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Abstract

Direct Anonymous Attestation (DAA) is a cryptographic mechanism that enables remote
authentication of a user while preserving privacy under the user’s control. The DAA scheme
developed by Brickell, Camenisch, and Chen has been adopted by the Trust Computing Group
(TCG) for remote anonymous attestation of Trusted Platform Module (TPM), a small hardware
device with limited storage space and communication capability. In this paper, we provide two
contributions to DAA. We first introduce simplified security notions of DAA including the formal
definitions of user controlled anonymity and traceability. We then propose a new DAA scheme
from elliptic curve cryptography and bilinear maps. The lengths of private keys and signatures
in our scheme are much shorter than the lengths in the original DAA scheme, with a similar level
of security and computational complexity. Our scheme builds upon the Camenisch-Lysyanskaya
signature scheme and is efficient and provably secure in the random oracle model under the
LRSW (stands for Lysyanskaya, Rivest, Sahai and Wolf) assumption and the decisional Bilinear
Diffie-Hellman assumption.

Keywords: direct anonymous attestation, trusted computing, user-controlled-anonymity,
user-controlled-traceability, bilinear maps.

1 Introduction

The concept and a concrete scheme of Direct Anonymous Attestation (DAA) were first introduced
by Brickell, Camenisch, and Chen [8] for remote anonymous authentication of a hardware module,
called Trusted Platform Module (TPM). The DAA scheme was adopted by the Trusted Computing
Group (TCG) [34], an industry standardization body that aims to develop and promote an open
industry standard for trusted computing hardware and software building blocks. The DAA scheme
was standardized in the TCG TPM Specification Version 1.2 [33]. A historical perspective on the
development of DAA was provided by the DAA authors in [9].

A DAA scheme involves three types of entities: a DAA issuer, DAA signers, and DAA verifiers.
The issuer is in charge of verifying the legitimation of signers and of issuing a DAA credential to
each signer. A DAA signer can prove membership to a verifier by signing a DAA signature. The
verifier can verify the membership credential from the signature but he cannot learn the identity of
the signer. DAA is targeted for implementation in the TPM which has limited storage space and

∗The pairing-based DAA scheme in this paper will be presented at the conference on Trusted Computing (TRUST
2008), Villach, Austria, March 2008.
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computation capability. For this purpose, the role of the DAA signer is spilt between a TPM and
a host that has the TPM “built in”. The TPM is the real signer and holds the secret signing key,
whereas the host helps the TPM to compute the signature under the credential, but is not allowed
to learn the secret signing key and to forge such a signature without the TPM involvement.

The most interesting feature of DAA is to provide differing degrees of privacy. A DAA scheme
can be seen as a special group signature scheme without the feature of opening the signer’s identity
from its signature by the issuer. Interactions in DAA signing and verification are anonymous, that
means the verifier, the issuer or both of them colluded cannot discover the signer’s identity from
its DAA signature. However, the signer and verifier may negotiate as to whether or not the verifier
is able to link different signatures signed by the signer.

DAA has drawn a lot of attention from both industry and cryptographic researches. Pashalidis
and Mitchell showed how to use DAA in a single sign-on application [28]. Balfe, Lakhani and
Paterson utilized a DAA scheme to enforce the use of stable, platform-dependent pseudonyms and
reduce pseudo-spoofing in peer-to-peer networks [2]. Leung and Mitchell made use of a DAA scheme
to build a non-identity-based authentication scheme for a mobile ubiquitous environment [24].
Camenisch and Groth [11] found that the performance of the original DAA scheme can be improved
by introducing randomization of the RSA-based Camenisch-Lysyanskaya signature (CL-RSA) [12].
Rudolph [30] pointed out that if the DAA issuer is allowed to use multiple public keys each for
issuing one credential only, it can violate anonymity of DAA. It is obviously true. Like a group
signature scheme, the anonymous property is relied on the reasonable large size of the signer group
that is associated with a single group manager’s public key. Smyth, Chen and Ryan discussed how
to ensure privacy when using DAA with corrupt administrators [32]. Backes et al. [1] presented a
mechanized analysis of the original DAA scheme. Ge and Tate [23] proposed a very interesting DAA
scheme with efficient signing and verification implementation but inefficient joining implementation.
The security of this scheme, as the same as the original DAA scheme, is based on the strong RSA
assumption and the decisional Diffie-Hellman assumption.

In this paper, we provide two contributions to DAA. Our first contribution is the simplified
security notions of DAA. We introduce a new interpretation of formal specification and security
model of DAA, which is intended to address the same concept of a DAA scheme and to cover the
same security properties that the DAA scheme should hold, as introduced in [8]. The new security
model of a DAA scheme is specified with two new security notions: user-controlled-anonymity and
user-controlled-traceability. We formally define the two notions, and also discuss the differentiation
between a DAA scheme and a group signature scheme from a perspective on an adversary’s be-
havior; in particular we compare the two notions with full-anonymity and full-traceability of group
signatures, as defined in [4]. In the hope of the authors, this interpretation would be easier to read
than the reletive content in [8], and would be helpful for readers to understand and accept the
concept of DAA and its security requirements.

Our second contribution is a new concrete DAA scheme from elliptic curve cryptography and
bilinear maps. This DAA scheme builds on top of the Camenisch and Lysyanskaya signature
scheme [13] based on the LRSW assumption [26] (CL-LRSW). One limitation of the original DAA
scheme [8] is that the lengths of private keys and DAA signatures are quite large for a small
TPM, i.e., around 670 bytes and 2800 bytes, respectively. Our new DAA scheme requires a much
shorter key length compared with the original integer factorization based DAA scheme. The lengths
of private keys and signatures in our new scheme are approximately 213 bytes and 521 bytes,
respectively, with a similar level of security and computational complexity. We prove that this
DAA scheme is secure based on our new security notions in the random oracle model and under
the LRSW assumption and the decisional Bilinear Diffie-Hellman assumption.

Rest of this paper is organized as follows. We first introduce the new security notions in Sec-
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tion 2. We then briefly review the notations on bilinear maps, some relative security assumptions,
and some known cryptographic building blocks in Section 3, which will be used in the description
of our new DAA scheme in Section 4 and the corresponding security proofs in Section 5. After that
we show how to implement the new DAA scheme in Section 6, and conclude the paper in Section 7.

2 Simplified Security Notions of DAA

In this section, we present the new formal specification and security model of DAA. First of all,
four players in a DAA scheme are denoted as follows: a DAA issuer I, a TPM Mi, a host Hi and
a verifier Vj . Mi and Hi form a platform in the trusted computing environment and share the
role of a DAA signer. Regarding their security attributes, we consider the following three cases:
(1) neither Mi nor Hi is corrupted by an adversary, (2) both of them are corrupted, and (3) Hi is
corrupted but not Mi. Like in [8], we do not consider the case that Mi is corrupted but not Hi.

2.1 Specification of DAA

A DAA scheme DAA = (Setup, Join, Sign, Verify, Link) consists of five polynomial-time algorithms:

• Setup: On input of a security parameter 1k, I uses this randomized algorithm to produce
a pair (isk, params), where isk is the issuer’s secret key, and params is the global public
parameters for the system, including the issuer’s public key ipk, a description of a DAA
credential space C, a description of a finite message space M and a description of a finite
signature space Σ. We will assume that params are publicly known so that we do not need
to explicitly provide them as input to other algorithms.

• Join: This randomized algorithm has two sub-algorithms, namely Joint and Joini. Mi uses
Joint to produce a pair (tski, commi), where tski is the TPM’s secret key and commi is a
commitment of tski associated with the issuer I. On input of commi and isk, I uses Joini to
produce crei, which is a DAA credential associated with tski. Note that the value crei is
given to both Mi and Hi, but the value tski is known to Mi only.

• Sign: On input of tski, crei, a basename bsnj (the name string of Vj or a special symbol ⊥),
and a message m that includes the data to be signed and the verifier’s nonce nV for freshness,
Mi and Hi use this randomized algorithm to produce a signature σ on m under (tski, crei)
associated with bsnj . The basename bsnj is used for controlling the linkability.

• Verify: On input of m, bsnj , a candidate signature σ for m, and a set of rogue signers’ secret
keys ROGUE, Vj uses this deterministic algorithm to return either 1 (accept) or 0 (reject). Note
also that how to build the set of ROGUE is out the scope of the DAA scheme.

• Link: On input of two signatures σ0 and σ1, Vj uses this deterministic algorithm to return
1 (linked), 0 (unlinked) or ⊥ (invalid signatures). Link will output ⊥ if, by using an empty
ROGUE (which means to ignore the rogue TPM check), either Verify(σ0) = 0 or Verify(σ1) = 0
holds. Otherwise, Link will output 1 if signatures can be linked or 0 if the signatures cannot be
linked. Note that, unlike Verify, the result of Link is not relied on whether the corresponding
tsk ∈ ROGUE or not.

2.2 Security Notions

In our new security model of DAA, a DAA scheme must hold the notions of correctness, user-
controlled-anonymity and user-controlled-traceability, as defined in this section.
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2.2.1 Correctness

If both the signer and verifier are honest, that implies tski 6∈ ROGUE, the signatures and their links
generated by the signer will be accepted by the verifier with overwhelming probability. This means
that the algorithms specified in Section 2.1 must meet the following consistency requirement. If

(isk, params) ← Setup(1k), (tski, crei) ← Join(isk, params) and

(mb, σb) ← Sign(mb, bsnj , tski, crei, params)|b={0,1},

then we must have
1 ← Verify(mb, bsnj , σb, params, ROGUE)|b={0,1} and

1 ← Link(σ0, σ1, params)|bsnj 6=⊥.

2.2.2 User-Controlled-Anonymity

Informally, the notion of user-controlled-anonymity requires that the following two properties are
held in the DAA scheme:

1. Anonymity. An adversary not in possession of the signer’s secret key finds it hard to recover
the identity of the signer from its signature.

2. User-controlled unlinkability. Given two signatures σ0 and σ1 associated with two basenames
bsn0 and bsn1 respectively, where bsn0 6= bsn1, an adversary not in possession of the secret
key(s) of the signer(s) finds it hard to tell whether or not the two signatures are signed by
the same signer.

The notion of user-controlled-anonymity is different from the notion of anonymity and unlink-
ability in a group signature scheme, such as namely full-anonymity defined in [4], in the following
two aspects. First, in the definition of full-anonymity, the adversary does not possess the group
manager’s secret key, but is allowed to corrupt all group members, including the signer itself. In
the definition of user-controlled-anonymity, the adversary is allowed to corrupt the group manager
(namely the DAA issuer I) and a number of group members (namely the TPM Mi and the host
Hi), but not all group members. Actually, in out formal definition below, at least two group mem-
bers, including the signer, must not be corrupted. Secondly, in the definition of full-anonymity, the
adversary not in possession of the group manager’s secret key cannot link any two given signatures
w.r.t. the identities of their signers. But in user-controlled-anonymity, a signer, by negotiating with
a verifier, can decide whether or not to let the verifier know the link.

To formalize the process, we define this notion via a game played by a challenger C and an
adversary A. In this game, A is allowed to corrupt I and to obtain all signers’ credentials; A is also
allowed to create and to corrupt a polynomial number of signers. A can freely choose the identities
of the signers that are created/corrupted and the number of the created/corrupted signers.

Game of User-Controlled-Anonymity

• Initial: C runs Setup(1k) and gives the resulting isk and params to A. Alternatively, C
receives the values isk and params from A with a request for initiating the game, and then
verifies the validation of (isk, params).

• Phase 1: C is probed by A who makes the following queries:
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– Sign. A submits a signer’s identity ID, a basename bsn (either ⊥ or a data string) and
a message m of his choice to C, who runs Sign to get a signature σ and responds with σ.

– Join. A submits a signer’s identity ID of his choice to C, who runs Joint with A to create
tsk and to obtain cre from A. C verifies the validation of cre and keeps tsk secret.

– Corrupt. A submits a signer’s identity ID of his choice to C, who responds with the
value tsk of the signer.

• Challenge: At the end of Phase 1, A chooses two signers’ identities ID0 and ID1, a message
m and a basename bsn of his choice to C. A must not have made any Corrupt query on
either ID0 or ID1, and not have made the Sign query with the same bsn if bsn 6= ⊥ with
either ID0 or ID1. To make the challenge, C chooses a bit b uniformly at random, signs m
associated with bsn under (tskb, creb) to get a signature σ and returns σ to A.

• Phase 2: A continues to probe C with the same type of queries that it made in Phase 1.
Again, it is not allowed to corrupt any signer with the identity either ID0 or ID1, and not
allowed to make any Sign query with bsn if bsn 6= ⊥ with either ID0 or ID1.

• Response: A returns a bit b′. We say that the adversary wins the game if b = b′.

Definition 1 Let A denote an adversary that plays the game above. We denote by Adv[Aanon
DAA] =

|Pr[b′ = b] − 1/2| the advantage of A in breaking the user-controlled-anonymity of DAA. We say
that a DAA scheme is user-controlled-anonymous if for any probabilistic polynomial-time adversary
A, the quantity Adv[Aanon

DAA] is negligible.

2.2.3 User-Controlled-Traceability

Informally, the notion of user-controlled-Traceability requires that the following two properties are
held in the DAA scheme:

1. Unforgeability. An adversary, which has corrupted a set of signers’ secret keys and their
credentials, finds it hard to forge a valid signature under a secret key and credential, which
is not in the set.

2. User-controlled linkability. Given a single basename bsn (6= ⊥), an adversary finds it hard to
create two different signatures under the same tski and both of the signatures are associated
with bsn, but the output of the algorithm Link is 0 (unlinked).

The notion of user-controlled-traceability is different from the notion of traceability in a group
signature scheme, such as namely full-traceability defined in [4]. In the definition of full-traceability,
there is an open algorithm, which allows the group manager to open the identity of any signer from
its signature. In the definition of user-controlled-traceability, there is a link algorithm rather than
the open algorithm, which allows a verifier to recognize whether two signatures are linked or not.
However, the link algorithm only works under the signer’s control. If the signer is willing to offer
such a link between his two signatures, he makes use of the single bsn (6= ⊥) in the two signing
processes; otherwise he will make use of different bsn values or bsn = ⊥. In that case, no linkage
can be detected by anybody; it therefore offers zero traceability. In the other hand, if a verifier is
unhappy with the zero traceability, he can insist that he should only accept the DAA signatures
associated with the bsn of his choice. In order to meet the conflict requirements between the signer
and verifier, the DAA scheme provides a room for the signer and verifier to negotiate this matter;
as a result, a good balance between security and privacy is achieved with DAA.
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Like the notion of full-traceability, the notion of user-controlled-traceability covers the property
of unforgeability (following the first item above), and the property of collusion resistance, which
means that no adversary can output a new signer’s secret key, given a set of the existing corrupted
signer secret keys. Obviously this property holds by following the first item above as well, since
anyone with the knowledge of a new signer secret key can easily forge a new signature. As mentioned
before, the DAA scheme allows to separate the role of the signer between the TPM Mi and host
Hi, where Mi holds (tski, crei) and Hi knows crei only. By using a special Semi-sign query
defined below, the notion of user-controlled-traceability also covers the property of security against
a malicious host, that means Hi using crei cannot create a valid signature on behalf of Mi.

To formalize the process, we define this notion via a game played by a challenger C and an
adversary A, in which A is not allowed to corrupt I, but A is allowed to create and to corrupt a
polynomial number of signers. The identities of the signers that are corrupted and their number
are entirely up to A.

Game of User-Controlled-Traceability

• Initial: C runs Setup(1k) and gives the resulting params to A. It keeps isk secret.

• Probing: C is probed by A who makes the following queries:

– Sign. The same as in the game of user-controlled-anonymity.

– Semi-sign. A submits a signer’s identity ID along with the data transmitted from Hi

to Mi in Sign of his choice to C, who acts as Mi in Sign and responds with the data
transmitted from Mi to Hi in Sign.

– Join. There are two cases of this query. Case 1: A submits a signer’s identity ID of his
choice to C, who runs Join to create tsk and cre for the signer. Case 2: A submits a
signer’s identity ID with a tsk value of his choice to C, who runs Joini to create cre for
the signer and puts the given tsk into the list of ROGUE. C responds the query with cre.
Suppose that A does not use a single ID for both of the cases.

– Corrupt. The same as in the game of user-controlled-anonymity, except that at the end
C puts the revealed tsk into the list of ROGUE.

• Forge: A returns a signer’s identity ID, a signature σ, its signed message m and the associated
basename bsn. We say that the adversary wins the game if

1. Verify(m, bsn, σ, ROGUE) = 1 (accepted), but σ is neither a response of the existing Sign
queries nor a response of the existing Semi-sign queries (partially); and/or

2. In the case of bsn 6= ⊥, there exists another signature σ′ associated with the same
identity and bsn, and the output of Link(σ, σ′) is 0 (unlinked).

Note that in the first item, the fact Verify outputs 1 implies that the corresponding cre 6∈ ROGUE,
i.e. the tsk is neither through Case 2 of the Join query nor from the Corrupted query. This item
means that A is able to forge a DAA signature without knowing tsk though it may know cre.

Note also that in the second item, the linkage between σ and σ′ that are associated with the
same tsk and bsn (6= ⊥) is not detected. As mentioned in the definition of Link, the output 0 implies
that Verify(σ) = 1 using an empty ROGUE. This item means that A is able to create a signature
which can escape from the signer and verifier pre-agreed linkability. Therefore this situation covers
an insider attack from a legitimate signer, who knows tsk.
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Definition 2 Let A denote an adversary that plays the game above. We denote by Adv[Atrace
DAA] =

Pr[A wins] the advantage of A in breaking the user-controlled-traceability of DAA. We say that a
DAA scheme is user-controlled-traceable if for any probabilistic polynomial-time adversary A, the
quantity Adv[Atrace

DAA] is negligible.

3 Background and Building Blocks

3.1 Background on Bilinear Maps

As in Boneh and Franklin’s identity-based encryption scheme [7] and Camenisch and Lysyanskaya
(CL-LRSW) signature scheme [13], our new DAA scheme makes use of a bilinear map e : G×G → G,
where G and G denotes two groups of prime order q. The map e satisfies the following properties:

1. Bilinear. For all P, Q ∈ G, and for all a, b ∈ Zq, e(P a, Qb) = e(P, Q)ab.

2. Non-degenerate. There exists some P, Q ∈ G such that e(P, Q) is not the identity of G.

3. Computable. There exists an efficient algorithm for computing e(P, Q) for any P, Q ∈ G.

A bilinear map satisfying the above properties is said to be an admissible bilinear map. Such
bilinear map is also known as the symmetric pairing. In Section 6, we will give a concrete example
of groups G, G and an admissible bilinear map between them. The group G is a subgroup of the
group of points of an elliptic curve E(Fp) for a large prime p. The group G is a subgroup of the
multiplicative group of a finite field F

∗
p2 . We can use the Tate pairing to construct an admissible

bilinear map between these two groups.
In general, one can consider bilinear maps e : G1 ×G2 → G where G1, G2, G are cyclic groups of

prime order q. However in our paper, we limit ourself to symmetric pairing where G1 = G2, because
our scheme builds upon the CL-LRSW signature scheme, which uses the symmetric pairing.

3.2 Cryptographic Assumptions

The security of our DAA scheme relies on the Decisional Bilinear Diffie-Hellman (DBDH) assump-
tion, and the Lysyanskaya, Rivest, Sahai, and Wolf (LRSW) assumption. We now state these
assumptions as follows:

Assumption 1 (DBDH Assumption) Let G = 〈g〉 be a bilinear group defined above of prime
order q. For sufficiently large q, the distribution {(g, ga, gb, gc, e(g, g)abc)} is computationally indis-
tinguishable from the distribution {(g, ga, gb, gc, e(g, g)d)}, where a, b, c, and d are random elements
in Zq.

The DBDH assumption is a natural combination of the Decisional Diffie-Hellman assumption
and Bilinear Diffie-Hellman assumption. It has been used in many cryptographic schemes, e.g.,
Boneh and Boyen’s construction of secure identity based encryption scheme without random ora-
cles [6].

Assumption 2 (LRSW Assumption) Let G = 〈g〉 be a cyclic group, X, Y ∈ G, X = gx, and
Y = gy. Suppose there is an oracle that, on input m ∈ Zq, outputs a triple (a, ay, ax+mxy) for a
randomly chosen a ∈ G. Then there exists no efficient adversary that queries the oracle polynomial
number of times, and outputs (m, a, b, c) such that m 6= 0, b = ay and c = ax+mxy where m has not
been queried before.
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The LRSW assumption was introduced by Lysyanskaya et al. [26] and was shown that this
assumption holds for generic groups. This assumption is also used in the CL-LRSW signature
scheme [13].

3.3 Protocols for Proof of Knowledge

In our scheme we will use various protocols to prove knowledge of and relations among discrete
logarithms. To describe these protocols, we use notation introduced by Camenisch and Stadler [15]
for various proofs of knowledge of discrete logarithms and proofs of the validity of statements about
discrete logarithms. For example, PK{(a, b) : y1 = ga

1hb
1 ∧ y2 = ga

2hb
2} denotes a proof of knowledge

of integers a and b such that y1 = ga
1hb

1 and y2 = ga
2hb

2 holds, where y1, g1, h1, y2, g2, h2 are elements
of some groups G1 = 〈g1〉 = 〈h1〉 and G2 = 〈g2〉 = 〈h2〉. The variables in the parenthesis denote
the values the knowledge of which is being proved, while all other parameters are known to the
verifier. Using this notation, a proof of knowledge protocol can be described without getting into all
details. In the random oracle model, such proof of knowledge protocols can be turned into signature
schemes using the Fiat-Shamir heuristic [20, 29]. We use the notation SPK{(a) : y = za}(m) to
denote a signature on a message m obtained in this way.

In this paper, we use the following known proof of knowledge protocols:

• Proof of knowledge of discrete logarithms. A proof of knowledge of a discrete logarithm of
an element y ∈ G with respect to a base z is denoted as PK{(a) : y = za}. The discrete
logarithms in such proof of knowledge protocol can be modulo a prime [31] or a composite [19,
21], where the composite is a safe-prime product. A proof of knowledge of a representation of
an element y ∈ G with respect to several bases z1, . . . , zv ∈ G [17] is denoted PK{(a1, . . . , av) :
y = za1

1 · . . . · zav
v }.

• Proof of knowledge of equality. A proof of equality of discrete logarithms of two group elements
y1, y2 ∈ G to the bases z1, z2 ∈ G, respectively, [16, 18] is denoted PK{(a) : y1 = za

1∧ y2 = za
2}.

Such protocol can also be used to prove that the discrete logarithms of two group elements
y1 ∈ G1 and y2 ∈ G2 to the bases z1 ∈ G1 and z2 ∈ G2, respectively, in two different groups
G1 and G2 are equal [10, 14].

3.4 Camenisch-Lysyanskaya Signature Scheme

Our DAA scheme is based on the Camenisch-Lysyanskaya (CL-LRSW) signature scheme [13].
Unlike most signature schemes, this one is particularly suited for our purposes as (1) it uses bilinear
maps and (2) it allows for efficient protocols to prove knowledge of a signature and to obtain a
signature on a secret message based on proofs of knowledge. We now review the CL-LRSW signature
scheme as follows.

Key Generation. Chooose two groups G = 〈g〉 and G = 〈g〉 of prime order q and an admissible
bilinear map e between G and G. Next choose x ← Zq and y ← Zq, and set the public key as
(q, g, G, g, G, e, X, Y ) and the secret key as (x, y), where X = gx and Y = gy.

Signature. On input a message m, the secret key (x, y), and the public key (q, g, G, g, G, e, X, Y ),
choose a random a ∈ G, and output the signature σ = (a, ay, ax+mxy).

Verification. On input the public key (q, g, G, g, G, e, X, Y ), the message m, and the signature

σ = (a, b, c) on m, check whether the following equations hold e(Y, a)
?
= e(g, b), e(X, a) ·

e(X, b)m ?
= e(g, c).

8



Observe that from a signature σ = (a, b, c) on a message m, it is easy to compute a different
signature σ′ = (a′, b′, c′) on the same message m without the knowledge of the secret key: just
choose a random number r ∈ Zq and compute a′ := ar, b′ := br, c′ := cr.

Theorem 1 ([13]) The CL-LRSW signature scheme is secure against adaptive chosen message
attacks under the LRSW assumption.

4 The New DAA Scheme from Bilinear Maps

We now present a new DAA scheme from bilinear maps based on the CL-LRSW signature scheme [13].
In the DAA scheme, there are three types of entities: an issuer I, signers, and verifiers V. Each
signer (a trusted platform) consists of a host H and a TPM M. All communications between M
and I are through H. For any computation performed by a signer, part of it is performed on the
M while the rest of the computation is done on H. Since the TPM is a small chip with limited
resources, a requirement for DAA is that the operations carried out on the TPM should be minimal.
We have the following five operations:

Setup Let ℓq, ℓH , and ℓφ be three security parameters, where ℓq is the size of the order q of the
groups, ℓH is the output length of the hash function used for Fiat-Shamir heuristic, and ℓφ

is the security parameter controlling the statistical zero-knowledge property. The issuer I
chooses two groups G = 〈g〉 and G = 〈g〉 of prime order q and an admissible bilinear map
e between G and G, i.e., e : G × G → G. I then chooses x ← Zq and y ← Zq uniformly
at random, and computes X := gx and Y := gy. For simplicity, throughout the scheme
specification, the exponentiation operation ha for h ∈ G and an integer a outputs an element
in G. I sets the group public key as ipk := (q, g, G, g, G, e, X, Y ) and its private key as
isk := (x, y), and publishes ipk. Let H(·) and HG(·) be two collision resistant hash functions,
such that H : {0, 1}∗ → {0, 1}ℓH and HG : {0, 1}∗ → G. Observe that the correctness of the
group public key can be verified, e.g. by the host H, by checking whether each element is in
the right groups or not.

Join We assume that the signer and the issuer I have established a one-way authentic channel,
i.e., I needs to be sure that it talks to the right signer (i.e. a platform with a specific TPM).
The authentic channel can be achieved in various ways. The one TCG recommended is that
every message sent from I to the signer is encrypted under the TPM endorsement key [33].
Let ipk = (q, g, G, g, G, e, X, Y ), KI be a long-term public key of I. Let DAAseed be the
seed to compute the secret key tsk of the signer. Note that we do not include the issuer’s
basename bsnI in this operation, since we assume that the value g is unique for the issuer.
However, if a different bsnI is required, it can be added easily in the same way as in the
original DAA scheme [8]. The join protocol takes the following steps:

1. M first computes

f := H(DAAseed‖KI) mod q, F := gf ,

where ‖ stands for the operation of concatenation. M then chooses a random rf ← Zq,
computes T̃ := grf and sends T̃ and F to H.

2. The issuer chooses a random string nI ∈ {0, 1}ℓH and sends it to H.

3. H computes ch := H(q‖g‖g‖X‖Y ‖F‖T̃‖nI) and sends it to M.
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4. M chooses a random string nT ∈ {0, 1}ℓφ and computes c := H(ch‖nT ) and sf :=
rf + c · f mod q. M sets f as its tsk and sends (F, c, sf , nT ) to I through H.

5. I checks its record and policy to find out whether the value F should be rejected or not.
If F belongs to a rogue TPM or does not pass the issuer’s policy check, e.g. having been
required for an credential too many times, I aborts the protocol.

6. I computes T̂ := gsf F−c, and verifies that c
?
= H(H(q‖g‖g‖X‖Y ‖F‖T̂‖nI)‖nT ). If the

verification fails, I aborts. Otherwise, I chooses r ← Zq, and computes

a := gr, b := ay, c := axF rxy.

Observe that c = axgfrxy = ax+fxy and therefore (a, b, c) is a CL-LRSW signature on f .
I sets cre = (a, b, c) to be the credential for M, and sends cre to the signer, M and H.

7. If verifying cre is required, M computes d = bf and sends it to H, who then verifies
whether e(Y, a) = e(g, b), e(g, d) = e(F, b), and e(X, ad) = e(g, c) hold.

Sign Let m be the message to be signed (as the same as in the original DAA scheme, m is presented
as b‖m′ where b = 0 means that the message m′ is generated by the TPM and b = 1 means
that m′ was input to the TPM), bsnV be a basename associated with V, and nV ∈ {0, 1}ℓH be
a nonce provided by the verifier. M has a secret key tsk = f and a credential cre = (a, b, c),
whereas H only knows the credential cre. The signing algorithm takes the following steps:

1. Depending on whether bsnV = ⊥ or not, H computes B as follows

B
R
← G or B := HG(1‖bsnV ),

where B
R
← G means that B is chosen from G uniformly at random. H sends B to M.

2. M verifies that B ∈ G then computes K := Bf , and sends K to H.

3. H chooses two integers r, r′ ← Zq uniformly at random and computes

a′ := ar′ , b′ := br′ , c′ := cr′r−1

,

vx := e(X, a′), vxy := e(X, b′), vs := e(g, c′).

4. H sends vxy back to M who later verifies that vxy ∈ G.

5. M and H jointly compute a “signature proof of knowledge” as follows

SPK{(r, f) : vr
s = vxvf

xy ∧ K = Bf}(nV , nT , m).

(a) H chooses a random integer rr ∈ Zq and computes T̃1t := vrr
s .

(b) H computes cH := H(q‖g‖g‖X‖Y ‖a′‖b′‖c′‖vx‖vxy‖vs‖B‖K‖nV ) and sends cH and
T̃1t to M.

(c) M chooses a random integer rf ← Zq and a nonce nT ∈ {0, 1}ℓφ and computes

T̃1 := T̃1tv
−rf
xy , T̃2 := Brf , c := H(cH‖T̃1‖T̃2‖nT ‖m), sf := rf + c · f mod q.

(d) M sends c, sf and nT to H.
(e) H computes sr := rr + c · r mod q.

6. H outputs the signature σ = (B, K, a′, b′, c′, c, sr, sf ) along with nT .
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Verify The input to this program is the group public key ipk = (q, g, G, g, G, e, X, Y ), a message m,
two nonces nV and nT , the basename bsnV , a candidate signature σ = (B, K, a′, b′, c′, c, sr, sf )
on (m, nV , nT ), and a list of rogue secrete keys ROGUE, the verifier V does the following:

1. If bsnV 6= ⊥, V verifies that B
?
= HG(1‖bsnV ), otherwise, V verifies that B

?
∈ G.

2. For each fi in ROGUE, V checks that K
?
6= Bfi . If K matches with any fi in ROGUE, V

outputs 0 (reject) and aborts.

3. V verifies that e(a′, Y )
?
= e(g, b′) and K

?
∈ G.

4. V computes

v̂x := e(X, a′), v̂xy := e(X, b′), v̂s := e(g, c′),

T̂1 := v̂sr
s v̂

−sf
xy v̂−c

x , T̂2 := Bsf K−c.

5. V verifies that c
?
= H(H(q‖g‖g‖X‖Y ‖a′‖b′‖c′‖v̂x‖v̂xy‖v̂s‖B‖K‖nV )‖T̂1‖T̂2‖nT ‖m).

6. If all the above verifications succeed, V outputs 1 (accept), otherwise V outputs 0 (reject).

Link When the verifier V wants to check whether or not two given signatures σ and σ′ are linked,
i.e. signed under the same tsk, it first checks the validation of them by using the above Verify
algorithm but ignores the rogue TPM check in Item 2. If either of them is invalid, V outputs
⊥. Otherwise, V outputs 1 (linked) if σ and σ′ include the same (B, K) pair or 0 (unlinked)
otherwise.

5 Security Results

In this section, we will state the security results for the new DAA scheme specified in Section 4
under the definitions of security notions in Section 2.2. In general, we will argue that our new
DAA scheme is secure, i.e., correct, user-controlled-anonymous and user-controlled-traceable, as
addressed in the following theorems.

Our security results are based on the DBDH assumption as defined in Assumption 1 and the
LRSW assumption as defined in Assumption 2 of Section 3. The security analysis of the notions of
user-controlled-anonymity and user-controlled-traceability is in the random oracle model [5], i.e.,
we will assume that the hash functions H and HG in the new DAA scheme are random oracles.

Theorem 2 The DAA scheme specified in Section 4 is correct.

Proof. This theorem follows directly from the specification of the scheme. ✷

Theorem 3 Under the DBDH assumption, the DAA scheme specified in Section 4 is user-controlled-
anonymous. More specifically, if there is an adversary A that succeeds with a non-negligible prob-
ability to break user-controlled-anonymity of the scheme, then there is a simulator S running in
polynomial time that solves the DBDH problem with a non-negligible probability.

Proof. We will show how an adversary A that succeeds with a non-negligible probability to break
user-controlled-anonymity of the DAA scheme may be used to construct a simulator S that solves
the DBDH problem. Let (g, ga, gb, gc, A = e(g, g)abc, B = e(g, g)d, where a, b, c, d ∈ Z

∗
q be the

instance of the DBDH problem that we wish to answer which from A and B is equal to e(g, g)abc.
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We now describe the construction of the simulator S. S performs the following game with A,
as defined in Section 2.2.2. In the initial of the game, S runs Setup (or takes A’s input) to get
I’s public key (q, g, G, g, G, e, X, Y ) (which is part of params) and secret key, namely isk, (x, y).
Make all the values known to A.

S creates algorithms to respond to queries made by A during its attack, including three random
oracles denoted by H1, H2 and H3, which refer to the hash-functions H used in SPK{(f) : F = gf},

HG used in computing B and H used in SPK{(r, f) : vr
s = vxv

f
xy ∧ K = Bf}(m), respectively. Note

that the hash function H used to compute the value f does not have to be a random oracle, since
it is an internal function.

To maintain consistency between queries made by A, S keeps the following lists: Li for i = 1, 2, 3
stores data for query/response pairs to random oracle Hi. Ljc stores data for query/response records
for Join queries and Corrupted queries. Each item of Ljc is {ID, f, F, cre, c}, where c = 1 means
that the corresponding signer is corrupted and c = 0 otherwise. Ls stores data for query/response
records for Sign queries. Each item of Ls is {ID, m, bsn, σ, s}, where s = 1 means that bsn = ⊥
and s = 0 means that bsn 6= ⊥ under the Sign query. At the beginning of the simulation, S
sets all the above lists empty. An empty item is denoted by the symbol *. During the game,
A will asks the Hi queries up to qi times, asks the Join query up to qj times, asks the Corrupt
query up to qc times, and asks the Sign query up to qs times. All of these time values are polynomial.

Simulator: H1(m). If (m, h1) ∈ L1, return h1. Else choose h1 uniformly at random from Z
∗
q ; add

(m, h1) to L1 and return h1.

Simulator: H2(m). If m has already been an entry of the H2 query, i.e. the item (m, w, h2) for an
arbitrary w and h2 exists in L2, return h2. Else choose v from Z

∗
q uniformly at random; compute

h2 := e(gb, gc)v; add (m, v, h2) to L2 and return h2.

Simulator: H3(m). If (m, h3) ∈ L3, return h3. Else choose h3 uniformly at random from Z
∗
q ; add

(m, h3) to L3 and return h3.

Simulator: Join(ID). At the beginning of the simulation choose α, β uniformly at random from
{1, ..., qj}. We show how to respond to the i-th query made by A below. Note that we assume A
does not make repeat queries.

• If i = α, choose uα from Z
∗
q uniformly at random; set Fα ← (ga)uα ; run Joint with A to

get creα, and add {IDα, uα, Fα, creα, 0} to Ljc. Note that since S does not know the value
fα = auα, it is not able to execute as the prover in SPK{(f) : Fα = gf}. However S can
forge the proof by controlling the random oracle of H1 as follows: randomly choose sf and c

and compute T̃ = gsf F−c. The only thing S has to take care of is checking the consistence
of the L1 entries. S verifies the validation of creα before accepting it.

• If i = β, choose uβ from Z
∗
q uniformly at random; set Fβ ← (ga)uβ ; do the same thing as in

the previous item to get creβ .

• Else choose f uniformly at random from Z
∗
q ; compute F = gf , if F = ga or gb or gc, abort

outputting “abortion 0”; run Joint with A to get cre; verify cre before accept it and then
add (ID, f, F, cre, 0) in Ljc.

Simulator: Corrupt(ID). We assume that A makes the queries Join(ID) before it makes the
Corrupt query using the identity. Otherwise, S answers the Join query first. Find the entry
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(ID, f, F, cre, 0) in Ljc, return f and update the item to (ID, f, F, cre, 1).

Simulator: Sign(ID, m, bsn). Let m′ be the input message A wants to sign, nV ∈ {0, 1}ℓH be
a nonce chosen by A and nT ∈ {0, 1}ℓφ be a nonce chosen by S at random, so m = (m′, nV , nT ).
We assume that A makes the queries Join(ID) before it makes the Sign query using the identity.
Otherwise, S answers the Join query first. We have the following multiple cases to consider.

Case 1: ID 6= IDα and ID 6= IDβ. Find the entry (ID, f, F, cre, 0/1) in Ljc, compute
σ ← Sign, add (ID, m, bsn, σ, 1/2) to Ls and respond with σ.

Case 2: ID = IDα. S is not able to create such a signature since S does not know the
corresponding secret key. But S is able to forge the signature by controlling the random oracles of
H2 and H3. S finds the entry (IDα, uα, Fα, creα = (a, b, c), 0) in Ljc, and forges σ by performing
the following steps:

1. When bsn = ⊥, choose a random r; search whether r is an entry of L2; if yes, go back to the
beginning of this item. When bsn 6= ⊥, take the given bsn, search whether bsn is an entry of
L2; if yes, retrieve the corresponding v and h2 = e(gb, gc)v values. With a new input of L2,
query H2 to get v and h2.

2. Set B := h2 and K := Auαv.

3. Choose random r′ ← Zq and compute a′ := ar′ and b′ := br′ .

4. Choose c′ ∈ G at random.

5. Compute vx := e(X, a′), vxy := e(X, b′), vs := e(g, c′).

6. Choose sr, sf ∈ Zq at random.

7. Choose c at random; search whether c is an entry of L3; if yes, go back to the beginning of
this item.

8. Compute T̃1 := vsr
s v

−sf
xy v−c

x , and T̃2 := Bsf K−c.

9. Set w = H(q‖g‖g‖X‖Y ‖a′‖b′‖c′‖vx‖vxy‖vs‖B‖K‖nV )‖T̃1‖T̃2‖nT ‖m; search whether (w, c) is
an entry of L3; if yes, go back to the beginning of the item of choosing sr and sf ; otherwise,
add (w, c) in L3.

10. Output σ = (B, K, a′, b′, c′, c, sr, sf ).

11. Add (IDα, m, bsn, σ, 1/0) to Ls.

Case 3: ID = IDβ. Again, Si cannot create this signature properly without the knowledge of
fβ . S forges the signature in the same way as in Case 2 above, except setting K = Buβv.

At the end of Phase 1, A outputs a message m, a basename bsn, two identities {ID0, ID1}. If
{ID0, ID1} 6= {IDα, IDβ}, S aborts outputting “abortion 1”. We assume that Join has already
been queried at ID0 and ID1 by A. If this is not the case we can define Join at these points as
we wish i.e. as Fα = (ga)uα and Fβ = (ga)uβ where uα, uβ ∈ Z

∗
q is chosen uniformly at random.

Neither ID0 nor ID1 should have been asked for the Corrupt query and the Sign query with the
same bsn 6= ⊥ by following the definition of the game defined in Section 2.2.
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S chooses a bit b at random, and generates the challenge by querying Sign(IDα, m, bsn) if b = 0
or Sign(IDβ , m, bsn) otherwise in the same way as Case 2 of the Sign query simulation. S returns
the result σ to A.

In Phase 2, S and A carry on the query and response process as in Phase 1. Again, A is not
allowed to make any Corrupt query to either ID0 or ID1 and to make any Sign query to either
ID0 or ID1 with the same bsn 6= ⊥. At the end of Phase 2, A outputs b′, S considers the following
4 cases:

• Case 1. If b = b′ = 0, S marks “true-A”.

• Case 2. If b = b′ = 1, S marks “true-B”.

• Case 3. If b = 0, b′ = 1, S marks “failure-A”.

• Case 4. If b = 1, b′ = 0, S marks “failure-B”.

S runs the above game with A k times. At the end of the k games, the number of b = 0 and
the number of b = 1 should be identical, based on the random selection of b. S sets the numbers of
“true-A” and “true-B” as kA and kB respectively. If kA = kB, S aborts outputting “abortion 2”.
If kA > kB, S answers that A = e(g, g)abc holds; if kA < kB, S answers that B = e(g, g)abc holds.

Let us now consider how our simulation could abort i.e. describe events that could cause A’s
view to differ when run by S from its view in a real attack.

It is clear that the simulations for H1, H2 and H3 are indistinguishable from real random oracles.
If the event abortion 0 happens, S gets the value a or b or c, S can compute e(g, g)abc and thus

to solve the DBDH problem (because the DBDH problem is weaker than the BDH problem). Since
S chooses its value uniformly at random from Z

∗
q , the chance of this event happens is negligible.

The event abortion 1 happens if {ID0, ID1} 6= {IDα, IDβ}. Since IDα and IDβ are chosen
at random, the probability of this case is at least 1/qj(qj − 1).

The event abortion 2 happens if kA = kB. We argue that this case is confliction to the
assumption that A succeeds with a non-negligible probability to break user-controlled-anonymity.
In order to break user-controlled-anonymity, A must find the link between (F, cre) and σ w.r.t. the
identity of the corresponding signer. In the DAA scheme, F = gf , cre = (a, b, c) and σ =
(B, K, a′, b′, c′, c, sr, sf ), where K = Bf , a′ = ar′ , b′ = br′ and c′ = cr′r−1

. Since the values r′, r ∈ Z
∗
q

are chosen uniformly at random, the triplet (a′, b′, c′) must be indistinguishable from the triplet
(a, b, c) from the view of any entity with the polynomial computational capability. The values c,
sr and sf are uniformly and randomly distributed in Z

∗
q . Therefore, to win the game with the

probability larger than 1/2, A must be able to find whether loggF = logBK holds. The fact that
b = 0 and “true-A” is marked means that A has found out that loggg

a = loge(g,g)bcA holds. The
fact that b = 1 and “true-B” is marked means that A has found out that loggg

a = loge(g,g)bcB
holds. But in the instance of the DBDH problem, only A or B not both is the correct figure.

Based on the above discussion, the probability that S does not abort the game at some stage
and produces the correct output is non-negligible, since it follows the fact that A wins the game
with a non-negligible probability.

Observe that if the random oracle HG(0‖bsnI) is used in Join as the same as in the original DAA
scheme [8], the notion of user-controlled-anonymity in the proposed DAA scheme can be proved
under the DDH assumption instead of the DBDH assumption as follows: given the instance of the
DDH problem (g, ga, gb, A = gab, B = gc), S can use this oracle to set NI = HG(0‖bsnI)

f = ga,
B = gb, K0 = A and K1 = B, and then can take the result of guessing loggNI = loggbKb for

b = {0, 1} from A to find out which one from A and B is gab. ✷
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Theorem 4 Under the LRSW assumption, the DAA scheme specified in Section 4 is user-controlled-
traceable. More specifically, if there is an adversary A that succeeds with a non-negligible probability
to break user-controlled-traceability of the scheme, then there is a simulator S running in polynomial
time that solves the LRSW problem with a non-negligible probability.

Proof. We will show how an adversary A that succeeds with a non-negligible probability to break
user-controlled-traceability of the DAA scheme may be used to construct a simulator S that solves
the LRSW problem. Let X, Y ∈ G, X = gx, Y = gy and (a, ay, ax+xym) ← O(m, x, y) be the
instance of the LRSW problem that we wish to provide (m̃, ã, b̃, c̃) such that m 6= 0, b̃ = ãy and
c̃ = ãx+xym̃ where m̃ has not be queried to the oracle O before.

We now describe the construction of the simulator S. S performs the following game with A,
as defined in Section 2.2.3. In the initial of the game, S sets I’s public key as (q, g, G, g, G, e, X, Y )
(which is part of params) and secret key, namely isk, as (x, y). S gives params to A. Note that S
does not know isk. It also creates algorithms to respond to queries made by A during its attack.

S sets three random oracles H1, H2 and H3 in the same way as in the proof of Theorem 3. To
maintain consistency between queries made by A, S keeps the following lists: Li for i = 1, 2, 3 stores
data for query/response pairs to random oracle Hi. Ljc stores data for query/response records for
Join queries and Corrupted queries. Each item of Ljc is {ID, f, F, cre, c}, where c = 1 means that
the corresponding signer is corrupted (via either Case 2 of the Join query or the Corrupt query)
and c = 0 otherwise. Note that the set of f values with c = 1 will be used as the ROGUE list.
Ls stores data for query/response records for Sign queries. Each item of Ls is {ID, m, bsn, σ, s},
where s = 1 means that bsn = ⊥ under the Sign query and s = 0 means that bsn 6= ⊥ under the
Sign query. At the beginning of the simulation, S sets all the above lists empty. An empty item
is denoted by the symbol *. During the game, A will asks the Hi queries up to qi times, asks the
Join query up to qj times, asks the Corrupt query up to qc times, and asks the Sign query up to qs

times. All of the time values are polynomial.

Simulator: H1(m). The same as in the proof of Theorem 3.

Simulator: H2(m). If m has already been an entry of the H2 query, return h2. Else choose h2

from Z
∗
q uniformly at random and return h2.

Simulator: H3(m). The same as in the proof of Theorem 3.

Simulator: Join(ID). We assume A does not make repeat queries. Given a new ID from A
(Case 1), S chooses f ∈ Z

∗
q uniformly at random; or S receives a new pair of ID and f from A (Case

2). Then in both cases, S asks O to provide cre = (a, b = ay, c = ax+xyf ), adds {ID, f, F, cre, 0}
to Ljc in Case 1 and {ID, f, F, cre, 1} to Ljc in Case 2, and returns cre to A.

Simulator: Corrupt(ID). We assume that A makes the queries Join(ID) before it makes the
Corrupt query using the identity. Otherwise, S answers the Join query first. Find the entry
(ID, f, F, cre, 0) in Ljc, return f and update the item to (ID, f, F, cre, 1).

Simulator: Sign(ID, m, bsn). Let m′ be the input message A wants to sign, nV ∈ {0, 1}ℓH be
a nonce chosen by A and nT ∈ {0, 1}ℓφ be a nonce chosen by S at random, so m = (m′, nV , nT ).
We assume that A makes the queries Join(ID) before it makes the Sign query using the identity.
Otherwise, S answers the Join query (Case 1) first. Find the entry (ID, f, F, cre, 0/1) in Ljc,
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compute σ ← Sign, add (ID, m, bsn, σ, 1/0) to Ls and respond with σ.

Simulator: Semi-sign(ID, m,B, vxy, T̃1t, cH). We assume that A makes the queries Join(ID)
before it makes the Semi-sign query using the identity. Otherwise, S answers the Join query (Case
1) first. Find the entry (ID, f, F, cre, 0/1) in Ljc, compute (K, c, sf ) by following the M’s action
in Sign, add (ID, m, bsn, σ = (B, K, ∗, ∗, ∗, c, ∗, sf ), ∗) to Ls and respond with (K, c, sf ).

At the end of the phase of probing above, A outputs an identity ID, a message m, a basename
bsn and a signature σ. We consider the following two cases:

• Case 1. If Verify(σ) = 1 and (ID, m, bsn, σ, 1/0) (or (ID, m, bsn, σ = (B, K, ∗, ∗, ∗, c, ∗, sf ), ∗))

is not in Ls, S rewinds A to extract the knowledge of r and f , satisfying vr
s = vxv

f
xy, from

σ = (B, K, a′, b′, c′, c, sr, sf ). The triplet (a′, b′, c′r) is a Camenisch-Lysyanskaya signature on
the message f . Since the value f 6∈ ROGUE (implied in Verify(σ) = 1), the signature is not
a result of the O query. Following Theorem 1, (a′, b′, c′r) is a right solution of the LRSW
problem. S solves the problem.

• Case 2. Suppose bsn 6= ⊥. If no any entry (ID, m′, bsn, σ′, 1/0) for the arbitrary pair of
m′ and σ′ is found in Ls, A has not managed to break user-controlled-traceability. Oth-
erwise, S runs Link(σ, σ′). If the output of Link is 1 or ⊥, again, A has not managed
to break user-controlled-traceability. Otherwise, there exist the following pair of data sets
σ = (B, K, a′, b′, c′, c, sr, sf ) and σ′ = (B, K′, a′′, b′′, c′′, c′, s′r, s

′
f ). Both σ and σ′ have B since

they have the same bsn and S has maintained the consistence of the random oracle H2 out-
puts. The only thing to make K 6= K′ happen is that A has managed to create a different tsk
for ID. Then S can use the same trick as in Case 1 to extract a right solution of the LRSW
problem from A.

In either of the above two cases, S can solve the LRSW problem with a non-negligible probability
if A wins the game with a non-negligible probability. The theorem follows. ✷

6 Consideration on Implementing the DAA Scheme

In this section, we show how to implement the proposed DAA scheme. We first recall a well-
known construction of an admissible bilinear map from the Tate pairing, as our recommended
example of pairings, describe how to choose the corresponding security parameters, and then analyze
the performance of our DAA scheme when uses this bilinear map. Finally we discuss various
constructions of the point B in the DAA scheme.

6.1 An admissible bilinear map from the Tate pairing

We now recall the description of an admissible bilinear map [3, 22, 25] from the Tate pairing. Let
p be a prime satisfying p = 3 mod 4 and let q be some prime factor of p + 1. Let E be the elliptic
curve defined by the equation y2 = x3 − 3x over Fp. E(Fp) is supersingular and contains p + 1
points and E(Fp2) contains (p + 1)2 points. Let g ∈ E(Fp) to a point of order q and let G be the
subgroup of points generated by g. Let G be the subgroup of F

∗
p2 of order q.

Let φ(x, y) = (−x, iy) be an automorphism of the group of points on the curve E(Fp), where
i2 = 1. Then φ maps points of E(Fp) to points of E(Fp2)\E(Fp). Let f be the Tate pairing, then
we can define e : G × G → G as e(P, Q) = f(P, φ(Q)), where e is an admissible bilinear map.
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6.2 Choices of security parameters

To choose right sizes of p and q, we must ensure that the discrete log problem in G is hard enough.
As the discrete log problem in G is efficiently reducible to discrete log in G [27], we need to choose
p large enough such that the discrete log in F

∗
p2 is hard to compute. For our DAA scheme, we

choose p as a 512-bit prime and q as a 160-bit prime as follows [25]: (I) Choose a 160-bit prime
q. Careful choices of q would speed up the Tate pairing operation substantially, e.g., choose q with
low Hamming weight. (II) Randomly generate a 352-bit r where 4 | r. (III) Compute p := rq − 1
and check whether p is a prime. Note that p = 3 mod 4. If p is not prime, repeat the previous step.

6.3 Efficiency of our DAA scheme

Let ℓH = 256, ℓp = 512, ℓq = 160 and ℓφ = 80. Given a concrete DAA scheme described above
using Tate pairing, we summarize the performance of our scheme as follows:

• Since p is 512-bit, we can use 513 bits to present a point in E(Fp). The size of the DAA
public key is 2211 bits or 277 bytes. Each membership private key is 1699 bits or 213 bytes.
Each signature is 4163 bits or 521 bytes.

• To compute a signature, the TPM needs to perform 5 exponentiations and the host needs
to perform 5 exponentiations and 3 pairings. To verifier a signature, the verifies needs to 7
exponentiations and 5 pairings.

Note that the host can pre-compute A = e(X, a), B = e(X, b) and C = e(g, c), and store
the triple (A, B, C). In each signing process, the host can compute vx := Ar′ , vxy := Br′ , and

vs := Cr′r−1

to avoid expensive pairing operations.

6.4 Constructing the Point B

How to construct B
R
← G and B = HG(m) given the input m is a sensitive part of the scheme

implementation. To implement B
R
← G, we suggest creating a random generator of G, which is

a q-th root of unity in Fp2 . This can be done by choosing a random x ∈ Fp2 , then computing

B := x(p2−1)/q. We suggest the following various ways to construct B = HG(m).

1. Use a collision resistant hash function H(m), which maps the value m to an element in Fp2 ,

then compute B = H(m)(p
2−1)/q.

2. Use a MapToPoint function H, as described in [7], to map the value m to an element of
G, that can guarantee none knows the discrete log relation between g and H(m), and then
compute B := e(H(m), H(m)).

3. As in the original DAA scheme [8], make a cyclic group different from either G or G, in which
the discrete logarithm problem is hard, and then compute B in this group instead of G.

7 Conclusion

In this paper, we have introduced the formal definitions of two security notions for DAA, namely
user-controlled-anonymity and user-controlled-traceability. This is a simplified version of the formal
security model provided in [8]. We have also proposed a new DAA scheme from pairings, which
requires a much shorter key length compared with the original integer factorization based DAA
scheme. We have proved the security of the new DAA scheme under the proposed security notions.
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