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Abstract. Here we present a new security notion called as pseudo random involution or PRI which are
associated with tweakable involution enciphering schemes or TIES (i.e., the encryption and decryption
are same algorithm). This new security notion is important in two reasons. Firstly, it is the natural
security notion for TIES which are having practical importance. Secondly, we show that there is a generic
method to obtain a sprp-secure tweakable enciphering scheme (TES) from pri-secure construction. The
generic method costs an extra xor with an extra key. In this paper, we also propose an efficient pri-secure
construction Hash-Counter Involution or HCI and based on it we obtain a sprp-secure construction
which is real improvement over XCB. We call the new construction as MXCB or Modified-XCB. HCH,
XCB and HCTR are some of the popular counter based enciphering schemes, where HCTR is more
efficient among them and HCH, XCB guarantee more security compare to HCTR. The new proposal
MXCB has efficiency similar to HCTR and guarantees more security similar to HCH and XCB. We
consider this new construction to be an important in light of the current activities of the IEEE working
group on storage security which is working towards a standard for a wide block TES.

Keywords: Modes of operation, involution, tweakable enciphering scheme, strong pseudo ran-
dom permutation, poly-hash, counter.

1 Introduction

A mode of operation is a method of constructing an encryption algorithm which can encrypt
arbitrary length messages. It uses a cryptographic object called block cipher, as an underlying object
and possibly some algebraic operations such as finite field multiplication. (Strong) Pseudo Random
Permutation or (S)PRP [13], authenticity and privacy [10, 20, 21] are some of the desired security
notions for symmetric key encryptions. Later, Liskov et al. [12] followed by Halevi-Rogaway [8]
considered tweakable version of length-preserving SPRP, which allows us to process associated
data or tweak as a part of the messages. Disk-encryption is one of the important application for the
length-preserving tweakable SPRP as mentioned in [8]. Motivated by disc-encryption algorithms,
there are several tweakable-SPRP proposals. We list some of these important constructions based
on three categories.

1. Hash-Encrypt-Hash: First introduced by Naor-Reingold [17, 18], consists of Encryption layer
between two layers of invertible hash. Similar approach is considered in TET [6] and HEH [22],
where latter is an improvement over TET.

2. Encrypt-Mix-Encrypt: Halevi-Rogaway [8] introduced Encryption, mixing and Encryption ap-
proach. Some of the constructions of this type are CMC [8], EME [7] and EME∗ [5] (modification
of EME which can encrypt arbitrary size messages).



3. Hash-Ctr-Hash: This approach is fist observed in the original proposal of XCB [16]. Later,
HCTR [24], HCH [3] and a new version of XCB with security bound [15] are of this type.
The first hash function layer is to generate counter. Based on the counter, we obtain ciphertext
except one block which is computed by using the second hash layer. In this paper, we are mainly
interested in this type of modes of operations.

1.1 Tweakable involution enciphering scheme and its pri security notion

In practice, we need to implement both encryption and decryption and sometimes we need both
together as a single application. For example, in disk encryption, it is always better if the same
device can read and write the data. Ideal choice for this kind of scenario is an involution which
is inverse of itself. In other words, tweakable involution enciphering schemes or TIES are those
enciphering schemes whose encryption and decryption algorithm are same. If there are some amount
of differences in encryption and decryption, then efficiency of the combined implementation (both
encryption and decryption together) is reduced to some extent. More precisely, one can observe
this loss of efficiency in hardware implementation as we need to use several multiplexors to control
encryption and decryption together. Obviously, we would not have to face this problem in TIES.
Unfortunately, any TIES can not be strong pseudo random permutation. More particularly, the
involution property itself can be used to distinguish it from an uniform random permutation. In
this paper we first define a suitable security definition for TIES. We call it as pseudo random
involution (similar to pseudo random function or permutation). After defining the new security
notion, it is a natural question that how strong is this security notion with respect to the known
security. We show that any pri-secure construction is wprf (weak pseudo random function) and
moreover, it can be prf if we have some restrictions on the distinguisher. More importantly, we
show a generic method to construct a sprp from a pri-secure construction at the cost of one xor
and one extra key. Thus, we believe that the new security notion can have importance in both
theoretical and practical point of view.

1.2 Hash-Counter Involution or HCI and MXCB or Modified-XCB

Now it is also more important to find out a secure candidate for the new class of enciphering scheme
TIES. Without showing the existence, there is no practical value to have a new security notion.
We propose Hash-Counter Involution or HCI which belongs to Hash-Ctr-Hash category. Moreover,
structure wise it is similar and much simpler than XCB. We would like to note that XCB is not
a TIES. It needs several changes to make it TIES. We have mainly done those changes in HCI
which makes it more simpler, efficient and involution. We show that HCI is pri-secure. By using our
generic method one can obtain a secure TES also. Note that in the generic construction, we need
a completely different key than the key of secure TIES. But we propose a variant of the generic
method as we are not willing to use any more extra key. We use a part of the key (poly-hash key)
of HCI for the generic construction. We have similar quadratic security bound as we have in XCB,
HCH etc. We term the construction obtained as described above as MXCB or Modified-XCB. This
new construction is improved construction over XCB with respect to efficiency, design complexity,
the secret key storage etc. We believe that MXCB is an important design in the light of the IEEE
working group on storage security’s current activity [9]. This group is working towards a standard
for a wide block TES and this new construction no doubt is a strong candidate for this.



The paper is organized as follows. In section 2, we first provide a necessary background with all
notations used in the paper. We define some of the security notions of symmetric key encryption
which are relevant to this paper in the same section. In section 3, we introduce the new enciphering
scheme TIES and a proper security notion for this class of enciphering scheme. This section also
contains relationship between the new security notion with some of the known security notions
and provides generic method to obtain sprp-secure construction from pri-secure. In section 4, we
propose tweakable enciphering scheme HCI and we make pri-security analysis. In section 5, we
propose an efficient sprp-secure MXCB and provides its security analysis. Finally we conclude with
possible future research work.

2 Preliminaries

In this section, we provide some basic terminologies which are used in the paper. We also define
several popular security notions used in symmetric key cryptography.

2.1 Notations and Definitions

In this paper, we fix an integer n which is the block size of the underlying block cipher E : {0, 1}k×
{0, 1}n → {0, 1}n. For each block cipher key K ∈ {0, 1}k, EK(·) := E(K, ·) is a permutation on
{0, 1}n. The inverse permutation is denoted as E−1

K (·) or E−1
K (·).

Given any X ∈ {0, 1}∗ we define the number of blocks of X as ||X|| = d|X|/ne. For any
non-negative integer s and a binary string X = x1x2 · · ·xr ∈ {0, 1}∗, xi ∈ {0, 1}, we write

X[s] = x1 · · ·xs if s ≤ r

= X ‖ 0s−r if r < s

Note that if s = 0, X[s] = λ, the empty string. XOR or ⊕ denotes the bitwise exclusive or
for two strings of equal size. We can extend the definition for unequal strings as follows. Let
X ∈ {0, 1}s, Y ∈ {0, 1}r then we define X ←⊕ Y := X ⊕ Y [s] and X ⊕→ Y := X[r]⊕ Y . If |X| ≤ n
then we denote X := X[n].

Unless we mention, we use the notation ρ
$← S to mean that ρ is chosen uniformly from the set

S and it is independent from all previously described random variables. Note that the set S has to
be finite1. For example, if we write ρρρ,ρρρ′ $← S then it means that ρρρ and ρρρ′ are independently and
uniformly distributed over S. When we say ρρρ`

$← S`, for ` ≥ 2n we mean that ρρρ`’s are independently
and uniformly distributed over the set S`. Now we define some useful sets used in the paper.

Message space: M = {0, 1}≥2n = ∪i≥2n{0, 1}i called as message space or ciphertext space. The
messages and ciphertexts of this paper are from this set.

Tweak space: T = {0, 1}`tw called as tweak space for some `tw ≥ 0. We write t := d`tw/ne and
called as the number of blocks of a tweak. Tweak actually corresponds to the associative data
of a message or a ciphertext. For example, in disk encryption it can be the sector address of the
data stored in a sector.

1 It can be a continuous real interval, but here we are not interested in continuous real intervals.



Function space: Func(A, B) denotes the set of all functions from A to B. We also write the set of
all tweakable functions from A to B as TFunc(A,B) := Func(T ×A,B). Given f : T ×A → B
and T ∈ T , we denote fT (·) := f(T, ·) : A → B. If A = {0, 1}i, B = {0, 1}j , we simply write
Func(i, j) or TFunc(i, j) instead of Func(A,B) and TFunc(A,B) respectively.

Permutation space: Perm(i) is the set of all permutations on {0, 1}i, and the set of all tweakable
permutations on {0, 1}i is defined as TPerm(i) = {π ∈ FuncT (i, i) : πT ∈ Perm(i) ∀T ∈ T }. We
denote the inverse permutation of πT as π−T or π−1(T, ·).

Involution space: A function π on M is called involution if for all X ∈ M, π(π(X)) = X.
It is easy to see that involution should be a permutation and π = π−1. Let Inv(i) = {π ∈
Perm(i) : π = π−1} denote the set of all involutions. Similarly, we denote the set of all tweakable
involutions by TInv(i) = {π ∈ TFunc(i, i) : πT ∈ Inv(i) ∀T ∈ T }.

2.2 Security notions

A function f : M → M is called length-preserving if for all x ∈ M, |x| = |f(x)|. We denote
fi for the restricted function f with domain {0, 1}i, for all i ≥ 2n. Hence fi ∈ Func(i, i). If π
is a length-preserving permutation then πi ∈ Perm(i). A tweakable length preserving or TLP
function (or permutation) on M is f : T ×M→M where f(T, ·) is length-preserving function (or
permutation) on M.

A keyed family {EK : K ∈ K} is called as a tweakable enciphering scheme or TES on M
if for each key K ∈ K, EK : T × M → M is a tweakable length-preserving permutation. We
denote the inverse of the above permutation as E−1

K (T, ·) or E−T
K (·). We also denote the TES as

E : K×T ×M→M where E(K, T, M) = EK(T, M) and its inverse as E−1. E is also called as the
encryption algorithm of TES and E−1 is called as the decryption algorithm. Now we define some
ideal candidates of tweakable length-preserving functions or permutations.

TLP-URP: πππ = (πππ2n,πππ2n+1, . . .)
$← TPerm(M) is called as tweakable length preserving uniform

random permutation or TLP-URP. More precisely, for each ` ≥ 2n, we have πππ`
$← TPerm(`).

We call πππ as the tweakable length preserving uniform random permutation. πππ−1 corresponds to
the collections of all inverses of πππ`, i.e., πππ−1 = (πππ−1

n+1,πππ
−1
n+1, . . .).

– Given a query (T, M) to πππ (or πππ−1) it returns πππ`(T,M) (or πππ−1
` (T, M) respectively) where

|M | = `. If (T,M) is a new2 query to πππ then the response C
$← {0, 1}` \ RT where RT

denotes the set of all previous responses of πππ when the tweak is T and M ∈ {0, 1}`. A similar

probability distribution of responses for the inverse query holds. We have M
$← {0, 1}` \DT

where DT denotes the set of all previous responses of πππ−1.

TLP-URF: ρρρ = (ρρρ2n, ρρρ2n+1, . . .)
$← TFunc(M) is called as tweakable length preserving uniform

random function or TLP-URF. More precisely, for each ` ≥ 2n, we have ρρρ`
$← TFunc(`). Since

it is a random function there is no inverse of it.

– Given a query (T,M) to ρρρ it returns ρρρ`(T, M) where |M | = `. If (T, M) is a new query to ρρρ

then the response C
$← {0, 1}` where M ∈ {0, 1}`.

2 it is not queried before



Let A be an oracle algorithm having access of two oracles O1 and O2 where each oracles takes
inputs from the set T ×M and gives outputs from M. The AO1,O2 ⇒ 1 means that A outputs 1
after interacting with O1 and O2. Similarly we define AO1 ⇒ 1 when A has access of one oracle. We
say that A is (q, σ,m)-distinguisher if it makes at most q queries having at most σ many blocks and
the the number of blocks of the longest query is at most m. We say that A is (q, σ,m, t)-distinguisher
if A is (q, σ,m)-distinguisher and moreover it runs in at most time t.

Now we define prf (or pseudo random function), weak-prf, prp (pseudo random permutation)
and sprp (strong prp) security notions for a tweakable length-preserving enciphering scheme. Let
E : K × T ×M→M be a TES.

(1) prf :

Advp̃rf
E (A) =

∣∣∣Pr
[
K

$← K : AEK ⇒ 1
]
− Pr

[
ρρρ

$← FuncT (M) : Aρρρ ⇒ 1
]∣∣∣ . (1)

Adv±p̃rf
E (A) =

∣∣∣Pr
[
K

$← K : AEK ,E−1
K ⇒ 1

]
− Pr

[
ρρρ,ρρρ′ $← FuncT (M) : Aρρρ,ρρρ′ ⇒ 1

]∣∣∣ . (2)

We define Advp̃rf
E (q, σ,m) by maxAAdvp̃rf

E (A) where maximum is taken over all (q, σ,m)-

distinguishersA. Similarly we can define Advp̃rf
E (q, σ,m, t), Adv±p̃rf

E (q, σ,m), Adv±p̃rf
E (q, σ,m, t).

We define the weak-prf advantage of E as

Advw̃prf
E (q, σ,m) = maxAAdvp̃rf

E (A)

where maximum is taken over all (q, σ,m)-distinguishers A whose all queries are uniformly and
independently distributed over {0, 1}`i where `i denotes the query-length for ith query3.

(2) (s)prp : We define the (s)prp-advantage of an adversary A for E

Advp̃rp
E (A) =

∣∣∣Pr
[
K

$← K : AEK ⇒ 1
]
− Pr

[
πππ

$← PermT (M) : Aπππ ⇒ 1
]∣∣∣ (3)

Adv±p̃rp
E (A) =

∣∣∣Pr
[
K

$← K : AEK ,E−1
K ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ,πππ−1 ⇒ 1
]∣∣∣ (4)

We define Advp̃rp
E (q, σ,m) by maxAAdvp̃rp

E (A) where maximum is taken over all (q, σ,m)-
distinguishersA. Similarly we can define Advp̃rp

E (q, σ,m, t), Adv±p̃rp
E (q, σ,m), Adv±p̃rp

E (q, σ,m, t).
When E : {0, 1}k × {0, 1}n → {0, 1}n is a block cipher, we define prp-advantage of A by

Advprp
E (A) =

∣∣∣Pr
[
K

$← {0, 1}k : AEK ⇒ 1
]
− Pr

[
πππn

$← Perm({0, 1}n) : Aπππn ⇒ 1
]∣∣∣ .

We similarly define Advprp
E (q, m) by maxAAdvprp

E (A) where maximum is taken over all (q, q, m)-
distinguishers A (note that the number of blocks has to be equal with the number of queries).
We have used ± to denote the strong security (secure even if the distinguisher has access of
inverse query). The presence of tilde means it is in tweakable mode.

3 We can not have an uniform distribution over M and hence we restrict the distribution on a query-length where
the attacker can choose the query-length as well as the tweak.



Assumption Without loss of generality, we assume that the distinguisher A does not make any
pointless queries. In other words, it does not repeat any encryption or decryption query and if
it obtains Y as the response of encryption (or decryption) query with input (X,T ) then it does
not ask decryption (or encryption respectively) query with input (Y, T ) where T ∈ T is the tweak
part of the query. These queries are called pointless as the adversary knows what it would get as
responses for such queries.

It is well known that TRP-URP and TRP-URF are very close to each other. Let A be any
(q, σ,m)-distinguisher which does not make any pointless queries then we have the following result.
A proof of the similar statement can be found in [8].

Theorem 1. Adv±p̃rp
ρρρ (A) = Adv±p̃rf

πππ (A) ≤ q(q−1)
2n+1 .

3 Involution Enciphering Scheme and PRI-Security Notion

In most of the applications, we need to implement encryption and decryption together. If we have
a tweakable enciphering scheme E such that for each key K, and each tweak T ∈ T , EK(T, ·) is a
length-preserving involution then E is also the decryption algorithm of itself. In this case, we call
it as a tweakable involution enciphering scheme or TIES. A single implementation of E is sufficient
for both encryption and decryption. Thus, TIES can have practical interest. Unfortunately, a TIES
can not be PRP (pseudo random permutation). Since a distinguisher first makes an encryption
query EK(T,X) = Y and then asks another encryption query EK(T, Y ) = X ′. In case of a TIES
E, X = X ′ with probability one but for a tweakable length-preserving uniform random permutation
πππ, X = X ′ holds with negligible probability. So we need a new security notion for TIES. In this
section, we first define a new security notion called as pri-security or pseudo random involution
security. After defining the new notion we show relationship between this new notion and prf-
security or wprf-security. Finally we propose a genric method to obtain a sprp-secure construction
given a pri-secure construction.

By the notation τττ = (τττ2n, τττ2n+1, . . .)
$← TInv(M), we mean that for each ` ≥ 2n, τττ `

$← TInv(`).
We call τττ as the TLP-URI or tweakable length-preserving uniform random involution. Thus we
have so far defined three ideal candidates a TLP-URP πππ, TLP-URF ρρρ and TLP-URI τττ . τττ can be
considered as an ideal candidate as we consider all possible TLP involution and then we choose one
uniformly from the set. One can check the following probability distribution of the response of τττ .

– Given a query (T,M) to τττ (or τττ−1) it returns τττ `(T, M) (or τττ−1
` (T,M) respectively) where

|M | = `. If (T,M) is different from all previous queries and responses (including the tweak)

then the response C
$← {0, 1}`\(RT ∪DT ) where M ∈ {0, 1}`, RT denotes the set of all previous

responses of τττ with tweak T and DT denotes the set of all previous queries with tweak T .

Definition 1. pseudo random involution security
Let {EK : K ∈ K} be a keyed family of tweakable length-preserving involutions defined on M and

τττ
$← TInv(M). We define the PRI-advantage or pseudo random involution of a distinguisher A

for a TIES E as

Advp̃ri
E (A) =

∣∣∣Pr
[
K

$← K : AEK(.,.) ⇒ 1
]
− Pr

[
τττ

$← TInv(M) : Aτττ(.,.) ⇒ 1
]∣∣∣ (5)



We define Advp̃ri
E (q, σ,m) by maxAAdvp̃ri

E (A) where maximum is taken over all (q, σ,m)-distinguishers.

For a computational advantage we define Advp̃ri
E (q, σ,m, t) by maxAAdvp̃ri

E (A) where maximum is
taken over all (q, σ,m, t)-distinguishers.

Like other security notions, we compute the advantage at distinguishing a TIES E from the
ideal candidate of TIES τττ . A similar kind of treatment can be found in prf or prf security notions.
Thus, it is the natural way to define a security notion for a TIES.

Now we prove some relationship between pri-security with prf-security and wprf-security. Then
we provide a generic construction to make a sprp-secure from a given pri-secure.

3.1 pri-security ⇔ prf-security (for involution-allowed adversary)

For a similar reason of not being a prp, a TIES is also not a prf or pseudo random function. But if
we restrict the adversary not to ask any query which is response of a previous query, then we can
prove that prf-security is equivalent to prf-security. We call those adversary as involution-allowed
adversary (or distinguisher).

Definition 2. Let O be a tweakable length-preserving oracle defined on M with the tweak space T .
We say that an oracle algorithm AO is an involution-allowed distinguisher if (T i, Xi) 6= (T i′ , Y i′),
for all 1 ≤ i′ < i, where (Xi, T i) is the ith query and Y i is the response.

Proposition 1. 1. Let ρρρ
$← FuncT (M) i.e., ρρρ`

$← TFunc(`, `) for all ` ≥ 2n. Then for any
(q, σ,m)-involution-allowed distinguisher A, Advp̃ri

ρρρ (A) = Advp̃rf
τττ (A) ≤ q(q − 1)/2n.

2. For any TIES E and any (q, σ,m)-involution-allowed distinguisher A we have

|Advp̃ri
E (A)−Advp̃rf

E (A)| ≤ q(q − 1)/2n.

Proof. We only prove the first part since the second part is an immediate corollary of the first part
by using triangle inequality. Note that for any distinguisher Advp̃ri

ρρρ (A) = Advp̃rf
τττ (A) and equal to

∣∣∣Pr[ρρρ $← TFunc(M) : Aρρρ(.,.) ⇒ 1]− Pr[τττ $← TInv(M) : Aτττ(.,.) ⇒ 1]
∣∣∣

Now we prove that the abouve term is upper bounded by q(q − 1)/2n. The proof is very similar
to prf-prp switching lemma [1]. Here we have pri instead of prp. We can equivalently define τττ as
follows.

Initialization We initialize a tweakable partial function τ as empty. We denote the domain and
range of τT as DomainT and RangeT for all T ∈ T . Initially these sets are empty sets. We have a
flag bad initially it set as false.

Response Now on each query (T,X) ∈ {0, 1}` we choose Y
$← {0, 1}` for some ` ≥ 2n. If

Y ∈ DomainT ∪RangeT then we set bad as true and we choose Y ∈ {0, 1}` \ (DomainT ∪RangeT ).
Y is the response of the query. Modify the domain and range by adding the relation τT (X) = Y .



Note that if bad is false then the above game is nothing but equivalent to ρρρ otherwise it is
equivalent to τττ . Here we use the fact that A is an involution-allowed distinguisher. Thus, by using
a game technique rule from [1]

∣∣∣Pr[ρρρ $← TFunc(M) : Aρρρ(.,.) ⇒ 1]− Pr[τττ $← TInv(M) : Aτττ(.,.) ⇒ 1]
∣∣∣ ≤ Pr[bad = true].

Note that, Pr[bad = true] can be calculated in any of the two games. We calculate it when A
is interacting with ρρρ. After ith query the size of DomainT ∪ RangeT is at most 2i and hence
Pr[bad = true] ≤ ∑1

i=1(2i− 2)/2n = q(q − 1)/2n. Hence proved.

3.2 pri-security ⇒ wprf-security

Now we prove that any pri-secure TIES is also a wprf-secure. Intuitively, any adversary for weak-prf
security is involution-allowed adversary with high probability since the queries are chosen uniformly
and independently.

Proposition 2. For any TIES E, Advw̃prf
E (q, σ,m) ≤ Advp̃ri

E (q, σ,m) + 2q(q − 1)/2n.

Proof. Since all inputs are chosen uniformly and independently, all queries are distinct and different
from the responses is with probability at least 1− q(q − 1)/2n. In this case A is behaving like an
involution-allowed adversary and hence by using the second part of the above proposition 1 we
obtain our result.

3.3 A Generic Construction of SPRP-secure from PRI-secure

Let E : {EK : K ∈ K} be a length-preserving tweakable involution. Now we choose (K, h) $←
K× {0, 1}n. Define a tweakable length-preserving enciphering scheme as

EK,h(T, M) = EK(T, M) ←⊕ h, E−1
K,h(T,C) = E−1

K (T, C ←⊕ h).

Thus, E is a simple modification over TIES E. Now we prove that E is SPRP-secure whenever E
is PRI-secure.

Theorem 2. For any TIES E and any (q, σ,m)-distinguisher A, we have

Adv±p̃rp

E
(A) ≤ Advp̃ri

E (q, σ,m) + q(q − 1)/2n.

Proof. To prove it, we first consider τττ
$← TInv(M) and τττ `(T, M) = τττ `(T,M ←⊕ h), for all

T ∈ T ,M ∈ {0, 1}`, ` ≥ 2n. We first prove that τττ is SPRP-secure. Then by using replacement
argument we can prove that E is SPRP-secure whenever E is PRI-secure.

We assume that there is no pointless queries by A. Now suppose ((T i, Xi), tyi) ∈ {0, 1}`i ×
{enc, dec} is the ith query and Y i is the response where tyi corresponds to the type of query
encryption or decryption. We define bad as true if there is a collision among Zi,W i’s where Zi = Xi

and W i = Y i ←⊕ h if tyi = enc. If tyi = dec then Zi = Y i and W i = Xi ←⊕ h. Otherwise we
set bad as false. Note that when A interacts with tweakable length-preserving uniform random
permutation the bad is true with probability at most q(q− 1)/2n. If bad does not set true then the



two games Aτττ ,τττ−1
and Aπππ,πππ−1

are equivalent. One can write it more formally by using game-playing
technique [1]. Hence Adv±p̃rp

τττ (A) ≤ q(q−1)
2n . Now by using replacement argument we can prove that

for any TIES E, and for any distinguisher A making at most q queries

Adv±p̃rp

E
(A) ≤ Advpri

E (q) +
q(q − 1)

2n
. (6)

Remark 1. We have shown a method to obtain a sprp-secure TES from a given pri-secure TIES.
Moreover, the construction E is obtained by simply making one xor with a key. Thus, in terms of
efficiency point of view, E has exactly same performance as in E. Since E is an involution, a good
performance can be found whenever both encryption and decryption are concerned together.

4 HCI or Hash-Counter Involution : A Construction of PRI-secure TIES

We first define a TIES called as HCI or hash-counter involution. We denote it as EHCI or simply
E. It has M as a message space, T as a tweak space and {0, 1}k × {0, 1}n as a key space where
k is the key size of the underlying block cipher E. Now we define two functions, poly-hash and
counter function. Note that the poly hash function defined here is different from the poly hash used
in the definition of HCTR, HCH or XCB. The main advantage of this new definition is that the
information of length of the message is not needed. In this paper we fix an irreducible polynomial
of degree n and hence we have a field multiplication ∗ defined over {0, 1}n.

(1) poly-hash : For each h ∈ {0, 1}n, Hpoly
h : {0, 1}∗ → {0, 1}n and it is defined as

Hpoly
h (X1, · · · , Xm) = Xm ∗ h⊕Xm−1 ∗ h2 ⊕ · · · ⊕X1 ∗ hm ⊕ hm+1

where |X1| = · · · = |Xm−1| = n, |Xm| ≤ n. h is known as the poly-hash key. By using funda-
mental theorem of algebra, we can say that for any fixed X 6= X ′ ∈ {0, 1}∗ and a ∈ {0, 1}n,

Pr[h $← {0, 1}n : Hpoly
h (X)⊕Hpoly

h (X ′) = a] ≤ d

2n

where d = max{||X||, ||X ′||} + 1. Moreover, if X,X ′ and a are random variables and h is
chosen independent with X,X ′ and a, then we also have the same bound. One can prove it by
conditioning on X, X ′ and a. By using Horner’s rule, we need only m sequential multiplications
for a m-block input X.

(2) counter : Let X1 ‖ · · · ‖ Xm ∈ {0, 1}(m−1)n+s, |X1| = · · · = |Xm−1| = n, 1 ≤ |Xm| := s ≤ n
and S ∈ {0, 1}n. Now for any permutation π : {0, 1}n → {0, 1}n we define

ctrS
π(X) = Y1 ‖ · · · ‖ Ym

where Yi = π(S+i−1) ⊕→ Xi, 1 ≤ i ≤ m and + denote 2n modulo addition. These computations
are parallel in nature and moreover, if the computation of π has several rounds (e.g., AES has
10 rounds) then one can have pipeline implementation in hardware. A detail on hardware
implementation can be found in [19].

In Figure 1 a pseudo code of HCI is given. It is easy to see that for any tweak T , ET
K,h is an

involution on M. Moreover, the structure is similar and much more simpler than that of XCB. By
using the generic extension stated in Section 3.3, we can get a Tweakable Enciphering Scheme HCI
based on HCI. Now we give a useful discussion about this new hash-counter based construction
HCI.



Key-Generation : (K, h)
$← {0, 1}k × {0, 1}n.

Involution EK,h : Input (T, X) ∈ T ×M
step-1 U ← EK(X0);

step-2 S ← U ⊕Hpoly
h (T ‖ X1 ‖ · · · ‖ Xm);

step-3 (Y1, · · ·Ym) ← ctrS
EK

(X1 ‖ · · · ‖ Xm);

step-4 V ← S ⊕Hpoly
h (T ‖ Y1 ‖ · · · ‖ Ym);

step-5 Y0 ← E−1
K (V );

step-6 return Y := Y0 ‖ · · · ‖ Ym;

Fig. 1. Here, we write X = X0 ‖ X1 ‖ · · · ‖ Xm where |Xi| = n, 0 ≤ i ≤ m− 1, 0 < |Xm| < n and m ≥ 2.

A Useful Discussion on HCI :

Efficiency Comparison In hardware implementation, we can make step-1, step-2 in parallel and
step-3, step-4 in parallel. A simple calculation shows that we need almost (m+1)+(m+10)+11 =
2m + 22 clock cycles for a complete invocation of HCI with m + 1 block messages and one block
tweak. In [19], it was shown that HCTR needs 87 clock cycles for 32 block messages and one block
tweak. Thus, HCI is performing similar to HCTR, one of the efficient constructions among TES [19].
Moreover, it has quadratic security (see Theorem 3) unlike HCTR which has cubic bound so far.
Clearly, this is better construction than XCB in all respects.

1. It needs only two secret keys of size n+k and we do not need any pre-computation. XCB either
need to store four keys or need to compute these keys online which costs four extra block cipher
invocations. It also costs four key-scheduling algorithms.

2. The two invocations of hash functions are different and it needs length of the message as a part
of the input. In case of MXCB the hash functions are same and it takes only messages and
tweak as input.

3. Moreover, it is an involution whereas XCB is not (this is mainly because of different choices
of block cipher keys). Thus a single implementation would suffice to have both encryption and
decryption. Thus, our new proposal is much more simpler variant of XCB in terms of key-storage,
efficiency and design complexity.

sprp-security One can object the statement that HCI is an involution where XCB is not as HCI
is not sprp-secure. But in the last section we propose a generic method to obtain sprp-secure HCI
which costs only one extra XOR with a new key. Thus, HCI is sprp-secure and it is one xor away
from involution. In the next section we also show that there is no harm to choose the new key as the
poly-hash key of HCI. As a result, there is no need to choose extra key and we have a sprp-secure
construction based on only two keys. We call the construction as MXCB or Modified-XCB.

message space Like XCB, we need to assume that the message size is at least 2n otherwise it is
easy to find a distinguishing attack (for MXCB and XCB both). In [15], it is mentioned that the
messages of length between n and 2n can be taken care by using a not-repeating tweak (like nonce).



But we can use much simpler construction such as OCB [?] and the message size can be less than
n in the presence of nonce. Thus, the new construction is more meaningful when the message size
is at least 2n.

4.1 PRI-security analysis of HCI

In this section we provide a pri-security bound for HCI. Suppose after making q encryption queries,
the involution-allowed (q, σ,m)-distinguisher A obtains the following messages, ciphertexts and
tweaks for 1 ≤ i ≤ q.

– ith message : M i = M i
0 ‖ M i

1 ‖ · · · ‖ M i
mi

where |M i
0| = · · · = |M i

mi−1| = n, 1 ≤ |M i
mi
| = si ≤ n.

We write N i = M i
1 ‖ · · · ‖ M i

mi
.

– ith ciphertext : Ci = Ci
0 ‖ Ci

1 ‖ · · · ‖ Ci
mi

where |Ci
0| = · · · = |Ci

mi−1| = n, |Ci
mi
| = si. We write

Di = Ci
1 ‖ · · · ‖ Ci

mi
.

– ith tweak : T i ∈ T = {0, 1}`tw and we write t = d`tw/ne.

Now,
∑

s ms ≤ σ, and maxs ms ≤ m. It is easy to see that
∑

1≤s<s′≤q(m
s +ms′) ≤ (q−1)σ and

∑
1≤s<s′≤q(m

s+ms′)2 ≤ 2m2q2/2n. Let π
$← Perm(n) and Eπ,h denotes the HCI where block cipher

EK is replaced by the uniform random permutation π. Since A is involution-allowed distinguisher,
(T i,M i) 6= (T j , Cj) for any 1 ≤ j < i ≤ q. We denote the intermediate variables are U i (U in
step-1), Si (S in step-2) and V i (V in step-4) for 1 ≤ i ≤ q. Now we list all inputs of the underlying
block cipher EK as M i

0, Ci
0, Si + j, 0 ≤ j ≤ mi − 1, 1 ≤ i ≤ q and the corresponding outputs

are U i, V i, M i
j ⊕ Ci

j , 1 ≤ j ≤ mi, 1 ≤ i ≤ q. We equivalently describe the response of Eπ,h in
Figure 1.

Intuitively, we first choose a random string Ri for a possible response. Then we make interme-
diate calculation and if bad event does not occur then we return the random string Ri. Otherwise
we modify the string Ri such that it exactly simulates Eπ,h. Thus, if bad is false then for any
distinguisher involution-allowed A the response distribution of Eπ,h and ρρρ are identical. Thus,

Advp̃rf
E (A) ≤ Pr[bad = T ] where the probability is computed when A is interacting with ρρρ.

Now it is easy to see that bad = T if and only if either there is a collision among the set
of inputs or among the set of outputs except the collision of the form M i

0 = M i′
0 or M i

0 = Ci′
0

with 1 ≤ i′ < i and collision of its corresponding output. Since we compute the probability when
A is interacting with ρρρ the probability distributions of Ci’s are uniform and independent to the
probability distribution of all previous queries including M i. Moreover h is independent to all
query-responses since it is not used in the computation of queries. The inputs and outputs of π are
computed from M i, Ci and h (even if these are not actual inputs in ρρρ-game but it would be the
actual inputs and outputs in Eπ,h).

– We first compute the probability that Si + j = M i′
0 for some 1 ≤ i, i′ ≤ q, 0 ≤ j ≤ mi − 1. In

other words, Hpoly
h (N i) = U i ⊕ (M i′

0 − j) = a (say). If we fix the block cipher key, the value of
U i is also fixed and hence a is fixed. If M i’s are independently distributed with h then by using
fundamental theorem of algebra, the above collision probability is upper bounded by (mi+t)/2n

(note that t is the number of blocks of tweaks). Thus,

Pr[Si + j = M i′
0 , 1 ≤ i, i′ ≤ q, 0 ≤ j ≤ mi − 1] ≤ q(σ + qt)

2n
. (7)



Initialization : h
$← {0, 1}n and initialize bad = F , a partial function f with domain Dom and range Ran.

Initialize Dom = Dom′ = Ran = ∅.
Response of Eπ,h : On query (T i, M i) ∈ T ×M

001 R = (Ri
0, · · · , Ri

mi
)

$← {0, 1}n(mi+1);
002 If M i

0 ∈ Dom′ then U i ← f(M i
0), else if M i

0 ∈ Dom then U i ← f(M i
0) and bad = T ;

003 Else

004 U i $← {0, 1}n, if U i ∈ Ran then bad = T and U i $← {0, 1}n \Ran ,

f(M i
0) ← U i, Dom′ = Dom′ ∪ {M i

0};
005 Endif
006 Si = U i ⊕Hpoly

h (T ‖ M i);
007 For j = 0 to mi − 1

008 If Ri
j+1 ←⊕ M i

j+1 ∈ Ran then bad = T and Ri
j+1

$← {0, 1}n \Ran ;

009 If Si + j ∈ Dom then bad = T and Ri
j+1 = f(Si + j) ←⊕ M i

j ;

Else f(Si + j) ← Ri
j+1 ←⊕ M i

j+1

010 EndFor
011 V i ← Si ⊕Hpoly

h (T ‖ Ri
1 ‖ · · · ‖ Ri

mi−1 ‖ Ri
mi

[|M i|]);

012 If V i ∈ Ran then bad = T and Ri
0 ← f−1(V i) ;

013 Else If Ri
0 ∈ Dom then bad = T and Ri

0
$← {0, 1}n \Dom ;

014 Endif
f(R0

i ) ← V i and Dom′ = Dom′ ∪ {Ri
0};

015 return Ci = Ri[|M i|];

Fig. 2. The statements within the boxes are executed when we consider the response of Eπ,h. The game without the
box statement is equivalent to random game ρρρ. The function f is defined online like a uniform random permutation.
The set Dom is the set of all inputs of π (and hence f) so far and Dom′ corresponds to mainly inputs of the form
M i

0 and Ci
0.

A similar argument shows that

Pr[Si + j = Ci′
0 , 1 ≤ i, i′ ≤ q, 0 ≤ j ≤ mi − 1] ≤ q(σ + qt)

2n
. (8)

– Now we compute the probability of collision of the form Si + j = Si′ + j′ with (i, j) 6= (i′, j′).
Obviously, i 6= i′ and we can write all these collision as Si − Si′ ∈ [−mi + 1,mi′ + 1], 1 ≤
i < i′ ≤ q. For each i < i′, the probability that Si − Si′ ∈ [−mi + 1,mi′ − 1] is less than
(mi + mi′ + t)(mi + mi′ − 1)/2n since the degree of the polynomial is at most mi + mi′ + t.
Summing over all distinct pairs (i.i′) we have

Pr[Si + j = Si′ + j′, 1 ≤ i, i′ ≤ q, 0 ≤ j ≤ mi − 1] ≤ t(q − 1)σ + 2m2q2

2n
. (9)

– Since Ci
0 is chosen uniformly and independently with M i′

0 for i′ ≤ i, we have Pr[Ci
0 = M i′

0 ] =
1/2n. Similarly, Pr[Ci

0 = Ci′
0 ] = 1/2n.

Pr[Ci
0 = M i′

0 or Ci
0 = Ci′

0 1 ≤ i′ ≤ i ≤ q] ≤ q2

2n
. (10)



– Till now we have computed probabilities for collision among inputs or π. Now we compute the
collision probability for the ranges of π. We first compute the probability of collision among
M i

j ⊕ Ri
j and U i’s, 1 ≤ j ≤ mi, 1 ≤ i ≤ q. Since Ri

j ’s and U i’s (for new M i
0, i.e., if it does not

appear before as M i′
0 or Ci′

0 for some i′ < i) are uniformly and independently distributed. Thus,

Pr[U i = U i′ or U i = V i′ ∧ bad = T ] ≤ σ2

2n
. (11)

Pr[M i
j ⊕Ri

j = M i′
j′ ⊕Ri′

j′ , 1 ≤ i ≤ i′ ≤ q, 1 ≤ j ≤ mi − 1, 1 ≤ j′ ≤ mi′ − 1] ≤ σ2

2n+1
. (12)

Pr[M i
j ⊕Ri

j = U i′ or V i′ , 1 ≤ i, i′ ≤ q, 1 ≤ j ≤ mi − 1] ≤ 2qσ

2n
. (13)

The eq 13 follows from the fact U i is independent with Ri
j and V i′ = U i′ ⊕Hpoly

h (N i′).

– Now, for i 6= i′, we compute Pr[V i = V i′ ]. V i = V i′ holds if and only if Hpoly
h (N i)⊕Hpoly

h (N i′)⊕
Hpoly

h (Di)⊕Hpoly
h (Di′) = U i⊕U i′ . By linearity we have hd⊕Hpoly

h (N i⊕N i′⊕Di⊕Di′) = U i⊕U i′

where d the largest degree between Hpoly
h (N i) and Hpoly

h (N i) (recall that Hpoly
h is a monic

polynomial). Now we assume that N i
1 ⊕ Di

1 = (Ri
1 ⊕ M i

1)’s are distinct. Condition on the
event N i ⊕ N i′ ⊕ Di ⊕ Di′ is non-zero string and hence the above conditional probability
Pr[V i = V i′ i 6= i′|(Ri

1 ⊕M i
1)’s are distinct] is bounded by (m+t)q2

2n . Note the probability that
(Ri

1 ⊕M i
1)’s are not distinct is taken take care in Eq 12.

Combining all these probability bound we obtain that Pr[bad = T ] ≤ 10q2m(m+t)
2n . We can

summarize the above discussion into the following main theorem of the section.

Theorem 3.

1. Adv±p̃rf
Eπ,h

(A) ≤ 10q2m(m+t)
2n where A is any (q, σ,m)-involution allowed distinguisher.

2. Advpri
Eπ,h

(A) ≤ 11q2m(m+t)
2n where A is any (q, σ,m)-distinguisher.

3. Advpri
HCI(q, σ,m, t) ≤ Adv±prp

E (σ+q, t′)+ 11q2m(m+t)
2n where t′ = t+O(σ) and E is the underlying

block cipher.

5 Modified-XCB or MXCB, an efficient strong pseudo random permutation

In this section we propose a new hash-counter-hash construction called as MXCB or modified-XCB.
This is a variant of HCI. More precisely, we use poly hash key to xor firsi block output of HCI.
Now we define more formally modified-XCB for each tweak T ∈ T , The secret key for MXCB is
chosen as (K,h) $← {0, 1}k × {0, 1}n. Let X = X0 ‖ X1 ‖ · · · ‖ Xm ∈ M and ty ∈ {enc, dec}. We
denote EHCI for HCI enciphering scheme with poly hash key h and block cipher EK .

encryption
if (ty = enc) then

Y0 ‖ Y1 ‖ · · · ‖ Ym ← EHCI(T, X);
return (Y0 ⊕ h) ‖ Y1 ‖ · · · ‖ Ym;



decryption
if (ty = dec) then

Y0 ‖ Y1 ‖ · · · ‖ Ym ← EHCI(T, X0 ⊕ h,X1, · · · , Xm);
return Y0 ‖ Y1 ‖ · · · ‖ Ym;

Now we have the following result.

Theorem 4. Adv±p̃rp
MXCBπ,h

(A) ≤ m2q2/2n where A is any (q, σ,m)-distinguisher and hence

Adv±p̃rp
MXCBπ,h

(q, σ,m) ≤ 12q2m(m + t)
2n

Adv±p̃rp
MXCBK,h

(q, σ,m, t) ≤ Adv±prp
E (σ + q, t′) +

12q2m(m + t)
2n

where t′ = t + O(σ).

Proof. The above result can be proved similar to HCI. We define bad event is true if it is true
in HCI game or h ⊕ Ri

0 ∈ Dom for encryption query or h ⊕ M i
0 for decryption query. Thus, we

have to the probability q2/2n with the bad event probability for HCI game. Since we are interested
in SPRP-security we need to add q2/22n probability (see Theorem 1) which is the distinguishing
advantage between uniform random function and uniform random permutation game. Thus we
have proved the theorem.

6 Conclusion

We introduce a new security notion PRI for TES whose encryption and decryption algorithm are
same. This security notion is important in both practical and theoretical point of view. Since
encryption and decryption are same, it is sufficient to implement one algorithm. Moreover, there
are some relationships between this new security notion with known security notions. Since PRI
can not be SPRP, we provide a generic method to obtain SPRP-secure. We also provide two new
candidate HCI for PRI-security and MXCB for SPRP-security. We believe that these construction
are important as the performance is similar to the one of the best performer.
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