
An improved preimage attack on MD2

Søren S. Thomsen

Department of Mathematics
Technical University of Denmark

DK-2800 Kgs. Lyngby
Denmark

Abstract. This paper describes an improved preimage attack on the cryptographic hash function
MD2. The attack has complexity equivalent to about 273 evaluations of the MD2 compression function.
This is to be compared with the previous best known preimage attack, which has complexity about
297.

1 Introduction

A cryptographic hash function takes an arbitrary length input, the message, and produces a fixed
length output. The output is often called the hash or the fingerprint of the message. A cryptographic
hash function needs to satisfy certain security criteria in order to be considered secure. Let

H : {0, 1}∗ → {0, 1}n

denote a hash function, whose output is of length n bits. A cryptographic hash function should be
resistant to the following attacks:

– Collision: Find x and x′ such that x 6= x′ and H(x) = H(x′).
– 2nd preimage: Given x and y = H(x) find x′ 6= x such that H(x′) = y.
– Preimage: Given y = H(x), find x′ such that H(x′) = y.

A collision for any hash function can be found by a birthday attack with complexity 2n/2. Preimages
and 2nd preimages can be found by a brute force search with complexity 2n. Typically, one considers
a hash function secure only if no attack better than these brute force attacks is known.

The Merkle-Damg̊ard construction [1, 5] is a typical method of constructing hash functions. This
method works as follows. Given a so-called compression function f : {0, 1}n×{0, 1}µ → {0, 1}n and
an initial n-bit value h0, the message m is split into a number of µ-bit message blocks m1,m2, . . . ,mt.
Then, for every i from 1 to t one computes

hi ← f(hi−1,mi), (1)

and finally H(m) = ht is returned as output. Examples of hash functions based on the Merkle-
Damg̊ard construction are MD4 [8], MD5 [9], SHA-1 [7] and many others.

MD2 [3] is an example of a hash function which does not directly follow the Merkle-Damg̊ard
principle. It was developed in 1989 by R. Rivest. MD2 deviates from Merkle-Damg̊ard-based hash
functions in that a second state, the so-called checksum, is computed from the message, and this
checksum is subsequently appended to the message as an additional message block. Another feature
which separates MD2 from immediate successors such as MD4, MD5 and SHA-1 is the use of an
S-box.



The first cryptanalytic result on MD2 was a collision attack by Rogier and Chauvaud [10] on the
compression function of MD2. The attack cannot be immediately extended to the full MD2 hash
function due to the checksum. The first attack against the full MD2 hash function was a preimage
attack published by F. Muller [6] in 2004. This attack was improved by Knudsen and Mathiassen
in [4].

This paper contains a new preimage attack on MD2 based on Muller’s pseudo-preimage attack
on the MD2 compression function [6]. The attack requires an amount of work equivalent to about 273

evaluations of the compression function of MD2. In comparison, the previous best known preimage
attack (of Knudsen and Mathiassen) requires an amount of work equivalent to about 297 evaluations
of the compression function.

2 Description of MD2

MD2 takes messages of any length and returns a 128-bit hash. The message is padded so that its
length becomes a multiple of 16 in bytes. Padding is described in Section 2.1. The message is then
split into t blocks m1,m2, . . . , mt of 16 bytes each, and a 16-byte checksum block c is computed
from the padded message. c is appended to the message as the (t + 1)-th message block. The
t + 1 blocks are then processed sequentially: starting from the initial state which is the all zero
16-byte string, every message block updates the state, and the state after mt+1 has been processed
is the output of the hash function. Hence, once the checksum block has been appended to the
message, MD2 can be seen as following the Merkle-Damg̊ard principle (1) on the resulting message.
We now give the relevant details of the MD2 hash function. Since the internals of the checksum
function are irrelevant to the attacks presented in this paper, a detailed description is postponed to
Appendix A.2. We would like to mention here, however, that the checksum function can be seen as
taking two inputs, the current checksum and a message block, and producing a new checksum. The
checksum function is invertible, i.e., given two of the three values, the third can be easily computed.

2.1 Padding

If the original message consists of r bytes, then d bytes each having the value d are appended to
the message, where d is the integer between 1 and 16 such that r + d is a multiple of 16. Hence, all
messages are padded, even if r is itself a multiple of 16. This padding rule ensures that there is a
one-to-one relationship between the original message and the padded message.

2.2 The compression function

The compression function f : {0, 1}128 × {0, 1}128 → {0, 1}128 works as follows. Let X be a 19× 48
matrix of bytes. Given 16-byte strings hin (called the chaining input) and m (the message block),
fill in the first row (row 0) of X as follows (Xj

i is the byte in row i, column j of X):

Xi
0 ← hin[i]

X16+i
0 ←m[i]

X32+i
0 ← hin[i]⊕m[i]

Here, m[i] means byte i of the string m. We shall often think of X as consisting of the submatrices
A, B, and C of dimension 19× 16, such that X = [A B C].



The compression function fills in the positions in X. At the end, when all positions have been
filled in, the 16 bytes X0

18, . . . , X
15
18 are returned as the output of the compression function.

The positions of X are filled in as follows:

1. T ← 0
2. For i = 1, . . . , 18 do

(a) For j = 0, . . . , 47 do
i. Xj

i ← S[T ]⊕Xj
i−1

ii. T ← Xj
i

(b) T ← T + i− 1

Here, S is an 8-bit S-box, see Appendix A.1. Since the bytes in the last row of B and C are never
used, they do not have to be filled in.

See also Figure 1. This view of the compression function is instructive when studying the attack
presented in this paper. Note that evaluating the compression function requires the computation

hin

hout

--

...
...

0-
C15

1 +0
-

C15
17+16-

--

...

--

...

m hin⊕m

(C15
1 )

Fig. 1. The MD2 compression function.

of 17× 48 + 16 = 832 bytes in total.

3 A variant of Muller’s pseudo-preimage attack

In Section 4.4 of [6], F. Muller describes a pseudo-preimage attack on the MD2 compression function:
Given a target hout, he describes how to find hin and m such that hout = f(hin,m). The complexity
of the attack is about 273.6 evaluations of the compression function (our estimate). We now describe
a variant of the attack using the notation and terminology introduced in Section 2.

The attack makes use of the observation, that given two out of three bytes in the “triangular”
pattern seen in Figure 2, the third byte can be computed. In other words, one does not always have
to compute the compression function in the usual forward direction.

This means that when the target, i.e., the last row of submatrix A, is known, a large part of A
can be computed immediately, see Figure 3(a). By choosing A15

1 and A15
2 , one is able to compute

a further two diagonals in A, see Figure 3(b). With these values known, all of A can be computed
given the chaining input hin. On the other hand, once A15

1 and A15
2 are fixed, the contents of the

matrix B do not depend on hin, only on the message block m.



Fig. 2. Given two bytes out of three in this pattern, the third can be computed.

Fig. 3. Values of A that can be computed. . .

A15
1

A15
2

(a) . . . from hout (b) . . . from hout, A15
1 and A15

2

It should be added that once A15
1 is fixed, one byte of the chaining input is fixed, since A15

1

only depends on the chaining input. Hence, one degree of freedom (in terms of bytes) is lost in the
choice of hin.

Apart from being able to compute all of A given hin, also a large part of the matrix C can be
computed, since the triangular structure of Figure 2 may in fact be “wrapped around” from matrix
A to C. See Figure 4. In the attack a large number of message blocks are chosen, where the last

Fig. 4. Values of C that may be computed given hin and hout.

6 bytes are fixed. When this is the case, and hin is known, then, since the first row of C is the
xor of hin and m, the last 6 bytes of this row are known, which means another 6 diagonals can be
computed, see Figure 5. Also a part of B can be computed. The black values play a certain role in
the attack, as we shall see.

The idea of the attack is to compute the values of B that are blackened in Figure 5 in two
different ways: given only the chaining input hin (assuming the last 6 bytes of m are fixed); and
given only the message block m. We find collisions between these two methods, and for each collision,



Fig. 5. The blackened and shaded values of B and C can be computed from the chaining input and the last 6 bytes
of the message.

we check if there is also a match in the blackened bytes of C. An algorithmic version of the attack
is the following:

1. Given target hout, compute as much of A as possible, see Figure 3(a).
2. Choose A15

1 and A15
2 arbitrarily, and compute a further two diagonals of A, see Figure 3(b).

3. Choose 272 different values of the message block with the last 6 bytes fixed. For each value,
compute B and store the last column of B in table T1.

4. Choose 264 different values of the chaining input in a way such that A15
1 gets the right value.

Compute all of A and the part of B and C seen in Figure 5. Store the blackened bytes in table
T2.

5. Find collisions between T1 and T2 in the bytes of B that are blackened in Figure 5. Since there
are 7 bytes, i.e., 256 possible values, and 272 × 264 pairs of values from table T1 and table T2,
about 272+64−56 = 280 collisions are expected.

6. For each collision, check if there is match on the values of C that are blackened in Figure 5.
This requires computing the unshaded part of C in Figure 5 for each collision. There are 10
bytes, so one solution is expected. This solution corresponds to a pseudo-preimage.

The most time-consuming part of the attack is finding the (expected) single solution among the
280 collisions. For each collision, on average about 10 bytes of C must be computed, since one may
abort once C9

1 has been computed (from the last column of B, which we stored in T1), if there is no
match on this byte. The amount of work corresponds to about 10/832 ≈ 2−6.4 evaluations of the
compression function (since 832 bytes are computed in the compression function, see Section 2).
Hence, the complexity of the attack is about 280−6.4 = 273.6.

There is a difference between the description of the attack given here, and the description in
Section 4.4 of [6]: In Muller’s description, the last 6 bytes of the chaining input hin are also fixed.
The main observation that leads to the improved preimage attack presented here is that fixing
the last 6 bytes of the chaining input is not necessary. In fact, any chaining value producing the
right value in A15

1 can be used in the attack. Hence, to obtain a true preimage attack from the
pseudo-preimage attack, a number of chaining values may be computed from a known, fixed initial
chaining value, and a number of message blocks. A more detailed description is now given.



4 Converting the pseudo-preimage attack into a preimage attack

The attack described in the previous section is extended in a simple way to obtain a preimage
attack. To begin with we shall ignore the checksum.

4.1 An attack without the checksum

We generalise the attack and fix the last k bytes of the message block. This enables us to compute
the last k + 1 bytes of the last column of B. With 2b different message blocks, and 2c different
chaining inputs, we expect about 2b+c−8(k+1) collisions in the last k+1 bytes of B. Given a collision
we check for a match in 16− k bytes of C. Hence, if 2b+c−8(k+1) ≥ 28(16−k), then we expect to have
found a (pseudo-)preimage. This means we must choose b and c such that b + c ≥ 136. There is
the additional condition on b that it must be possible to produce 2b different message blocks, given
that k bytes are fixed. Hence, we must have b ≤ 8(16− k).

We again fix the two bytes A15
1 and A15

2 . As mentioned, fixing these induces a condition on the
chaining input. Apart from this condition, there are no further conditions on the chaining input.

In this extended attack, we make use of two messages blocks. The first block is used to produce
a chaining input for the attack of the previous section. The second block is the one found in the
attack. The attack can be described as follows.

1. Given target hout, compute as much of A as possible, see Figure 3(a).
2. Choose A15

1 and A15
2 arbitrarily, and compute a further two diagonals of A, see Figure 3(b).

3. Choose 2b different values of the message block with the last k bytes fixed. For each value,
compute B and store the last column of B in table T1.

4. Given some chaining value h0, choose 2c+8 message blocks arbitrarily, and evaluate the com-
pression function on h0 and these. This yields 2c+8 new chaining values. Identify the expected
2c of these which produce the value of A15

1 chosen in Step 2. Store the 2c message blocks and
their chaining value in table U .

5. For each of the 2c chaining values, compute all of A and the parts of B and C seen in Figure 5
(in the figure, k = 6). Store in table T2 the bytes of B and C that are blackened in the figure.

6. Find collisions between T1 and T2 in the bytes of B that are blackened in Figure 5.
7. For each collision, check if there is match on the values of C that are blackened in Figure 5.

The solutions correspond to a preimage (the first message block is found in table U).

As mentioned, with b + c ≥ 136, we expect at least one preimage. Let us find b, c, k such that this
attack has the lowest possible complexity.

Steps 1 and 2 are only done once, and do not contribute to the complexity of the attack. Step 3
requires that we evaluate about a third of the compression function 2b times. Hence, the complexity
is about 2b−1. In Step 4, we evaluate the entire compression function 2c+8 times. Step 5 requires 2c

evaluations of at most half the compression function; we must compute about half of A, and most of
C. Hence, the complexity may be estimated to 2c−1. In Step 6 we find about 2b+c−8(k+1) collisions
between T1 and T2. The complexity of this step may be estimated to about max(2b, 2c)/832, if
we assume a comparison is equivalent to the computation of one byte in the compression function.
Finding the preimages among the 2b+c−8(k+1) collisions (Step 7) requires on average the computation
of 16− k bytes of C for each collision, hence complexity around 2b+c−8(k+1) · (16− k)/832.



If we want to find only one preimage, then we would choose b, c, k such that 2b+c−8(k+1) =
28(16−k) ⇐⇒ b+c = 136. Since we need, respectively, 2c+8 and 2b−1 evaluations of the compression
function, we choose b as large as possible, i.e., b = 8(16 − k). This means c = 8(k + 1). The most
time-consuming parts of the attack are expected to be (a) evaluating the compression function 2c+8

times, and (b) finding the preimage in the last step. Hence, we may want to make these two tasks
equally hard. In other words, we want to find k such that 2b+c−8(k+1) · (16− k)/832 ≈ 2c+8. With
the choices of b and c already made, we get that k should be either 6 or 7.

With k = 7, we get b = 72 and c = 64, such that:

– Step 3 takes time about 271

– Step 4 takes time about 272

– Step 5 takes time about 263

– Step 6 takes time about 272/832 ≈ 262.3

– Step 7 takes time about 265.5.

In total, the complexity is below 273. Memory requirements are about 273 message blocks.
With k = 6 we get b = 80 and c = 56, so we see already that the complexity must be higher

due to Step 3. We could then choose different values for b and c, e.g., b = 72 and c = 64 as before,
but Step 7 is independent of b and c and with k = 6 takes time about 273.6.

4.2 Taking the checksum into account

In the attack just described, we have completely ignored the checksum. However, the attack works
for any chaining input h0. In other words, given h0, we are able to find a message consisting
of two blocks, such that when this message is processed by MD2, the output is the target hout.
Furthermore, the checksum function of MD2 can be inverted in the same time as it takes to evaluate
it in the usual forward direction. This means that we may extend the attack as follows (given a
target hash value hout).

1. Produce, by the method of A. Joux [2], a 2128-multicollision on MD2 ignoring the checksum.
Let the resulting chaining value (common for all messages in the multicollision) be h∗.

2. Apply the attack of Section 4.1 with h0 = h∗ and with target hash value hout. Let the two
message blocks resulting from the attack be m1 and m2.

3. Let m2 be the checksum block, and invert the checksum function on m1 and m2. This results
in a checksum state, call it c∗.

4. Given initial checksum state c0, compute 264 checksums using the first 64 pairs of blocks of the
multicollision. Store the 264 resulting checksum states in table V1 (also store the corresponding
message blocks).

5. Given checksum state c∗, invert the checksum function using the last 64 pairs of message blocks
of the multicollision. Store the resulting 264 checksum states in table V2 (also store the corre-
sponding message blocks).

6. Find (with good probability) a collision between the two tables V1 and V2, i.e., a checksum state
that appears in both tables. The collision also gives a 128-block message M . A preimage of hout

is then M‖m1 (and m2 is the checksum of this message).

We note that m1 must have correct padding, but this is easily ensured by always selecting, in the
attack of Section 4.1, message blocks with the last byte equal to 1.



Step 1 has complexity equivalent to about 128 × 264 = 271 compression function evaluations.
Step 2 has complexity below 273, as we saw in Section 4.1. Step 3 has negligible complexity. Steps 4
and 5 each have complexity equivalent to about 264 checksum function evaluations. One checksum
function evaluation requires the computation of 16 bytes, where each computation is approximately
equivalent to the computation of one byte in the compression function (see Appendix A.2). Hence,
steps 4 and 5 have total complexity about 2×264×16/832 ≈ 259.3 compression function evaluations.
Step 6 can be done efficiently if V1 and V2 are sorted. About 264 comparisons are then needed,
equivalent to about 264/832 ≈ 254.3 compression function evaluations. The total complexity of the
attack is about 273 compression function evaluations. Memory requirements are about 273 message
blocks.

5 Conclusion

We have described a preimage attack on MD2 of complexity about 273 in terms of compression
function evaluations. The previous best known preimage attack [4] on MD2 has complexity about
297. Although the task of finding a preimage of MD2 is still an enormous one, it is now close to
being within the range of feasibility.

References

1. I. Damg̊ard. A Design Principle for Hash Functions. In G. Brassard, editor, Advances in Cryptology – CRYPTO
’89, Proceedings, volume 435 of Lecture Notes in Computer Science, pages 416–427. Springer, 1990.

2. A. Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In M. K. Franklin,
editor, Advances in Cryptology – CRYPTO 2004, Proceedings, volume 3152 of Lecture Notes in Computer Science,
pages 306–316. Springer, 2004.

3. B. S. Kaliski Jr. The MD2 Message-Digest Algorithm, April 1992. RFC 1319.

4. L. R. Knudsen and J. E. Mathiassen. Preimage and Collision Attacks on MD2. In H. Gilbert and H. Handschuh,
editors, Fast Software Encryption 2005, Proceedings, volume 3557 of Lecture Notes in Computer Science, pages
255–267. Springer, 2005.

5. R. C. Merkle. One Way Hash Functions and DES. In G. Brassard, editor, Advances in Cryptology – CRYPTO
’89, Proceedings, volume 435 of Lecture Notes in Computer Science, pages 428–446. Springer, 1990.

6. F. Muller. The MD2 Hash Function Is Not One-Way. In P. J. Lee, editor, Advances in Cryptology – ASIACRYPT
2004, Proceedings, volume 3329 of Lecture Notes in Computer Science, pages 214–229. Springer, 2004.

7. National Institute of Standards and Technology. Federal Information Processing Standards Publication 180-2.
2002 August 1, Announcing the Secure Hash Standard.

8. R. L. Rivest. The MD4 Message Digest Algorithm. In A. Menezes and S. A. Vanstone, editors, Advances
in Cryptology – CRYPTO ’90, Proceedings, volume 537 of Lecture Notes in Computer Science, pages 303–311.
Springer, 1991.

9. R. L. Rivest. The MD5 Message-Digest Algorithm, April 1992. RFC 1321.

10. N. Rogier and P. Chauvaud. MD2 Is not Secure without the Checksum Byte. Designs, Codes and Cryptography,
12(3):245–251, 1997.

A MD2 details

Some details of the MD2 compression function are omitted in the paper, but given here.



0 1 2 3 4 5 6 7 8 9 a b c d e f

0 29 2e 43 c9 a2 d8 7c 01 3d 36 54 a1 ec f0 06 13

1 62 a7 05 f3 c0 c7 73 8c 98 93 2b d9 bc 4c 82 ca

2 1e 9b 57 3c fd d4 e0 16 67 42 6f 18 8a 17 e5 12

3 be 4e c4 d6 da 9e de 49 a0 fb f5 8e bb 2f ee 7a

4 a9 68 79 91 15 b2 07 3f 94 c2 10 89 0b 22 5f 21

5 80 7f 5d 9a 5a 90 32 27 35 3e cc e7 bf f7 97 03

6 ff 19 30 b3 48 a5 b5 d1 d7 5e 92 2a ac 56 aa c6

7 4f b8 38 d2 96 a4 7d b6 76 fc 6b e2 9c 74 04 f1

8 45 9d 70 59 64 71 87 20 86 5b cf 65 e6 2d a8 02

9 1b 60 25 ad ae b0 b9 f6 1c 46 61 69 34 40 7e 0f

a 55 47 a3 23 dd 51 af 3a c3 5c f9 ce ba c5 ea 26

b 2c 53 0d 6e 85 28 84 09 d3 df cd f4 41 81 4d 52

c 6a dc 37 c8 6c c1 ab fa 24 e1 7b 08 0c bd b1 4a

d 78 88 95 8b e3 63 e8 6d e9 cb d5 fe 3b 00 1d 39

e f2 ef b7 0e 66 58 d0 e4 a6 77 72 f8 eb 75 4b 0a

f 31 44 50 b4 8f ed 1f 1a db 99 8d 33 9f 11 83 14

Fig. 6. The MD2 S-box.

A.1 The S-box

The S-box is defined as follows. View the input as a two-digit hexadecimal value. In Figure 6, find
the first input digit in the first column, and find the second input digit in the first row. Where the
row and the column meet, find the output of S (in hexadecimal). This S-box is derived from the
digits of the fractional part of π.

A.2 The checksum function

The checksum function of MD2 operates with a 128-bit (16-byte) state (initially all bytes are zero),
which is updated by a message block of the same size. Let D denote the state, and Di be the ith
byte of the state. Let m be the message block with ith byte mi. The state D is updated by m as
follows.

1. L← D15

2. For increasing i from 0 to 15 do
(a) Di ← Di ⊕ S[L⊕mi]
(b) L← Di

The reader may note the similarity between the checksum function and the compression function
of MD2.


