i, 1 ≤ j, i ≤ n and constructs the conflict
graph H1 as explained in section 2.2.2; i.e., (wi, wj) ∈ H1 if p′1i(αj) 6= r′1i,j . Similarly, R considers the
polynomials p′21(x), p′22(x), . . . , p′2n(x) and the values r′2j,i, 1 ≤ j, i ≤ n and constructs the conflict graph
H2. In general, R considers the polynomials p′k1(x), p′k2(x), . . . , p′kn(x) and the values r′kj,i, 1 ≤ j, i ≤ n and
constructs the conflict graph Hk, 1 ≤ k ≤ n.

• R combines Hk, 1 ≤ k ≤ n into a single directed conflict graph H using Union Technique and forms the
corresponding list of five tuples X and broadcasts X to S.

Phase III (S to R)
• S reliably receives the list X. S then creates a list Lfault which is initialized to ∅. For each tuple

{wi, wj , k, p′ki(αj), r
′
ki,j} ∈ X, S locally verifies r′ki,j

?
= rki,j and p′ki(αj)

?
= pki(αj). Depending upon the output of

the verification, S concludes that wi or wj or both are faulty and add to Lfault. S finally broadcasts the list Lfault

to R and terminates the protocol.

Message Recovery by R.
• R reliably receives Lfault and identifies all wi over which it had received at least one faulty polynomial p′ki(x), 1 ≤
k ≤ n during Phase I (see Theorem 4). R neglects all the polynomials p′ki(x), 1 ≤ k ≤ n for each wi ∈ Lfault,. Using
the remaining (at least) t + 1 p′ki’s, 1 ≤ k ≤ n, R correctly recovers the bivariate polynomials qk(x, y)’s, 1 ≤ k ≤ n
and hence the message.

during Phase I and adds them to Lfault and broadcasts to R. R neglects all the n polynomials
received over each wi ∈ Lfault. Since |Lfault| ≤ t, R will have at least t + 1 correct pki(x) for each
1 ≤ k ≤ n, using which R recovers each qk(x, y) and hence m. 2

Theorem 5 The communication complexity of PRMT Optimal is O(n3).

Proof: During Phase I, S sends over each wire n polynomials of degree t and n2 values. So
communication complexity of Phase I is O(n3). During Phase II, R broadcasts the list X. As
explained earlier, X contains Θ(n2) tuples. Hence broadcasting X requires O(n3) communication
complexity. During Phase III, S broadcasts the list Lfault. Since |Lfault| ≤ t, this involves
communicating O(nt) = O(n2). Hence the overall communication complexity of PRMT Optimal
is O(n3). 2

Remark 2 PRMT Optimal sends n(t+1)2 = O(n3) field elements by communicating O(n3) field
elements. Since any PRMT protocol for communicating ` field elements has to communicate Ω(`)
field elements [16], our protocol is asymptotically optimal. Since any field element is represented
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by log2(|F|) bits, PRMT Optimal sends n3log2(|F|) bits by communicating O(n3log2(|F|)) bits.
Hence PRMT Optimal is bit optimal.

2.4 Constant Phase Bit Optimal Proactive PSMT Protocol

We now present a three phase PSMT protocol PSMT Optimal which securely sends n(t + 1) =
O(n2) field elements by communicating O(n3) field elements against a t-active mobile Byzantine
adversary where S and R are connected by n = 2t + 1 wires, thus matching the lower bound on
the communication complexity of multiphase PSMT protocol against a t-active mobile adversary,
as proved in [17]. This significantly reduces the O(t) phase communication optimal PSMT protocol
given in [17].

Protocol PSMT Optimal: A Three Phase Optimal PSMT Protocol Against Mobile Adversary

Let the sequence of n(t + 1) field elements that S wishes to transmit securely be denoted by mi, 1 ≤ i ≤ n(t + 1).

Phase I: S to R
• S selects n2 polynomials pki(x), 1 ≤ k, i ≤ n over F each of degree t where the coefficients of pki(x)’s are
randomly chosen from F. Over wi, 1 ≤ i ≤ n, S sends the polynomial pki(x), 1 ≤ k ≤ n and the values pkj(αi),
denoted by rkj,i, for 1 ≤ k, j ≤ n (the flow of data is similar to Table 1 except that here pki(x)’s are independent of m).

Phase II (R to S)

• Let R receives over wi, 1 ≤ i ≤ n the polynomials p′ki(x) and the values r′kj,i, 1 ≤ k, j ≤ n. Then similar to
PRMT Optimal protocol, R constructs the conflict graphs H1, H2, . . . , Hn and combine them to a single conflict
graph H using Union Technique , forms the list of five tuples X and broadcasts X to S.

Phase III (S to R)

• Similar to the PRMT Optimal protocol, S correctly receives X and identifies all faulty wires wi over which
R must have received at least one faulty polynomial during Phase I. S adds all such wires Lfault. S neglects
all pki(x), 1 ≤ k ≤ n sent during Phase I if wi ∈ Lfault.

• S is left with (n − |Lfault|) wires after neglecting all the faulty wires in the previous step. S then forms a
vector x of length (n − |Lfault|) ∗ n which is the concatenation of the constant terms of all the polynomials
pki(x), 1 ≤ k ≤ n such that wi 6∈ Lfault.

• S computes a pad y of length n(t + 1) by executing EXTRANDn(n−|Lfault|),n(t+1)(x) algorithm of sec-
tion 2.2.1. S computes c = [c1c2 . . . cn(t+1)] = y ⊕ m, where ci = yi ⊕ mi and broadcasts Lfault and c to
R.

Message Recovery by R.
• R reliably receives the list Lfault and identifies all the wires wi over which it has received at least one faulty
polynomial p′ki(x), 1 ≤ k ≤ n during Phase I (see Theorem 6). R neglects all p′ki(x), 1 ≤ k ≤ n if wi ∈ Lfault. R
generates the pad y of length n(t + 1) following the same procedure as done by S and finally recovers the message m
by computing m = c⊕ y.

Theorem 6 In the protocol PSMT Optimal, R will always be able to correctly receive the mes-
sage.

Proof: PSMT Optimal is similar to PRMT Optimal, except that in PSMT Optimal, the
coefficients of the polynomials pki(x), 1 ≤ k, i ≤ n are arbitrary field elements, used to establish a
one time pad of length n(t + 1) between S and R. From Theorem 4, on receiving X, S identifies
all wi’s over which R has received at least one faulty p′ki(x), 1 ≤ k ≤ n during Phase I. S adds all
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such wires to Lfault and then neglects all the n polynomials which are sent over such faulty wires.
S then forms the vector x which is the concatenation of constant terms of the polynomials pki(x) ,
1 ≤ k ≤ n if wi 6∈ Lfault and generates a one time pad y of length n(t + 1). S then blinds m with y
to generate c and broadcasts c and Lfault to R. On receiving Lfault, R identifies the faulty wires
wi and neglects all the n polynomials received over wi where wi ∈ Lfault, construct the vector x,
regenerates the one time pad y and thus recovers the message by XOR-ing c with y. 2.

Theorem 7 In the protocol PSMT Optimal, any adversary A who can control different set of t
wires during different phases of the protocol will get no information about the message m.

Proof: Without loss of generality, assume during Phase I, A controls w1, w2, . . . , wt. Thus A knows
the constant terms of the polynomials pki(x), 1 ≤ k ≤ n, 1 ≤ i ≤ t. Moreover, for the remaining
polynomials pkj , t + 1 ≤ j ≤ n, A receives t points over w1, w2, . . . wt. Since the degree of each
pkj , t+1 ≤ j ≤ n is t, A lacks one point for each of these polynomials implying information theoretic
security for the constant terms of these polynomials. From Theorem 6, during Phase III, S will
be able to identify all the faulty wires over which R had received at least one faulty polynomial
during Phase I. S adds all such wires to Lfault and neglects them. S is left with n−|Lfault| wires,
out of which at most t − |Lfault| wires were passively listened by the adversary. So S forms the
vector x which is the list of constant terms of all the polynomials which were delivered correctly to
R during Phase I. Since, there are t + 1 honest (not controlled by adversary) wires, S generates a
one time pad of length n(t+1) from x by executing EXTRAND. The proof now follows from the
correctness of the EXTRAND algorithm. Note that during Phase II, the list X broadcast by R,
reveals no new information to A. Suppose {wi, wj , k, p′ki(αj), r′ki,j} ∈ X. It implies that either wi

or wj or both had been corrupted by A during Phase I. If wi was corrupted by A then A knows
pki(x) and hence the value r′ki,j = rki,j . On the other hand, if A had corrupted wj , then A already
knows rki,j = pki(αj) which it had changed to r′ki,j . Hence, X reveals no new information to the
adversary whatsoever. 2

Theorem 8 The communication complexity of the protocol PSMT Optimal is O(n3).

Proof: The communication complexity of PSMT Optimal is exactly same as PRMT Optimal.
The third phase of PSMT Optimal has an additional cost of broadcasting the blinded message c
of size n(t + 1) which requires sending O(n3) field elements. So overall communication complexity
is O(n3).

Remark 3 In [17], it is reported that any three phase PSMT protocol which securely sends n(t +
1) = O(n2) field elements, in the presence of mobile adversary, need to communicate Ω(n3) field
elements. Since, the communication complexity of PSMT Optimal is O(n3), it is asymptotically
optimal. As PSMT Optimal sends O(n2log2|F|) bits by communicating O(n3log2|F|) bits, it is
bit optimal also.

3 PSMT Tolerating Mobile Adversary in Directed Networks

In [3], the authors have studied PSMT in directed networks in the presence of a static adversary,
where the network is abstracted in the form of directed wires, directed either from S to R or
vice-versa. Modeling the underlying network in the form of a directed graph is important in many
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practical scenarios. For instance, a base-station may communicate to even a far-off hand-held device
but the other way round is not possible. Hence the digraph model is practically well-motivated.
We now characterize multiphase PSMT between S and R in a directed network against a t-active
mobile adversary.

Theorem 9 Let G = (V, E) be a directed network, where S and R are two nodes. Then a r-phase
(r ≥ 2) PSMT protocol between S and R against a t-active mobile adversary is possible iff there
exist 2t + 1 directed wires from S to R and 2t + 1 directed wires from R to S.

Proof: Sufficiency: Suppose there exist 2t+1 directed wires f1, f2, . . . , f2t+1 from S to R and 2t+1
directed wires b1, b2, . . . , b2t+1 from R to S. Then irrespective of whether the wires fi, 1 ≤ i ≤ 2t+1
and bj , 1 ≤ j ≤ 2t + 1 share any vertex or not, the protocol PSMT Optimal can be executed in
G. It is easy to see that Theorem 6 and Theorem 7 will hold here.

Necessity: Since any PSMT protocol should communicate the message reliably, S and R should be
2t + 1 connected in forward direction which is necessary for PRMT [5]. We prove that 2t + 1 wires
are necessary from R to S also by contradiction. Assume there are 2t wires from R to S. Since the
wires corrupted by the adversary from S to R can be totally independent of the wires corrupted
from R to S (the adversary is mobile), the adversary can fail reliable communication from R to
S by corrupting t wires from R to S [5]. Hence, any communication from R to S is useless for
S. This reduces any multiphase protocol to a single phase protocol where S has to securely send
a message over (2t + 1) wires tolerating a t-active Byzantine adversary. This is again impossible
from the results of [5], as 3t+1 wires is necessary for single phase secure communication.Therefore,
there should be at least (2t + 1) wires from R to S. Hence the theorem holds. 2

4 PRMT and PSMT Tolerating Mobile Adversary (in Terms of
Rounds)

Till the previous section, we concentrated to design bit-optimal phase-based PRMT/PSMT protocols
on an network abstracted in terms of wires. The merits in working in such a model are as follows:
(i) It eases deriving the connectivity requirement for the possibility of PRMT/PSMT protocols and
also lower bounds for the communication complexity for protocols. (ii) It simplifies the analysis of
any protocol designed on such model. But this model has its own demerits which are brought to
the fore by providing a motivating example in the next section.

4.1 Motivating Example

In many practical scenarios, modeling the network as wires, does not give correct estimation on
the communication complexity of PRMT (PSMT) protocols [16]. To understand the statement,
we provide a motivating example. Consider the network on (2t + 8) vertices given in Figure 1.
Suppose the network in Figure 1 is abstracted as a collection of (2t + 2) wires, under the control
of a t-active mobile adversary. From [17], there exist an optimal single phase PRMT protocol
with communication complexity of O(n`) to send ` field elements, where n is the number of wires
from S to R (which in this case is 2t + 2). Now suppose that the protocol execution take place
in a sequence of rounds, where at the beginning of each round, each node send messages to their
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neighbors. Thus, the messages sent by a player in round k reaches its neighbor at the beginning of
round k + 1. Then the so called single phase “optimal” protocol of [17] runs in six rounds (which
is the length of the longest path), with a communication complexity of O(n) times the message
size. Now the question is whether there exists a 6-round PRMT protocol in the network of Figure
1 with a better communication complexity. The answer is yes! Consider the following protocol:
S and R run the 3-phase PRMT Optimal protocol using the wires P1, P2, . . . , P2t+1, neglecting
the path of length six (The longest path takes 6 rounds! While all other paths delivers message in
two rounds). Thus while the single phase protocol has a complexity of O(n`), the 3-phase protocol
has a communication complexity of O(`). Thus in Figure 1, an O(`) 6-round protocol is possible.
However, the information regarding the length of each of the paths (wires) in the actual network is

S R
A

B

C

D

E

P1

P2

P2t

P2t+1

Figure 1: A (2t + 2)-(S,R)-connected Network.

completely lost in the wired abstraction. Similarly, in the above network, if we consider all 2t + 2
wires from S to R, then we may declare that there does not exist any single phase and hence six
round PSMT protocol from S to R because it is well known from [5], that any single phase PSMT
protocol against a t-active adversary requires 3t+1 wires from S to R. However, PSMT Optimal
when executed over the paths P1, P2, . . . , P2t+1, excluding the path of length six, terminates in six
rounds (each phase of the PSMT Optimal takes two rounds), which is also bit optimal. Thus in
many practical scenarios, wired abstraction causes an over estimation in the round complexity and
communication complexity of PRMT (PSMT) protocols in the original network. We thus redefine
our network model and adversary settings.

4.2 Round Based Network and Adversary Settings

As shown in the motivating example, it is necessary to use more fine-grained and hence stronger
model, namely the graph based one (in comparison to the collection of wires) for designing and
analyzing optimal PRMT and PSMT protocols. So we consider a graph with internal details in
the following way. Let H be an undirected graph under the control of a t-active mobile adversary.
From [18], H should be (2t + 1)-(S, R) connected which is necessary and sufficient for PRMT
and PSMT. Let G be the subgraph of H induced by the 2t + 1 vertex disjoint paths. If there are
more than 2t + 1 vertex disjoint paths in H, then G will also contain these paths. In the following
sections, we work on G to derive tight lower bound on round complexity for reliable communication
and design protocols on G.

The system is assumed to be synchronous, that is, the protocol is executed in a sequence of
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rounds wherein in each round, a player can perform some local computation, send new messages to
his out-neighbors, receive the messages sent in previous round by his in-neighbors (and if necessary
perform some more local computation), in that order. The distrust in the network is modeled
by a mobile Byzantine adversary. The behavior of mobile adversary is re-defined to allow it to
corrupt any set of t nodes after every ρ ≥ 1 rounds, where ρ is called the roaming speed of the
adversary. We first consider the worst case that of ρ = 1, later on, we will consider any arbitrary
value of ρ. More formally before the beginning of round k, the adversary can corrupt any subset
Pcorrupt consisting of t players. Then the adversary has access to the messages sent to the players
in Pcorrupt in round k − 1 and can alter the behavior of the players in Pcorrupt arbitrarily in the
round k. However by corrupting a player P in a round k the adversary does not obtain information
about the messages to and from the node P in all the previous rounds, i.e., the protocol can choose
to delete some information from the (honest) node at the end of a round, to make sure that the
information is not available to the adversary even if he corrupts the node at a later round. Before
computing the minimum number of rounds for reliable communication, we explain the concept of
transmission graph.

4.3 Transmission Graph

Graphs always have been used as a very powerful abstraction of the network by modeling the phys-
ical link between two nodes as an edge between the corresponding vertices of the graph. However
it does not contain any temporal information. Especially in the case of mobile adversary, where
the adversary can corrupt different set of nodes at different times, a graph representation of the
network is inadequate. However since the protocol itself discretizes time in terms of rounds, it is
sufficient to model the system at each round rather than each time instant. Hence, in [16], the
author have introduced the concept of transmission graph Gd to study the execution of a protocol
that has run d rounds. In the transmission graph Gd, each node P is represented by a set of nodes
{P0, P1, P2 . . . Pd}. The node Pr corresponds to the node P at round r. For any two neighboring
nodes P and Q and any 1 ≤ r ≤ d, a message sent by P to Q in round r− 1 is available to Q only
at round r. Hence there is an edge in Gd connecting the node Pr−1 to the node Qr for all 1 ≤ r ≤ d.
Note that the transmission graph is a directed graph, because of the directed nature of time. So
the edges between the nodes at consecutive time steps are always oriented towards increasing time.
We now recall the definition of transmission graph from [16].

Definition 1 Given a graph G = (V, E) and a positive integer d, the transmission Graph Gd is a
directed graph defined as follows

• Nodes of Gd belong to V × {0 . . . d} where the node (P, r) ∈ V × {0 . . . d} is denoted by Pr.

• The edge set of Gd is Ed = E1 ∪ E2 where, E1 = {(Par−1 , Pbr) |(Pa, Pb) ∈ E and 1 ≤ r ≤ d}
and E2 = {(Par−1 , Par)|Pa ∈ V and 1 ≤ r ≤ d}.

Let Pr denote the set of nodes corresponding to nodes at round r, Pr = {Par |Pa ∈ V }. Let
ADVmobile be a threshold mobile adversary acting on a network G that can corrupt any t nodes in
a single round. Consider an execution Γ of a d-round protocol on G. Suppose ADVmobile corrupts a
set of nodes Advr = {P1, P2, . . . Pt} in round r in G, then the same effect is obtained by corrupting
the nodes Advr = {P1r , P2r , . . . Ptr} in Gd. Hence the effect of ADVmobile on execution Γ can be
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simulated by a static general adversary who corrupts
d⋃

r=1
Advr on Gd. More formally, we have the

following lemma:

Lemma 2 Mobile adversary ADVmobile acting on the original network graph G for d rounds can
be simulated by a static adversary given by the adversary structure ADVd

static = {Adv1 ∪ Adv2 ∪
Adv3 . . . ∪ Advd|Advr ∈ Πt(Pr), 1 ≤ r ≤ d} on Gd, where Πt(Pr) denotes the set of all subsets of
cardinality t of the set Pr excluding S and R.

Example 1 Consider the network shown in Figure 2: The network is 3-(S,R)-connected and hence
from [18], at most one mobile adversary (t = 1) can be tolerated by any PRMT (PSMT) protocol.
Consider G4, where the adversary structure ADV4

static = {Adv1 ∪Adv2 ∪Adv3 ∪Adv4} where each
Advr ∈ Π1(Pr), 1 ≤ r ≤ 4 where Π1(Pr) denotes the set of all subsets of cardinality 1 of the
set Pr. For example, {A1, A2, A3, A4}, {A1, D2, G3,H4}, {H1, E2, B3, A4} are some of the elements
of ADV4

static in G4. Here {A1, A2, A3, A4} denotes an adversarial strategy where in the original
network, the adversary corrupts the same node A in all the four rounds. Similarly {H1, E2, B3, A4}
denotes an adversarial strategy where in the original network, the adversary corrupts the nodes
H, E, B and A during first, second, third and fourth round respectively. In fact there are 114

possible elements of ADV4
static in G4 since there are 11 nodes in G (excluding S and R) and in each

of the four rounds, adversary can choose any one of the 11 nodes to corrupt.

A B

C D E F

G H I J
K

S R

Figure 2: A 3-(S,R)-connected Network G.

In general let G be a graph with 2t + 1 (or more) vertex disjoint paths between S and R and
N be the total number of nodes in these paths. Then in Gd, there will be

(
N
t

)d
possible elements

in the adversary structure ADVd
static. In order to find the minimum number of rounds for reliable

communication, we slightly modify the definition of transmission graph as follows:

Definition 2 Given a graph G and an integer d > 0 the modified Transmission Graph Gd is the
graph Gd along with two additional nodes S, R. S is connected to all Sr,0 ≤ r ≤ d and each Rr,
0 ≤ r ≤ d is connected to R. Further the edges between (Sr−1,Sr) and (Rr−1,Rr) for 1 ≤ r ≤ d
are removed.

Definition 3 Two paths Γ1 and Γ2 between the nodes S and R in the modified transmission graph
Gd are said to be securely disjoint if the only common nodes between the two paths are Sa and Rb

for some value of a and b. That is, Γ1 ∩ Γ2 ⊂ {S0,S1,S2 . . .Sd} ∪ {R0,R1,R2 . . .Rd}
Definition 4 Given a path Γ = {S, P1, P2 . . . Pz,R} from S to R in the underlying graph G, the
space-time path Γi in graph Gd is defined as Γi = {S,Si, P1i+1 , P2i+2 , . . . Pzi+z ,Ri+z+1,R}, 0 ≤
i ≤ d− z − 1.
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Example 2 Consider the path Γ = {S, A, B,R} in Figure 2. Now in G5, there are three space time
paths corresponding to the path Γ, namely Γ0 = {S,S0, A1, B2,R3,R}, Γ1 = {S,S1, A2, B3,R4,R}
and Γ2 = {S,S2, A3, B4,R5,R}. The space time path Γ0 can be interpreted as S communicating to
A in the 0th round, A communicating to B in the first round, B communicating to R in the second
round which is received by R in the third round. Similarly, the paths Γ1 and Γ2 can be interpreted.
Note that in G5, there are only three space time paths corresponding to the path Γ in G. This is so
because if any protocol is executed for five rounds, then R will stop receiving anything from B after
fifth round. In general, let G be a graph and Γ be a path between S and R containing z nodes (i.e.,
the path length is z + 1). Then in the transmission graph Gd, d > z, there will be d− z space time
paths corresponding to the path Γ, namely Γi, 0 ≤ i ≤ d− z − 1.

Lemma 3 ( [18]) For any path Γ of length z (containing z+1 nodes) from S to R in G, the paths
Γi, 0 ≤ i ≤ d − z are pairwise securely disjoint. Further, for any two vertex disjoint paths Γ1, Γ2

and for any i, j the paths Γi
1 and Γj

2 are securely disjoint.

Example 3 Consider the paths Γ1 = {S, A,B,R} and Γ2 = {S, C,D, E, F,R} in the network
shown in Figure 2. Suppose we consider the transmission graph G6, then there are following space
time paths corresponding to Γ1 in G6: Γ0

1 = {S,S0, A1, B2,R3,R}, Γ1
1 = {S,S1, A2, B3,R4,R},

Γ2
1 = {S,S2, A3, B4,R5,R} and Γ3

1 = {S,S3, A4, B5,R6,R}. Similarly, there are following space
time paths corresponding to Γ2 in G6: Γ0

2 = {S,S0, C1, D2, E3, F4,R5,R} and Γ1
2 = {S,S1, C2, D3, E4,

F5,R6,R}. It is clear that all Γi
1, 0 ≤ i ≤ 3 are securely disjoint. Similarly, all Γi

2, 0 ≤ i ≤ 1 are
securely disjoint. Also all the space time paths Γi

1, Γ
j
2, 0 ≤ i ≤ 3, 0 ≤ j ≤ 1 are securely disjoint.

4.4 Computing Minimum Number of Rounds for PRMT with ρ = 1

In [18], the authors have computed the minimum number of rounds d for reliable communication
from S to R which is d > (2t + 1)N (see Lemma 4.1 of [18]), where S and R are connected by
2t + 1 paths and N is the total number of nodes in the given network. However, we show that the
bound in [18] is not tight. So, we derive tight bound on the minimum number of rounds, denoted
by rmin required for reliable communication from S to R. Consider a graph G where S and R are
connected by 2t + 1 vertex disjoint paths {Γ1, Γ2, . . . ,Γ2t+1}. Without loss of generality, assume
that the paths are arranged in ascending order of path length. Let Ni denotes the number of nodes
in Γi, 1 ≤ i ≤ 2t + 1. Then in Gd, as explained earlier, there will be d − Ni space time paths
corresponding to Γi, 1 ≤ i ≤ 2t + 1 in G provided d−Ni > 0. If d−Ni ≤ 0 then there will be no
space time path corresponding to Γi in Gd. Assuming that each of the term d−Ni is positive, the
total number of the space time paths in Gd is

∑i=2t+1
i=1 (d − Ni). From Lemma 3, all these paths

are securely disjoint. Now if any reliable protocol is executed on the original graph G for d rounds,
then the adversary can make corruption only up to (d− 1) rounds because in any reliable protocol,
which is executed for d rounds, R will receive information from its neighboring nodes in round d,
which they sent to R in round d − 1 and terminates the protocol. So even if adversary corrupts
some node in round d, it will not effect the protocol, because the protocol will terminate in the dth

round itself. Note that if at least one node in a space time path in Gd is corrupted, it implies that
the entire space time path is corrupted because the corrupted data introduced by the corrupted
node will be forwarded by other nodes of the path in subsequent rounds. In general, since the
adversary can corrupt at most t nodes in each round of any reliable protocol, it can corrupt at most
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t(d − 1) nodes in Gd which can be in worst case distributed on t(d − 1) secure disjoint paths and
hence each element in ADVd

static is of maximum cardinality t(d − 1). We now state the following
theorem.

Theorem 10 Let G be an undirected network where S and R are connected by 2t+1 vertex disjoint
paths Γ1, Γ2, . . . ,Γ2t+1 with Ni nodes in Γi, 1 ≤ i ≤ 2t + 1. Let ADVmobile be a mobile adversary
corrupting any set (probably different) of t nodes in each round. Then the minimum number of
rounds required for reliable communication is rmin iff rmin ≥ N − 2t + 1 where N =

∑i=2t+1
i=1 Ni.

Proof: Necessity: Let rmin be the minimum number of rounds required for reliable communica-
tion in G. Then as explained above, any mobile adversary ADVmobile can be simulated by a static
adversary structure ADVrmin

static where each element of it is of cardinality t(rmin− 1). Also in Grmin ,
there will be

∑i=2t+1
i=1 (rmin − Ni) securely disjoint paths between S and R out of which at most

t(rmin − 1) can be under the control of the adversary. Now it is known from [10], that reliable
communication between S and R in a network in the presence of a static adversary given by an
adversary structure is possible iff removal of of any two adversarial sets from the adversary struc-
ture does not disconnect S and R. It implies that reliable communication in G under the presence
of ADVmobile is possible in rmin rounds if

∑i=2t+1
i=1 (rmin −Ni) ≥ 2t(rmin − 1) + 1. Solving this we

get rmin ≥ N − 2t + 1 where N =
∑i=2t+1

i=1 Ni.

Sufficiency: Suppose rmin ≥ N − 2t + 1 where N =
∑i=2t+1

i=1 Ni. Then in Grmin there are
2t(rmin− 1)+1 securely disjoint paths from S to R, out of which at most t(rmin− 1) can be under
the control of the adversary ADVrmin

static. Let us denote these paths by w1, w2, . . . , w2q+1, where
q = t(rmin−1). We now describe a reliable protocol REL on the graph Grmin and show how it can
be executed on the real network G to reliably send m. REL can be emulated on G in the following
way: if a node P1b

and P2b+1
are consecutive nodes in Grmin along some path wi, where wi is the

space time path corresponding to some physical path Γj , 1 ≤ j ≤ 2t + 1, then P1 on receiving m′

(possibly changed m) along the path Γj at the beginning of round b forward it to the node P2 at
the end of round b which is received by P2 in round b + 1. The protocol has a communication
complexity of O((2t(rmin − 1)|m|) and this is polynomial in N . The correctness of the protocol is
obvious. 2

Protocol REL: Round-Optimal Reliable Message transmission of message m.

• The sender S sends the message m along all the paths wi, 1 ≤ i ≤ 2q + 1.

• All nodes Pab along a path wi just forward the message to the next node along wi.

• The receiver on receiving the values along all the paths takes the majority value as the message m.

Example 4 For the network in Figure 2, rmin = 10. This is because in G9, there are sixteen space
time paths of which the adversary can corrupt at most eight paths. So exactly half of the paths can
be under the control of the adversary. However, in G10, there are nineteen space time paths out of
which the adversary can corrupt at most nine paths. Hence, majority of the paths will be error free.

4.4.1 Finding rmin in the Presence of more than 2t + 1 Paths for ρ = 1

In many practical scenarios there may be more than 2t + 1 vertex disjoint paths between S and R.
Even then we can find rmin by using the same argument as above. Suppose G is a network where
there are n > 2t + 1 paths Γ1, Γ2, . . . , Γ2t+1, . . . , Γn between S and R, arranged in ascending order
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of path length, such that there are Ni nodes in path Γi. We call the algorithm for computing rmin

in this case as Algorithm Round Complexity.
Algorithm Round Complexity: Computing rmin where S and R are connected by n > 2t + 1 vertex disjoint paths.

1. Set rmin = N − 2t + 1 where N =
∑i=2t+1

i=1 Ni.

2. For i = 2t + 2 to n do:

(a) If Ni + 1 > rmin then output rmin and EXIT.

(b) If Ni + 1 ≤ rmin then do the following:

i. Compute r = d (N1+N2+...+Ni)−2t+1
i−2t

e
ii. If r ≤ rmin then set rmin = r else GOTO step 3.

3. Output rmin.

Theorem 11 Algorithm Round Complexity correctly computes rmin when S are R connected
by more than 2t + 1 vertex disjoint paths.

Proof: In Algorithm Round Complexity, rmin is first set to N − 2t + 1, which according to
Theorem 10 is the minimum number of rounds for reliable communication in the presence of 2t+1
paths Γj , 1 ≤ j ≤ 2t + 1 between S and R. Note that the paths Γj , 1 ≤ j ≤ n are arranged in
ascending order of path length. Now there are following cases to be considered for Γ2t+2:

• rmin < N2t+2 + 1: Note that N2t+2 + 1 is the path length of Γ2t+2. So if in any reliable protocol,
the path Γ2t+2 is involved then it will take at least N2t+2 + 1 rounds to send any information from
S to R through the path Γ2t+2. However, since rmin < N2t+2 + 1, including the path Γ2t+2 will
increase rmin. Since the path lengths of remaining Γj , 2t + 3 ≤ j ≤ n is at least N2t+2 + 1, using
the above argument, any round optimal protocol should only consider the first 2t + 1 paths and
hence rmin = N − 2t + 1.

• rmin ≥ N2t+2 + 1: In this case, including Γ2t+2 may reduce the value of rmin. Using the argument
of Theorem 10, we first compute minimum number of rounds r required for reliable communication
considering the first 2t + 2 paths. Now r is computed as

∑i=2t+2
i=1 (r − Ni) ≥ 2t(r − 1) + 1 which

implies r ≥ d (N1+N2+...+N2t+2)−2t+1
2 e. If the minimum value of r is less than or equal to rmin, then

considering Γ2t+2 reduces or does not change rmin and hence rmin is updated to r. Otherwise Γ2t+2

is neglected and rmin is not updated. However, if r > rmin, then including Γ2t+2 in any reliable
protocol protocol will increase rmin. Hence Γ2t+2 is not considered. Since the path lengths of
remaining Γj , 2t + 3 ≤ j ≤ n is at least N2t+2 + 1, including any of them will increase rmin. Hence
all of them are neglected.

In the algorithm, the above two checking is done for all Γi, 2t + 2 ≤ i ≤ n. Once rmin is computed,
S will know which paths to consider for reliably sending any message to R. In the corresponding
transmission graph Grmin there will be 2t(rmin−1)+1 securely disjoint paths. So the protocol REL
can be executed on Grmin which can be simulated on original network G as specified in Theorem 10.
2

Example 5 Intuitively, rmin can be computed considering the first 2t + 1 shortest paths between
S and R. However, this is not always true!! For example in Figure 2, if we add one more vertex
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disjoint path of six nodes between S and R, then from Algorithm Round Complexity, rmin = 8
(assuming t = 1) as opposed to rmin = 10 considering the first three shortest paths (according to
Theorem 10).

4.4.2 Bit Optimal PRMT and PSMT Protocols in Terms of Rounds

From Theorem 10, in Grmin there will be 2t(rmin − 1) + 1 securely disjoint paths out of which at
most t(rmin − 1) can be corrupted. However each of these paths are temporal and hence can be
used at most once. We now present the modified version of three phase protocol PRMT Optimal,
called PRMT Round, tolerating a mobile adversary who can corrupt any t nodes in every round.
PRMT Round is executed for 3rmin rounds on G where G is the original network consisting
2t + 1 vertex disjoint paths between S and R. The first phase of PRMT Optimal is executed
in the first rmin rounds from S to R, the second phase of PRMT Optimal is executed in the
next rmin rounds from R to S and finally the third phase in the last rmin rounds from S to R.
This can be visualized as executing a 3rmin round protocol on G3rmin , where first rmin rounds are
executed from S to R, next rmin rounds from R to S and finally last rmin rounds from S to R.
Let q = t(rmin − 1) and n = 2q + 1. We refer to the nodes corresponding to the first rmin rounds
from S to R as the first half denoted by Γ(1)

i , 1 ≤ i ≤ 2q + 1 , the nodes in the next rmin rounds
from R to S as second half denoted by Γ(2)

i , 1 ≤ i ≤ 2q + 1 and the nodes in the last rmin rounds
from S to R as third half denoted by Γ(3)

i , 1 ≤ i ≤ 2q + 1. From Theorem 10, rmin = N − 2t + 1.
The protocol is same as PRMT Optimal except that degree of each bi-variate polynomial is q.
Moreover, Phase i, 1 ≤ i ≤ 3 is executed in rmin rounds on Γ(i)

j , 1 ≤ j ≤ 2q + 1. PRMT Round
can be simulated on G following the explanation provided earlier for REL protocol. Note that
Theorem 4 and Theorem 5 will hold for PRMT Round with q in the place of t. The protocol
reliably sends n(q + 1)2 = O(n3) field elements by communicating O(n3) field elements in 3rmin

rounds.
Similarly the three phase PSMT Optimal can also be adapted to a 3rmin round PSMT proto-

col PSMT Round, which securely sends n(q+1) = O(n2) field elements by communicating O(n3)
field elements. All theorems w.r.t PSMT Optimal will hold for PSMT Round with t = q.

Remark 4 In PRMT Round, each phase of PRMT Optimal is simulated in rmin rounds over
n ≥ 2q + 1 securely disjoint space time paths, of which the adversary can corrupt at most q paths.
Treating space time paths as wires, from the results of [17], it is impossible to reliably send ` field
elements by communicating O(`) field elements in two phases. Thus the minimum number of phases
required to do so is three. Since to correctly simulate a phase we require rmin rounds, our 3rmin

round PRMT protocol PRMT Optimal is both round optimal and bit optimal. Similarly from the
results of [17], our 3rmin round PSMT protocol PSMT Round is bit-optimal. However it is not
round optimal because minimum number of phases required to tolerate a t-active mobile adversary
with 2t+1 wires is two. The two phase PSMT protocol of [15] against static adversary will also work
for mobile adversary by adapting it into a 2rmin round PSMT protocol as done in [18]. However
two phase protocol of [15] (and hence the 2rmin round protocol of [18]) is not bit-optimal.
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Protocol PRMT Round : A 3rmin Round PRMT Protocol

Let the sequence of n(q+1)2 field elements that S wishes to transmit be denoted by mk,ij , 0 ≤ i, j ≤ q and 1 ≤ k ≤ n.

First rmin rounds: (S to R) executed over space time paths Γ
(1)
i , 1 ≤ i ≤ 2q + 1

• Using the mk,ij values, S defines n bivariate polynomials qk(x, y), 1 ≤ k ≤ n as follows: qk(x, y) =
∑ i=q

j=q

i=0,j=0 mk,ijx
iyj

• S then evaluates each qk(x, y), 1 ≤ k ≤ n at n publicly known distinct values α1, α2, . . . , αn to obtain total n2

polynomials denoted as pki(x), 1 ≤ k ≤ n, 1 ≤ i ≤ n over F, each of degree q where pki(x) = qk(x, αi). Over

space time paths Γ
(1)
i , 1 ≤ i ≤ 2q + 1, S sends pki(x), 1 ≤ k ≤ n and the values pkj(αi), denoted by rkj,i, for

1 ≤ k, j ≤ n.

Second rmin rounds: (R to S) executed over space time paths Γ
(2)
i , 1 ≤ i ≤ 2q + 1

• Let R receives over space time path Γ
(1)
i , 1 ≤ i ≤ n the polynomials p′ki(x) and the values r′kj,i, 1 ≤ k, j ≤ n.

R then considers the polynomials p′11(x), p′12(x), . . . , p′1n(x) and the values r′1j,i, 1 ≤ j, i ≤ n and constructs the
conflict graph H1 as explained in section 2.2.2. Similarly, R considers the polynomials p′21(x), p′22(x), . . . , p′2n(x)
and the values r′2j,i, 1 ≤ j, i ≤ n and constructs the conflict graph H2. In general, R considers the polynomials
p′k1(x), p′k2(x), . . . , p′kn(x) and the values r′kj,i, 1 ≤ j, i ≤ n and constructs the conflict graph Hk, 1 ≤ k ≤ n.

• R combines Hk, 1 ≤ k ≤ n into a single directed conflict graph H using Union Technique and forms the
corresponding list of five tuples X and reliably sends X to S by executing REL protocol over the space time
paths Γ

(2)
i , 1 ≤ i ≤ 2q + 1.

Last rmin rounds: S to R executed over space time paths Γ
(3)
i , 1 ≤ i ≤ 2q + 1

• S reliably receives the list X and identifies all faulty space time paths Γ
(1)
i over which R has received at least

one faulty polynomial p′ki(x), 1 ≤ k ≤ n during first rmin rounds. S adds all such paths to a list Lfault. Note
that |Lfault| ≤ q. S then reliably sends Lfault to R by executing REL protocol over the space time paths

Γ
(3)
i , 1 ≤ i ≤ 2q + 1.

Message Recovery by R.

• R reliably receives Lfault and identifies all space time path Γ
(1)
i over which it has received at least one faulty

polynomial p′ki(x), 1 ≤ k ≤ n during first rmin rounds (proof is similar to Theorem 4). R neglects all the polynomials

p′ki(x), 1 ≤ k ≤ n for each Γ
(1)
i ∈ Lfault,. Using the remaining (at least) q + 1 p′ki’s, 1 ≤ k ≤ n, R correctly recovers

the bivariate polynomials qk(x, y)’s, 1 ≤ k ≤ n and hence the message.

4.5 Computing rmin for Arbitrary Roaming Speed

We now consider a mobile adversary with roaming speed ρ > 1 and compute rρ
min which is the

minimum number of rounds required for reliable communication from S to R, against a t-active
mobile adversary, corrupting t nodes after every ρ rounds. Note that a mobile adversary with
roaming speed one is the strongest adversary. Intuitively, reducing roaming speed of adversary will
reduce the minimum number of rounds required for PRMT between S and R. We support our
intuition by computing rρ

min for an arbitrary ρ(> 1).
Assume S and R are connected by n = 2t + 1 vertex disjoint paths Γi, 1 ≤ i ≤ 2t + 1 which are
in ascending order of path length and Γi has Ni nodes. Without loss of generality, we assume that
the adversary starts corruption from the first round. Thus, if ρ = 2 and if a protocol is executed
for six rounds, then adversary will corrupt t nodes in round one, three and five. Note that the t
nodes which are corrupted in round one, three and five will also remain corrupted in the second,
fourth and sixth round respectively. In general, any mobile adversary ADVρ

mobile who corrupts any
t nodes in the network in every ρ rounds in any r round protocol can be simulated by a static
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Protocol PSMT Round: A 3rmin Round PSMT Protocol

Let the sequence of n(q + 1) field elements that S wishes to transmit securely be denoted by mi, 1 ≤ i ≤ n(q + 1).

First rmin rounds: S to R executed over space time paths Γ
(1)
i , 1 ≤ i ≤ 2q + 1

• S selects n2 polynomials pij(x), 1 ≤ i, j ≤ n over F each of degree q where the coefficients of each pij(x) are inde-

pendent of each other and the message. S then sends through each of the securely disjoint paths Γ
(1)
i , 1 ≤ i ≤ 2q + 1

the polynomial pki(x), 1 ≤ k ≤ n and the values pkj(αi), denoted by rkj,i, for 1 ≤ k, j ≤ n.

Second rmin rounds: R to S executed over space time paths Γ
(2)
i , 1 ≤ i ≤ 2q + 1

Let R receives over each path Γ
(1)
i , 1 ≤ i ≤ n the polynomials p′ki(x) and the values r′kj,i, 1 ≤ k, j ≤ n. R then

constructs the conflict graphs H1, H2, . . . , Hn. From the n conflict graphs, R constructs a list of five tuples X in the
same way as done in PSMT Optimal. R then reliably sends the list X by executing the protocol REL using the
paths Γ

(2)
i , 1 ≤ i ≤ 2q + 1.

Last rmin rounds: S to R executed over space time paths Γ
(3)
i , 1 ≤ i ≤ 2q + 1

• S correctly receives the list X and identifies all the faulty paths Γ
(1)
i over which R must had received at least

one faulty polynomial p′ki(x), 1 ≤ k ≤ n during first rmin rounds. S adds all such paths to a list Lfault. Note than
|Lfault| ≤ q.

• S then forms a vector x of length (n − |Lfault|) ∗ n which is the concatenation of the constant terms of all the

polynomials pki(x), 1 ≤ k ≤ n such that Γ
(1)
i 6∈ Lfault. S then computes a pad y of length n(q + 1) by executing

EXTRANDn(n−|Lfault|),n(q+1)(x) algorithm of section 2.2.1. S then computes c = [c1c2 . . . cn(q+1)] = y ⊕m, where

ci = yi ⊕mi. S finally reliably sends the list Lfault and c to R over the paths Γ
(3)
i , 1 ≤ i ≤ 2q + 1 by executing the

REL protocol.

Message Recovery by R

• R reliably receives Lfault and identifies all the paths Γ
(1)
i over which it had received at least one faulty polynomial

p′ki(x), 1 ≤ k ≤ n during first rmin rounds. Corresponding to each path Γ
(1)
i ∈ Lfault, R neglects all the polynomials

p′ki(x), 1 ≤ k ≤ n. R generates the pad y of length n(q + 1) following the same procedure as done by S and finally
recovers the message m by computing m = c⊕ y.

adversary structure ADVρ
static with size

(
N
t

)d r
ρ
e

where N is total number of nodes in 2t + 1 paths
since in r rounds, adversary will change the set of corrupted nodes after every d r

ρe rounds.
We now show how the roaming speed of the adversary changes its control over space time paths.
In Gr, each Γi, 1 ≤ i ≤ 2t + 1 will have r −Ni securely disjoint space time paths.

Example 6 Consider two space time paths Γ0
1 = {S,S0, A1, B2, C3,R4,R} and Γ1

1 = {S,S1, A2, B3, C4,
R5,R} in G5 corresponding to some path Γ1 = {S, A, B, C,R} in a network G. If ρ = 1 and if
the adversary corrupts node A during first round, then Γ0

1 is corrupted. However, it does not imply
that Γ1

1 is also corrupted until and unless the adversary corrupts node A in the second round also.
However, if ρ = 2 and if the adversary corrupts node A during the first round, then both Γ0

1 and
Γ1

1 will be corrupted because node A will remain corrupted during the second round also. Thus for
ρ = 1, the two paths are independent of each other but for ρ = 2, the two paths can be treated as one
set, which will be corrupted if adversary corrupts the first node of the path during the first round.

In general, if any reliable protocol is executed for r rounds, then in Gr, each Γi, 1 ≤ i ≤ 2t + 1
will have d r−Ni

ρ e independent securely disjoint set of space time paths. Notice that if ρ = 1, then
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each space time path is itself an independent set and hence we get r−Ni independent sets for each
Γi. Since the adversary can corrupt up to r − 1 rounds, in Gr, at most d r−1

ρ e ∗ t independent sets
can be corrupted because out of r− 1 rounds, the adversary will change the corrupted set of nodes
d r−1

ρ e times.

Theorem 12 Let G be a (2t + 1)-(S, R) connected undirected network under the influence of a
t-active mobile adversary with roaming speed of ρ > 1. Then the minimum number of rounds rρ

min

required for reliable communication is given by rρ
min = min {r, rρ−1

min} where r is the minimum value
satisfying

∑i=2t+1
i=1 d r−Ni

ρ e ≥ 2d r−1
ρ e ∗ t + 1.

Proof: Necessity: In Gr, there will be
∑i=2t+1

i=1 d r−Ni
ρ e independent set of securely disjoint paths

out of which at most d r−1
ρ et independent sets could be corrupted. Considering each independent

set as wires, from [5], r will be rρ
min if

∑i=2t+1
i=1 d r−Ni

ρ e ≥ 2d r−1
ρ e ∗ t + 1. If the minimum value of r

satisfying this inequality is greater than rρ−1
min, then rρ

min = rρ−1
min because a mobile adversary with

roaming speed ρ is always weaker in capability than one with roaming speed ρ − 1. Hence any
round optimal PRMT protocol tolerating a mobile adversary with roaming speed ρ− 1 can always
withstand the same with lesser roaming speed.

Sufficiency: We design protocol RELρ which reliably sends a message from S to R in rρ
min

rounds. If rρ
min = rρ−1

min, then RELρ is replication of RELρ−1. Otherwise, RELρ is defined as
follows:

Protocol RELρ: Round-Optimal Reliable Message transmission of m.

• S sends m along the first space time path of each
∑i=2t+1

i=1 d r
ρ
min−Ni

ρ
e securely disjoint independent set of space

time paths.

• R only considers the values received along the first space time path of each of the
∑i=2t+1

i=1 d r
ρ
min−Ni

ρ
e securely

disjoint independent set of space time paths and outputs the majority as m.

The correctness of the protocol follows from the fact that R will receive
∑i=2t+1

i=1 d rρ
min−Ni

ρ e different

copies of the message m out of which at most d rρ
min−1

ρ e ∗ t can be corrupted. However since
∑i=2t+1

i=1 d rρ
min−Ni

ρ e ≥ 2d rρ
min−1

ρ e ∗ t + 1, R will always receive the correct message m along the
majority of the paths. 2

Example 7 Consider the network G in Figure 2. If ρ = 1, then from Theorem 10, r1
min = 10.

However, if ρ = 2, then from Theorem 12, r2
min = 9. For the network G in Figure 2, in the trans-

mission graph G8, there will be the following space time paths between S and R:
Γ0

1 = {S,S0, A1, B2,R3,R} Γ0
2 = {S,S0, C1, D2, E3, F4,R5,R} Γ0

3 = {S,S0, G1,H2, I3, J4,K5,R6,R}
Γ1

1 = {S,S1, A2, B3,R4,R} Γ1
2 = {S,S1, C2, D3, E4, F5,R6,R} Γ1

3 = {S,S1, G2,H3, I4, J5,K6,R7,R}
Γ2

1 = {S,S2, A3, B4,R5,R} Γ2
2 = {S,S2, C3, D4, E5, F6,R7,R} Γ2

3 = {S,S2, G3,H4, I5, J6,K7,R8,R}
Γ3

1 = {S,S3, A4, B5,R6,R} Γ3
2 = {S,S3, C4, D5, E6, F7,R8,R}

Γ4
1 = {S,S4, A5, B6,R7,R}

Γ5
1 = {S,S5, A6, B7,R8,R}
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If ρ = 2, then there will be total seven independent set of securely disjoint paths (three corresponding
to Γ1, two corresponding to Γ2 and two corresponding to Γ3). Note that the last set of securely dis-
joint path corresponding to Γ3 will have only one path unlike the other sets, each of which will have
two paths. Now out of the eight rounds, adversary can do corruption in round one, three, five and
seven. Hence, there can be at most four sets of securely disjoint paths out of the seven sets which can
be under the control of the adversary. Since majority of the sets will be under the control of the ad-
versary, no reliable protocol is possible in eight rounds. More formally, there exists two elements in
the the static adversary structure ADV8

static corresponding to the transmission graph G8, such that
removal of all the securely disjoint paths passing through these nodes in G8 disconnects S and R. For
example, consider the sets {A1, A2, A3, A4, A5, A6,K7, K8} and {C1, C2, C3, C4,K5, K6, K7,K8} be-
longing to the adversary structure ADV8

static. The set {A1, A2, A3, A4, A5, A6,K7,K8} denotes an
adversary who corrupts nodes A in the first round (and hence in the second round also because
ρ = 2), node A in the third round (and hence in the fourth round also), node A in the fifth round
(and hence in the sixth round also) and finally node K in the seventh round. Similarly, the other
adversary element can be interpreted. Now it is clear to see that all the space time paths in G8 passes
through one of the nodes in {A1, A2, A3, A4, A5, A6,K7,K8}∪{C1, C2, C3, C4, K5, K6,K7,K8}. Hence
removal of these nodes will disconnect S and R and hence no reliable protocol will exist in G8 and
hence r2

min 6= 8. However, if we consider the transmission graph G9, then there will be nine indepen-
dent set of securely disjoint paths between S and R (four corresponding to Γ1, three corresponding
to Γ2 and two corresponding to Γ3), out of which at most four sets can be under the control of
the adversary. Hence majority of the sets will not be under the control of the adversary and hence
reliable protocol is possible between S and R in G9. Since the protocol can be simulated in the
original network G in nine rounds, r2

min = 9. Note that for G, r1
min = 10. Hence r2

min < r1
min.

Once we know how to compute rρ
min, Algorithm Round Complexity and protocols PRMT Round

and PSMT Round can be adapted to tolerate a mobile adversary with arbitrary roaming speed.

4.6 Computing Minimum Number of Rounds for Static Adversary
Here we compute rmin for reliable communication against a t-active static adversary. If a node
is corrupted by the static adversary in some round, then it remains corrupted for the remaining
rounds of the protocol. Hence, the total number of nodes that will be corrupted throughout the
protocol during is t.

Theorem 13 Let G be a (2t + 1)-(S, R) connected undirected network under the influence of a
t-active static adversary. Let Γ1, Γ2, . . . , Γ2t+1 be the 2t + 1 vertex disjoint paths with Ni nodes in
Γi, 1 ≤ i ≤ 2t + 1, arranged in ascending order of path length. Then rmin = N2t+1 + 1, the length
of the longest path Γ2t+1.

Proof: Necessity: A node once corrupted by static adversary remains so for the remaining rounds
of the protocol. Hence all the space time paths passing through the node remain corrupted. Thus,
if the adversary corrupts the first node of Γi during the first round of a r round PRMT protocol,
then all the r − Ni + 1 space time paths Γj

i , 0 ≤ j ≤ r − Ni will be corrupted (this is the worst
adversary strategy). So all these paths can be considered as a single set controlled by the adver-
sary. Likewise, all the individual space time paths corresponding to each Γi can be considered as
a single set. Hence rmin is the minimum value of r such that after r rounds, there exists 2t + 1
such independent sets (corresponding to each of the 2t+1 physical paths in G). It is easy to verify
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that rmin is N2t+1 + 1 which is the length of the longest path Γ2t+1 in G. The reason is that the
independent set corresponding to Γ2t+1 will be generated only in GN2t+1+1; i.e., after N2t+1 + 1
rounds. Before that in Gr, r = N2t+1, only the independent sets corresponding to Γi, 1 ≤ i ≤ 2t
will be generated. Hence there will be only 2t such independent sets in GN2t+1 , out of which at
most t can be corrupted by the adversary. Hence no reliable protocol will be possible in GN2t+1

and hence rmin will be at least N2t+1 + 1.

Sufficiency: Consider the following protocol in GN2t+1+1: S sends the message along the first space
time path corresponding to each of the 2t+1 independent sets. On receiving, R will output majority
as the message. The correctness of the protocol follows from the fact that in GN2t+1+1, there will
be 2t + 1 independent sets of paths, of which at most t could be corrupted. 2

5 Conclusion and Open Problems

On the first look, a mobile adversary appears to be much more powerful and demanding than
a static adversary with the same threshold. However the equivalence in terms of tolerability for
these two kind of adversaries has been shown in [18]. In this paper we have shown the equivalence
in terms of designing optimal PRMT and PSMT protocols. Our contributions are summarized
as follows: We have designed constant phase PRMT and PSMT bit optimal protocols tolerating
mobile adversary. Our second major contribution comes in terms of providing a generic method to
compute the minimum number of rounds for PRMT tolerating a mobile adversary with different
roaming speeds. Though we have presented efficient protocols for reliable and secure communication
for every tolerable adversary, we are able to show that the round optimal protocols are efficient only
if the network is given as a collection of disjoint paths. It is an interesting open problem to design
(or prove the non-existence of) an efficient round optimal protocol for secure communication for all
possible networks. Another challenging problem is to design a two phase (and hence 2rmin round)
PSMT protocol which securely sends ` field elements by communicating O

(
n`

n−2t

)
field elements

against t-active mobile adversary. Recently, in [11], Kurosawa et.al have designed a two phase
PSMT protocol achieving this bound against a t-active static adversary. However, their protocol
cannot be adapted against mobile adversary.

References

[1] Michael Backes, Christian Cachin, and Reto Strobl. Proactive secure message transmission in
asynchronous networks. In PODC ’03: Proceedings of the twenty-second annual symposium
on Principles of distributed computing, pages 223–232. ACM Press, 2003.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. of 20th ACM STOC, pages 1–10, 1988.

[3] Y. Desmedt and Y. Wang. Perfectly secure message transmission revisited. Cryptology ePrint
Archive, Report 2002/128, 2002. url - http://eprint.iacr.org.

[4] Y. Desmedt and Y. Wang. Perfectly secure message transmission revisited. In Proc. of Advances
in Cryptology: Eurocrypt 2002, LNCS 2332, pages 502–517. Springer-Verlag, 2003.

23



[5] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. JACM,
40(1):17–47, 1993.

[6] Yair Frankel, Peter Gemmell, Philip D. MacKenzie, and Moti Yung. Proactive RSA. In Pro-
ceedings of Advances in Cryptology - CRYPTO 97, volume 1294 of Lecture Notes in Computer
Science (LNCS), pages 440–452. Springer-Verlag, 1997.

[7] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proc. of 19th
ACM STOC, pages 218–229, 1987.

[8] A. Herzberg, M. Jakobson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive Public Key
and Signature Systems. In Proceedings of 4th Conference on Computer and Communications
Security, pages 100–110, Zurich, Switzerland, April 1997. ACM Press.

[9] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive Secret Sharing, or: How to Cope
with Perpetual Leakage. In D. Coppersmith, editor, Proceedings of Advances in Cryptology
- CRYPTO 95, volume 963 of Lecture Notes in Computer Science (LNCS), pages 339–352.
Springer-Verlag, 1995.

[10] M. V. N. A. Kumar, P. R. Goundan, K. Srinathan, and C. Pandu Rangan. On perfectly secure
communication over arbitrary networks. In Proc. of 21st PODC, pages 193–202. ACM Press,
2002.

[11] K. Kurosawa and K. Suzuki. Truly efficient 2-round perfectly secure message transmission
scheme. To appear in Proc. of EUROCRYPT 2008.

[12] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proc. of 10th PODC,
pages 51–61. ACM Press, 1991.

[13] A. Patra, A. Choudhary, K. Srinathan, and C. Pandu Rangan. Constant phase bit optimal
protocols for perfectly reliable and secure message transmission. In Proc. of INDOCRYPT
2006, volume 4329 of LNCS, pages 221–235. Springer Verlag, 2006.

[14] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In Proc. of 21st ACM STOC, pages 73–85, 1989.

[15] H. Sayeed and H. Abu-Amara. Efficient perfectly secure message transmission in synchronous
networks. Information and Computation, 126(1):53–61, 1996.

[16] K. Srinathan. Secure distributed communication. PhD Thesis, IIT Madras, 2006.

[17] K. Srinathan, A. Narayanan, and C. Pandu Rangan. Optimal perfectly secure message trans-
mission. In Proc. of Advances in Cryptology: CRYPTO 2004, LNCS 3152, pages 545–561.
Springer-Verlag, 2004.

[18] K. Srinathan, P. Raghavendra, and C. Pandu Rangan. On proactive perfectly secure message
transmission. In ACISP, pages 461–473, 2007.

[19] A. C. Yao. Protocols for secure computations. In Proc. of 23rd IEEE FOCS, pages 160–164,
1982.

24


