
On Security Notions for Verifiably
Encrypted Signature

Xu-an Wang, Xiaoyuan Yang, Yiliang Han

Key Laboratory of Information and Network Security
Engneering College of Chinese Armed Police Force, P.R. China

wangxahq@yahoo.com.cn

Abstract. First we revisit three - BGLS, MBGLS and GZZ verifiably
encrypted signature schemes [2, 3, 6]. We find that they are all not strong
unforgeable.We remark that the notion of existential unforgeable is not
sufficient for fair exchange protocols in most circumstances.So we propose
three new - NBGLS, MBGLS and NGZZ verifiably encrypted signature
schemes which are strong unforgeable. Also we reconsider other two - ZSS
and CA verifiably encrypted signature schemes [4, 8], we find that they
both cannot resist replacing public key attack. So we strongly suggest
that strong unforgeable for verifiably encrypted signature maybe a better
notion than existential unforgeable and checking adjudicator knowing its
private key is a necessary step for secure verifiably encrypted signature
scheme.

1 Introduction

Fair signature exchange protocol plays an important role in Ecommerce, espe-
cially in digital contract signing and e-payment. Generally, there are two main
approaches for achieving fair exchange. The first approach is to ensure that the
exchange occurs simultaneously, such as having the participants exchange infor-
mation bit by bit in an interleaving way. The second approach is to ensure the
exchange will be completed even though one of the participants refuses to con-
tinual. Fair exchange protocols which employ this approach often use a trusted
third party (TTP) to store the details of transaction. These details are released
if one of the entities refuses to complete the protocol. The use of the online TTP
greatly reduces the efficiency of the protocol. Thus optimistic fair exchange pro-
tocols based on off-line TTP are more preferable.

In Eurocypt 98 Asokan et al introduced formally a fair exchange protocol
relying on a trusted third party (TTP) in an optimistic way [1], but it was
not efficient. In Eurocypt 2003, Boneh et al. first proposed a non-interactive
verifiably encrypted signature, which is usually used as a building block when
constructing optimistic fair exchange, via aggregation of short signatures called
BLS scheme [11] based on the bilinear pairing on a gap Diffie-Hellman group
(GDH group) [2].Later, Hess presented an attack on [2] and extended its security
model and give a new provable secure scheme [3]. In Indocrypt 2003, Zhang et al.



presented a new verifiably encrypted signature scheme based on their signature
scheme [4].All of the work introduced above are in traditional certificate-based
PKI settings, there are also many papers on this topic in the ID-based public key
cryptography (ID-PKC). In ICICS 2005, Z. Zhang et al. gave a provably secure
optimistic fair exchange protocol based on SOK-IBS [5]. In CIS05 Gu and Zhu
proposed an ID-based verifiably encrypted signature scheme [6] and later they
proposed another ID-based verifiably encrypted signature schemes in CISC05 [7].
In ICDCIT05 Choudary and Ashutosh proposed a verifiably encrypted signature
scheme provable secure without random oracle [8] .In 2006, J. Zhang and Zou
presented a forgery on Gu and Zhu’s ID-VESS , In addition, they also proposed
a verifiably encrypted signature (VES) scheme the size of which is shorter than
that of Gu and Zhu[9].

This paper is organized as the following: In section 2, we revisit the secu-
rity notions for verifiably encrypted signature schemeespecially giving attention
on existential unforgeability. We conclude that strong unforgeability is a neces-
sary condition for most applications. Then we cryptanalysis of three verifiably
encrypted signature schemes in the strong unforgeability sense [2, 3, 6], give im-
proved VESS and analysis their security. In section 3, we cryptanalysis of other
two VESS [4, 8] by replacing public key attack. In section 4, we give our conclu-
sion.

2 Strong Unforgeability VS. Existential Unforgeability
for Verifiably Encrypted Signature Scheme

2.1 Security notions for Verifiably Encrypted Signature Scheme

Definition 1. According to [2], a verifiably encrypted signature scheme com-
prises seven algorithms. Three, KeyGen, Sign, and Verify, are analogous to those
in ordinary signature schemes. The others, AdjKeyGen, VESigCreate, VESigVer-
ify, and Adjudicate, provide the verifiably encrypted signature capability. The
algorithms are described below. We refer to the trusted third party as the adju-
dicator.

– KeyGen, Sign, and Verify: As in standard signature schemes.
– Adjudicator KeyGen: Generate a public-private key pair (APK, ASK) for the

adjudicator.
– VESig Creation: Given a secret key SK, a message M , and an adjudicator’s

public key APK, computes (probabilistically) a verifiably encrypted signa-
ture w on M .

– VESig Verification: Given a public key PK, a message M , an adjudicator’s
public key APK, and a verifiably encrypted signature w, verify that w is a
valid verifiably encrypted signature on M under key PK.

– Adjudication: Given an adjudicator’s key pair (APK, ASK), a certified public
key PK, and a verifiably encrypted signature w on some message M , extract
and output s, an ordinary signature on M under PK.



From now on, we denote verifiably encrypted signature scheme as VESS, and
we revisit the security notions for VESS.

Definition 2. Besides the ordinary notions of signature security in the signa-
ture component, they define security properties of VESS: validity, existential
unforgeability, and opacity.

– Validity: V ESigV erify(M,V ESigCreate(M)) = 1; V erify(M,Adjudicate(V
ESigCreate(M)) = 1.

– Existential Unforgeability: (PK, SK)← KeyGen, (APK,ASK)← AdjKeyGen,
(M,w)← FS,A(PK, APK), AdvV sigEF = Pr[V ESigV erify(PK, APK,M ,
w) = valid]. Adversary has access to a verifiably encrypted signature creation
Oracle S and an adjudication Oracle A along with a hash Oracle, its forgery
on M is restricted to not previously being queried to either Oracle.

– Opacity: (PK, SK) ← KeyGen, (APK, ASK) ← AdjKeyGen, (M, s) ←
ES,A(PK, APK), AdvV sigEE = Pr[V erify(PK, M, s) = valid]. Adversary
has access to a verifiably encrypted signature creation Oracle S and an ad-
judication Oracle A along with a hash Oracle, its forgery on M is restricted
to not previously being queried to adjudication Oracle A .

2.2 On Existential Unforgeability

[2] think existential unforgeability is a good security notion for VESS, but we
think that’s not enough for many applications. Consider this scenario: in a bank’s
e-payment system, one user A pays for another user B’s good. B requests A
transfer 10000 dollars into his count. And then he gives A the good whose price
are 10000 dollars. If and only if the forward rounds are completed, the next
round begins. A’s signature on ”Transfer from A’s account 10000 dollars to
B’s account” is a proof for Bank transferring money from A’s account to B’s
account. We use VESS in this scenario. Obviously, Existential Unforgeability is
not enough. If one obtains a VESS signature on ”Transfer from A’s account
10000 dollars to B’s account”, and he can forge another VESS on the same
message, then he can pretend as A! He can get good by transferring A’s money
to B’s account! Such scenarios are very common in applications. So we suggest
strong unforgeablity be a proper security notion for VESS.

2.3 BGLS Scheme and NBGLS Scheme

Now let’s revisit the first VESS proposed by Boneh et al based on BLS signature,
which we denote as BGLS scheme:

1. KeyGen,AdjKeyGen : The user chooses a random a ∈ ZZp and compute v ← ga.
The public key is v ∈ G and the secret key is a ∈ ZZp; The adjudicator chooses
a random b ∈ ZZp and compute v′ = gb.The public key is v′ ∈ G and the
secret key is b ∈ ZZp.



2. Sign,Verify: Given a message M and a secret key a, compute h = H(M) and
σ = ha. The signature is σ ∈ G; Given a message M ∈ M , a signature
σ ∈ G and a public key v ∈ G, compute h = H(M) and output accept if
e(g, σ) = e(v, h), reject otherwise.

3. VESigCreate: Input is the message M ∈ M, the user secret keya ∈ ZZp and
adjudicator public key v ∈ G. Output is the VESS signature(u, w) ∈ G×G
which is computed as follows. Let h = H(M) and select random s ∈ ZZp,
compute u = gsand w = σv′s. The VESS signature is (u, w) ∈ G×G.

4. VESigVerify: Input is the message M ∈M ,(u, w) ∈ G×G , the user’s public
key v and the adjudicator’s public key v′. Output is accept if (u, w)is a valid
VESS signature on M under v and v′,that is,if e(g, w) = e(v, h)∗e(v′, u)where
h = H(M) .Otherwise output is reject.

5. Adjudicate: Input is the message M ∈ M , (u, w) ∈ G × G , the user’s
public key v, and the adjudicator’s public key v′ and private key b ∈ ZZp.
If VESigVerify rejects M, (u, w), v, v′,output is reject , otherwise output is
σ = w

ub , which is the ordinary signature on M under v.

And then we give two attacks on this scheme in the strong unforgeable sense.

– Attack ♣: Attacker gets an ordinary signature σ ∈ G, he selects random
s ∈ ZZp , compute u = gs andw = σv′s .The forged VESS signature is
(u, w) ∈ G×G.

– Attack ♠: Attacker gets valid VESS signature (u, w) ∈ G×G, he selects ran-
dom r ∈ ZZp,computes u′ = ugr and w′ = wv′r.The forged VESS signature
is (u′, w′) ∈ G×G.

The MBGLS scheme proposed in [3] is different from [2] by replacing h =
H(M) as h = H(M,v), so it also suffers from the above two attacks in the strong
unforgeable sense.

In order to resist these attacks, we propose a new VESS signature scheme
based on BGLS, We denote it as NBGLS.

1. KeyGen,AdjKeyGen : The user chooses a random a ∈ ZZp and compute v ← ga.
The public key is v ∈ G and the secret key is a ∈ ZZp; The adjudicator chooses
a random b ∈ ZZp and compute v′ = gb.The public key is v′ ∈ G and the
secret key is b ∈ ZZp.The adjudicator chooses another generator t ∈ G, and
compute v

′′=tb

.(t, v′′) are public parameters.
2. Sign,Verify:Same as Table 2 except replacing h = H(M) by h = H(M,v).
3. VESigCreate: Input is the message M ∈ M, the user secret keya ∈ ZZp and

adjudicator public key v ∈ G. Output is the VESS signature(u, w) ∈ G×G
which is computed as follows. Let h = H(M,v) and check if h = v′′ or
h = t .if they do not hold then compute σ = ha, else return ”reject”. Select
random s ∈ ZZp,and compute u = gs, x = tsa and w = σ(v′)s(v′′)sa.The
VESS signature is (u, x, w).

4. VESigVerify: Input is the message M ∈ M ,(u, x, w) ∈ G × G × G , the
user’s public key v and the adjudicator’s public key v′. Output is accept
if (u, w)is a valid VESS signature on M under v, v′, v′′,that is e(g, w) =
e(v, h) ∗ e(v′, u) ∗ e(x, v′′)with h = H(M,v).Otherwise output is reject.



5. Adjudicate: Input is the message M ∈M , (u, x, w) ∈ G×G×G , the user’s
public key v , and the adjudicator’s public key v′ and private key b ∈ ZZp. If
VESigVerify rejects (M, (u, x, w), v, v′),output is reject , otherwise output is
σ = w

(ux)b , which is the ordinary signature on M under v.

First we verify its correctness:

e(g, w) = e(g, hagbstsab)

= e(g, hagbs))e(g,tsab)

= e(ga, h)e(gb, gs)e(gb, tsa)
= e(v, h)e(v′, u)e(v′, x)

So V ESigV erify(M,V ESigCreate(M)) = 1, and

w

uxb
=

hagbstasb

gbstasb

= ha

So V erify(M,Adjudicate(V ESigCreate(M)) = 1.

Security Analysis

– Impossible to forging VESS from ordinary signature: Attacker gets σ, his
goal is to construct (u, x,w).Obviously he needs to know a, and this is a
DLP problem.

– Impossible to forging VESS from old VESS signature: Attacker gets u =
gs, x = tsa and w = σ(v′)s(v′′)sa ,his goal is to construct u = gs′

, x = ts
′a

and w = σ(v′)s′
(v′′)sa, .Obviously, he needs to know a, and this is also a

DLP problem.
– Impossible to leaking v′′a or ta to adversary: In VEsigCreate, we check if

h = v′′ or h = t, the purpose of this operation is to resist leaking v′′a or ta

to adversary.

2.4 GZSS scheme and NGZSS schme

We revisit the VESS scheme in [6] which we denote as GZZ scheme:

1. KeyGen,AdjKeyGen : GivenG1, G2, q, e, p,return the system parameters G1, G2,
q, e, Ppub, Pa,H1,H2, the PKG’s private key s ∈ ZZ∗

q and the adjudicator’s
private key sa ∈ ZZ∗

q , where Ppub = sP, Pa = sP,H1 : {0, 1}∗ → G∗
1and

H2 : {0, 1}∗ → ZZq are hash functions. Given an identity ID ∈ {0, 1}∗,
computes DID = sQID ,QID = H1(ID) ∈ G∗

1 .PKG uses this algorithm
to extract the user secret key DID, and gives DID to the user by a secure
channel.



2. Sign,Verify:Given a private key DID and a message m, pick r ∈ ZZ∗
q at ran-

dom, compute U = rP ,h = H2(m,U) ,V = rQID + hDID, and output
a signature(U, V ). Given a signature of an identity ID for a message m,
compute h = H2(m,U), accept the signature and return 1 if and only if
e(P, V ) = e(U + hPpub,H1ID).

3. VESigCreate: Given a secret key DID and a message m, choose r1, r2 ∈ ZZ∗
q

at random, computeU1 = r1P ,h = H2m,U1),U2 = r2P ,V = r1H1(ID) +
hDID + r2Pa, and output a verifiably encrypted signature (U1, U2, V ).

4. VESigVerify: Given a verifiably encrypted signature U1, U2, V ) of an identity
ID for a message m, compute h = H2(m,U), and accept the signature and
return 1 if and only if e(P, V ) = e(U + hPpub,H1ID) ∗ e(U2, Pa).

5. Adjudicate: Given the adjudicator’s secret key sa and a valid verifiably en-
crypted signature (U1, U2, V ) of an identity ID for a message m, computes
V1 = V − saU2, and outputs the original signature (U1, V1).

And then we give two attacks on this scheme in the strong unforgeable sense.

– Attack ♣: Attacker gets an ordinary signature (U, V ), he selects random
r2 ∈ ZZp and compute U2 = r2P and V ′ = V + r2Pa.The forged VESS
signature is (U1, U2, V

′).
– Attack ♠: Given (U1, U2, V ) and the system parameters G1, G2, q, e, Ppub, Pa,

H1,H2, we choose random r′2 ∈ ZZq,computes U ′
1 = U1,U ′

2 = r′2P + U2,V ′ =
V + r′2Pa ,and output a forged verifiably encrypted signature (U ′

1, U
′
2, V

′).

We also propose another new VESS based on GZZ scheme, we denote it as
NGZZ.

1. KeyGen,AdjKeyGen : Same as the original scheme.
2. Sign,Verify:Same as the original scheme.
3. VESigCreate: Given a secret key DID and a message m, choose r1, r2 ∈ ZZ∗

q

at random, compute U1 = r1P ,h = H2(m,U1) ,U2 = r2P , U3 = r1Pa,
U4 = r1r2P ,V = r1H1(ID) + hDID + r1r2Pa , and output a verifiably
encrypted signature (U1, U2, U3, U4, V ).

4. VESigVerify: Given a verifiably encrypted signature (U1, U2, U3, U4, V ) of an
identity ID for a message m,compute h = H2(m,U1), and accept the signa-
ture and return 1 if and only if e(P, V ) = e(U1 +hPpub,H1(ID))∗e(U2, U3).

5. Adjudicate: Given the adjudicator’s secret key sa and a valid verifiably en-
crypted signature (U1, U2, U3, U4, V ) of an identity ID for a message m,
computes V1 = V − saU4, and output the original signature (U1, V1).

First we verify its correctness:

e(P, V ′) = e(P, r1H1(ID) + hDID + r1r2Pa)
= e((r1 + hs)P,H1(ID))e(r2P, r1Pa))
= e(U1 + hPpub,H1(ID)) ∗ e(U2, U3)



So V ESigV erify(M,V ESigCreate(M)) = 1, and

e(P, V ′) = e(P, r1H1(ID) + hDID + r1r2Pa − saU4)
= e(P, r1H1(ID) + hDID + r1r2Pa − sar1r2P )
= e((r1 + hs)P,H1(ID))
= e(U1 + hPpub,H1(ID))

So V erify(M,Adjudicate(V ESigCreate(M)) = 1.

Security Analysis

– Impossible to forging VESS from ordinary signature: Attacker gets U = rP
,h = H2(m,U) ,V = rQID + hDID,his goal is to construct U1 = r1P ,h =
H2(m,U1) ,U2 = r2P , U3 = r1Pa, U4 = r1r2P ,V = r1H1(ID) + hDID +
r1r2Pa, Obviously, he needs to know r1,which is a DLP problem or a CDH
problem.

– Impossible to forging VESS from old VESS signature: Attacker gets U1 =
r1P ,h = H2(m,U1) ,U2 = r2P , U3 = r1Pa, U4 = r1r2P ,V = r1H1(ID) +
hDID + r1r2Pa, his goal is to construct U1 = r1P ,h = H2(m,U1) ,U2 = r′2P
, U3 = r1Pa, U4 = r1r

′
2P ,V = r1H1(ID) + hDID + r1r

′
2Pa, he also needs to

know r1,which is a DLP problem or a CDH problem.

3 On Adjudicator

In PKC2007, Dodis et al give a paper on a the security of optimistic fair ex-
change in the multi-user setting [10], they give examples of secure optimistic fair
exchange in the stand-alone setting which are not secure in the multi-user set-
ting. In CT-RSA2008, Huang et al give another paper on the formal model for
multi-user setting security [13].In this section, we further extend their research.
We give examples which are secure in the one-adjudicator setting in the multi-
adjudicator setting are no longer secure. We will attack two VESS signatures,
one is [4] which we denote as ZSS scheme and the other is [?] which we denote
as CA scheme.

3.1 ZSS Scheme and Attack on It

1. KeyGen,AdjKeyGen : Generate the system params = (G1, G2, e, q, λ, P,H).
Pick random x, xa ∈ ZZ∗

q , and compute Ppub = xP ,Ppubadv = xaP . The user
and the adjudicator’s public keys are x,xa. The user and the adjudicator’s
secret key are x and xa.

2. Sign,Verify:Given a secret key x, and a message m, compute S = ( 1
H(m)+x )P .

Given a public key Ppub , a message m, and a signature S, verify if e(H(m)P+
Ppub, S) = e(P, P ).

3. VESigCreate: Given a secret key x ∈ ZZ∗
q , a message m, and an adjudicator’s

public key Ppubadv, compute v = ( 1
H(m)+x )Ppubadv. The verifiably encrypted

signature for m is v.



4. VESigVerify: Given a public key Ppub , a message m ,an adjudicator’s public
key Ppubadv, and a verifiably encrypted signature ν, accept ν if and only if
the following equation holds: e(H(m)P + Ppub, S) = e(P, Ppubadv).

5. Adjudicate: Given an adjudicator’s public key Ppubadvand the corresponding
private key x ∈ ZZ∗

q , a certified public key Ppub,and a verifiably encrypted sig-
nature ν on some message m, ensure that the verifiably encrypted signature
is valid, then output = x−1

a ν.

And then we give replacing public key attack on this scheme .

– Attack ♠: Suppose real adjudicator’s public key is Ppubadv, attacker pre-
tends as an adjudicator and publishes his public key as Ppubadv

2 . Honest user
will give his VESS v = ( 1

H(m)+x )∗(Ppubadv

2 ), the attacker now can extract the
ordinary signature as following: He just queries 2ν to the real adjudicator’s
Adj (.) Oracle and get the ordinary signature.

3.2 CA Scheme and Attack on It

1. KeyGen,AdjKeyGen : Pick a generator P ∈ G1 and x, y ∈ ZZ∗
p, randomly.

Compute u = xP , v = yP ∈ G1 and z = e(P, P ) ∈ G2. The user’s private
key is (x, y) and public key is (P, u, v, z). Similarly, the adjudicator’s private
key is (xAd, yAd) and public key is (PAd, uAd, vAd, ZAd) .

2. Sign,Verify:Given a private key (x, y) ∈ ZZ∗
p and a message m ∈ ZZ∗

p , pick a
random r ∈ ZZ∗

p and compute ( 1
x+y+mr )P ∈ G1. Here, 1

x+y+mr is computed
modulo p, In the unlikely event that x + y + mr = 0, we try again with a
different r.The signature is (σ, r). Given a public key (P, u, v, z), a message
m ∈ ZZ∗

p and a signature (σ, r), accept the signature as valid if the equation
e(σ, u + mP + rv) = z holds and rejects otherwise.Actually, this is the short
signature without random oracle proposed by Boneh et al [12].

3. VESigCreate: The signer generates a VES on a message m ∈ ZZ∗
p using his

private key(x, y) and adjudicator’s public key (PAd, uAd, vAd, ZAd) as follows:
– Selects a random r ∈ ZZ∗

p.
– Computes σV ES = ( 1

x+y+mr )(uAd + rvAd).

The VES on the message m is (σV ES , r).
4. VESigVerify: The verifier checks the validity of the VES (σV ES , r) on a mes-

sage m using the signer’s public key (P, u, v, z), and adjudicator’s public
key (PAd, uAd, vAd, ZAd). He accepts it, if and only if the following equation
holds:e(σV ES , u + mP + rv) = e(uAd + rvAd, P ).

5. Adjudicate: When disputes arise between two participating entities, the ad-
judicator first ensures that the VES (σV ES , r) on a message m is valid, by
executing the VESVerification phase. Then he extracts the original signature
using his private key (xAd, yAd) as σ = ( 1

xAd+ryAd
)σV ES :

CA scheme is a VESS which is provable secure in stand model. But it also
suffers from the replacing public key attack.



– Attack ♠: Suppose real adjudicator’s public key is (PAd, uAd, vAd, ZAd)
, the attacker pretends as another adjudicator and publishes his public
key as(PAd, 2uAd, 2vAd, ZAd) . Honest user will give his VESS signature
σV ES = ( 1

x+y+mr )(2(uAd + rvAd)) , the attacker now can extract the or-
dinary signature as following: He just queriesσV ES

2 to the real adjudicator’s
Adj(.)Oracle and get the ordinary signature.

3.3 Some Remarks

So we must consider replacing public key attack in VESS. How to resist this
attack? The adjudicator must prove to the user knowledge of the private key
corresponding to his public key. They can run the zero-knowledge proofs of
knowledge to achieve this goal, and this will make the VESS very complicated.
With the help of Trusted PKG, we can reduce the complexity. In this scenario,
the adjudicator just has to prove his knowledge to the PKG instead of proving
to every user his knowledge of private key.

4 Conclusion

In this paper, we give some considerations on security notions for VESS. We
think that existential unforgeability is not a good security notion for VESS,
strong unforgeability is more preferable in most applications. So we suggest that
strong unforgeability is adopted as right security notion for VESS instead of
existential unforgeability.The first three schemes BGLS, MBGLS and ZGG are
not secure in strong unforgeable sense. We give attack to the first three schemes
and give improved schemes which are strong unforgeable. Actually, we can di-
vide the VESS into two kinds: one kind is just existential unforgeability and the
other kind is strong unforgeability. Schemes in [2, 3, 6] fall in the first kind and
Schemes in [4, 8] fall in the second kind. But we note that these new schemes are
not efficient and signatures are not short, so our further work is finding efficient
schemes and short signatures. And we also note security analysis is simple in
section 3 and it does not fall in the framework of provable security, so we must
improve it which is also our further work.

In section 3 we give another attack-replacing public key attack- to [4, 8], al-
though it’s not a very harmful attack, it is dangerous. So we suggest that check-
ing adjudicator knowing its private key is a necessary step for secure verifiably
encrypted signature scheme.

Acknowledgement.
The authors would like to express their gratitude thanks to Dr Xinyi Huang for
his suggestions to improve this paper.



References

1. N. Asokan, V. Shoup and M. Waidner.Optimistic fair exchange of digital signatures.
In Eurocrypt 1998, LNCS 1403, pages 591–606. Springer–Verlag, 1998.

2. D. Boneh, C. Gentry, B. Lynn and H. Shacham.Aggregate and verifiably encrypted
signatures from bilinear maps. In Eurocrypt 2003, LNCS 2656, pages 416–432.
Springer–Verlag, 2003.

3. F. Hess.On the security of the verifiably encrypted signature scheme of Boneh,
Gentry, Lynn and Shacham” Information Processing letters, Vol. 89., pages. 111–
114, 2004.

4. F. Zhang, R. Safavi-Naini and W. Susilo.Efficient Veri?ably Encrypted Signature
and Partially Blind Signature from Bilinear Pairings. In Indocrypt 2003, LNCS 2904,
pages 191–204. Springer–Verlag, 2003.

5. Zhenfeng Zhang, Dengguo Feng, Jing Xu and Yongbin Zhou. Efficient ID-Based
Optimistic Fair Exchange with Provable Security. In ICICS 2005, LNCS 3783, pages
14–26. Springer–Verlag, 2005.

6. Chunxiang Gu, Yuefei Zhu, Yajuan Zhang. An Optimistic Fair Signature Exchange
Protocol from Pairings. In CIS 2005, LNAI 3802, pages. 9–16. Springer–Verlag,
2005.

7. Chunxiang Gu and Yuefei Zhu. An ID-Based Veri?able Encrypted Signature Scheme
Based on Hess’s Scheme. In CISC 2005,LNCS 3822, pages 42–52. Springer–Verlag,
2005.

8. M. Choudary Gorantla and Ashutosh Saxena. Verifiably Encrypted Signature
Scheme Without Random Oracles. In ICDCIT 2005, LNCS 3816, pages. 357–363.
Springer–Verlag, 2005.

9. Jianhong Zhang and Wei Zou.A Robust Veri?ably Encrypted Signature Scheme. In
EUC 2006, LNCS 4097, pages. 731–740. Springer–Verlag, 2006.

10. Yevgeniy Dodis, PilJoongLee and Dae Hyun Yum. Optimistic Fair Exchange in
a Multi-user Setting.In PKC 2007, LNCS 4450, pages. 118–133. Springer–Verlag,
2007.

11. D. Boneh, A. Lynn and H. Shacham.Short signatures from the Weil pairing. IIn
Asiacrypt 2001, LNCS 2248, pages. 514–532. Springer–Verlag, 2001.

12. D. Boneh, X. Boyen. Short Signatures Without Random Oracles. In Eurocrypt
2004, LNCS 3207, pages. 56–73, Springer–Verlag, 2001.

13. Q. Huang, G. Yang, S.Wong and W.Susilo. Efficient Optimistic Fair Exchange
Secure in the Multi-user Setting and Chosen-key Model without Random Oracles.
In CT-RSA 2008, LNCS 4964, pages. 106–120, Springer–Verlag, 2008.


