
A Generic Method to Extend Message Space of a Strong
Pseudorandom Permutation

Mridul Nandi

Indian Statistical Institute, Kolkata
mridul.nandi@gmail.com

Abstract. In this paper we present an efficient and secure generic method which can encrypt messages
of size at least n. This generic encryption algorithm needs a secure encryption algorithm for messages
of multiple of n. The first generic construction, XLS, has been proposed by Ristenpart and Rogaway in
FSE-07. It needs two extra invocations of an independently chosen strong pseudorandom permutation
or SPRP defined over {0, 1}n for encryption of an incomplete message block. Whereas our construction
needs only one invocation of a weak pseudorandom function and two multiplications over a finite field
(equivalently, two invocations of an universal hash function). We prove here that the proposed method
preserves (tweakable) SPRP. This new construction is meaningful for two reasons. Firstly, it is based
on weak pseudorandom function which is a weaker security notion than SPRP. Thus we are able to
achieve stronger security from a weaker one. Secondly, in practice, finite field multiplication is more
efficient than an invocation of SPRP. Hence our method can be more efficient than XLS.

1 Introduction

The notion of domain extension arises in many areas of cryptography such as hash function, pseudo-
random function or PRF, strong pseudorandom permutation or SPRP [12] etc. Usually, we design
a building block defined for a small and fixed bit size domain. Then, by applying the building block
iteratively, we obtain a similar kind of function defined over arbitrary domain. For example, a block
cipher defined on n bits can be used to define an encryption algorithm which can encrypt any mes-
sage of size multiple of n. To define a ciphertext for a message whose size is not multiple of n, one
can first use some padding rule and then can apply some encryption algorithm. This methods can
not preserve length. In some applications such as disk encryption, length-preserving encryption is
desirable. We call a length-preserving encryption as an enciphering scheme. The length-preserving
property makes our task more difficult and restricted also. There are some standard tricks like
ciphertext stealing [14], applying the underlying block cipher twice to the last full blocks (appli-
cable for EME [8, 6], TET [7], HEH [17]) or using counter-based PRF (applicable for HCTR [18],
HCH [2], XCB [13]). But these approaches are not generic. There was a heuristic domain exten-
sion by Cook, Yung and Keromytis [3, 4], without having any security proof. The first and so far
only one concrete provable secure generic domain extension, called as XLS, has been proposed
by Ristenpart and Rogaway [16]. It needs two extra sequential invocations of a SPRP on n-bits
whose key is chosen independently from the key of the given enciphering algorithm for the domain
({0, 1}n)+ = ∪∞i=1{0, 1}ni.

NIST has made a standard for block cipher, called as AES [5]. The Rijndael block cipher has
been finally accepted as a standard of block cipher. Usually, we assume AES as a good candidate of
PRP or SPRP. AES is very efficient in hardware and software. In hardware, finite field multiplication
is more efficient than AES. A field multiplication in F2n takes only one cycle by using Karatsuba-
Ofman [10] algorithm, whereas AES takes at least 11 clock cycles. XLS domain extension needs

extra two invocations of a block cipher (say AES) along with some simple mixing operations. Thus,
it needs at least 22 clock cycles extra to process an incomplete message block. Thus, it would be
interesting question whether it is possible to replace an invocation of AES by field multiplications
or some other simpler operations. In this paper, we provide a new generic construction which needs
only one weak-PRF or WPRF invocation and two finite field multiplications. This result shows how
we can preserve SPRP security from a much weaker security notion such as weak-PRF. We can use
stream cipher or block cipher (say AES) or any other possible candidates for WPRF. So if we use
AES we can have faster implementation than XLS. Moreover, a PRP-weakness of AES would not
immediately threat our construction. In Table 1, we have a comparison study. In software, one can
use prime field multiplication as described in [1] to make it more faster.

Table 1. The parameters are given for encryption of an incomplete message block.

XLS [16] DE [in this paper]

Key size n 2n

Field Multiplication 0 2

PRF/PRP 2 SPRP 1 WPRF

Clock-Cycle 22 13

Our new construction is mainly motivated from counter-based modes of operation. In counter-
based constructions, we first compute counter (something like a tag) based on a message and then
we use the counter to generate a random bit sequence. In this domain extension, we will use similar
structure. We need one weak-PRF f and an n-bit random string h to encrypt the incomplete
message block. We denote it by F := DE[F, f, h] where F is any given encryption algorithm which
can encrypt only messages of size multiple of n. We will prove that F is SPRP (or tweakable SPRP)
whenever F is SPRP (or tweakable SPRP respectively) and f is a weak-pseudorandom function. In
a nutshell we are able to replace two invocations of SPRP by one invocation of weak-pseudorandom
function and two finite field multiplications.

Organization of the paper We first provide some preliminaries about the security notion. Then
in Section 3, we describe our new domain extension and discuss some important issues. We also
provide complete security analysis of the new construction in the same section. Finally we conclude.

2 Preliminaries and Notations

Let x = x1x2 · · ·xn ∈ {0, 1}n where xi ∈ {0, 1}. We denote x[s] = x1x2 · · ·xs, the first s bits of
x where s ≤ n. We write |x| = i whenever x ∈ {0, 1}i. Given any x such that 0 < |x| < n, we
define x = x10i where i = n− 1− |x|. We define λ = 0n whereλ is the empty string. Thus, |x| = n
and x 6= 0n for any x. Moreover, x 6= x′ whenever x 6= x′. We identify {0, 1}n as F2n with the
field addition ⊕ (bitwise addition) and a field multiplication ‘·’. The field multiplication can be
determined by fixing an irreducible polynomial. In this paper, we fix an irreducible polynomial and
hence we have a fixed multiplication operation on set of all n bits {0, 1}n.

A set M ⊆ {0, 1}∗ is said to be complete with respect to length if there exists a set L ⊆
N := {0, 1, 2, · · · } such that M = ∪i∈L{0, 1}i. In this case, we also denote M = ML. The set L
is called as length-set for M. In this paper, we mainly consider the length-sets as L = {n}, or

L = [n,∞] = {n, n+1, · · · }, or L = n+ := {n, 2n, 3n, · · · , }. We denote the corresponding complete
sets as Mn, M≥n, Mn+ respectively.

For a complete set M = ML, a permutation F : M→M is called length-preserving (in short,
l.p.) if Fi := F |Mi is a permutation on Mi for all i ∈ L. Here, F |Mi denotes the function F
restricted on Mi. Thus, |F (x)| = |x|, for all x ∈ M. Given a l.p. permutation F defined over a
complete set ML, we can equivalently characterize F by a sequence of functions 〈Fi〉i∈L, where Fi

is a permutation on {0, 1}i. The inverse l.p. permutation F−1 can be similarly characterized by the
sequence 〈F−1

i 〉i∈L.

A random function from A to B is a probability distribution on Func(A,B), the set of all
functions from A to B, where A and B are finite set. In other words, we choose a function f
from Func(A,B) according to the probability distribution. We say a random function is a random
permutation on A if it has support on Perm(A), the set of all permutations on A. Now we define
the following ideal random functions which will be considered in the security definitions later.

1. Let Ri denote the uniform random function from {0, 1}i to {0, 1}i, i.e., the uniform distribution
on Func({0, 1}i, {0, 1}i). Given a length-set L, we denote RL for the tuple 〈Ri〉i∈L of random
functions where Ri’s are independently distributed. We say it as a length-preserving uniform
random function on ML. Note that it is not a random function according to our original
definition of random function. Instead it is a sequence or tuples of random functions. In this
paper we are interested in length-preserving uniform random function where domain is {0, 1}≥n

or ({0, 1}n)+. We denote as R≥n or Rn+ .

2. Let Pi denote the uniform random permutation on {0, 1}i, i.e., the uniform distribution on
Perm({0, 1}i, {0, 1}i). Note that the inverse random permutation, P−1

i , is also an uniform random
permutation. We similarly define PL on ML and P−1

L = 〈P−1
i 〉i∈L called as length-preserving

uniform random permutation on ML. Like uniform random function we also consider uniform
length-preserving random permutation defined over {0, 1}≥n or ({0, 1}n)+ and these will be
denoted as P≥n or Pn+ . respectively.

2.1 Security notion : SPRP

Now let A be an oracle algorithm which has access of two oracles O1 and O2. Suppose A makes
queries from the set ML for both oracles. Now we define SPRP-advantage of A for a length-
preserving random permutation FL by

Advsprp
FL

(A) = Pr[AFL,F−1
L = 1]− Pr[APL,P−1

L = 1].

Here oracles are considered as a sequence of random functions. For each O1-query x ∈ {0, 1}i, i ∈ L,
FL (or PL) responses Fi(x) (or Pi(x) respectively). Similarly, for the inverse query O2. Here is the
behavior of an oracle algorithm AFL,F−1

L .

1. A makes ith query xi, a function of (x1, y1, · · · , xi−1, yi−1), to either FL or F−1
L . If it makes

FL-query then the response follows the probability distribution yi = F`i
(xi), otherwise it follows

F−1
`i

(xi), where xi ∈ {0, 1}`i .

2. After making q queries,A returns 0 or 1 depending all query-responses ((x1, y1, δ1), · · · , (xq, yq, δq))
where δi is either 1 or 2 depending on O1 or O2-query.

In general, we can define advantage for two pairs of tuples of length-preserving random functions
(FL, F′L) and (GL, G′L) as

AdvA((FL, F′L), (GL, G′L)) = Pr[AFL,F′L = 1]− Pr[AGL,G′L = 1].

In this paper, we are mainly interested on the oracle algorithm which makes bounded number of
queries (say the total number of queries are bounded by Q) but the total time computation of it can
be unbounded. Thus, there is no loss in considering only deterministic algorithm. Since we know
that deterministic algorithm with unbounded computational power is as powerful as a randomized
algorithm. If A interacts with a sequence of random permutations then we can assume following :

1. A is not making any repetition query.
2. If xi is F-query and yi is its response then there is no F−1-query xj = yi for some j > i and

vice-versa.

We can assume these since the responses are determined for these types of queries. A set of
queries are called as pointless queries if the above is not true. We say a deterministic adversary
satisfying the above conditions as an allowed adversary. In this paper we will only consider allowed
adversaries (not making pointless queries). Now we define the insecurity of a random permutation
FL as the maximum advantage over all allowed adversaries. More precisely,

Insecsprp
FL

(Q) = maxAAdvsprp
FL

(A)

where maximum is taken over all allowed adversary A which makes at most Q queries. Now we
state a result which are commonly used in analyzing SPRP.

Theorem 1. [9] Let RL and R′L be independently chosen length-preserving uniform random func-
tions and let PL be length-preserving uniform random permutation. Then for any allowed adversary
A which makes at most Q queries, we have,

AdvA((PL, PL
−1), (RL, R′L)) ≤ Q(Q− 1)

2m+1

where m = min{` : ` ∈ L}.
The above result says that an uniform length-preserving random permutation is very close to an

uniform length-preserving random function. Thus if we want to prove that an enciphering scheme is
SPRP-secure then it would be enough to bound the distinguishing advantage from uniform random
function.

We can similarly define an adversary which interacts with a random function. The prf-advantage
of an adversary A for a random function f from {0, 1}n to {0, 1}n and prf-insecurity of the random
function f are defined as

Advprf
f (A) = Pr[Af = 1]− Pr[ARn = 1]

Insecprf
f (Q) = maxAAdvprf

f (A)

where maximum is taken over all adversary A which makes at most Q queries. We define weak-prf
insecurity as

Insecwprf
f (Q) = maxAAdvprf

f (A)

where maximum is taken over all adversary A which makes at most Q queries and all queries are
uniformly and independently distributed over {0, 1}n. Clearly, any prf or sprp-secure construction
is weak-prf but the converse need not be true. In fact, achieving weak-prf may be easier than to
achieve prf or sprp security. We can use good stream cipher to obtain which would be much faster
than a block cipher invocation. The block cipher is believed to be a sprp-secure candidate, for
example, AES.

3 The new domain extension DE[E, f, h]

Let E : K1 × ({0, 1}n)+ → ({0, 1}n)+ be a keyed family of length-preserving permutations. Thus
for each key K1 ∈ K1 the function EK1 := E(K1, ·) : ({0, 1}n)+ → ({0, 1}n)+ is a length-preserving
permutation (i.e., |EK1(M)| = |M |). Let f : K2 × {0, 1}n → {0, 1}n be another keyed family of
function on the set of n bits. We also use the notation fK2(·) for f(K2, ·). Now we define a length
preserving enciphering scheme E defined over {0, 1}≥n.

Key generation : K1
$← K1, K2

$← K2 and h
$← {0, 1}n uniformly and independently. The triple

(K1, K2, h) is the secret key of E. For each such triple we define a length-preserving permutation
EK1,K2,h as given in below.

H

H

f

M1 Ml

M'l

C'l

M1

C1

C1 Cl

x

y

E

Fig. 1. Domain Extension DE[E, f, H] where π : ({0, 1}n)+ → ({0, 1}n)+ is a length preserving permutation, f :
{0, 1}n → {0, 1}n is any function, H : ∪2n−1

i=n {0, 1}i → {0, 1}n is an universal hash function such that H(H(M, x), x) =
M .

Encryption : Let (M1, · · · ,M`, x) ∈ {0, 1}≥n where |Mi| = n, 1 ≤ i ≤ ` and 0 ≤ |x| := s < n.
EK1,K2,h(M1, · · · ,M`, x) is computed as follows.

step-1 M ′
` = h ∗ x⊕M`;

step-2 (C1, · · · , C`−1, C
′
`) = EK1(M1, · · · ,M`−1,M

′
`);

step-3 y = fK2(M
′
` ⊕ C ′

`)[s]⊕ x;
step-4 C` = h ∗ y ⊕ C ′

`;
step-5 return (C1, · · · , C`, y);

Remark 1. Note that when |x| = 0 (in other words the message size is multiple of n) the above
permutation EK1,K2,h is same as the permutation EK1 . It is also easy to see that E is a keyed family
of length-preserving permutation. One can compute the decryption exactly same as encryption
except in step-2 we have to apply E−1

K1
instead of EK1 . Thus, it is a length-preserving permutation

on {0, 1}≥n.

Remark 2. Let Hh(M`, x) = h ∗ x ⊕M`. It is easy to see that the function keyed function family
H : {0, 1}n × ∪2n−1

i=n {0, 1}i → {0, 1}n is an universal hash function. Moreover, M` is uniquely
determined from x and N = Hh(M`, x) and can be computed as M` = Hh(N,x). A variant of
encryption algorithm can be obtained by replacing step-1 by M ′

` = Hh(M`, x) and step-4 by C` =
Hh(C ′

`, y) where Hh is an universal hash function such that Hh(Hh(M`, x), x) = M`.

3.1 Discussion

Our construction is mainly motivated from the counter modes SPRP. It is also a generic construc-
tion. In other words, this method can be applied to any enciphering scheme E which can encrypt
messages of sizes multiple of n. In the next section, we show that E is SPRP-secure whenever E is
SPRP-secure and f is a weak pseudorandom function. A weak prf is a strictly weaker notion than
strong pseudorandom permutation.

In the efficiency point of view, it needs one invocation of E, two field multiplications over F2n

and one WPRF invocation f . The previous generic construction XLS needs one invocations of E
and two invocations of n-bit SPRP. In hardware, field multiplication is much more efficient than
an invocation of AES (a possible candidate of SPRP) and hence this new construction could be an
improved generic method to process incomplete message block. A field multiplication in F2n takes
only one cycle by using Karatsuba-Ofman [10] algorithm, whereas AES takes at least 11 clock
cycles. XLS domain extension needs extra two sequential invocations of a block cipher AES (say)
along with some simple mixing operations. Thus, it needs at least 22 clock cycles extra to process
an incomplete message block. Whereas our construction needs 13 clock cycles if we instantiate a
weak prf by AES. A more efficient instantiation of weak prf can make it more faster. For example,
one can use LFSR to process the incomplete message block. In Table 1, we have a comparison
study. In software, one can use prime field multiplication as described in [1] to make it more faster.

To have a simple and clear presentation we skip the tweakable version. One can easily incorporate
tweak if the underlying enciphering scheme E is tweakable SPRP. More precisely we provide tweak
as an input of E. Similar security analysis can be carried and hence we will skip the security proof
for a tweakable SPRP.

3.2 Security analysis

Now we provide a complete, simple and more straightforward security analysis of our domain
extension. Let P≥n and Pn+ denote the uniform length preserving random permutation on {0, 1}≥n

and ({0, 1}n)+ respectively. We denote our proposed length-preserving random permutation as
E = DE[E, f, h]. Now we define some intermediate length-preserving random functions between
(G0, G′0) = (E,E−1) and (G5, G′5) = (P≥n, P−1

≥n). These are namely,

1. G1 = DE[Pn+ , f, h] and G′1 = G−1
1 . These two random permutations are obtained by replacing E

by an ideal length-preserving random permutation.
2. G2 = DE[R′n+ , f, h] and G′2 = DE[R′′n+ , f, h], where R′n+ and R′′n+ are independently distributed

length-preserving uniform random function on n+. Thus we replace uniform random permu-
tation and its inverse by two independent uniform random functions. Since we only consider
those adversary which make no pointless queries, there is no loss in considering two independent
uniform random functions (see Theorem 1).

3. Now, we replace f by another n-bit uniform random function Rn. Thus, G3 = DE[R′n+ , Rn, h] and
G′3 = DE[R′′n+ , Rn, h].

4. Finally we consider G4 = R′≥n and G′4 = R′′≥n. These are independently distributed uniform
length-preserving random function defined over {0, 1}≥n.

Now we compute advantage of a distinguisher (making pointless queries only) at distinguishing
(Gi, G′i) from (Gi+1, G′i+1), 0 ≤ i ≤ 4. Then we can apply the triangle inequality for advantages to
obtain our main result.

– The maximum advantage distinguishing (G1, G′1) from (G0, G′0) is bounded by Insecsprp
E (Q).

AdvA((G0, G
′
0), (G1, G

′
1)) ≤ Insecsprp

E (Q).

This follows from a straightforward replacement argument. More precisely, given an adversary
A which can distinguish (G0, G′0) and (G1, G′1) with probability p, there is a distinguisher A′ which
distinguishes (E,E−1) and (Pn+ , P−1

n+) with probability at least p. A′ first run the distinguisher
A and the responses of (G1, G′1) or (G0, G′0) can be computed based on the responses of (Pn+ , P−1

n+)
or (E,E) respectively.

– The maximum advantage distinguishing (G1, G′1) from (G2, G′2) is bounded by Q(Q−1)
2n+1 . This is true

since the distinguishing advantage between a length preserving uniform random permutation
and and uniform length-preserving random function is bounded by Q(Q−1)

2n+1 where the minimum
bit size of any query is at least n (by using theorem 1).

– A similar argument (distinguishing (G1, G′1) from (G0, G′0)) can be used to prove that

AdvA((G2, G
′
2), (G3, G

′
3)) ≤ Insecwprf

f (Q).

Note that here we use the fact that inputs of f are uniformly and independently distributed
since input of f is nothing but the last block of (M1, · · · ,M`−1, M

′
`)⊕ R′n+(M1, · · · ,M`−1,M

′
`)

or (M1, · · · , M`−1,M
′
`)⊕R′′n+(M1, · · · ,M`−1,M

′
`). Thus, either the inputs are equal or these are

independently distributed. This property is true for both f and Rn and hence the above bound
of advantage is true.

– When A is interacting with (G3, G′3) the probability that there is a collision among all inputs of
R′n+ (in case of G3 queries) or all inputs of R′′n+ (in case of G′3 queries) is bounded by Q(Q−1)/2n+1.
This is true since the function Hh is 1/2n universal hash function and we need to compare at

most Q(Q − 1)/2 pairs. Given that all inputs of R′n+ and R′′n+ are distinct the probability that
there is a collision among all inputs of Rn, is also at most Q(Q− 1)/2n+1. This is the birthday
collision probability of Q uniformly and independently distributed strings (the xor of last block
of input and output of R′n+ and R′′n+). Since Rn is independently distributed from R′n+ and R′′n+ ,
the complete responses will behave as an uniformly and independently distributed strings unless
any two of the above event occurs. Thus, we have

AdvA((G3, G
′
3), (G4, G

′
4)) ≤

Q(Q− 1)
2n

.

– As stated in distinguishing (G1, G′1) from (G2, G′2) the maximum advantage distinguishing (G4, G′4)
from (G5, G′5) is bounded by Q(Q−1)

2n+1 .

Now we use triangle inequalities for advantages to obtain the following theorem.

Theorem 2. Let E be a keyed family of length-preserving random permutation defined over ({0, 1}n)+.
Let f be a keyed family of functions defined from {0, 1}n to {0, 1}n. Then we have

Insecsprp

E
(Q) ≤ Insecsprp

E (Q) + Advwprf
f (Q) +

3Q(Q− 1)
2n+1

.

4 Conclusion

This paper presents a generic method to construct an encryption algorithm defined over arbitrary
messages of size at least n out of an encryption algorithm which only can encrypt message of
size multiple of n. This method is more efficient than recently proposed generic construction XLS.
This approach has similarity with all of the approaches used in counter modes SPRP. But, those
approaches are specific for counter modes SPRP and it is not clear how it can be used for other
non-counter type constructions such as HEH, TET, EME etc. It is true that this approach may not
give more efficient construction for variable length encryption (e.g., in case of EME). But, most of
the cases it provides a similar performance as the original variants for the specific constructions
(for example, HEH and all counter based modes of operations). Moreover, as a theoretical interest,
this result would carry a significance contribution and provide some idea how one extend domain
for a given security notion.

References

1. D. J. Bernstein. The Poly1305-AES message-authentication code. Fast Software Encryption FSE 2005, LNCS vol.
3557/2005, Springer, pp. 32-49, 2005.

2. D. Chakraborty and P. Sarkar. HCH: A new tweakable enciphering scheme using the Hash- Encrypt-Hash approach.
Advances in Cryptology INDOCRYPT 2006, LNCS vol. 4329, Springer, pp. 287302, 2006.

3. D. Cook, M. Yung, and A. Keromytis. Elastic AES. Cryptology ePrint archive, report 2004/141, LNCS? 2004.

4. D. Cook, M. Yung, and A. Keromytis. Elastic block ciphers. Cryptology ePrint archive, LNCS?, report 2004/128,
2004.

5. Joan Daemen and Vincent Rijmen The Design of Rijndael: AES The Advanced Encryption Standard. Springer
2002. http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf

6. S. Halevi. EME∗: Extending EME to handle arbitrary-length messages with associated data. Advances in Cryp-
tology INDOCRYPT 2004, LNCS vol. 3348, Springer, pp. 315327, 2004.

7. S. Halevi. TET: A wide-block tweakable mode based on Naor-Reingold. Advances in Cryptology 2007. Cryptology
ePrint archive, report 20007/14, CRYPTO? 2007.

8. S. Halevi and P. Rogaway. A parallelizable enciphering mode. Topics in Cryptology CT-RSA 2004, LNCS vol.
2964, Springer, pp. 292304, 2004.

9. S. Halevi and P. Rogaway. A tweakable enciphering mode. Advances in Cryptology CRYPTO 2003, LNCS vol.
2729, Springer, pp. 482499, 2003.

10. A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers by automata. Soviet Physics-Doklady,
7:595596, 1963.

11. M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. Advances in Cryptology CRYPTO 2002, LNCS
vol. 2442, Springer, pp. 3146, 2002.

12. M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM
Journal of Computing, vol. 17, no. 2, pp. 373386, 1988.

13. D. McGrew and S. Fluhrer. The extended codebook (XCB) mode of operation. Cryptology ePrint archive, report
2007/298, Proceedings in Selected Areas in Cryptography.

14. C. Meyer and M. Matyas. Cryptography: A New Dimension in Data Security. John Wiley & 23 Sons, New York,
1982.

15. M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-Rackoff revisited. Journal
of Cryptology, vol. 12, no. 1, pp. 2966, 1999.

16. Thomas Ristenpart and Phillip Rogaway. How to Enrich the Message Space of a Cipher. Fast Software Encryption
- FSE 2007, Lecture Notes in Computer Science Vol. 4593/2007, pp. 101-118, Springer-Verlag, 2007.

17. Palash Sarkar. Improving Upon the TET Mode of Operation. Cryptology ePrint archive, report 2007/317.

18. P. Wang, D. Feng, and W. Wu. HCTR: a variable-input-length enciphering mode. Information Security and
Cryptography, CISC 2005, LNCS vol. 3822, Springer, pp. 175188, 2005.

