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Abstract. In this paper, we construct a strongly unforgeable ID-based
signature scheme without random oracles.4 The signature size of our
scheme is smaller than that of other schemes based on varieties of the
Diffie–Hellman problem or the discrete logarithm problem. The security
of the scheme relies on the difficulty to solve three problems related to
the Diffie–Hellman problem and a one-way isomorphism.
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1 Introduction

In 1984, Shamir [20] introduced the concept of ID-based cryptosystems, in which
the private key of an entity was generated from his identity information (e.g. an
e-mail address, a telephone number, etc.) and a master key of a trusted third
party called a Private Key Generator (PKG). The advantage of this cryptosys-
tem is that certificates as used in a traditional public key infrastructure can be
eliminated. The first ID-based signature (IBS) scheme was proposed by Shamir
[20]. Later, many IBS schemes were presented in [19, 16, 13, 8].

For (ID-based) signatures [12, 9, 4, 7, 22, 21, 6, 17] or ID-based encryptions [3,
21], constructing schemes whose security can be proved without random oracles is
one of the most important themes of study, since commonly used hash functions
such as MD5 or SHA-1 are not random oracles.

It is known that strongly unforgeable IBS schemes can be constructed with
the approach of attaching certificates to strongly unforgeable (non-ID-based) sig-
natures. This approach is mentioned in passing within several papers [10, 2, 11].

4 An extended abstract of this paper appears in Proceedings of ISPEC 2009, LNCS
5451, pp.35–46, Springer-Verlag, 2009.
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We can construct strongly unforgeable IBS schemes without random oracles by
applying the approach to strongly unforgeable signature schemes without ran-
dom oracles such as the Boneh–Boyen [4], the Zhang–Chen–Susilo–Mu [22], the
Camenisch–Lysyanskaya [7], the Okamoto [15] or the Boneh–Shen–Waters [6].
However, these constructions need at least six signature parameters to include
a public key of the signer and two ordinary signatures (one from the signer and
one from the PKG).

Also, Huang–Wong–Zhao [14] proposed a general method to transform (weakly)
unforgeable IBS schemes into strongly unforgeable ones by attaching strong one-
time signatures. Therefore, this enables us to construct strongly unforgeable IBS
schemes without random oracles by applying it on them to any unforgeable ones
such as the Paterson–Schuldt [17]. However, in this transformation, signature
sizes of the IBS scheme depend on the public key size and signature size of the
underlying strong one-time signature scheme. Almost all the current one-time
signature schemes suffer from a drawback that these signature sizes are quite
large in practice. Note that a strongly unforgeable signature scheme (in the
sense of Definition 2 in [14]) is also a strong one-time signature scheme (Defini-
tion 3 in [14]). However, by using a strongly unforgeable signature scheme such
as [4, 22, 7, 15, 6] instead of the one-time signature, these constructions also need
at least six signature parameters.

In this paper, we propose a strongly unforgeable IBS scheme without random
oracles, with five signature parameters. The security of the scheme relies on the
difficulty to solve three problems related to the Diffie–Hellman (DH) problem,
and a one-way isomorphism that no PPT adversary can find the inverse one.
The signature size of our scheme is smaller than that of other schemes based
on varieties of the DH problem or the discrete logarithm problem.5 One of the
reasons why the number of parameters can be reduced from six to five is that
our scheme is directly constructed without applying [10, 2, 11] or [14].

The paper is organized in the following way. In Section 2, we prepare for the
construction of our scheme, along with its proof of security. In Section 3, we will
provide two new assumptions related to the DH problem, and make a proposal
for our ID-based signature scheme. We prove our scheme satisfying security of
strong unforgeability in Section 4, and discuss efficiency in Section 5. We provide
conclusions in Section 6.

5 Currently, the most practical strongly unforgeable signature schemes [12, 9] without
random oracles are constructed based on the Strong RSA assumption. It is known
that each component in the parameters of the signature and the public key generated
by these schemes needs to be at least 1024-bits in size. On the other hand, it is suf-
ficient to be 160-bits in size for signature schemes constructed based on the discrete
logarithm problem (including varieties of the DH problem) over elliptic curves. In
this paper, we only consider such schemes.
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2 Preliminaries

The aim of this section is to define a one-way isomorphism, a bilinear map,
the co-Diffie–Hellman (co-DH) problem, an ID-based signature scheme and the
strong unforgeability.

2.1 One-Way Isomorphism and Bilinear Map

The following definitions are due to [18, 5]. We assume that

– G1, G2 and GT are multiplicative cyclic groups of prime order p;

– g2 is a generator of G2;

– f : G2 → G1 is a one-way isomorphism satisfying f(gx
2 ) = gx

1 , where x ∈ Zp

and g1 is a generator of G1;

– e : G1×G2 → GT is the cryptographic bilinear map satisfying the following
properties:
Bilinearity: e(ua, vb) = e(u, v)ab for any u ∈ G1, v ∈ G2 and any a, b ∈ Z.
Non-degenerate: e(g1, g2) 6= 1GT

for 〈g1〉 = G1 and 〈g2〉 = G2.
Computable: There is an efficient algorithm to compute e(u, v) for any
u ∈ G1 and any v ∈ G2.

2.2 The Co-Diffie–Hellman Problem

We provide the co-DH problem in (G2, G1) as follows. Given

(g1, g2, g
x
2 , gy

2)

as input for random generators g1 ∈R G1, g2 ∈R G2 and random numbers x, y ∈R

Z∗
p, compute gxy

1 . We say that algorithm A has an advantage ε in solving the
co-DH problem in (G2, G1) if

Pr [A (g1, g2, g
x
2 , gy

2) = gxy
1 ] ≥ ε ,

where the probability is over the choice g1 ∈R G1, g2 ∈R G2, x, y ∈R Z
∗
p and the

random bits of A.

Assumption 1 The (t, ε)-co-Diffie–Hellman (co-DH) Assumption holds in (G2, G1)
if no t-time adversary has an advantage of at least ε in solving the co-DH problem
in (G2, G1).

Notice that, if we set g1 := f(g2) ∈ G1 for the one-way isomorphism f : G2 →
G1 and the random generator g2 ∈R G2, then the generator g1 is not random.
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2.3 ID-based Signature Schemes

The definition of the IBS scheme in this section is due to [17]. An IBS scheme
consists of four phases: Setup, Extract, Sign and Verify as follows.

Setup: A security parameter is taken as input and returns params (system pa-
rameters) and master-key. The system parameters include a decision of a
finite message space M, and a decision of a finite signature space S. Intu-
itively, the system parameters will be publicly known, while the master-key
will be known only to the Private Key Generator (PKG).

Extract: The output from Setup (params, master-key) is taken along with an
arbitrary ID ∈ {0, 1}∗ as input, and returns a private key d. Here ID is an
arbitrary string that will be used as a public key, and d is the corresponding
private sign key. The Extract phase extracts a private key from the given
public key, and is performed by the PKG.

Sign: A message M ∈ M, a private key d and params are taken as input. It
returns a signature σ ∈ S.

Verify: A message M ∈ M, σ ∈ S, ID and params are taken as input. It returns
valid or invalid.

The parameters in Sign and Verify are used in a different order later on. These
four phases must satisfy the standard consistency constraint, namely when d is
the private key generated by phase Extract when it is given ID as the public key,
then

∀M ∈ M, ∀σ := Sign(params, d, M) : Pr[Verify(params, ID, M, σ) = valid] = 1 .

2.4 Strong Unforgeability

The definition of the strong unforgeability in this section is due to [4, 6, 17].
In particular, Paterson–Schuldt [17] defined the unforgeability and the strong
unforgeability. However, their construction of the IBS scheme satisfied only the
unforgeability.

Strong unforgeability is defined using the following game between a challenger
B and an adversary A:

Setup: The challenger B takes a security parameter k and runs the Setup phase
of the IBS scheme. It gives the adversary A the resulting system parameters
params. It keeps the master-key to itself.

Queries: The adversary A adaptively makes a number of different queries to
the challenger B. Each query can be one of the following.

– Extract Queries (IDi): The challenger B responds by running phase Ex-
tract to generate the private key di corresponding to the public key IDi

issued by A. It sends di to the adversary A.
– Signature Queries (IDi, Mi,j): For each query (IDi, Mi,j) issued by A the

challenger B responds by first running Extract to obtain the private key di

of IDi, and then running Sign to generate a signature σi,j of (IDi, Mi,j), and
sending σi,j to A.
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Output: Finally A outputs (ID∗, M∗, σ∗). If σ∗ is a valid signature of (ID∗, M∗)
according to Verify, ID∗ 6∈ {IDi} for Extract Queries and (ID∗, M∗, σ∗) 6∈
{(IDi, Mi,j , σi,j)} for Signature Queries, then A wins.

We define AdvSigA to be the probability that A wins the above game, taken
over the coin tosses made by B and A.

Definition 1. An adversary A (qe, qs, t, ε)-breaks an ID-based signature (IBS)
scheme if A runs in a time of at most t, A makes at most qe Extract Queries,
at most qs Signature Queries, and AdvSigA is at least ε. An IBS scheme is
(qe, qs, t, ε)-strongly existential unforgeable under an adaptive chosen message
attack, strongly unforgeable, if no adversary (qe, qs, t, ε)-breaks it.

3 Our Scheme

In this section, we provide two new assumptions and propose an IBS scheme.

3.1 Underlying Proposed Problems

We provide Assumptions 2 and 3 related to the DH problem.
The first problem is defined as follows. Given

(

g1, g2, g
x
1 , gri

2 , g
x+1/ri

2

∣

∣

∣ i = 1, . . . , q
)

as input for random generators g1 ∈R G1, g2 ∈R G2 and random numbers

x, r1, . . . , rq ∈R Z∗
p, compute

(

gr∗

1 , g
x+1/r∗

2

)

for some r∗ ∈ Z∗
p and r∗ /∈ {r1, . . . , rq}.

Note that the index x + 1/ri means x + (1/ri). We say that algorithm A has an
advantage ε in solving the first problem if

Pr
[

A
(

g1, g2, g
x
1 , gri

2 , g
x+1/ri

2

∣

∣

∣ i = 1, . . . , q
)

=
(

gr∗

1 , g
x+1/r∗

2

) ∣

∣

∣

r∗ ∈ Z
∗
p ,

r∗ /∈ {r1, . . . , rq}

]

≥ ε ,

where the probability is over the choice g1 ∈R G1, g2 ∈R G2, x, r1, . . . , rq ∈R Z∗
p,

and the random bits of A.

Assumption 2 A (q, t, ε)-Assumption II holds if no t-time adversary has an
advantage of at least ε in solving the first problem.

The second problem is defined as follows. Given

(

g1, g2, g
x
1 , g

1/x
2 , gri

2 , gxri

2 , g
x+1/ri

2

∣

∣

∣
i = 1, . . . , q

)

as input for random generators g1 ∈R G1, g2 ∈R G2 and random numbers

x, r1, . . . , rq ∈R Z∗
p, compute

(

gr∗

2 , gxr∗

2 , g
x+1/r∗

2

)

for some r∗ ∈ Z∗
p and r∗ /∈
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{r1, . . . , rq}. We say that algorithm A has an advantage ε in solving the second
problem if

Pr
[

A
(

g1, g2, g
x
1 , g

1/x
2 , gri

2 , gxri

2 , g
x+1/ri

2

∣

∣

∣ i = 1, . . . , q
)

=
(

gr∗

2 , gxr∗

2 , g
x+1/r∗

2

) ∣

∣

∣

r∗ ∈ Z
∗
p ,

r∗ /∈ {r1, . . . , rq}

]

≥ ε ,

where the probability is over the choice g1 ∈R G1, g2 ∈R G2, x, r1, . . . , rq ∈R Z∗
p,

and the random bits of A.

Assumption 3 A (q, t, ε)-Assumption III holds if no t-time adversary has an
advantage of at least ε in solving the second problem.

If we set g1 := f(g2) ∈ G1 for the one-way isomorphism f : G2 → G1 and
the random generator g2 ∈R G2, then the generator g1 is not random in the
two assumptions. The existence of f was proved by Saito–Hoshino–Uchiyama–
Kobayashi [18], on multiplicative cyclic groups constructed on non-supersingular
elliptic curves. Security of our scheme is essentially based on the co-DH assump-
tion, our proposed two assumptions, and the isomorphism f . In particular, our
proposed two assumptions which are defined in a rigorous manner contribute to
prove the security of strong unforgeability for our scheme.

3.2 Scheme

We shall give an IBS scheme. This scheme consists of four phases: Setup, Ex-

tract, Sign and Verify. For the moment we shall assume that the identity ID
are elements in {0, 1}n1, but the domain can be extended to all of {0, 1}∗ using
a collision-resistant hash function H : {0, 1}∗ → {0, 1}n1. Similarly, we shall
assume that the signature message M to be signed are elements in {0, 1}n2.

Setup: The PKG chooses multiplicative cyclic groups G1, G2 and GT of suffi-
ciently large prime order p, a random generator g2 of G2, the one-way isomor-
phism f : G2 → G1 with g1 := f(g2), and the cryptographic bilinear map
e : G1 × G2 → GT . He generates MK := gα

2 ∈ G2 from a random number
α ∈R Z∗

p, and calculates A1 := f(MK) (= gα
1 ) ∈ G1.

Z∗
p −→ G2

f
−→ G1

α 7−→ MK := gα
2 7−→ A1 := f(MK) (= gα

1 )

Also he generates u′ := gx′

2 ∈ G2, U = (u1, . . . , un1
) := (gx1

2 , . . . , g
xn1

2 ) ∈

G
n1

2 , v′ := gy′

2 ∈ G2, and V = (v1, . . . , vn2
) := (gy1

2 , . . . , g
yn2

2 ) ∈ G
n2

2 for random
numbers x′, x1, . . . , xn1

, y′, y1, . . . , yn2
∈R Z∗

p. The master secret master-key is
MK and the public parameter are

params := (G1, G2, GT , p, e, f, g1, g2, A1, u
′, U, v′, V ) .
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Extract: Let ID be an n1-bit identity and idk (k = 1, . . . , n1) denote the kth
bit of ID. To generate a private key dID for ID ∈ {0, 1}n1, the PKG picks a
random number s ∈R Z

∗
p, and computes

dID = (d1, d2) :=



gs
2, g

α
2 ·

(

u′

n1
∏

k=1

uidk

k

)1/s


 ∈ G
2
2 .

Sign: Let M be an n2-bit signature message to be signed and mk (k = 1, . . . , n2)
denote the kth bit of M . A signature σ := (σ1, . . . , σ5) of (ID, M) is generated
as follows.

(σ1, σ2, σ3, σ4, σ5) :=



f(d1), g
r
2, d

r
1 , d2, d1 ·

(

v′
n2
∏

k=1

vmk

k

)1/r




=



gs
1, g

r
2 , g

sr
2 , gα

2 ·

(

u′

n1
∏

k=1

uidk

k

)1/s

, gs
2 ·

(

v′
n2
∏

k=1

vmk

k

)1/r




for a random number r ∈ Z∗
p.

Verify: Given params, (ID, M) and σ = (σ1, . . . σ5), verify

e(σ1, σ2) = e(g1, σ3) ,

e
(

A−1
1 · f(σ4), σ3

)

= e

(

f(σ2), u
′

n1
∏

k=1

uidk

k

)

and

e
(

σ−1
1 · f(σ5), σ2

)

= e

(

g1, v
′

n2
∏

k=1

vmk

k

)

.

If the equalities hold the result is valid; otherwise the result is invalid.

If an entity with identity ID constructs a signature σ = (σ1, . . . , σ5) on a
message M as described in the Sign phase above, it is easy to see that σ will be
accepted by a verifier:

e(σ1, σ2) = e(gs
1, g

r
2) = e(g1, g

sr
2 ) = e(g1, σ3) ,

e
(

A−1
1 · f(σ4), σ3

)

= e



f

(

u′

n1
∏

k=1

uidk

k

)1/s

, gsr
2



 = e

(

gr
1 , u

′

n1
∏

k=1

uidk

k

)

,

e
(

σ−1
1 · f(σ5), σ2

)

= e



f

(

v′
n2
∏

k=1

vmk

k

)1/r

, gr
2



 = e

(

g1, v
′

n2
∏

k=1

vmk

k

)

.

Thus the scheme is correct.
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4 Security Proof

Theorem 1. Suppose that the (t0, ε0)-co-DH Assumption in (G2, G1), (q1, t1, ε1)-
Assumption II and (q2, t2, ε2)-Assumption III hold with g1 := f(g2). Then the

proposed ID-based signature scheme is (qe, qs, t, ε)-strongly unforgeable, provided

that qe ≤ q1, qs ≤ q2, t ≤ min(t0, t1, t2)−O((qe+qs)T ) and ε (1 − 2(qe + qs)/p) ≥
ε0 + ε1 + ε2, where T is the maximum time for an exponentiation in G2.

An outline of our proof is as follows. Suppose that there exists an adversary,
A, who breaks our IBS scheme in Section 3, and a challenger, B, takes the
Assumption II challenge. After A and B execute the strongly unforgeable game,
A outputs a valid tuple for an identity, a message and a signature. Then B will
compute the Assumption II response which is valid. The tuple from A must
not contradict the co-DH assumption and the Assumption III .

Proof. Suppose that there exists an adversary, A, who (qe, qs, t, ε)-breaks our
IBS scheme. We construct a simulator, B, to play the Assumption II game. The
simulator B will take the Assumption II challenge

(

g1, g2, g
α
1 , gsi

2 , g
α+1/si

2

∣

∣

∣
i = 1, . . . , q1

)

for α, s1, . . . , sq1
∈R Z∗

p, and run A executing the following steps.

4.1 Simulator Description

Setup: The simulator B generates u′ := gx′

2 ∈ G2, U = (u1, . . . , un1
) :=

(gx1

2 , . . . , g
xn1

2 ) ∈ G
n1

2 , v′ := gy′

2 ∈ G2, and V = (v1, . . . , vn2
) := (gy1

2 , . . . , g
yn2

2 ) ∈
G

n2

2 for random numbers x′, x1, . . . , xn1
, y′, y1, . . . , yn2

∈R Z∗
p, and sends

(G1, G2, GT , p, e, f, g1, g2, g
α
1 , u′, U, v′, V )

to A.

Queries: The adversary A adaptively makes a number of different queries to
the challenger B.

Assume that Ue is the subscript set of identities in Extract Queries, Us is
that of identities in Signature Queries, U := Ue ∪Us, and Mi

s is that of messages
in Signature Queries for the IDi (i ∈ Us).

Each query can be one of the following.

– Extract Queries: The adversaryA adaptively issues Extract Queries IDi (i ∈
Ue). Assume that

Xi := x′ +

n1
∑

k=1

idi,k xk , (1)

where IDi := (idi,1, . . . , idi,n1
) ∈ {0, 1}n1.
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(4.1-E1) If Xi ≡ 0 (mod p), B aborts this game.

(4.1-E2) Otherwise (i.e. Xi 6≡ 0 (mod p)), B does not abort the game, and
generates di = (di,1, di,2) of IDi:

(di,1, di,2) :=
(

(gsi

2 )
Xi , g

α+1/si

2

)

(2)

=

(

gsi

2 , gα
2 ·
(

gXi

2

)1/si

)

=



gsi

2 , gα
2 ·

(

u′

n1
∏

k=1

u
idi,k

k

)1/si



 (3)

and sends it to A. Here si := siXi mod p (i ∈ Ue). (Notice that, by eliminating
all si ∈R Z∗

p in (2), we can regard all si ∈R Z∗
p as random numbers in (3).)

– Signature Queries: The adversary A adaptively issues Signature Queries
(IDi, Mi,j)

(

i ∈ Us, j ∈ Mi
s

)

. Assume that Xi is from (1) for i ∈ Us and

Yi,j := y′ +

n2
∑

k=1

mi,j,k yk , (4)

where Mi,j := (mi,j,1, . . . , mi,j,n2
) ∈ {0, 1}n2.

(4.1-S1) If Xi ≡ 0 (mod p) or Yi,j ≡ 0 (mod p), B aborts this game.

(4.1-S2) Otherwise (i.e. Xi 6≡ 0 (mod p) and Yi,j 6≡ 0 (mod p)), B does not
abort the game, and generates σi,j = (σi,j,1, . . . , σi,j,5) of (IDi, Mi,j):























































σi,j,1 := (gsi

1 )
Xi = gsi

1

σi,j,2 := (g2)
ri,jYi,j/Xi = g

ri,j

2

σi,j,3 := (gsi

2 )ri,jYi,j = g
si ri,j

2

σi,j,4 := g
α+1/si

2 = gα
2 ·
(

gXi

2

)1/si

= gα
2 ·

(

u′

n1
∏

k=1

u
idi,k

k

)1/si

σi,j,5 :=
(

g
si+1/ri,j

2

)Xi

= gsi

2 ·
(

g
Yi,j

2

)1/ri,j

= gsi

2 ·

(

v′
n2
∏

k=1

v
mi,j,k

k

)1/ri,j
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and sends it to A. Here si := siXi mod p (i ∈ Us) and ri,j := ri,jYi,j/Xi mod
p
(

i ∈ Us, j ∈ Mi
s

)

. (Notice that, by eliminating all si, ri,j ∈R Z∗
p, we can regard

all si, ri,j ∈R Z
∗
p as random numbers.)

Output: The adversaryA outputs (ID∗, M∗, σ∗) such that σ∗ = (σ∗,1, . . . , σ∗,5) ∈
G5

2 is a valid signature of (ID∗, M∗), ID∗ 6∈ {IDi | i ∈ Ue} and (ID∗, M∗, σ∗) 6∈
{

(IDi, Mi,j, σi,j) | i ∈ Us, j ∈ Mi
s

}

.

Artificial Abort: Assume that

X∗ := x′ +

n1
∑

k=1

id∗,k xk ,

Y∗ := y′ +

n2
∑

k=1

m∗,k yk , (5)

where ID∗ := (id∗,1, . . . , id∗,n1
) ∈ {0, 1}n1 and M∗ := (m∗,1, . . . , m∗,n2

) ∈
{0, 1}n2. If ID∗ 6= IDi and X∗ ≡ Xi (mod p) for some i ∈ U , or if M∗ 6= Mi,j

and Y∗ ≡ Yi,j (mod p) for some i ∈ Us and j ∈ Mi
s, then B aborts this game.

4.2 Analysis

The adversary A cannot distinguish the above game from Simulator Description
with the abort when Xi ≡ 0 (mod p) and Yi,j 6≡ 0 (mod p) or Xi 6≡ 0 (mod p)
and Yi,j ≡ 0 (mod p), and the strongly unforgeable game without this abort,
since

Pr







⋃

i∈U

Xi ≡ 0 (mod p) ∪
⋃

i∈Us,

j∈Mi
s

Yi,j ≡ 0 (mod p)






≤

qe + qs

p

and this probability is negligible when qe + qs ≪ p. Thus we shall consider only
the game from Simulator Description.

Since σ∗ is valid, we assume that



















































σ∗,1 := gs∗

1

σ∗,2 := gr∗

2

σ∗,3 := gs∗ r∗

2

σ∗,4 := gα
2 ·

(

u′

n1
∏

k=1

u
id∗,k

k

)1/s∗

= g
α+X∗/s∗

2

σ∗,5 := gs∗

2 ·

(

v′
n2
∏

k=1

v
m∗,k

k

)1/r∗

= g
s∗+Y∗/r∗

2
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where s∗, r∗ ∈ Z∗
p.

(4.2-1) If X∗ ≡ 0 (mod p), σ∗,4 = gα
2 . Then B generates

(

gs∗

1 , g
α+1/s∗

2

)

for

some s∗ ∈ Z∗
p and s∗ /∈ {s1, . . . , sq}, which is a valid output of the Assumption

II challenge.

(4.2-2) Otherwise (i.e. X∗ 6≡ 0 (mod p)).
(4.2-2.1) Suppose that ID∗ /∈ {IDi | i ∈ Ue} (which is an assumption of the
strong unforgeability) and (ID∗, s∗) 6∈ {(IDi, si) | i ∈ Us}. Then, it is sufficient
to consider

Pr
[

A
(

g1, g2, g
α
1 , gx′

2 , gx1

2 , . . . , g
xn1

2 , gy′

2 , gy1

2 , . . . , g
yn2

2 ,

gXi

2 , g
Yi,j

2 , gsi

2 , g
ri,j

2 , g
si ri,j

2 , g
α+Xi/si

2 , g
si+Yi,j/ri,j

2

∣

∣

∣ i ∈ Us, j ∈ Mi
s

)

=
(

gX∗

2 , gY∗

2 , gs∗

1 , gr∗

2 , gs∗ r∗

2 , g
α+X∗/s∗

2 , g
s∗+Y∗/r∗

2

)]

, (6)

in the case that A knows all gsi

2 (= di,1). This means that U = Ue = Us. Suppose
that the probability (6) ≥ ε′ for some ε′ ≤ ε.

Then the probability (6) can be reduced to a contradiction of either the
co-DH assumption or Assumption II . A more elaborate proof is proposed in
Appendix A.
(4.2-2.2) Otherwise (i.e. ID∗ /∈ {IDi | i ∈ Ue} and (ID∗, s∗) = (IDl, sl) for some
l ∈ Us), then X∗ = Xl. It is sufficient to consider

Pr
[

A
(

g1, g2, g
y′

2 , gy1

2 , . . . , g
yn2

2 , g
Yl,j

2 , gsl

1
, g

1/sl

2 , g
rl,j

2 , g
sl rl,j

2 , g
sl+Yl,j/rl,j

2

∣

∣

∣ j ∈ Ml
s

)

=
(

gY∗

2 , gr∗

2 , gsl r∗

2 , g
sl+Y∗/r∗

2

)]

(7)

in the case that A knows x′, x1, . . . , xn1
and gα

2 . Suppose that the probability
(7) ≥ ε′′ for ε′ + ε′′ = ε.

Then the probability (7) can be reduced to a contradiction of either the
co-DH assumption or Assumption III . A more elaborate proof is proposed in
Appendix B.

A proof of the limited range of values (qe, qs, t, ε) is proposed in Appendix C.
Therefore, we proved Theorem 1. ⊓⊔

5 Efficiency

In this section, we consider efficiency of strongly unforgeable IBS schemes with-
out random oracles.

Huang–Wong–Zhao [14] proposed a general method to transform unforge-
able IBS schemes into strongly unforgeable ones by attaching strong one-time
signatures. Table 1 shows efficiency of IBS schemes from the Huang–Wong–Zhao
[14]. For (xr, yr) of the row in the table, xr represents the number of signature
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Table 1. Efficiency of IBS schemes from the transformation in Huang–Wong–Zhao [14]

Strong one-time signatures [4] [22] [7] [15] [6]
Unforgeable IBS schemes (4; 1) (4; 2) (5; 4) (4; 2) (4; 2)

Paterson–Schuldt [17] (3, 3) 7/4 7/5 8/7 7/5 7/5

Table 2. Efficiency of IBS schemes from the transformation in [10, 2, 11]

Signature schemes S ′ [4] [22] [7] [15] [6]
Certificates (signature) schemes S (4; 1) (4; 2) (5; 4) (4; 2) (4; 2)

Boneh–Boyen [4] (2, 1) 6/2 6/3 7/5 6/3 6/3

Zhang–Chen–Susilo–Mu [22] (2, 2) 6/3 6/4 7/6 6/4 6/4

Camenisch–Lysyanskaya ver.A [7] (3, 4) 7/5 7/6 8/8 7/6 7/6

Okamoto [15] (3, 2) 7/3 7/4 8/6 7/4 7/4

Boneh–Shen–Waters [6] (3, 2) 7/3 7/4 8/6 7/4 7/4

parameters and yr that of the bilinear maps. For (xc; yc) of the column, xc the
number of signature parameters and public keys, and yc that of the bilinear
maps. For xt/yt in the table, xt (= xc +xr) the number of signature parameters
for each strongly unforgeable IBS scheme; and yt (= yc + yr) that of the bilinear
maps. Notice that we count the number of the signature parameters to be small.
However, these constructions need at least six signature parameters.

Also, it is known that strongly unforgeable IBS schemes can be constructed
with the approach of attaching certificates to strongly unforgeable (non-ID-
based) signatures. Table 2 shows efficiency of IBS schemes from this construction
in [10, 2, 11]. Here, (xr, yr) of the row, (xc; yc) of the column and xt/yt in this
table mean the numbers such as in Table 1.

All these constructions need at least six signature parameters. In our scheme
of Section 3.2, it is sufficient to be five. On the other hand, our scheme is ineffi-
cient since the bilinear map is used six times during one iteration of verification
in the scheme.

6 Conclusions

In this paper, we proposed a strongly unforgeable IBS scheme without random
oracles, with five signature parameters, based on three problems related to the
DH problem and a one-way isomorphism. However, our scheme is inefficient since
the bilinear map (the pairing) is used six times during one iteration of verification
in the scheme. Our next step is to propose more efficient schemes with the same
security (or we have a possibility that the six times have not been a problem by
a future study of the computation process rate of the bilinear map).
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A A Continuation of the proof from (4.2-2.1)

(A-2.1.1) Assume that there exists a number l ∈ U such that s∗ = sl. In (6),
if A knows all si, ri,j (i ∈ Us, j ∈ Mi

s) and gα
2 ∈ G2, then we can eliminate

(

gα
1 , gsi

2 , g
ri,j

2 , g
si ri,j

2 , g
α+Xi/si

2 , g
si+Yi,j/ri,j

2

)

.

from (6). Also, since X∗/s∗ ≡ Xl/sl (mod p), we replace the third component
of the output by

g
X∗/Xl

1

(

=
(

g
slX∗/Xl

1

)1/sl

=
(

gs∗

1

)1/sl

)

and eliminate the remaining components. Thus A has an advantage of ε′ in
solving

A
(

g1, g2, g
x′

2 , gx1

2 , . . . , g
xn1

2 , gy′

2 , gy1

2 , . . . , g
yn2

2 , gXi

2 , g
Yi,j

2

∣

∣

∣ i ∈ Us, j ∈ Mi
s

)

= g
X∗/Xl

1 (8)

where the problem is over the choice g2 ∈R G2, x′, x1, . . . , xn1
, y′, y1, . . . , yn2

∈R

Z
∗
p, Xi (i ∈ U) in (1), X∗ in (5), Yi,j (i ∈ Us, j ∈ Mi

s) in (4), Y∗ in (5), and the
random bits of A. Set

Li,∗ :=

n1
∑

k=1

(idi,k − id∗,k) xk

for i ∈ U . Since

x′ ≡ X∗ −

n1
∑

k=1

id∗,k xk (mod p) ≡ Xi −

n1
∑

k=1

idi,k xk (mod p) (i ∈ U) ,

A is able to calculate











gx′

2 = g
Xl−

Pn1

k=1
idl,kxk

2 ,

gXi

2 = g
Xl−

Pn1

k=1
(idl,k−idi,k)xk

2 (i ∈ U and i 6= l)

gX∗

2 = g
Xl−

Pn1

k=1
(idl,k−id∗,k)xk

2 = g
Xl−Ll,∗

2

from gXl

2 , gx1

2 , . . . , g
xn1

2 (or u′, U), IDi(i ∈ U), ID∗, and eliminates these param-

eters from (8). Also, since gy′

2 , gy1

2 , . . . , g
yn2

2 , g
Yi,j

2 (i ∈ Us, j ∈ Mi
s) are unrelated
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to the output g
X∗/Xl

1 , the adversary A can eliminate these parameters as input.
By substituting

g
X∗/Xl

2 = g
(Xl−Ll,∗)/Xl

2 = g2 · g
−Ll,∗/Xl

2

to g
Ll,∗/Xl

2 in (8), A has an advantage of ε′ in solving

A
(

g1, g2, g
x1

2 , . . . , g
xn1

2 , gXl

2

)

= g
Ll,∗/Xl

1 .

Notice that Ll,∗ 6≡ 0 (mod p) since ID∗ 6= IDl even when s∗ 6= sl. Assume that
h := Xl mod p. Then, since x′ ∈R Z∗

p has been eliminated, we can regard h as
a random number in Z∗

p. It is equivalent to that A has an advantage of ε′ in
solving

A
(

g1, g2, g
y
2 , gh

2

)

= g
y/h
1 ,

where the problem is over g2 ∈ G2, y, h ∈R Z∗
p and the random bits of A. From

[1], it is equivalent to that A has an advantage of ε′ in solving

A
(

g1, g2, g
y
2 , gh

2

)

= gyh
1 .

where the problem is over g2 ∈ G2, g1(= f(g2)) ∈ G1, y, h ∈R Z∗
p and the

random bits of A. This means that A solves the co-DH problem in (G2, G1)
with a non-negligible probability.

(A-2.1.2) Otherwise (i.e. s∗ /∈ {si | i ∈ U}), suppose that A knows x′, x1, . . . , xn1
,

y′, y1, . . . , yn2
. Then

(

gx′

2 , gx1

2 , . . . , g
xn1

2 , gy′

2 , gy1

2 , . . . , g
yn2

2 , gXi

2 , g
Yi,j

2

)

can be eliminated from (6). Also, considering the pair

(

gs∗

1 , g
α+1/s∗

2

)

:=
(

(

gs∗

1

)1/X∗

, g
α+X∗/s∗

2

)

as an output of the Assumption II challenge,

(

g
ri,j

2 , g
si ri,j

2 , g
si+Yi,j/ri,j

2

)

can be eliminated from (6). These mean that the probability (6) can be deformed
to a contradiction of Assumption II .

B A Continuation of the proof from (4.2-2.2)

(B-2.2.1) Suppose that M∗ /∈ {Ml,j| j ∈ Ml
s}.
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(B-2.2.1.1) Assume that there exists a number k ∈ Ml
s such that r∗ = rl,k. In

(7), if A knows the all rl,j (j ∈ Ml
s) and sl ∈ Z∗

p, then we can eliminate

(

gsl

1 , g
1/sl

2 , g
rl,j

2 , g
sl rl,j

2 , g
sl+Yl,j/rl,j

2 , gsl r∗

2

∣

∣

∣ j ∈ Ml
s

)

from (7). Also, since Y∗/r∗ ≡ Yl,k/rl,k (mod p), we replace the second component
of the output by

g
Y∗/Yl,k

2

(

=
(

g
rl,kY∗/Yl,k

2

)1/rl,k

=
(

gr∗

2

)1/rl,k

)

and eliminate the third and fourth components. Thus A has an advantage of ε′′

in solving

A
(

g1, g2, g
y′

2 , gy1

2 , . . . , g
yn2

2 , g
Yl,j

2

∣

∣

∣ j ∈ Ml
s

)

=
(

gY∗

2 , g
Y∗/Yl,k

2

)

, (9)

where the problem is over the choice g2 ∈R G2, y′, y1, . . . , yn2
∈R Z∗

p, Yl,j(j ∈

Ml
s) in (4), Y∗ in (5), and the random bits of A. Set

Kl,j,∗ :=

n2
∑

i=1

(ml,j,i − m∗,i) yi

for j ∈ Ml
s. Since

y′ ≡ Y∗ −

n2
∑

i=1

m∗,i yi (mod p) ≡ Yl,j −

n2
∑

i=1

ml,j,i yi (mod p) (j ∈ Ml
s) ,

A is able to calculate










gy′

2 = g
Yl,k−

Pn2

i=1
ml,k,iyi

2 ,

g
Yl,j

2 = g
Yl,k−

Pn2

i=1
(ml,k,i−ml,j,i)yi

2 (j ∈ Ml
s, j 6= k) ,

gY∗

2 = g
Yl,k−

Pn2

i=1
(ml,k,i−m∗,i)yi

2 = g
Yl,k−Kl,k,∗

2

from g
Yl,k

2 , gy1

2 , . . . , g
yn2

2 , Ml,j(j ∈ Ml
s), M∗, and eliminates these parameters

from (9). By substituting

g
Y∗/Yl,k

2 = g
(Yl,k−Kl,k,∗)/Yl,k

2 = g2 · g
−Kl,k,∗/Yl,k

2

to g
Kl,k,∗/Yl,k

2 in (9), A has an advantage of ε′′ in solving

A
(

g1, g2, g
y1

2 , . . . , g
yn2

2 , g
Yl,k

2

)

= g
Kl,k,∗/Yl,k

2 .

Such as (A-2.1.1), this means that A solves the co-DH problem in (G2, G1)
with a non-negligible probability.
(B-2.2.1.2) Otherwise (i.e. r∗ /∈ {rl,j | j ∈ Ml

s}), suppose that A knows
y′, y1, . . . , yn2

as well as x′, x1, . . . , xn1
. Then, from the equalities sl = sl/Xl, rl,i =
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rl,iXl/Yl,i and r∗ = r∗Xl/Y∗, the probability (7) can be deformed to a contra-
diction of Assumption III .

(B-2.2.2) Otherwise (i.e. M∗ = Ml,k for some k ∈ Ml
s), assume that i1, . . . , ic ∈

Ml
s are all the numbers such that M∗ = Ml,i1 = · · · = Ml,ic

. Then r∗ /∈
{rl,i1 , . . . , rl,ic

} from r∗ 6∈ {rl,i1 , . . . , rl,ic
}, Y∗ = Yl,i1 = · · · = Yl,ic

6≡ 0 (mod p),
r∗ = r∗X∗/Y∗ mod p ∈R Z∗

p, and rl,i = rl,iXl/Yl,i mod p ∈R Z∗
p (i ∈ {i1, . . . , ic}).

Let {j1, . . . , jw} be the complement of {i1, . . . , ic} in Ml
s with w + c = |Ml

s|.
Then this means that M∗ 6∈ {Ml,j1 , . . . , Ml,jw

}.

(B-2.2.2.1) Assume that c 6= |Ml
s| and there exists a number k ∈ {j1, . . . , jw}

such that r∗ = rk. Then, like (B-2.2.1.1), A solves the co-DH problem in (G2, G1)
with a non-negligible probability.

(B-2.2.2.2) Otherwise (i.e. c = |Ml
s| or r∗ 6∈ {rl,j1 , . . . , rl,jw

}), the tuple
(

gr∗

2 , gslr∗

2 , g
sl+1/r∗

2

)

is a valid output of the Assumption III challenge.

C The Limited Range of Values (qe, qs, t, ε)

The probability of the simulation neither aborting in the case Xi ≡ 0 (mod p)
(i ∈ U), X∗ ≡ Xi (mod p) (i ∈ U), Yi,j ≡ 0 (mod p) (i ∈ Us, j ∈ Mi

s) nor
Y∗ ≡ Yi,j (mod p) (i ∈ Us, j ∈ Mi

s) is

Pr

2

6

6

4

\

i∈U

 

Xi

(p)

6≡ 0 ∩ X∗

(p)

6≡ Xi

!

∩
\

i∈Us,

j∈Mi
s

 

Yi,j

(p)

6≡ 0 ∩ Y∗

(p)

6≡ Yi,j

!

3

7

7

5

= Pr

2

6

6

4

\

i∈U

 

Xi

(p)

6≡ 0 ∩ Li,∗

(p)

6≡ 0

!

∩
\

i∈Us,

j∈Mi
s

 

Yi,j

(p)

6≡ 0 ∩ Ki,j,∗

(p)

6≡ 0

!

3

7

7

5

≥ 1 −
X

i∈U

„

Pr

»

Xi

(p)
≡ 0

–

+ Pr

»

Li,∗

(p)
≡ 0

–«

−
X

i∈Us,

j∈Mi
s

„

Pr

»

Yij

(p)
≡ 0

–

+ Pr

»

Ki,j,∗

(p)
≡ 0

–«

= 1 −
2(qe + qs)

p

where x
(p)
≡ y denotes x ≡ y (mod p). Thus we have

Pr

2

4

\

i∈U

 

Xi

(p)

6≡ 0 ∩ X∗

(p)

6≡ Xi

!

∩
\

j∈Ml
s

 

Yl,j

(p)

6≡ 0 ∩ Y∗

(p)

6≡ Yl,j

!

, A (qe, qs, t, ε)-breaks S

3

5

≥ ε

„

1 −
2(qe + qs)

p

«

(10)



18

in the proposed scheme S. From (4.2-1) and (4.2-2), the probability

Pr

"

B
“

g1, g2, g
α
1 , gri

2 , g
α+1/ri
2

˛

˛

˛

i ∈ U
”

=
“

gr∗
1 , g

α+1/r∗
2

”

∪ A (g1, g2, g
x
2 , gy

2 ) = gxy
1

∪ A
“

g1, g2, g
sl
1 , g

1/sl
2 , g

rl,j

2 , g
slrl,j

2 , g
sl+1/rl,j

2

˛

˛

˛

j ∈ Ml
s

”

=
“

gr∗
2 , gslr∗

2 , g
sl+1/r∗
2

”

#

`

≥ ε = ε′ + ε′′
´

is at least the probability of the left-hand side of (10). Since

Pr [A1 ∪ A2] = Pr[A1] + Pr[A2] − Pr [A1 ∩ A2]

for events A1 and A2, |U| ≤ qe and |Ml
s| ≤ qs, we have

ε1 + ε0 + ε2

> Pr
h

B
“

g1, g2, g
α
1 , gri

2 , g
α+1/ri
2

˛

˛

˛

i ∈ U
”

=
“

gr∗
1 , g

α+1/r∗
2

”i

+ Pr [A (g1, g2, g
x
2 , gy

2 ) = gxy
1 ]

+Pr
h

A
“

g1, g2, g
sl
1 , g

1/sl
2 , g

rl,j

2 , g
slrl,j

2 , g
sl+1/rl,j

2

˛

˛

˛

j ∈ Ml
s

”

=
“

gr∗
2 , gslr∗

2 , g
sl+1/r∗
2

”i

≥ ε

„

1 −
2(qe + qs)

p

«

.

This is a contradiction of the (t0, ε0)-co-DH Assumption, (q1, t1, ε1)-Assumption
II and (q2, t2, ε2)-Assumption III in the theorem. Therefore, our scheme is
(qe, qs, t, ε)-strongly unforgeable.

If A outputs a valid forgery to the game from Simulator Description with
the probability ε in time t, then B succeeds in the Assumption II game, or A
succeeds in the co-DH game or Assumption III game, in time t + O((qe + qs)T )
with the probability ε (1 − 2(qe + qs)/p). Thus we need assumptions that ti ≥
t+O((qe +qs)T ) (i = 0, 1, 2). This means that t ≤ min(t0, t1, t2)−O((qe +qs)T ).


