
Knapsack cryptosystems built on NP-hard instances

Laurent Evain (laurent.evain@univ-angers.fr)

Abstract:

We construct three public key knapsack cryptosystems. Standard knapsack cryptosystems hide easy
instances of the knapsack problem and have been broken. The systems considered in the article face
this problem: They hide a random (possibly hard) instance of the knapsack problem. We provide both
complexity results (size of the key, time needed to encypher/decypher...) and experimental results.
Security results are given for the second cryptosystem (the fastest one and the one with the shortest
key). Probabilistic polynomial reductions show that finding the private key is as difficult as factorizing
a product of two primes. We also consider heuristic attacks. First, the density of the cryptosystem can
be chosen arbitrarily close to one, discarding low density attacks. Finally, we consider explicit heuristic
attacks based on the LLL algorithm and we prove that with respect to these attacks, the public key is
as secure as a random key.

Introduction

The principle

It is natural to build cryptosystems relying on NP-complete problems since NP-complete problems are
presumably difficult to solve. There are several versions of knapsack problems, all of them being NP-
complete. Several cryptosystems relying on knapsack problems have been introduced in the eighties
[9]

We are interested in the bounded version of the knapsack problem. Let s,M, v, v1, . . . , vs ∈ N. The
problem is to determine whether there are integers ǫi, 0 ≤ ǫi < M such that

∑i=s
i=1 ǫivi = v. In case

M = 2, the problem is to fill a knapsack of volume v with objects of volume vi.
Knapsack cryptosystems are built on knapsack problems. Alice constructs integers vi (using some

private key q) such that the cyphering map C is injective: C : {0, . . . ,M − 1}s → N, (ǫi) 7→
∑

ǫivi.
The sequence vi is the public key. When Bob has a plaintext message m ∈ {0, . . . ,M − 1}s for Alice,
he sends the ciphertext C(m). Alice decodes using her private key.

Strength and weakness of knapsack cryptosystems

The main advantage of knapsack cryptosystems is the speed. These systems attain very high encryption
and decryption rates. The knapsack cryptosystem proposed by Merkle-Hellman [7] seemed to be 100
times faster than RSA for the same level of security at the time it was introduced [9].

The main weakness of knapsack cryptosystems is security. All standard knapsack cryptosystems have
been broken: the Merkle-Hellman cryptosystem by Shamir and Adleman [11], , the iterated Merkle-
Hellmann by Brickell [3] , the Chor-Rivest cryptosystem by Vaudenay in 1997 [12] ...

Two main reasons explain the fragility of knapsack cryptosystems.
First, most of these cryptosystems start with an easy instance. The knapskack problem is NP-

complete and no fast algorithm to solve it is known in general. However, the knapsack problem is easy

1

to solve for some instances (vi)i≤s: if (vi) is a superincreasing sequence in the sense that vi >
∑

j<i vj ,
there is a very fast algorithm to solve the knapsack problem, depending linearly on the size of the
data. For knapsack cryptosystems, the public key is usually a hard instance (vi) obtained as a function
vi = f(q, wi) of an easy instance (wi) using a private key q. When Alice receives the message Cvi

(m)
encrypted with the hard instance vi, she can compute with her private key the message Cwi

(m) encrypted
with the easy instance wi. Then she decodes easily.

One could hope that if the private key q is chosen randomly, it is impossible to recover q and the
message. This intuition is wrong. As an easy instance of the knapsack problem, the initial sequence wi

carries information and this information is still present in the ciphertext in a hidden form. This makes
it possible to break the system. For instance, in the Merkle-Hellmann scheme, wi is a superincreasing
sequence and Shamir has shown that it is possible to recover the initial message m, even if the private
key q remains unknown.

Thus, starting from an easy instance and hiding it with a random private key is structurally weak.
Information can leak, whatever the random choice of the private key.

Another potential weakness of knapsack cryptosystems is the possibility of low density attacks.
Usually the numbers (vi)i≤s used as the public key are large numbers and the density d =

s/max log2(vi) is low. In this case, the elements (ǫi) of the translated lattice L defined by the equation
∑

ǫivi = C(m) are expected to be large, and the plaintext message m sent by Bob to Alice is expected
to be the smallest element in L. Besides this heuristic argument, this circle of ideas yields a provable
reduction of the knapsack problem to the closest vector problem CVP (CVP consists in finding the
closest point to a fixed point P in a lattice). In particular, using polynomial time algorithms to approx-
imate CVP [1], the knapsack problem is solvable in polynomial time when the density is low enough
and the knapsack is sufficiently general : most knapsacks of density roughly less than 2/s are solvable
in polynomial time [8] .

When the density is low but not less than 2/s, there is no known polynomial time algorithm to
solve knapsack problems. However, one can still reduce knapsack problems to CVP. The embedding
method reduces CVP to the shortest vector problem SVP with high probability when the density d of
the knapsack is low enough, explicitly when d ≤ 0.9408... (SVP consists in finding the shortest vector
in a lattice). Although CVP is NP hard and SVP is NP-hard under randomized reductions [8], there
are algorithms which solve efficiently CVP and SVP in low dimension, notably LLL based-algorithms.
In practical terms, a knapsack cryptosystem should have dimension s at least 300 to avoid such attacks.

Aim of the article

Summing up, Alice constructs a cryptosystem starting from an instance (wi)i≤s and hides it with a
private key q. The public key vi = vi(q, wi) is a function of q and wi. The above analysis shows that a
knapsack cryptosystem is potentially weak if one starts with an easy instance (wi)i≤s. To construct a
robust cryptosystem, one should start with a hard instance (wi)i≤s, ie the wi’s should have no structure
(chosen randomly). The dimension s should be at least 300. Under these conditions, breaking the
cryptosystem should be as difficult as recovering the private key q since the existence of the private key
is the only reason which makes the message received by Alice decipherable. In particular, the difficulty
to find the private key is expected to be a measure of the security of the system.

The goal of this paper is to construct such cryptosystems which start with a random instance (wi)i≤s

in high dimension s and such that finding the private key is as difficult as factorising a product of two
primes.

Unlike the other knapsack cryptosystems, our construction does not include modular multiplications.

2

Differences and similarities between the three cryptosystems

The first of our three systems is the most natural. It is a fast system, both for encryption and decryption.
The drawback is the size of the public key which goes from 0.1MB to 4.9MB depending on the level of
security considered.

The size of the public key is subject to debate. Some authors want a short key. Other authors (see
[4]) think that the concept of a small key should be questioned, and that, in view of the transmission
rates on the Internet today, it is preferable to have a fast and secure system than a system with a small
public key.

The sizes of the keys considered in the first system are large. Though they could be compatible with
the transmission rates on the internet or the size of the memory of modern computers, it is nevertheless
desirable to shorten the keys. We thus construct a second system based on the same ideas with a
shorter key. The size of the key starts from 0.03MB for a reasonably secure system (corresponding to
a knapsack problem with s = 500 elements), and is around 0.1MB in dimension s = 1000.

Our third cryptosystem is a hybrid between the two first cryptosystems. The key is not much longer
than in the second cryptosystem, but the private key has been hidden more carefully and the system is
more secure.

Our three cryptosystems have in common the same underlying one-way function based on the fol-
lowing remark: it is fast to produce divisions ni = qxi + ri with small rests ri << q (choose q, xi, ri
and compute ni) but it takes more time to recover the divisions once the numbers ni are given. For
instance, if there is one number n and we look for the smallest rest r = 0 in a division n = qx + r, it
means that we try to find a factorisation of n. The security of the RSA system relies on the difficulty
to factorize a product of two primes n = qx. Thus our one way function can be seen as a generalisation
of the one way function used in the RSA system. Section 1.2 explains this one-way function with more
details.

The results

We provide complexity results, experimental results, and security results for the cryptosystems.

Complexity results

There are various possible choices for the parameters. There are two base parameters s, p, with s = o(p)
and the other parameters depend on s and p. The complexity results for the first system are as follows,
where ǫ is an arbitrarily small positive number.

Theorem 1.

Size of the public key xs: O(s2 log2(p))
Size of the private key ǫ, qi, σ, τ : O(s2 log2(p))
Encryption time: O(s2 log2(p))
Decryption time: O(s2 log2(p))

1+ǫ

Creation time of the public key: O(s3 log2(p)1+ǫ)
Density of the knapsack associated with xs: 1/ log2(p).

The complexity results for the second system are the following:

Theorem 2. Size of the public key x1: O(s2 + s log2(p))
Size of the private key : O(s2 + s log2(p))
Encryption time: O(s2 + s log2(p))
Decryption time: O(s2 + log2(p)

1+ǫ)

3

Time to create the public key: O(s2 + log2(p)1+ǫ)
Density of the knapsack associated with xs:

1

1+ 2
s
+

2 log2(p)

s

).

For the parameters chosen as in variant 2, we have:

Theorem 3. Size of the public key x1: O(s2 log2(p))
Size of the private key : O(s2 + s log2(p))
Encryption time: O(s2 + s log2(p))
Decryption time: O(s2 + log2(p)

1+ǫ)
Time needed to create the public key: O(s2 + s log2(p))
Density of the knapsack associated with xs:

1

2+ 2
s
+

log2(p)
s

).

By construction, the third system is a hybrid mixing the first and second system. For brevity, we
have not included its complexity results which can be computed as for the previous two systems.

Experimental results for the first system

We report experiments to show that encryption/decryption time is acceptable in high dimension. The
processor used is an Intel Xeon at 2GHz. The programs have been written with the software Maple
(slow high level language manipulating nativly arbitrarily large integers).

Encryption time in seconds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s\p 106 109 1012 1015 1018

200 0.002 0.001 0.001 0.001 0.001
400 0.001 0.001 0.001 0.002 0.002
600 0.001 0.002 0.002 0.002 0.144
800 0.003 0.002 0.003 0.004 0.261

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Decryption time in seconds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s\p 106 109 1012 1015 1018

200 0.150 0.152 0.166 0.178 0.209
400 0.480 0.481 0.587 0.872 0.872
600 1.019 1.025 1.182 2.343 2.099
800 1.597 1.602 1.809 3.813 3.314

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Time for generating the key in seconds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s\p 106 109 1012 1015 1018

200 0.543 0.602 0.713 0.850 0.965
400 3.121 3.707 4.984 9.933 11.155
600 12.127 14.164 18.500 46.012 52.045
800 25.940 31.376 37.769 113.364 118.746

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Size of the key in MegaBytes

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s\p 106 109 1012 1015 1018

200 0.107 0.157 0.207 0.257 0.307
400 0.430 0.628 0.828 1.027 1.226
600 0.966 1.413 1.864 2.312 2.760
800 1.720 2.514 3.312 4.111 4.908

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Experimental results for the second system.

Encryption time in seconds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s\p 106 109 1012 1015 1018

500 0.002 0.001 0.001 0.000 0.001
800 0.001 0.002 0.002 0.001 0.001
1100 0.001 0.001 0.001 0.008 0.002
1400 0.002 0.001 0.002 0.002 0.001
1700 0.001 0.002 0.002 0.002 0.002
2000 0.002 0.002 0.003 0.003 0.002

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4

Decryption time in seconds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s\p 106 109 1012 1015 1018

500 0.003 0.007 0.001 0.002 0.002
800 0.003 0.003 0.003 0.003 0.003
1100 0.004 0.003 0.003 0.003 0.003
1400 0.005 0.004 0.005 0.005 0.004
1700 0.014 0.005 0.005 0.006 0.006
2000 0.015 0.006 0.006 0.007 0.006

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Time for generating the key in seconds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s\p 106 109 1012 1015 1018

500 0.056 0.056 0.057 0.058 0.057
800 0.091 0.092 0.094 0.094 0.094
1100 0.129 0.127 0.133 0.127 0.125
1400 0.166 0.168 0.165 0.169 0.169
1700 0.199 0.198 0.205 0.203 0.210
2000 0.239 0.237 0.244 0.245 0.254

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Size of the key in MegaBytes

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s\p 106 109 1012 1015 1018

500 0.034 0.035 0.036 0.037 0.039
800 0.084 0.086 0.088 0.090 0.092
1100 0.157 0.159 0.162 0.165 0.168
1400 0.252 0.255 0.259 0.262 0.266
1700 0.370 0.374 0.378 0.382 0.387
2000 0.510 0.515 0.520 0.525 0.530

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Security results

We now come to the security analysis of the cryptosystems. Among the three cryptosystems described,
it is easier to attack the second cryptosystem (shortest key, built to be fast, no special care to hide the
private key). Thus we concentrate our analysis for this second system.

First, we remark on the above formulas that the density can be as close to 1 as possible with a
suitable choice of the parameters. Thus the parameters can be chosen to avoid low density attacks.

We consider both exact cryptanalyse and heuristic attacks.
We show that finding the private key q is as difficult as factorising a number n which is a product

of two primes: if it is possible to find the private key q in polynomial time, then ∀η > 0, it is possible
to factorise n = pq in polynomial time with a probability of success at least 1 − η (theorem 22).

In fact, our result is a little more precise. The private key q is an integer with suitable properties.
One could use a “pseudo-key” q′, ie. an integer with the same properties as q, to cryptanalyse the
system. Our result says that finding a pseudo-key q′ with the help some extra-information is as difficult
as factorising a product of primes (ie. there is a polynomial probabilistic reduction as above). Moreover,
the system is more secure if q is the only integer with the required properties. We give evidences in
section 4.1 that one can construct with high probability a cryptosystem with q as the only pseudo-key.

The above results express that it is difficult to find a pseudo-key. But the cryptosystem could
still be attacked by heuristic attacks. Since most heuristic attacks rely on the LLL-algorithm and
its improvements, we consider the standard attack relying on the LLL-algorithm and the embedding
method.

NP-completness and many experiments lead to the conclusion that the knapsack problem is not
solvable for a random instance x0 = (v1, . . . , vs) in high dimension s. The public key is not a random
instance x0 but a slight deformation x1 of x0. A weakness appears if the heuristic attacks perform better
when the random x0 is replaced by x1.

Our result (theorem 29) says in substance that, if x0 is very general, replacing x0 by a suitable x1

is not dangerous : both the number of steps to perform the algorithm and the probability of success

5

are unchanged. In other terms, with respect to LLL-attacks, the system is as secure if the message is
cyphered with x0 or with a suitable x1.

Acknowledgments

Nice surveys on knapsack cryptosystems made the subject accessible to me. I am in particular grateful
to the authors of [8], [9] and [2].

1 First system

1.1 Description of the system

We denote by Mp×q(A) the set of p× q matrices with coefficients in the set A.

• List of parameters:M, s ∈ N, ǫ ∈Ms×s(N), p1, . . . , ps, q1, . . . , qs ∈ N, x0 ∈M1×s(N),

• Message to be transmitted: a column vector m ∈ {0, 1, . . . ,M − 1}s = Ms×1({0, . . . ,M − 1}).

• Private key:

• An invertible matrix ǫ ∈Ms×s(N) with rows ǫ1, . . . , ǫs. We let ||ǫi||1 =
∑j=s

j=1 ǫij the norm of

the ith row.

• A s-tuple of positive rational numbers λi = pi

qi
,i = 1, . . . , s such that (M − 1)λi||ǫi||1 < 1.

• Recursive Construction: Choose a random row vector x0 ∈ Ns. Define the row vector xi,
i = 1 . . . s by xi = qixi−1 + piǫi.

• Public key: xs

• Cyphered message: xsm ∈ N.

Notation 4. We denote by C the cyphering function {0, 1, . . . ,M − 1}s → N, m 7→ Ns = xs.m

Proposition 5. The function C is injective.

It suffices to explain how to decypher to prove the proposition. We define Ni, 0 ≤ i ≤ s and Oi,
1 ≤ i ≤ s by decreasing induction:

• Ns = C(m) = xsm

• Ni−1 = [Ni

qi
], where [.] denotes the integer part

• Oi = (Ni − qiNi−1)/pi.

• Let N ∈Ms+1×1(N) be the column vector with entries N0, . . . , Ns

• Let O ∈Ms×1(Q) be the column vector with entries O1, . . . , Os.

• Let X ∈Ms+1×s(N) be the matrix with rows x0, . . . , xs.

Proposition 6. The message m verifies Xm = N , ǫm = O. In particular, the coefficients of O are
integers.

Proof. We prove that xim = Ni by decreasing induction on i. The case i = s is true by definition.
If xim = Ni, then (xi−1 + λiǫi)m = Ni/qi. Since xi−1m ∈ N and 0 < λiǫim ≤ λi||ǫi||1(M − 1) < 1
by hypothesis, we obtain xi−1m = [Ni/qi] = Ni−1, as expected. Thus ǫim = (xi − (qixi−1))m/pi =
(Ni − qiNi−1)/pi = Oi.

Corollary 7. To decypher the message,

• Compute Ns−1, . . . , N1 with the formula Ni−1 = [Ni

qi
].

• Compute Oi = (Ni − qiNi−1)/pi.

• Solve the system ǫm = O.

6

1.2 Analysis of the system

The underlying one way function

We make a quick analysis of the system.
The couple (qs, ǫs) in the private key satisfies xs = qsxs−1 + psǫs with qs > ps||ǫs||1(M − 1).

Componentwise, psǫsi is the rest of the division of xsi by qs. These rests are small. The rest of the
division of xsi by qs is at most qs, and the sum of the rests psǫsi for 1 ≤ i ≤ s is at most sqs in general.
In the present situation, the sum

∑

i psǫsi = ps||ǫs||1 of all the rests is at most qs

M−1 .
In other words, an eavesdropper who tries to break the system looks for an integer qs such that the

rests of the divisions of the xsi by qs are unusualy small: the sum of the s rests is at most qs

M−1 .
There is hopefully a one way function here. It is easy to construct a couple of integers (x, q) such

that the rest of the division of x by q is small. But once x is given, it is not easy to find back an integer
q such that the rest of the division of x by q is small.

For instance, to obtain a rest which is at most 1
10n of the divisor q, choose any y, q ∈ N, 0 ≤ ǫ ≤ q/10n

and put x = qy + ǫ. As a function of q, the number of operations to compute x is O(log2(q)). If x is
given and Eve knows that there is a q satisfying x = qy + ǫ, 10nǫ < q, trying successivly all possible
divisors 1, . . . , q requires O(q) operations.

Thus, in the absence of a quick algorithm to find q, there is a gain of an exponential factor here. In
our choice of parameters, the numbers qi will be large to make the most of this advantage.

Construction of the matrix ǫ

The matrix ǫ of the private key should be quickly invertible, for instance triangular, to facilitate decryp-
tion (see corollary 7). But a triangular matrix ǫ, or any matrix with a lot of null coefficients, would be a
bad choice. Indeed, if ǫ is sparse, there are two components c, c′ of xs = qsxs−1 +psǫs = (...., c,, c′,)
whose gcd is a multiple of qs, or qs itself. After several attempts, the eavesdropper could find qs.

The same problem occurs if the components of ǫs are too small or well localised by a law of repartition.
If xs = (. . . , c, . . . , c′, ...), there is a natural attempt to find qs: test for the gcd of (c − ǫ′, c′ − ǫ′′) for
several values of ǫ′, ǫ′′.

Summing up, the matrix ǫ should satisfy the two following conditions:

• its coefficients are difficult tolocalize,

• solving ǫm = O is fast.

If the coefficients of the matrix ǫ are chosen randomly, it takes time to solve ǫm = O. If we choose a
lower triangular matrix L, an upper triangular matrix U with random uniform coefficients, and choose
ǫ = LU , then it is easy to solve the system but the coefficients of ǫ are not random uniform and this
non uniformity could be used to cryptanalyse the system as explained above.

Thus there is a compromise to find between the amount of time required to compute and invert ǫ
and the uniformity in the coefficients of ǫ. Our approach to find the compromise is to consider an upper
triangular matrix U with random coefficients and to deform it using elementary operations (proposition
8).

Let L,N ∈ Ms×s(N) be the lower triangular matrices defined by Lii = Nii = 1, Li,1 = 1, Nn,i = 1
and all other coefficients equal to zero. If σ is a permutation of {1, . . . , s}, we denote by Mσ the
permutation matrix defined by Mi,σ(i) = 1 and Mij = 0 otherwise.

Proposition 8. Let U ∈ Ms×s(N) be an upper invertible triangular matrix with coefficients uij, i ≤ j
chosen randomly in {1, . . . , x} and σ, τ be permutations of {1, . . . , s}. Then every entry e of the matrix
ǫ(s, x) = MσLUNMτ verifies 0 ≤ e ≤ 4x. In particular, the norm of the lines ǫi satisfy ||ǫi||1 ≤ 4sx.

Proof. The action of the permutations σ, τ permute the coefficients of LUN so one can suppose
σ = τ = Identity. An entry in U is in {0, . . . , x}. The left multiplication with L replaces a line Li, i > 1

7

with Li +L1. The right multiplication with N replaces a column Ci, i < s with Ci +Cs. Thus an entry
of LUN is in {0, . . . , 4x}.

1.3 Suggested choice for the parameters

In this section, suggestions for our list of parameters M, s ∈ N, ǫ ∈ Ms×s(N), p1, . . . , ps, q1, . . . , qs ∈ N,
x0 ∈ M1×s(N) are given. We fix two integers s, p as based parameters. The other parameters are
constant or functions of s and p.

The level of security depends on the size of s and p. To give an idea of the size of the numbers
involved, s > 300 and p > 106 are sensible choices.

Suggested choice for the parameters as constants or functions of s, p:

• M = 2

• ǫ = ǫ(s, [p/4s]) is the random matrix considered in proposition 8.

• pi = 1, qi chosen randomly in [p+ 1, 2p] (uniform law)

• x0 has entries chosen randomly in [0, 2s] (uniform law)

Comments on the choices.

The choice M = 2 is to make the system as simple as possible. Moreover, Shamir has shown that
compact knapsack cryptosystems (ie. those with messages in {0, . . . ,M − 1}s and small M) tend to be
more secure [10].

The reason for the choice of the matrix ǫ has been given before proposition 8 (compromise between
randomness and inversibility). Note that the required condition (M − 1)||ǫi||λi < 1 is satisfied by
proposition 8.

As to the choice of λi = pi

qi
, we have explained that qi is large to make the most of the one way

function. Looking at the recursive definition of xi, it appears that the xi’s are large when pi is large.
Thus we take pi = 1 to limit the size of the key.

The entries of the initial vector x0 are chosen randomly in [0, 2s] so that the density of the knapsack
cryptosystem associated to x0 is expected close to one. If the density is lower, there could be a low
density attack on x0, and maybe an attack on xs as xs is a modification of x0. On the other hand, it is
not clear that a higher density is dangerous. It could even be a better choice. Experiments are needed
to decide. Thus we propose a variant of higher density:

Variant for the choice of parameters

• x0 has entries chosen randomly in {0, . . . , s5}.

• All other parameters are chosen as before.

1.4 Complexity results

The complexity of the cryptosystem is described in the following theorem, using the first variant for the
choice of parameters (ie. x0 has entries in {0, . . . , 2s}).

We denote by size(A) the number of bits needed to store an element A and by time(A) the number
of elementary operations needed to compute A. Recall that, for all ǫ > 0, computing a multiplication
of two integers p and q takes time(pq) = O(size(p) + size(q))1+ǫ) elementary operations [5]. Moreover,
the complexity of a division is the same as the complexity of a multiplication.

8

Theorem 9. Suppose that s = o(p). Then:
Size of the public key xs: O(s2 log2(p))
Size of the private key ǫ, qi, σ, τ : O(s2 log2(p))
Encryption time: O(s2 log2(p))
Decryption time: O(s2 log2(p))

1+ǫ

Creation time of the public key: O(s3 log2(p)1+ǫ)
Density of the knapsack associated with xs: 1/ log2(p).

Proof.

• ||ǫi||∞ ≤ p

• size(||ǫi||∞) = O(log2(p))

• size(ǫi) ≤ s size(||ǫi||∞) = O(s log2(p))

• size(ǫ) =
∑

i size(ǫi) = O(s2 log2(p))

• size(q1, . . . , qs) = O(s log2(p))

• size(σ) = size(τ) = time(σ) = time(τ) = O(s log2(s))

• size(private key) = size(ǫ, q1, . . . , qs, σ, τ) = O(s2 log2(p))

• ||xi = qixi−1 + ǫi||∞ ≤ |qi|||xi−1||∞ + ||ǫi||∞ ≤ 2p||xi−1||∞ + p thus ||xi||∞ ≤ 3ipi||x0||∞.

• size(||xi||∞) = O(i log2(p) + size(||x0||∞)) = O(i log2(p) + s)

• size(xi) ≤ s size(||xi||∞) = O(is log2(p) + s2)

• size(public key) = size(xs) = O(s2 log2(p))

• encryption time = size(public key) = O(s2 log2(p))

• time(xi) = O(size(qi)
1+ǫ + size(xi−1)

1+ǫ + size(ǫi)) = O(size(xi−1)
1+ǫ) = O((is log2(p) +

s2)1+ǫ) ≤ O((s2log2(p)
1+ǫ))

• time(public key) =
∑

time(xi) = O((s3 log2(p))
1+ǫ)

• time(Ni = [Ni+1/qi]) = O(size(qi)
1+ǫ + size(Ni+1)

1+ǫ) = O(log2(p)
1+ǫ + size(xi+1m)1+ǫ) ≤

O(log2(p)
1+ǫ + size(s||xi+1||∞)1+ǫ) = O(i log2(p) + s)1+ǫ ≤ O((s log2(p))

1+ǫ)

• time(N0, . . . , Ns) = O(log2(p)s
2)1+ǫ.

• time(Oi = (Ni − qiNi−1)) = O(time(Ni))

• time(N0, . . . , Ns, O1, . . . , Os) = time(N0, . . . , Ns) = O(log2(p)s
2)1+ǫ

To solve the linear ǫm = O with ǫ = MσLUNMτ . we first suppose that ǫ = U (ie. Mσ =
L = N = Mτ = Id). The entries e in ǫ and O satisfy size(e) = O(log2(p)). Since ǫ = U
is triangular, solving the system takes a time τ = O(s2 log2(p))

1+ǫ. We have time(decryption) =
time(N1, . . . , Ns, O1, . . . , Os, solving(ǫ.m = O)), thus the decryption takes O(s2 log2(p))

1+ǫ operations.
Since inverting Mσ, L,N,Mτ require O(s2) operations, replacing ǫ = U by ǫ = MσLUNMτ does not
change the complexity.

Remark 10. • These theoretical results are consistent with the experimental results of the intro-
duction.

2 Second system

2.1 Description of the system

Since the size of the key is a bit large, we propose a second system to reduce the size of the key.
The implicit one way function is the same as before. We only change the private key and take a
superincreasing sequence instead of an invertible matrix.

• List of parameters:M, s ∈ N, ǫ ∈ Ns, p1, q1 ∈ N, x0 ∈M1×s(N), a permutation σ of {1, . . . , s}

9

• Message to be transmitted: a column vector m ∈ {0, 1, . . . ,M − 1}s.

• Private key:

• A permutation σ of {1, . . . , s}

• A row matrix ǫ ∈ M1×s(N) such that the sequence ǫσ(1), . . . , ǫσ(s) is a superincreasing se-
quence.

• A positive rational number λ1 = p1

q1
, such that (M − 1)λ1||ǫ||1 < 1.

• Construction: Choose a random row vector x0 ∈ Ns. Define the row vector x1 by x1 = q1x0+p1ǫ.

• Public key: x1

• Cyphered message: x1m ∈ N.

Notation 11. We denote by C the cyphering function {0, 1, . . . ,M − 1}s → N, m 7→ C(m) = x1.m

Proposition 12. The function C is injective.

It suffices to explain how to decypher to prove the proposition. We define N1, N0, and O as follows

• N1 = C(m) = x1m

• N0 = [N1

q1
]

• O = (N1 − q1N0)/p1.

• Let N be the column vector with entries N0, N1.

• Let X be the matrix with rows x0, x1.

The same proof as for proposition 6 shows:

Proposition 13. The initial message m verifies Xm = N , ǫm = O.

Now, since ǫσ(i) is a superincreasing sequence, the map m 7→ ǫm is injective and the formula to
decypher m expresses mσ(i) by decreasing induction on i ≤ s.

Proposition 14. • mσ(s) = 1 if O ≥ ǫσ(s) and mσ(s) = 0 otherwise

• mσ(i) = 1 if O −
∑

j>i ǫσ(j)mσ(j) ≥ ǫσ(i) and 0 otherwise.

2.2 Suggestion for the choice of the parameters

The parameters s and p depend on the required level of security and the other parameters are constant
or functions of s and p.

Variant 1. Choose:

• ǫσ(1) ∈ [0, p[, ǫσ(2) ∈ [p, 2p[, . . . , ǫσ(s) ∈ [(2s−1 − 1)p, 2s−1p[(uniform law)

• x0 in [0, p] (uniform law)

• p1 = 1, M = 2

• q1 ∈ [2sp, 2s+1p] (uniform law)

Variant 2. Choose

• x0 in [0, 2s] (uniform law)

• the other parameters as above.

2.3 Complexity results

As before, we suppose that the parameters s and p satisfy s = o(p). For the parameters chosen as in
variant 1, we have:

Theorem 15. Size of the public key x1: O(s2 + s log2(p))
Size of the private key : O(s2 + s log2(p))

10

Encryption time: O(s2 + s log2(p))
Decryption time: O(s2 + log2(p)

1+ǫ)
Time to create the public key: O(s2 + log2(p)1+ǫ)
Density of the knapsack associated with xs:

1

1+ 2
s
+

2 log2(p)
s

).

For the parameters chosen as in variant 2, we have:

Theorem 16. Size of the public key x1: O(s2 log2(p))
Size of the private key : O(s2 + s log2(p))
Encryption time: O(s2 + s log2(p))
Decryption time: O(s2 + log2(p)

1+ǫ)
Time needed to create the public key: O(s2 + s log2(p))
Density of the knapsack associated with xs:

1

2+ 2
s
+

log2(p)
s

).

For brevity, we include the proof only for variant 1. Proof. (for variant 1).

• ||x1 = q1x0 + ǫ||∞ ≤ 2s+1p||x0||∞ + ||ǫ||∞ ≤ 2s+1p2 + 2s−1p < 2s+2p2

• size(public key) = size(x1) ≤ s size(||x1||∞) = O(s2 + s log2(p)).

• size(ǫ) ≤ s log2(p) + 1 + 2 + · · · + (s− 1) = O(s2 + s log2(p)).

• size(q1) = O(s+ log2(p))

• size(x0) = O(log2(p))

• size(σ) = O(s log2(s))

• size(private key) = size(x0, q1, ǫ, σ) = O(s2 + s log2(p)).

• encryption time = size(public key) = O(s2 + s log2(p))

• size(N1) ≤ log2(s||x1||∞) = O(s+ log2(p)).

• time(N0) ≤ O(size(N1)
1+ǫ + size(q1)

1+ǫ) = O(s1+ǫ + log2(p)
1+ǫ)

• N0 ≤ N1

q1
≤ 2s+2sp2

2sp = 4sp

• size(N0) = O(log2(s) + log2(p)).

• time(O) = O(size(N1) + size(q1)
1+ǫ + size(N0)

1+ǫ) = O(s1+ǫ + log2(p)
1+ǫ) since s ≤ p.

• O −
∑

j>i ǫσ(j)mσ(j) ≤
∑

j≤i ǫσ(j) ≤ p+ 2p+ · · · + 2i−1p < 2ip.

• time(mσ(i) in proposition 14) = size(O −
∑

j>i ǫσ(j)mσ(j)) = O(i+ log2(p))

• time(m) =
∑s

i=1 time(mσ(i)) = O(s log2(p) + 1 + 2 + · · · + s) = O(s log2(p) + s2).

• decryptiontime = time(N0, O,m) = O(s2 + log2(p)
1+ǫ).

• time(public key) = time(q1x0+ǫ) = O(time(ǫ)+time(q1)+time(x0)+size(q1)
1+ǫ+size(x0)

1+ǫ+
size(ǫ)) = O(size(q1)

1+ǫ + size(x0)
1+ǫ + size(ǫ)) since time(ǫ) = O(size(ǫ)) and similarly for q1

and x0. Thus time(public key) = O(s2 + log2(p)
1+ǫ)

• density(knapsack) = s
log2(||x1||∞) >

s
s+2+2 log2(p) = 1

1+ 2
s
+

2 log2(p)
s

.

3 Third system

Two cryptosystems have been constructed so far. In the second system, the key is shorter than in the
first one, but the system could be less secure because of the superincreasing sequence.

This section presents a hybrid system, a compromise between the two previous systems. We still
use a superincreasing sequence to shorten the key as in the second system, but the matrix ǫ has several
lines as in the first system to hide more carefully the superincreasing sequence. Hopefully, this is a good
compromise between security and length of the key.

11

• List of parameters:M, s ∈ N, ǫ ∈ M2×s(N), p1, q1, p2, q2 ∈ N, x0 ∈ M1×s(N), σ a permutation of
{1, . . . , s}.

• Message to be transmitted: a column vector m ∈ {0, 1, . . . ,M − 1}s.

• private key:

• A permutation σ of {1, . . . , s}

• An invertible 2×smatrix ǫ with entries in N such that the row µ = ǫ2−ǫ1 is a superincreasing
sequence with respect to the permutation σ, ie. µσ(1), . . . , µσ(s) is a superincreasing sequence.

• Two positive rational numbers λi = pi

qi
, such that (M − 1)λi||ǫi|| < 1.

• Construction: Choose a random row vector x0 ∈ Ns. Define the row vectors x1,x2 by x1 =
q1x0 + p1ǫ1, x2 = q2x1 + p2ǫ2

• Public key: x2

• Cyphered message: N2 = x2m ∈ N.

To decypher, we define N1, N0 and O2, O1 as before, and ω = O2 −O1:

• Compute N1 and N0 with the formula Ni−1 = [Ni

qi
].

• Compute Oi = (Ni − qiNi−1)/pi.

• Compute ω = O2 −O1

• Let N =

N0

N1

N2.

 ∈M3×1(N) and X =

x0

x1

x2

 ∈M3×s(N)

The same proof as for proposition 6 shows:

Proposition 17. The initial message m verifies Xm = N , ǫm = O, µm = ω.

Now, since µ is a superincreasing sequence, the mapm 7→ µm is injective and the formula to decypher
is as in proposition 14.

4 Security results

In this section, we analyse the security of the second cryptographic system (section 2). We concentrate
our attention on this system because it is the easiest system to attack: the key is short and no special
effort has been done to hide the superincreasing sequence.

We recall the notations. The private key is q, ǫ1, . . . , ǫn, x0, σ where x0 = (v1, . . . , vs), ǫσ(i) is a
superincreasing sequence and

∑s
i=1 ǫi < q. The public key is x1 = (w1, . . . , ws) where wi = qvi + ǫi.

Obviously, ǫi = wi − [wi

q], and σ is determined by ǫ. In other words, the whole private key is
determined by q. We thus call q the private key.

4.1 Unicity of the pseudo-key

It is not necessary to find the private key q to cryptanalyse. Any number q′ with the same properties
as q would do the job. We call such a number a pseudo-key. Explicitly, in our context, a pseudo-key
is an integer q′ such that the numbers v′i, ri defined by the euclidean divisions wi = q′v′i + ri verify
∑s

i=1 ri < q′ and (ri) is a superincreasing sequence up to permutation.
If there are many pseudo-keys, it is easier to attack the system. For instance, in the Merkell-Hellman

modular knapsack cryptanalysed by Shamir-Adleman, there were many pseudo-keys. The strategy of
Shamir was to find a pseudo-key.

The experiments made on our cryptosystem show that usually the pseudo-key is unique. We chose
random instances of the parameters and we count the percentage of cases where the pseudo-key is unique.
Those results suggest that when s > 200, which are the cases considered in practice, the pseudo-key
should be unique and equal to the private key with high probability.

12

Proposition 18. Consider the second cryptosystem, variant 2. The results of the experiments are as
follows.

• s = 5, 20 < p < 35, the pseudo-key is unique in 2 % of the cases.

• s = 6, 30 < p < 45, the pseudo-key is unique in 46 % of the cases.

• s = 7, 30 < p < 45, the pseudo- key is unique in 79 % of the cases.

• s = 8, 40 < p < 55, the pseudo-key is unique in 96 % of the cases.

Besides this computation, we want to explain why we expect a unique pseudo-key when s is large
enough.

For a fixed q′, the rests ri = wi mod q′ are numbers between 0 . . . q′ − 1. In the absence of relation
between wi and q′, these rests are expected to follow a uniform law of repartition in {0, . . . , q′ − 1}.
Of course the exact law of ri = wi mod q′ depend on the law of wi (hence of the law of q, vi, ǫi as
wi = qvi + ǫi) and of the choice of q′, but a uniform law is an approximation for the law of ri.

If one accepts this approximation, the next proposition is an estimation of the probability to find a
q such that the sum of the rests is bounded by q, as required for a pseudo-key.

Proposition 19. Let q ≥ 2. Consider the rests r1(q), . . . , rs(q) where ri(q) = wi mod q. Suppose that
r1(q), . . . , rs(q) follow independant uniform laws with values in {0, . . . , q − 1}. The probability P that
∑s

i=1 ri(q) ≤ q − 1 satisfies P ≤ (3
4)s−1

Lemma 20. Let a1 ≥ a2 ≥ · · · ≥ an and p1 ≤ p2 ≤ · · · ≤ pn. Then n
∑n

i=1 aipi ≤ (
∑n

i=1 ai)(
∑n

i=1 pi).

Proof. of the lemma (
∑n

i=1 ai)(
∑n

i=1 pi)−n
∑n

i=1 aipi =
∑n

i=1 aipi+
∑i=n

i=1 ai

∑k=n
k=1,k 6=i pk−

∑n
i=1 aipi−

(n− 1)
∑n

i=1 aipi =
∑n

i=1

∑k=n
k=1,k 6=i ai(pk − pi) =

∑

1≤i<k≤n(ai − ak)(pk − pi) ≥ 0.

Proof. of proposition 19 We have P (ri(q) = k) = 1
q for every k ∈ {0, . . . , q−1}. For 0 ≤ r ≤ q−1, denote

by Pq,s,r the probability that
∑s

i=1 ri(q) = r. We show by induction on s ≥ 1 that Pq,s,0 ≤ Pq,s,1 · · · ≤

Pq,s,q−1 and that
∑r=q−1

r=0 Pq,s,r ≤ (3
4)s−1. This is obvious for s = 1. Note that Pq,s,r =

Pr
k=0 Pq,s−1,k

q .

In particular,
∑r=q−1

r=0 Pq,s,r =
qPq,s−1,0+(q−1)Pq,s−1,1+···+Pq,s−1,q−1

q ≤ q+1
2

Pq,s−1,0+···+Pq,s−1,q−1

q by the

lemma. Now the induction implies that the right hand side of the inequality is bounded by q+1
2q (3

4)s−2 ≤

(3
4)s−1 for q ≥ 2.

Proposition 21. Let s ∈ N be a fixed number and t >> s. Let Sst the number of superincreasing
sequences r1, . . . , rs with sum t and Cst the number of sequences with sum t. Then Cst

Sst
is asymptotically

equal to 1

2
s(s−1)

2

when t tends to infinity.

Proof. The number of sequences r1, . . . , rs with sum t is
(

t+s−1
s−1

)

and is equivalent to ts−1

s−1! . Remark

that Sst =
∑i=[p/2]

i=1 Ss−1 i. By induction on s, Sst is equivalent to ts−1

(s−1)!2
s(s−1)

2

.

Summing up the situation, a number q is a pseudo-key if the sum of the rests ri(q) is less than q and
if these rests form a superincreasing sequence. By proposition 19, the probability for the first condition
is less than (3

4)s−1. And by proposition 21, the probability that the second condition is satisfied is
around 1

2
s(s−1)

2

.

In particular we expect a unique pseudo key q when the number of possible values for q is asymp-

totically dominated by (4
3)s−12

s(s−1)
2 . This is the case for the second system we have constructed with

the suggested choices of parameters and this gives an explanation to the results of proposition 18.

13

This is only a heuristic argument (there could be obvious pseudo-keys associated to the private key
q, for instance q − 1, q + 1 or 2q). However, the general picture is that the unicity of the pseudo-key
verified empirically in proposition 18 should be easy to reproduce with other families and other choices
of parameters.

4.2 Finding a pseudo-key is as difficult as factorising an integer

In this section, we show that the problem of finding the exact value of the private key q is as difficult as
factorizing a integer n, product of two primes. More precisely, we show that an easier problem (finding
a pseudo-key with the help of some extra-information) is as difficult as the factorisation of n, in the
sense of a probabilistic reduction.

There are several problems, depending on whether one wants to compute one key or all keys, and
depending on the information given as input.

• Input of problem 1: the public key w1, . . . , ws. Problem 1: compute all the pseudo-keys q

• Input of problem 2: the public key w1, . . . , ws. Problem 2: compute one pseudo-key q

• Input of problem 3: the public key w1, . . . , ws and integers r1 < · · · < rs−1, a range [a, b]. Problem
3: compute all pseudo-keys q such that the rests of the divisions wi = qvi + ǫi, satisfy ǫi = ri for
0 < i < s and ǫs ∈ [a, b].

• Input of problem 4: the public key w1, . . . , ws and integers r1 < · · · < rs−1, a range [a, b]. Problem
4: compute one pseudo-key q such that the rests of the divisions wi = qvi + ǫi, satisfy ǫi = ri for
0 < i < s and ǫs ∈ [a, b].

Obviously, it is more difficult to find all the keys than to find one key, and the problem is easier when more
information is given as input, as long as the definition of “more difficult” is sensible (polynomial time
reduction, probabilistic polynomial time reduction ...). In particular, if > stands for “more difficult”
then problem 1 > problem 2, and problem 1 > problem 3 > problem 4 in the above list. There is
no proven relation beween problem 2 and problem 4. However, when the pseudo-key is unique, then
problem 1 = problem 2 and the easiest problem in the list is Problem 4. The previous section explained
why the pseudo-key is unique for many cryptosystems. Thus the security of the system relies on the
difficulty to solve Problem 4. We show that solving Problem 4 is as difficult as factorising a product of
two primes.

• Input of problem 5: an integer n which is a product of two primes. Problem 5: Find the factors
p, q of n.

Theorem 22. If it is possible to solve Problem 4 in polynomial time (with respect to the length of
the input data), then ∀η > 0, it is possible to solve Problem 5 in polynomial time with a probability of
success at least 1 − η.

Proof. Let n be an integer. We make a polynomial time probabilistic reduction to Problem 4 to get
the factorisation of n = pq.

Choose any superincreasing sequence 0 < r1 < · · · < rs−1. First, try to divide n by all elements q
with 1 < q ≤ 3

∑s−1
i=1 ri. If this doesn’t succeed, then all the divisors q of n satisfy q > 3

∑s−1
i=1 ri.

Let wi = n + ri for 1 ≤ i ≤ s − 1. Let r be an integer such that (2
3)r < η. Let ws1, . . . , wsr be

integers chosen randomly in the range]n
2 , n[. With these r numbers, we consider r problems P1, . . . , Pr.

The problem Pk is Problem 4 with input w1, . . . , ws−1, wsk, r1, . . . , rs−1, a = 0, b = [n
2].

Let q be a proper divisor of n = pq. It satisfies q > 3
∑i=s−1

i=1 ri. Thus, for each k, there is a probability

x > 1
3 that wsk mod q satisfies

∑s−1
i=1 ri < wsk mod q < q. Remark that (1 − x)r < (2

3)r < η. Then,
with probability at least (1 − η), among the r random choices ws1, . . . , wsr for ws, one of them wsk

satisfies
∑s−1

i=1 ri < wsk mod q < q. We denote by (∗) this condition. To conclude, it suffices to show
that one can find a factorisation of n in polynomial time when (∗) is satisfied.

14

We thus suppose that one problem Pk in the list P1, . . . , Pr satisfies the condition (∗). Since ri < q,
the equality wi = qp+ ri is the euclidean division of wi by q when 0 < i < s. Since the rest ǫsk of the
division wsk = q[wsk/q] + ǫsk satisfies ǫsk >

∑s−1
i=1 ri and ǫsk < q ≤ n

2 , it follows that a proper divisor q
of n is a solution to problem Pk.

Reciprocally, a solution q of Pk is a divisor of n different from 1 since w1 mod q = r1. This divisor
of n is not n since the condition ǫsk ∈ [a, b] is not satisfied for q = n. Thus a polynomial time algorithm
that solves Problem 4 returns a strict divisor q of n when applied to Pk. Hence the factorisation of n
in polynomial time.

A priori, we don’t know which problem Pk satisfies (∗) in the list P1, . . . , Pr. We thus run a multi-
threaded algorithm which tries to solve in parallel the problems P1, . . . , Pr and which stops as soon as
it finds a solution for one problem.

4.3 Comparing LLL attacks on x0 and x1

The previous sections have explored the security of the key. It remains to analyse the security of the
system with respect to heuristic attacks. As most heuristic attacks of knapsack cryptosystems rely on
variants of the LLL algorithm, we analyse the security of the system for LLL-based heuristic attacks.

The knapsack problem is NP-complete and experiments show that the heuristic attacks fail when
the encryption is done with a well chosen general key x0. In our system, the encryption is realised with
a key x1 = qx0 + ǫ which is a modification of x0, and it could happen that the key x1 is less secure than
x0. Thus we look for a security result asserting that the key x1 is as secure as x0 for LLL-attacks.

The key x1 could be weaker than x0 for two reasons:

• the heuristic algorithm used to break the system could perform faster for a message encrypted
with x1 than with a message encrypted with x0

• The heuristic could fail for a message encrypted with x0 but could succeed for the same message
encrypted using x1.

We fix an algorithm to attack the ciphertexts. To measure the speed of the algorithm, we denote
by n(N) the number of steps of the algorithm when the attack is run on the ciphertext N . To measure
the probability of success of the algorithm, we introduce the symbol R(N) which is the result of the
attack (R(N) = m if the attack succeeds and recovers the plain text message m, R(N) = FAILURE
otherwise). As the algorithm depends on a matrix M chosen randomly in the unit ball B(1), the precise
notations are nM (N) and RM (N).

The two keys x0 and x1 yield two ciphertexts N0 and N1. The following theorem says that the key
x1 = qx0 + ǫ is as secure as x0 both from speed consideration and probability of success of the attack.
Both the numbers of steps n and the returned message R are unchanged when replacing x0 with x1

provided that two conditions are satisfied: the matrix M must live in a dense open subset and ||ǫ||
|q|

must be small enough. These two conditions are compatible with the practice: M is chosen randomly

and falls with high probability in a dense open subset and ||ǫ||
|q| is small by the very construction of our

cryptosystem.

Theorem 23. ∀m, ∀x0, there exists a dense open subset V ⊂ B(1), there exists η > 0 such that ∀M ∈ V ,

∀x1 = qx0 + ǫ with ||ǫ||
|q| < η:

• nM (N0) = nM (N1)

• RM (N0) = RM (N1).

The key arguments of our proof are as follows:

• The elements x1 and x0 are close as points of the projective space

• The LLL algorithm can be factorized to give an action on the projective level

15

• The number of steps in the algorithm and the result of the algorithm are functions of the input
which are locally constant on a dense open subset. In particular, replacing x0 with x1 does not
change the number of steps and the result when x0 and x1 are sufficiently close.

Though the algorithm required for the attack is fixed, its precise form is not important. The key point
is that it relies on the LLL algorithm and that the additional data M required to run the algorithm is
chosen randomly. Similar theorems can be obtained with other heuristics relying on the LLL algorithm.
Thus, besides the precise attack considered, our theorem suggests that replacing the public key x0 with
x1 does not expose our system to LLL-based attacks.

4.3.1 The LLL-algorithm

This section shows that the output of the LLL-algorithm depends continuously of the input when the
input takes value in a dense open subset.

This is not clear a priori, since the operations performed during the LLL algorithm include non
continuous functions (integer parts). We introduce a class of algorithms that we call analytic. The
LLL algorithm is an analytic algorithm. Analytic algorithms can include non continuous functions in
the process but their output depends continuously (in fact analytically) of the input when the input is
general enough.

Recall that the LLL algorithm takes for input a basis (b1, . . . , bn) of a lattice L ⊂ Rm and computes
a reduced basis (c1, . . . , cn). We refer to [6] for details.

Definition 24. Consider an algorithm which makes operations on a datum D ∈ U where U ⊂ Rn is an
open set (each step of the algorithm is a modification of the value of the datum D). Suppose that the
algorithm is defined by a number of states 0, 1, . . . , s and for each state i by:

• a function fi : U → R

• two functions T+
i : U → U and T−

i : U → U

• two integers i+ and i− in {0, . . . , s}.

The algorithm starts in state 1 with datum D the input of the algorithm. If the algorithm is in state i,
the datum is D and fi(D) > 0 (resp. fi(D) ≤ 0), then it goes to state i+ (resp. i−) with the datum
T+

i (D) (resp. T−
i (D)). The algorithm terminates in state 0 and returns the value of the datum D when

it terminates. By convention, we put 0+ = 0− = 0, T+
0 = T−

0 = IdentityU , f0 = 1.
The algorithm is called analytic if:

• the test functions fi : U → R are analytic

• the transformation functions T+
i : U → U and T−

i : U → U are analytic on a dense open subset
Ui ⊂ U such that Vi = U \ Ui is a closed analytic subset

• For every D in U , the algorithm terminates.

Proposition 25. The LLL alogorithm is analytic.

Proof. We use the description of the algorithm described in [6], page 119. The datum D handled
by the algorithm is a basis (b1, . . . , bn) of a lattice L. It takes values in the open subset U ⊂ (Rm)n

parametrising the n-tuples of linearly independent vectors. All the tests functions fi which appear in
the algorithm of [6] are analytic (they are even algebraic functions on U). All the functions involved in
the handling of the basis bi (which correspond to our functions T+

i and T−
i) are algebraic too, except

for an integer part [x] which is analytic on the dense open set x /∈ N.

Theorem 26. Let A : U → U be the output function associated to an analytic algorithm ie. for D ∈ U ,
the value of A(D) is the output of an analytic algorithm with input D. Then there exists a dense open
subset V ⊂ U such that

• A : V → U is analytic

16

• the number of steps to compute the output A(D) is locally constant for D ∈ V .

Proof. We keep the notations of definition 24. In particular, the algorithm starts in state 1 and ends
in state 0. A sign function ǫ of length length(ǫ) = k is by definition a function ǫ : {1, . . . , k} 7→ {+,−}.
We associate to any sign function of length k a finite sequence n0(ǫ), . . . , nk(ǫ) constructed with the
integers i+ and i− of the analytic algorithm. Explicitly n0(ǫ) = 1, n1(ǫ) = n0(ǫ)

ǫ(1), . . . , nk(ǫ) =
nk−1(ǫ)

ǫ(k). We use below the notation ni instead of ni(ǫ) to shorten the notation. Let Aǫ : U → U ,

Aǫ = T
ǫ(k)
nk−1 ◦ · · · ◦ T

ǫ(2)
n1 ◦ T

ǫ(1)
n0 . Let gǫ : U → R, gǫ = fnk

◦Aǫ. We define by induction on k = length(ǫ)
a set Wǫ such that

• Wǫ ⊂ U is an open inclusion

• Aǫ : Wǫ → U is analytic.

• D ∈ Wǫ ⇒ the successive states s0, . . . , sk of the algorithm A applied with input D are s0 =
n0(ǫ) = 1, s1 = n1(ǫ),. . . ,sk = nk(ǫ). Moreover, the value of the datum after the algorithm arrives
in state nk(ǫ) is Aǫ(D).

• ∪length(ǫ)=kWǫ is dense in U .

We start the induction with k = 0, using the convention that there is a unique function ǫ defined on a set
with k = 0 element and that Aǫ = Id. Then Wǫ = U obviously satisfies the list of required conditions.

Let now k > 0. Let τ : {1, . . . , k − 1} 7→ {+,−} be the restriction of ǫ to {1, . . . , k − 1}.
Let Wτ+ = Wτ ∩ {D ∈ U, gτ(D) > 0} ∩ (Aτ)−1(Unk−1

) where Unk−1
is the open subset of U where

T+
nk−1

and T−
nk−1

are analytic. Similarly, let Wτ− = Wτ ∩ {D ∈ U, gτ (D) < 0} ∩ (Aτ)−1(Unk−1
). The

disjoint union Wτ+

∐

Wτ− is dense in Wτ since the difference is included in the closed analytic subset
(gτ = 0) ∪A−1

τ (U − Unk−1
).

Let Wǫ = Wτ+ if ǫ(k) = + and Wǫ = Wτ− if ǫ(k) = −. Since Wτ+ ∪Wτ− is dense in Wτ and since
∪length(τ)=k−1Wτ is dense in U by induction, we obtain the density of ∪length(ǫ)=kWǫ in U .

The other claims of the list are satisfied by construction.
Let Wk = ∪ǫ of length kWǫ. The intersection V = ∩k≥0Wk is equal to the disjoint union

∐

k,ǫ,length(ǫ)=k, nk=0,nk−1 6=0

Wǫ.

The set V is open as a union of open sets, and it is dense in U by Baire’s theorem. On each open subset
Wǫ appearing in the disjoint union, the algorithm applied to D returns Aǫ(D) which is analytic and the
number of steps of the algorithm is length(ǫ), thus it is constant on each open set of the disjoint union.

Proposition 27. Let b1, . . . , bn be a basis of a lattice L ⊂ Rm, m ≥ n. Let (c1, . . . , cn) =
LLL(b1, . . . , bn) be the reduced basis computed by the LLL algorithm. There exists a dense open subset
U ⊂ (Rm)n such that

• U 7→ (Rm)n, (bi) 7→ (ci) is continuous.

• U → N, (bi) 7→number of steps of the LLL-algorithm is locally constant.

Proof. Follows from proposition 25 and theorem 26.

Corollary 28. Let ψ : U → SLn(Z), (b1, . . . , bn) 7→ M such that

c1
. . .
cn

 = M

b1
. . .
bn

 is locally

constant.

Proof. The map is continuous with values a discrete set.

17

4.3.2 The heuristic attack

Let w1, . . . , ws ∈ N be a public key. Let m ∈ {0, 1}s be a plaintext message and N =
∑s

i=1miwi be the
associated ciphertext. The following attack is well known.
Heuristic Attack 1.

• Choose λ = 2−2smin(wi)

• Apply the LLL algorithm to the lattice generated by the rows bi of the matrix D =

λ 0 . . . 0 w1

0 λ . . . 0 w2

.
0 0 . . . λ ws

0 0 0 0 N

. Any vector ci of the reduced basis is a linear combination:

ci =
∑j=s+1

j=1 rijbj
• For each vector ci of the reduced basis, check if the set rij , j ≤ s (or −rij) is equal to m (ie. check

if rij = 0 or 1, and if
∑j=s

j=1 rijwj = N)

In the above attack, the precise value of the coefficients of the matrix D is not important. The
precise shape of D has been chosen to speed-up the computations and simplify the presentation, but is
not required by theoretical considerations. The attack could start with any invertible matrix whose s
first columns contain small numbers and whose last column is close to the last column of D. Thus the
following attack is more general and natural.
Heuristic attack 2.

• Choose λ = 2−2smin(wi)

• Choose coefficients mij , i, j ≤ s+ 1 with |mij | ≤ 1. Let M = (mij) be the corresponding matrix.

• Let X =

0 0 . . . 0 w1

0 0 . . . 0 w2

.
0 0 . . . 0 ws

0 0 0 0 N

. Apply the LLL algorithm to the lattice generated by the

rows bi of the matrix

D = X + λM =

λm11 . . . λm1s w1 + λm1,s+1

λm21 . . . λm2s w2 + λm2,s+1

.
λms1 . . . λmss ws + λms,s+1

λms+1,1 λms+1,s N + λms+1,s+1

.

Any vector ci of the reduced basis is a linear combination: ci =
∑j=s+1

j=1 rijbj and the coefficients
rij can be computed during the LLL algorithm.

• For each vector ci of the reduced basis, check if the set rij , j ≤ s or −rij , j ≤ s is equal to m.

4.3.3 Proof of the theorem

Consider a plain text message m. It can be encrypted with the generic key x0 = (v1, . . . , vs) or with the
key x1 = qx0 + ǫ = (w1, . . . , ws). The two ciphertexts associated with the keys x0 and x1 are denoted
by N0 and N1.

We compare below how these two encryptions resist to “Heuristic attack 2” presented above. For
this algorithm, we need a random matrix M in the unit ball B(1). Recall that we called nM (N) the
number of steps of the algorithm when the attack is done on the ciphertext N . Similarly, we defined
RM (N) to be the result of the attack (RM (N) = m if the attack recovers the plain text message m and
RM (N) = FAILURE otherwise).

18

Theorem 29. ∀m, ∀x0, there exists a dense open subset V ⊂ B(1), there exists η > 0 such that ∀M ∈ V ,

∀x1 = qx0 + ǫ with ||ǫ||
|q| < η:

• nM (N0) = nM (N1)

• RM (N0) = RM (N1).

Proof. We keep the notations X,λ,D = X + λM introduced in the description of the attack. These
data depend on the public key x = (wi). We denote by X0, λ0, D0 and X1, λ1, D1 these data for the
keys x0 and x1.

If C(ǫ, q) is the matrix defined by X1 = q(X0 + C(ǫ, q)), then C(ǫ, q)) → 0 when ||ǫ||
|q| → 0.

If M is a matrix with lines b1, . . . , bs, and if (c1, . . . , cs) = LLL(b1, . . . , bs) is the reduced basis
computed by the LLL-algorithm, we adopt a matrix notation and we denote by LLL(M) the matrix
with lines c1, . . . , cs. We denote by ψ(M) the matrix that gives the base change ie. LLL(M) = ψ(M).M .
Finally, we denote by n(M) the number of steps to perform the LLL-algorithm on the lines of M .

According to proposition 27 and corollary 28, there exists a dense open subset U where LLL is
continuous and where n and ψ are locally constant.

Let V = U−X0

λ0
∩B(1). Thus V is a dense open subset in B(1) where the map ψ0 : M 7→ ψ(D0(M))

is continuous. Moreover, the number of steps of the algorithm which computes ψ0 is locally constant on
V .

The analysis of the LLL algorithm given in [6] shows that it is a “projective algorithm” ie, in symbols:
if ρ ∈ R, we have LLL(ρM) = ρLLL(M), ψ(ρM) = ψ(M) and n(ρM) = n(M).

By definition of the attack considered, the result RM (Ni) of the attack is a function of the coefficients
rij which appear in the matrix ψ(Di(M)). In particular, if ψ(D0(M)) = ψ(D1(M)), then RM (N0) =
RM (N1).

ψ(D1(M)) = ψ(q(X0 + C(ǫ, q)) + λ1M) = ψ(X0 + C(ǫ, q) + λ1M
q) = ψ(X0 + λ0(

λ1M
qλ0

+ C(ǫ,q)
λ0

)) =

ψ0(
λ1M
qλ0

+ C(ǫ,q)
λ0

). When ||ǫ||
|q| → 0, the argument of ψ0 tends to M . Since M is in the open set of

continuity of ψ0, and since ψ0 is locally constant, ψ0(
λ1M
qλ0

+ C(ǫ,q)
λ0

) = ψ0(M) = ψ(D0(M)) if ||ǫ||
|q| is

small enough.
Since n is locally constant too, one can do a similar reasoning with n instead of ψ to show that

nM (N0) = n(D0(M)) = n(D1(M)) = nM (N1).

References

[1] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986.

[2] E. F. Brickell and A. M. Odlyzko. Cryptanalysis: a survey of recent results. In Contemporary
cryptology, pages 501–540. IEEE, New York, 1992.

[3] Ernest F. Brickell. Breaking iterated knapsacks. In Advances in cryptology (Santa Barbara, Calif.,
1984), volume 196 of Lecture Notes in Comput. Sci., pages 342–358. Springer, Berlin, 1985.

[4] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction
problems. In Advances in cryptology—CRYPTO ’97 (Santa Barbara, CA, 1997), volume 1294 of
Lecture Notes in Comput. Sci., pages 112–131. Springer, Berlin, 1997.

[5] Donald E. Knuth. The art of computer programming. Vol. 2: Seminumerical algorithms. Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969.

19

[6] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of applied cryptography.
CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 1997.
With a foreword by Ronald L. Rivest.

[7] Ralph C. Merkle and Martin E. Hellman. Hiding information and signatures in trapdoor knapsacks.
In Secure communications and asymmetric cryptosystems, volume 69 of AAAS Sel. Sympos. Ser.,
pages 197–215. Westview, Boulder, CO, 1982.

[8] Phong Q. Nguyen and Jacques Stern. The two faces of lattices in cryptology. In Cryptography
and lattices (Providence, RI, 2001), volume 2146 of Lecture Notes in Comput. Sci., pages 146–180.
Springer, Berlin, 2001.

[9] A. M. Odlyzko. The rise and fall of knapsack cryptosystems. In Cryptology and computational
number theory (Boulder, CO, 1989), volume 42 of Proc. Sympos. Appl. Math., pages 75–88. Amer.
Math. Soc., Providence, RI, 1990.

[10] Adi Shamir. On the cryptocomplexity of knapsack systems. In Conference Record of the Eleventh
Annual ACM Symposium on Theory of Computing (Atlanta, Ga., 1979), pages 118–129. ACM,
New York, 1979.

[11] Adi Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. In
23rd annual symposium on foundations of computer science (Chicago, Ill., 1982), pages 145–152.
IEEE, New York, 1982.

[12] Serge Vaudenay. Cryptanalysis of the Chor-Rivest cryptosystem. In Advances in cryptology—
CRYPTO ’98 (Santa Barbara, CA, 1998), volume 1462 of Lecture Notes in Comput. Sci., pages
243–256. Springer, Berlin, 1998.

20

