
New Di�erential-Algebraic Attacks and
Reparametrization of Rainbow

Jintai Ding1, Bo-Yin Yang2, Chia-Hsin Owen Chen2, Ming-Shing Chen2, and
Chen-Mou Cheng3

1 Dept. of Mathematical Sciences, University of Cincinnati, USA, ding@math.uc.edu
2 IIS, Academia Sinica, Taiwan, [byyang,owenhsin,mschen]@iis.sinica.edu.tw

3 Dept. of Elec. Eng., Nat'l Taiwan University, Taiwan, ccheng@cc.ee.ntu.edu.tw
Abstract. A recently proposed class of multivariate Public-Key Cryp-
tosystems, the Rainbow-Like Digital Signature Schemes, in which succes-
sive sets of central variables are obtained from previous ones by solving
linear equations, seem to lead to e�cient schemes (TTS, TRMS, and
Rainbow) that perform well on systems of low computational resources.
Recently SFLASH (C∗−) was broken by Dubois, Fouque, Shamir, and
Stern via a di�erential attack. In this paper, we exhibit similar algebraic
and di�ential attacks, that will reduce published Rainbow-like schemes
below their security levels. We will also discuss how parameters for Rain-
bow and TTS schemes should be chosen for practical applications.
Keywords: rank, di�erential attack, algebraic attack, oil-and-vinegar

Note: This is an update to the paper to appear at ACNS 2008, New York

1 Outline
Multivariate Public-Key Cryptosystems (MPKCs, or trapdoorMQ schemes) are
cryptosystems for which the public key is a set of polynomials P = (p1, . . . , pm)
in variables x = (x1, . . . , xn) where all variables and coe�cients are in K =
GF(q). In practice this is always accomplished via

P : w = (w1, . . . , wn) ∈ Kn S7→ x = MSw+cS
Q7→ y T7→ z = MT y+cT = (z1, . . . , zm) ∈ Km

In any given scheme, the central map Q belongs to a certain class of quadratic
maps whose inverse can be computed relatively easily. The maps S, T are a�ne.
The polynomials giving yi in x are called the central polynomials, and the xj

are called the central variables.
In 1999, the Unbalanced Oil-and-Vinegar multivariate structure is proposed

by Patarin et al [16]. Lately the Rainbow class of signatures [7,20,25], based on
repeated applications of the Unbalanced Oil-and-Vinegar principle, shows some
promise on systems of low computational resources.

Given that the well-known C∗− class of signature schemes including SFLASH
was broken by di�erential attacks [8], we examine similar attacks on Rainbow,
with the following conclusions:

� Di�erentials improve on the High-Rank attacks on Rainbow-like systems.

2 J. Ding, B.-Y. Yang, Owen Chen, M.-S. Chen, and C.-M. Cheng

� Di�erentials also helps with randomized brute-force searches for S and T .
� We can assess how Rainbow-like schemes needs to be amended in view of

recent developments.
� The results are in line with experiments run on small scale systems.

In Sec. 2 we recap Rainbow-like multivariates and what is known about the secu-
rity of MPKC before the appearance of Rainbow in Sec. 3. In Sec. 4, we describe
the new di�erential attack, which is related to the high-rank attack, and in Sec. 5
we present new paramters for Rainbow construction, we tabulate what we know
about the security of Rainbow-like schemes, in particular, the security against
the two new recent attacks specially targeted against the Rainbow schemes, and
we design schemes with new parameters for practical applications. Finally, in
Sec. 6, we present the conclusion.

2 Rainbow-like Multivariate Signatures

We characterize a Rainbow type PKC with u stages:

� The segment structure is given by a sequence 0 < v1 < v2 < · · · < vu+1 = n.
For l = 1, . . . , u + 1, set Sl := {1, 2, . . . , vl} so that |Sl| = vl and S0 ⊂ S1 ⊂
· · · ⊂ Su+1 = S.

� Denote by ol := vl+1 − vl and Ol := Sl+1 \ Sl (i.e., vl < k ≤ vl+1 if k ∈ Ol)
for l = 1 · · ·u. The central map Q : x = (x1, . . . , xn) 7→ y = (yv1+1, . . . , yn),
where each yi := qi(x) is a quadratic polynomial in x of the following form

qk =
∑

i<j≤vl

α
(k)
ij xixj +

∑

i≤vl<j<vl+1

α
(k)
ij xixj +

∑

i<vl+1

β
(k)
i xi, if vl < k ≤ vl+1.

In every qk, k ∈ Ol, there is no cross-term xixj where both i and j are in
Ol at all. So given all the yi with vl < i ≤ vl+1, and all the xj with j ≤ vl,
we can compute xvl+1, . . . , xvl+1 .

� To expedite computations, some coe�cients αijk's may be �xed (e.g., set to
zero), chosen at random (and included in the private key), or be interrelated
in a predetermined manner.

� To invert Q, determine (usu. at random) x1, . . . xv1 , i.e., all xk, k ∈ S1. From
the components of y that corresponds to the polynomials qv1+1, . . . qv2 , we
obtain a set of o1 equations in the variables xk, (k ∈ O1). We may repeat
the process to �nd all remaining variables.

In this form, we can see that Rainbow can only be a signature scheme. We
can see a good example of what can go wrong in [15] if we try to construct an
encryption scheme, where the initial vinegar variables is determined through an
initial block of equations.

New Di�erential-Algebraic Attacks and Reparametrization of Rainbow 3

Example 1. enTTS(20,28) of [25] has structure (8, 9, 1, 1, 9) and this central map:

yi = xi +
∑7

j=1 pijxjx8+(i+j mod 9), i = 8 · · · 16;
y17 = x17 + p17,1x1x6 + p17,2x2x5 + p17,3x3x4

+p17,4x9x16 + p17,5x10x15 + p17,6x11x14 + p17,7x12x13; (1)
y18 = x18 + p18,1x2x7 + p18,2x3x6 + p18,3x4x5

+p18,4x10x17 + p18,5x11x16 + p18,6x12x15 + p18,7x13x14;

yi = xi + pi,0xi−11xi−9 +
∑i−1

j=19 pi,j−18 x2(i−j)−(i mod 2) xj + pi,i−18x0xi

+
∑27

j=i+1 pi,j−18 xi−j+19 xj , i = 19 · · · 27.

If x0, . . . , x7 is decided, one can solve �rst for x8, . . . , x16, then x17, x18,
then x19, . . . , x27. Note: x0 does not appear until the last block, which will be
signi�cant later.

Example 2. The proposed Rainbow scheme in [7] is an essentially generic stage-
wise UOV construction with layers (6, 6, 5, 5, 11). The �rst six central equations is
a generic UOV construction with six vinegar (x1, . . . x6) and six oil (x7, . . . , x12)
variables; the next �ve has 12 vinegars and 5 oils (x13, . . . , x17); the next �ve
has 17 vinegars and 5 oils (x18, . . . , x22), and the last 11 has 22 vinegars and 11
oils (x23, . . . , x33).

Rainbow schemes where most of the crossterm coe�cients α
(k)
ij are zero are

said to be TTS instances. TTS schemes have a relatively small private key and
even better e�ciency, but may be exposed to additional risks. Regardless, the
same techniques that we shall describe below are security concerns for all schemes
of the rainbow type including TTS, TRMS, and Rainbow [7,20,25].

3 The Security of Multivariates and Prior Attacks
The name of the class came from the �Multivariate Quadratics� problem:
Problem MQ: Solve the system p1 = p2 = · · · = pm = 0, where each pi is a

quadratic polynomial in x = (x1, . . . , xn) and coe�cients and variables are
in K = GF(q).

Generic MQ is NP-hard [12], and consensus pegs it as a di�cult problem to
solve even probabilistically. However, to useMQ as the underlying hard problem
in a PKC, one need a trapdoor built into the public map P. So the security of
the cryptosystem also depends on the following:
Problem EIP: (Extended Isomorphism of Polynomials) Given a class of cen-

tral maps C and a map P expressible as P = T ◦ Q ◦ S, where Q ∈ C, and
S, T are a�ne, make such a decomposition.

There are two interesting twists here:
� If Q is constant, this is known as the IP problem. J.-C. Faugère showed that

in some cases simple IP is not NP-hard at Eurocrypt 2006 [11].

4 J. Ding, B.-Y. Yang, Owen Chen, M.-S. Chen, and C.-M. Cheng

� The EIP problem where C is the set of homogeneous quadratic maps is
easy [13]. Equivalently, if Q is homogeneous (e.g., as in SFLASH=C∗−) we
can set cS = cT = 0.

If Q fundamentally involves a map in a �eld L = Kk that is of a size signif-
icantly bigger than K, we call the scheme �big �eld� or �dual �eld�. This order
includes derivatives of Matsumoto-Imai (C∗) and Hidden Field Equations. Oth-
erwise we call the scheme a �true multivariate� (sometimes �single �eld�). This
includes the Unbalanced Oil-and-Vinegar and stagewise triangular structures.

One of the biggest concerns of multivariate cryptography is the lack of prov-
able security results. Today security in MPKC is still very much ad hoc. Proposed
schemes are evaluated against known attacks security estimates obtained for var-
ious parameters. The designers then tries to juggle the system parameters so as
to have some requisite security level under every known attack.

With that, we list the standard attacks known for MPKCs today:

1. Rank (or Low Rank, MinRank) attack, which �nds a central equation with
least rank [25].

Clow rank ≈
[
qrdm/nem(n2/2−m2/6)/µ

]
m.

Here as below, the unit m is a multiplications in K, and r is that lowest
rank (�MinRank�, [14]). µ is the number of linear combinations of central
equations [25] at that minimal rank.

2. Dual Rank (or High Rank) attack [5, 14], which �nds a variable appearing
the fewest number of times in a central equation cross-term. If this least
number is s, [25] gives

Chigh rank ≈
[
qsn3/6

]
m.

3. Oil-and-Vinegar Separation [16, 17, 22], which �nds an Oil subspace that is
su�ciently large (estimates as corrected in [25]).

CUOV ≈
[
qn−2o−1o4 + (some residual term bounded by o3qm−o/3)

]
m.

o is the max. oil set size, i.e., there is a set of o central variables which are
never multiplied together in the central equations, and no more.

4. Trying for a direct solution (i.e., going for theMQ as opposed to the EIP or
�structural� problem). Best known methods are the Lazard-Faugère family
of solvers (the Gröbner Bases methods F4-F5 or XL) whose complexities
[6, 9, 10, 24] are very hard to evaluate; some recent asymptotic formulas can
be found in [1, 2, 24].

4 New Di�erential attacks

One key point of our new attack is to use the di�erentials (�rst used, as far as
we know, with MPKC in [18] and recently to break SFLASH [8]).

New Di�erential-Algebraic Attacks and Reparametrization of Rainbow 5

Given the public key of a MPKC, which we denote as P(x), a set of quadratic
polynomials, its di�erential DP(x) is de�ned as

DP(x) = P(x + c)− P(x)− P(c),

a set of linear functions in x.
The key is to use the hidden structures in the di�erential to attack the

cryptosystem. The observation is that the di�erential can be used to improve
the old high-rank attack when there are too many variables that don't appear
in the �nal block of equations (for yi, where i ∈ Ou). First, we will reformulate
an existing attack in terms of the di�erentials.

Let Hi be the symmetric matrix corresponding to the quadratic part of zi(w).
Without loss of generality, we may let the fewest number of appearances of all
variables in the cross-terms of the central equations be the last variable xn

appearing s times.

Algorithm 0 (High or Dual Rank Attack) as described by Goubin-Courtois
and Yang-Chen [14,25]:

1. Compute the di�erential P(x+c)−P(x)−P(c) and take its j-th component
(which is bilinear in x and c) as cT Hjx. Hk is representing the quadratic
crossterms in the k-th polynomial of the public key. Note that the Hi are
always symmetric and if charK = 2, and xT Hix = 0.

2. Form an arbitrary linear combination H =
∑

i αiHi. Find V = kerH.
3. When dim V = 1, set (

∑
j λjHj)V = {0} and check if the solution set V̂ of

the (λi) form a subspace dimension m − s. Note: Since a matrix in Kn×n

can have at most n di�erent eigenvalues, less than n/q of the time we would
need to do this.

4. With probability q−s we have V = U = {x : x1 = · · · = xvu = 0}.
As each trial run consists of running an elimination and some testing, we can
realistically do this with ∼

(
sn2 + n3

6

)
qs �eld multiplications, by taking linear

combinations from only (s+1) of the matrices Hi and hope not to get too unlucky.
An upper bound is

[
mn2 + n3

6 + n
q (m3/3 + mn2)

]
qs.

The above formulation of the high rank attack is designed to defeat �plus�-
modi�ed Triangular systems. We �rst present some notations before describing
how we can improve this attack further:

Let Pl be the linear space of quadratic polynomials spanned by polynomials
of the form

∑

i∈Ol,j∈Sl

αi,jxixj +
∑

i,j∈Sl

αi,jxixj +
∑

i∈Sl+1

βixi + η

We can see that these are Oil and Vinegar type of polynomials such that xi,
i ∈ Ol are the Oil variables and xi, i ∈ Sl are the Vinegar variables. We call xi,
i ∈ Ol an l-th layer Oil variable and xi, i ∈ Sl an l-th layer Vinegar variable.

6 J. Ding, B.-Y. Yang, Owen Chen, M.-S. Chen, and C.-M. Cheng

We call any polynomial in Pl an l-th layer Oil and Vinegar polynomial. Clearly
we have Pi ⊂ Pj for i < j. Let Wi be the space of linear functions of variables
x1, ..., xvi

. Then we have

W1 ⊂ P1 ⊂ W2 ⊂ P2 · · · ⊂ Wu ⊂ Pu ⊂ Wu+1.

Now we present the new attack:

Algorithm 1 The Improved High-Rank Attack using di�erentials:

1. Pick random c, c′ ∈ Kn, compute P(w+c)−P(w)−P(c), and we will denote
its components as (t1, t2, . . . , tm). Similarly we compute (t′1, t

′
2, . . . , t

′
m) =

P(w + c′)− P(w)− P(c′), then

U = span(t1, t2, . . . , tm) ∩ span(t′1, t
′
2, . . . , t

′
m).

2. Guess at a linear form f ∈ U ; �nd coe�cients ai and a′i such that f =∑
aiti =

∑
a′it

′
i.

3. Use ai and a′i as the guessed αi in the High Rank Attack (Algorithm 0) above.

Proposition 1. The expected complexity of Algorithm 1 is ∼ qd·(cubic-time elimination)
where (the last block of equations is the ones whose solutions gives Ou)

d ≤ s− [# vars appearing in crossterms only in the last block]. (2)

Proof. Let
F = (F1, . . . , Fm) = Q ◦ S

be the mapping from x 7→ z. Let

F (x + b)− F (x)− F (b) := G = (G1, G2, . . . , Gn),

where b = (b1, b2, . . . bi, . . . , bn) is randomly chosen. Pick another b′ and form

H = (H1, . . . , Hn) = F (x + b′)− F (x)− F (b′),

then

1. if i ∈ Oj , then Gi,Hi ∈ Wj+1;
2. W j+1 := span{Gi}i∈Oj ⊂ Wj+1, and similarly Ŵj+1 := span{Hi}i∈Oj ⊂

Wj+1;
3. W 2 ⊂ ... ⊂ Wu+1 and Ŵ2 ⊂ ... ⊂ Ŵu+1.

Clearly (Ŵu

⋂
Wu) ⊂ (Ŵu+1

⋂
Wu+1), and we observe that: if the dimen-

sions of the two subspaces di�er by d, then we can break the system with
∝ qd · (one guess) computations.

How so? Because the relationship between P and F , is the same as that
between the w-space and x-space, i.e., the linear transformation S. So there is
a 1-in-qd chance that both

∑
aizi and

∑
a′izi correspond to a linear form in

New Di�erential-Algebraic Attacks and Reparametrization of Rainbow 7

Wu. The odds are now decided by q−d instead of q−s. In a Rainbow-like system,
s = ou = n− vu. For Alg. 1 to be worthwhile, we must show that d ≤ s.

In fact, it is not so hard to describe how to determine d. Wu+1 and Ŵu+1

are two m-dimensional subspaces in the n-dimensional vector space Wu+1. Most
of the time they intersect in a 2m− n dimensional subspace, hence

dim Wu = dim Ŵu = m− ou

which equals the number of variables appearing in cross-terms in equa-
tions not of the �nal block, which is equivalent to Eq. 2.

Example 3. Consider enTTS(20,28) as in Eq. 1. Here dim(Wu+1

⋃
Ŵu+1) =

20 + 20 − 28 = 12, while dim(Wu

⋃
Ŵu) = 11 + 11 − 17 = 5. Therefore we

need only ∼ 256 instead of 272 guesses, which is a speed increase of 216× over
Algorithm 0. Since each guess takes about 28 time units (standard is to use
time of a 3DES block encryption, between 26 to 28 multiplications), this gives
complexity 264 instead of 280, too weak to be �strong� crypto.

What went wrong? Generically dim Wu = n − ou and the intersection is of
dimension 2(m− ou)− (n− ou) = 2m− n− ou, making d = (2m− n)− (2m−
n− ou) = ou = s. The lesson: watch out for variable not in the �nal oil set that
does not occur prior to the last block of equations. In enTTS(20,28), x0 and x18

did not appear in any earlier equations than the �nal block.

4.1 Experimentation with mini-versions

We experimented in smaller �elds with three di�erent schemes: Rainbow (6,6,5,5,11),
the enTTS(20,28) scheme above, and its miniaturized sister version enTTS(16,22)
[structure (6,7,1,1,7)].

Scheme Structure q Alg. 0 Alg. 1 ratio
EnTTS(20,28) (8,9,1,1,9) 8 93 4.4 0.047
EnTTS(20,28) (8,9,1,1,9) 16 42435 496 0.012
EnTTS(16,22) (6,7,1,1,7) 16 102 3.5 0.034
Rainbow [7] (6,6,5,5,11) 8 8454 17123 2.028

Table 1. Timing (sec) on 16 of 3GHz P4 machines guessing in parallel

The results are fairly constant over many tests [except the enTTS(20,28)
test which we only ran a few times]. Clearly, not having all vinegar variables of
the last segment appearing previously in cross-terms is a big minus. Rainbow
(6,6,5,5,11) does not have the same problem and Algorithm 1 is no improvement
of the High Rank Attack against it.

8 J. Ding, B.-Y. Yang, Owen Chen, M.-S. Chen, and C.-M. Cheng

5 New Rainbow Parameters for Practical Applications

For practical applications, we will propose the following Rainbow Structures.

1. (20, 10, 4, 10), where the public key has 44 variables and 24 polynomials.
2. (18, 12, 12), where the public key has 42 variables and 24 polynomials.
3. (20, 14, 14), where the public key has 48 variables and 28 polynomials.

We will �rst formalize a twist on the regular Rainbow construction, which
is somewhat more general. In the previous constructions, in each new layer,
previously appeared variables will only be Vinegar variables, the new variables
appearing only as Oil variables. We can also consider adding new Vinegar vari-
ables as we add Oil variables. This also implies that in the signing process, we
guess at the new vinegar variables as they appear, while in the previous Rainbow
construction, we only guess the Vinegar variables in the �rst layer once. In this
case, we can also write for each layer two parameters, (v′i, oi), where the v′i counts
the new vinegar variables we introduce. In this layer, we will have vi +v′i Vinegar
variables (where vi counts the number of all previous appearing variables) and
oi the number of Oil variables.

If all the v′i are zero, this is precisely the original Rainbow construction. We
might call this new construction the extended Oil-Vinegar construction. From
the viewpoint of the attacker we can see this as a specialization of the Rainbow
construction, since the new vinegar variables might as well have been part of
the initial block of vinegar variables, but simply never have been used before.
However, it is di�erent in an operative sense, in that if we use the new vinegar
variables properly, we could always �nd a signature, as implicitly used in TTS
constructions earlier.

So, in this language, we would propose scheme: ((15, 10), (4, 4), (1, 10)), ((17, 12), (1, 12)),
and ((19, 14), (1, 14)).

For these new schemes, we could also choose to use the generic sparse poly-
nomials or special sparse polynomials as in the case of TTS [25]. For generic
sparse polynomials, we think it is a good idea to choose 3Li terms for each layer,
where Li is the sum of number of Oil and vinegar variables in each layer.

For these new schemes, we need to take into two new recent special attacks
against Rainbow.

5.1 The Reconciliation Attack

In the following attack we attempt to �nd a sequence of change of basis that let
us invert the public map. In this sense it can be considered an improved brute
force attack.

Suppose we have an oil-and-vinegar structure, then the quadratic part of each
component qi in the central map from x to y, when expressed as a symmetric

New Di�erential-Algebraic Attacks and Reparametrization of Rainbow 9

matrix, looks like

Mi :=

α
(i)
11 · · · α

(i)
1v α

(i)
1,v+1, · · · α

(i)
1n

...
...

α
(i)
v1 · · · α

(i)
vv α

(i)
v,v+1, · · · α

(i)
vn

α
(i)
v+1,1, · · · α

(i)
v+1,v, 0 · · · 0

...
...

α
(i)
n1 · · · α

(i)
nv 0 · · · 0

(3)

First, no matter what MT is, it won't change the basic shape, so we let T be
the identity map for the moment. What can S be like? Suppose we pick MS as
totally random, most often (see below) it decompose to

MS :=
[∗v×v ∗v×o

∗o×v ∗o×o

]
=

[
1v×v ∗v×o

0o×v 1o×o

] [∗v×v 0v×o

∗o×v ∗o×o

]
(4)

where 1 means identity matrix, 0 means just zeros and ∗ means random or
anything. In fact, this decomposition always hold unless the lower-right o × o

submatrix is singular. It should be clear that the
[∗v×v 0v×o

∗o×v ∗o×o

]
portion of MS , as

a coordinate change leaves the Mi's with the same shape. That is, if we can �nd
the correct

[
1v×v ∗v×o

0o×v 1o×o

]
portion and perform the basis change in reverse, we will

again make the resulting public map into the same form (all zeroes on the lower
right) and be easily inverted. Hence, no more security at all. More about this
phenomenon (�equivalent keys�) in MPKCs can be seen in, say, [23].

Let this essential portion of MS that we wish to recreate be P , that is, the
linear transformation w 7→ x = Pw will create all zeroes on the lower right. We
can decompose this P into a product of P := Pv+1Pv+2 · · ·Pn, where each of the
matrices look like

Pn = 1n +

0 · · · 0 a1

0 · · · 0 a2

...
...

0 · · · 0 av

0 · · · 0 0
...

...
0 · · · 0 0

; Pn−1 = 1n +

0 · · · 0 a′1 0
0 · · · 0 a′2 0
...

...
...

0 · · · 0 a′v 0
0 · · · 0 0 0
...

...
...

0 · · · 0 0 0

; · · ·

Indeed, the multiplication is actually commutative among the various Pi's. Sup-
pose, then, that we start with the di�erential matrices Hi and simultaneously
transform them to make their lower-right corner a square of 0's using exactly
such Pi's.

10 J. Ding, B.-Y. Yang, Owen Chen, M.-S. Chen, and C.-M. Cheng

Algorithm 2 (UOV Reconciliation) The following gives the Reconciliation Attack
against a UOV scheme with o oil and v = n− o vinegar variables (which has the
smaller indices):
1. Perform basis change wi := w′i − λiw

′
n for i = 1 · · · v, wi = w′i for i =

v + 1 · · ·n. Evaluate z in w′.
2. Let all coe�cients of (w′n)2 be zero and solve for the λi. We may use any

method such as F4/F5 or FXL. There will be m equations in v unknowns.
3. Repeat the process to �nd Pn−1. Now we set w′i := w′′i −λiw

′′
n−1 for i = 1 · · · v,

and set every (w′′n−1)
2 and w′′nw′′n−1 term to zero (i.e., more equations in the

system) after making the substitution. This time there are 2m equations in
v unknowns.

4. Continue similarly to �nd Pn−2, . . . , Pv+1 with more and more equations.

Given what we know about system-solving today, we can expect the complexity
to be determined in solving the initial system. Hence, if v < m, solving m
equations in v variables will be easier than m equations in n equations, and we
achieve a simpli�cation.

Proposition 2. The Reconciliation Attack works with probability ≈
(
1− 1

q−1

)
.

Proof (Sketch). Provided that lower-right o×o submatrix of MS is non-singular,
we can see that the construction of Pn will eliminate the quadratic term in the
last variable. Pn−1 will eliminate all quadratic terms in the last two variables,
and so on, and each sequential construction will not disturb the structure built
by the prior transformations. The number of nonsingular k× k matrices in over
GF(q) is (qk − 1)(qk − q)(qk − q2) · · · (qk − qk−1), because the �rst row has 1
possibility to be zero, the second row q possibilities to be a multiple of the �rst,
the third row q2 possibilities to be dependent on the �rst two, etc., so the chance
that the above attack works is roughly

(
1− 1

q

)(
1− 1

q2

)
· · ·

(
1− 1

qk

)
> 1−

(
1
q

+
1
q2

+ · · ·+ 1
qk

)
> 1− 1

q − 1
.

Here we will use formulas from [26] for all our estimates as shown below.
Example 4. We attack enTTS(20,28) as in Eq. 1. Originally we must solve a 20-
equation, 20-variable (we can guess 8 out of the original 28) MQ system. With
vu = 19, the rate-determining step of the Reconciliation Attack is a 20-equation,
19-variable system. This is easier by a factor of exactly 28 if we are using FXL
or FF4 [1, 24], since we will guess exactly one fewer variable.
Since we expect a direct attack on enTTS(20,28) to have ∼ 272 complexity,
Alg. 2 should take ∼ 264. The construction process and odds as given above
have been tested and veri�ed on miniature versions (cf. [25]) of TTS schemes
such as enTTS(16,22) as well as other Rainbow-like instances.
Example 5. TRMS [20] can be reduced to 264 via the same attack (a faster attack
given below) because it has rainbow layer parameters of (8, 6, 2, 3, 9), with a last
block of the same size as TTS.

New Di�erential-Algebraic Attacks and Reparametrization of Rainbow 11

Example 6. We implemented enTTS(16,22) over GF(128), the initial system has
16 equations and 22 − 7 = 15 variables. We ran FXL with Wiedemann solver
(as in [26]) with one �xed variable on an assembly of machines with 128 total
P4 cores at 3.0GHz, each guessing 1 value out of 128. Here D = 8 [24], and the
number of monomials is T = 319770, with a total of 73799040 terms which took
only 288MB of storage at every core. Solving a system known to have a solution
should take around 3(T 2n(n + 3)/2) ≈ 245 multiplications, which at about 16
cycles a multiplication about 2.0× 104 seconds, but we discovered that there is
guesswork in generating a system, so we dare not run more than one value on a
given CPU.

In practice we were not so unlucky and were able to solve 15 variables in
16 equations in GF(128) in what was in fact closer about 3 days, probably due
to non-optimal programming. After that, solving the remaining systems is a
piece of cake [real CPU time estimated at less than two hours], and we can then
decompose an enTTS(16,22) instance.

Example 7. We now attack the proposed Rainbow instance in [7]. Since vu =
22 < m = 26, solving this one is signi�cantly easier: using FF5 [24], the expected
time use is 256 (3DES blocks) instead of 281. F5 is not generally available but
we should be able to achieve ∼ 264 cycles using FXL on a large SMP system.

We can easily see that we must be very careful choosing our parameters for
security against one attack may expose it to another. Our selected parameters
are all tuned against this particular attack and this attack is no better or worse
than direct attack, which have complexity of solving 24, and 28 equations in as
many variables over GF(256), or roughly 283 and 298 respectively.

But this is just a unbalanced oil and vinegar attack. The more e�ciently
implemented systems are Rainbow and have multiple layers. If we look at the
Rainbow construction, it looks more like

Mi :=

α
(i)
11 · · · α

(i)
1v 0 · · · 0

...
...

α
(i)
v1 · · · α

(i)
vv 0 · · · 0

0 · · · 0 0 · · · 0
...

...
0 · · · 0 0 · · · 0

, if i ≤ m−o;

α
(i)
11 · · · α

(i)
1v α

(i)
1,v+1, · · · α

(i)
1n

...
...

α
(i)
v1 · · · α

(i)
vv α

(i)
v,v+1, · · · α

(i)
vn

α
(i)
v+1,1, · · · α

(i)
v+1,v, 0 · · · 0

...
...

α
(i)
n1 · · · α

(i)
nv 0 · · · 0

, otherwise.

(5)
That is, only the last o equations looks like Eq. 3, the initial m − o equations
actually have non-zero entries in the upperleft submatrix � which actually looks
like a UOV matrix itself, i.e., has a block of zeros on the lower right. We don't
bother with that detail. Can we exploit this property? Yes we can.

At this point, we should no longer consider T as the identity. Let us think
about what the matrix MT does in Rainbow. At the moment that we distill the
Pn portion out, m− o of the new Mi's should show a zero last column. However
we don't; MT mixes the Mi's together so that they in fact don't � we will see

12 J. Ding, B.-Y. Yang, Owen Chen, M.-S. Chen, and C.-M. Cheng

most of the time only the lower right entry as zero. But if we take any o + 1 of
those last columns, there will be a non-trivial linear dependency. We can verify
that by setting one of those columns as the linear combination as the other o,
the resulting equations are still quadratic!

Algorithm 3 (Rainbow Band Separation) Reconciliation may be extended
for a Rainbow scheme where the �nal stage has o oil and v = n − o vinegar
variables (which has the smaller indices):

1. Perform basis change wi := w′i − λiw
′
n for i = 1 · · · v, wi = w′i for i =

v + 1 · · ·n. Evaluate z in w′.
2. Find m equations by setting all coe�cients of (w′n)2 to be zero; there are v

variables in the λi's.
3. Set all cross-terms involving w′n in z1 − σ

(1)
1 zv+1 − σ

(1)
2 zv+2 − · · · − σ

(1)
o zm

to be zero and �nd n−1 more equations. Note that (w′n)2 terms are assumed
gone already, so we can no longer get a useful equation.

4. Solve m + n − 1 quadratic equations in o + v = n unknowns. We may use
any method (e.g., F4 or XL).

5. Repeat the process to �nd Pn−1. Now set w′i := w′′i − λiw
′′
n−1 for i = 1 · · · v,

and set every (w′′n−1)
2 and w′′nw′′n−1 term to zero after making the substitu-

tion. Also set z2− σ
(2)
1 zv+1− σ

(2)
2 zv+2− · · · − σ

(2)
o zm to have a zero second-

to-last column. This time there are 2m + n− 2 equations in n unknowns.
6. Continue in the same vein to �nd Pn−2, . . . , Pv+1.

The idea was mentioned by Mr. Yu-Hua Hu to one of the authors in a con-
versation, for which we are indebted. And this attack explains why the current
parameter set suggested looks like that in Sec. 5.

Example 8. We run the attack on an instance of enTTS(16, 22) [25] which has the
shape (6, 7, 1, 1, 7). The algebraic portion of the attack results in a system with
22 variables and 37 equations. This with XL at degree DXL = 6 can be solved
using 400MB (actually 415,919,856 bytes) of memory and 123,257 seconds on a
16-core, 2.2GHz Opteron machine with a total of 1,877,572 seconds of K8-CPU
time. The number of multiplications is about 247, or ∼ 16 cycles a multiplication.

On a single core, a K8 machine running XL-Wiedemann can average one multi-
plication in GF(28) in about 9 cycles. The slowdown comes from the communi-
cations requirement between cores.

Example 9. The attack on an instance of enTTS(20, 28) [25] should result in a
system with 22 variables and 37 equations. This with XL at degree DXL = 7
should be solvable in 15GB of main memory and about 256 multiplications. This
is under the design complexity of 272.

We are also testing the prowess of other system-solving methods like Magma's
F4.

New Di�erential-Algebraic Attacks and Reparametrization of Rainbow 13

5.2 Interlinked/Accumulating Kernels and MinRank

As noted in [25] and recapped in Sec. 3, if µ combinations of central equations
stays at the minrank, a Rank attack often speed up µ-fold, and which is termed
interlinking or accumulation of kernels.

Recently Billet and Gilbert [4] cryptanalyzed the Rainbow instance of [7] in ∼
264 3DES unit times (they stated 271, but GF(256)-multiplications is a very small
unit; NESSIE for example counted 3DES units) using the same principle. While
we exhibit a faster attack on that rainbow instance above, the same extended
accumulating-kernel minrank attack is more widely applicable:

Proposition 3 (Billet-Gilbert). Kernels of the initial block of equations in
a rainbow-like multivariate always accumulate such that any vector in x-space
with the initial vinegar components all vanishing has at least a 1/q probability of
being found by the MinRank attack.

Example 10. We can cryptanalyze enTTS(20,28) [25] in 264 via the accumulating
kernels attack.

In fact, this pitfall is sometimes easy to overlook:

Proposition 4. We can cryptanalyze TRMS from [20] in ∼ 262 via the accu-
mulating kernels attack.

Proof. The central map has this piece with ∗3 meaning multiplication in GF(224):

y17

y18

y19

 =

x17

x18

x19

 ∗3

x8

x9 + x11 + x12

x13 + x15 + x16

 +

c29x4x16

c30x5x10

c31x15x16

 +

c32x9

c33x10

c34x11

 .

Each of these equations are only of rank 8 (the minrank) in GF(256), and the y17

and y19 form a pair of equations that has q = 256 interlinked kernels. Evaluating
as in Sec. 3 gives ≈ 262.

In our schemes, the attack has complexity roughly q to the number of equa-
tions in the �rst block times change, which comes out to about 285, 2100, 2118.

5.3 The challenge

From all the above, we can see that we need to be very careful in our design of
the parameter for Rainbow like schemes.

Proposition 5. To build a scheme with design security C over the base �eld
GF(q), we let ` be the smallest integer such that q`+1 & C, then:

� The initial segment must contain `− 1 or more vinegar variables. The �nal
segment must contain `− 1 or more equations and exactly as many as there
are total vinegar variables.

14 J. Ding, B.-Y. Yang, Owen Chen, M.-S. Chen, and C.-M. Cheng

� There should be enough equations to avoid direct solution via a Lazard-
Faugère solver.
Current estimate [24] is that 20 underdetermined equations in GF(28) achieves
272; 24 equations achieves 282; each extra equation roughly gives a factor
& 22.5 to the complexity [24].

We conclude that all three Rainbow like schemes we propose below have security
levels above 280 elementary operations. The best attack is with Algorithm 3, and
the expected complexity in GF(28) multiplications is 284, 287, 280 respectively.

1. Rainbow (20,10,4,10), in the extended form ((15, 10), (4, 4), (1, 10))
2. Rainbow (18,12,12), in the extended form ((17, 12), (1, 12))
3. Rainbow (20,14,14), in the extended form ((19, 14), (1, 14)).

Of course, without using the extended form, the security level would not be any
lower, the extended form merely guarantees the existence of a signature always.

We hasten to add that the form given above is not much slower in signing
than the previous TTS. In preliminary runs, a single signature for (20,10,4,10)
version averages to about 157µs, still way faster than any competitor.

6 Conclusion

In this paper, we present a new di�erential attack and a new Rainbow construc-
tions. We design new schemes for practical applications.

With these constructions, we note that the design security of the system
would still go up exponentially as the length of the hash in both generic (rain-
bow) and sparse (TTS) variants. Perhaps, we might even say that the kinks of
this approach is being ironed out, and multivariate cryptographers are �nally
beginning to understand Rainbow-like Multivariate Signatures

Another development that a�ects Rainbow-like schemes is the fact that SHA-
1 is being phased out in the wake of recent results [21]. This means that hashes
and hence signatures might become longer in a hurry. ECC is a�ected in much the
same way, because 163- or 191-bit ECC may be obsoleted when everyone switches
to SHA-2 (no one really wants to use a truncated hash if it can be helped). Even
such state-of-the-art work as [3] would force the slightly uncomfortable SHA-
224. With multivariate signature schemes, an additional problem is the large
(and sometimes redundant, cf. [23]) keys. One might look toward other base
�elds such as GF(16) to help with the key size problem, but this would also pose
new challenges in optimization. Another way is to look for a safe TTS (built on
the similar layer structures as speci�ed above), now that hash sizes has gotten
longer. Though the new attacks are found on Rainbow schemes, these attacks
can be easily prevented by adjusting the parameter. All in all, we think that
multivariates including Rainbow-like schemes still deserve a good look as the
age of quantum computers approaches.

New Di�erential-Algebraic Attacks and Reparametrization of Rainbow 15

Acknowledgements
JD and BY are grateful to the Humboldt and Taft Foundations, and the Taiwan
Information Security Center [National Science Council Project NSC 96-2219-
E-011-008 / NSC 96-2219-E-001-001] without whose valuable support much of
this work would not have been possible. BY, OC, MC, and CC would also like
to thank NSC for partial sponsorship on Project NSC 96-2623-7-001-005-D and
96-2221-E-001-031-MY3.

Comments and correspondence: Please address to BY at by@moscito.org.

References
1. M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of Gröbner basis

computation of semi-regular overdetermined algebraic equations. In Proceedings
of the International Conference on Polynomial System Solving, pages 71�74, 2004.
Previously INRIA report RR-5049.

2. M. Bardet, J.-C. Faugère, B. Salvy, and B.-Y. Yang. Asymptotic expansion of the
degree of regularity for semi-regular systems of equations. In P. Gianni, editor,
MEGA 2005 Sardinia (Italy), 2005.

3. Daniel J. Bernstein. Curve25519: New di�e-hellman speed records. In Public Key
Cryptography, volume 3958 of Lecture Notes in Computer Science, pages 207�228.
Moti Yung et al, editors, Springer, 2006. ISBN 3-540-33851-9.

4. Olivier Billet and Henri Gilbert. Cryptanalysis of rainbow. In Security and Cryp-
tography for Networks, volume 4116 of LNCS, pages 336�347. Springer, September
2006.

5. Don Coppersmith, Jacques Stern, and Serge Vaudenay. The security of the bira-
tional permutation signature schemes. Journal of Cryptology, 10:207�221, 1997.

6. Nicolas T. Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. E�cient
algorithms for solving overde�ned systems of multivariate polynomial equations.
In Advances in Cryptology � EUROCRYPT 2000, volume 1807 of Lecture Notes
in Computer Science, pages 392�407. Bart Preneel, ed., Springer, 2000. Extended
Version: http://www.minrank.org/xlfull.pdf.

7. Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial sig-
nature scheme. In Conference on Applied Cryptography and Network Security �
ACNS 2005, volume 3531 of Lecture Notes in Computer Science, pages 164�175.
Springer, 2005.

8. Vivien Dubois, Pierre-Alain Fouque, Adi Shamir, and Jacques Stern. Practical
cryptanalysis of s�ash. In Advances in Cryptology � CRYPTO 2007, volume 4622
of Lecture Notes in Computer Science, pages 1�12. Alfred Menezes, ed., Springer,
2007.

9. Jean-Charles Faugère. A new e�cient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra, 139:61�88, June 1999.

10. Jean-Charles Faugère. A new e�cient algorithm for computing Gröbner bases
without reduction to zero (F5). In International Symposium on Symbolic and
Algebraic Computation � ISSAC 2002, pages 75�83. ACM Press, July 2002.

11. Jean-Charles Faugère and Ludovic Perret. Polynomial equivalence problems: Algo-
rithmic and theoretical aspects. In Serge Vaudenay, editor, EUROCRYPT, volume
4004 of Lecture Notes in Computer Science, pages 30�47. Springer, 2006.

16 J. Ding, B.-Y. Yang, Owen Chen, M.-S. Chen, and C.-M. Cheng

12. Michael R. Garey and David S. Johnson. Computers and Intractability � A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979. ISBN 0-
7167-1044-7 or 0-7167-1045-5.

13. W. Geiselmann, R. Steinwandt, and Th. Beth. Attacking the a�ne parts of SFlash.
In Cryptography and Coding - 8th IMA International Conference, volume 2260 of
Lecture Notes in Computer Science, pages 355�359. B. Honary, ed., Springer, 2001.
Extended version: http://eprint.iacr.org/2003/220/.

14. Louis Goubin and Nicolas T. Courtois. Cryptanalysis of the TTM cryptosystem.
In Advances in Cryptology � ASIACRYPT 2000, volume 1976 of Lecture Notes in
Computer Science, pages 44�57. Tatsuaki Okamoto, ed., Springer, 2000.

15. Antoine Joux, Sébastien Kunz-Jacques, Frédéric Muller, and Pierre-Michel Ri-
cordel. Cryptanalysis of the tractable rational map cryptosystem. In PKC [19],
pages 258�274.

16. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar
signature schemes. In Advances in Cryptology � EUROCRYPT 1999, volume 1592
of Lecture Notes in Computer Science, pages 206�222. Jacques Stern, ed., Springer,
1999.

17. Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil and vinegar signature
scheme. In Advances in Cryptology � CRYPTO 1998, volume 1462 of Lecture
Notes in Computer Science, pages 257�266. Hugo Krawczyk, ed., Springer, 1998.

18. Jacques Patarin and Louis Goubin. Trapdoor one-way permutations and multivari-
ate polynomials. In International Conference on Information Security and Cryp-
tology 1997, volume 1334 of Lecture Notes in Computer Science, pages 356�368. In-
ternational Communications and Information Security Association, Springer, 1997.
Extended Version: http://citeseer.nj.nec.com/patarin97trapdoor.html.

19. Serge Vaudenay, ed. Public Key Cryptography � PKC 2005, volume 3386 of Lecture
Notes in Computer Science. Springer, 2005. ISBN 3-540-24454-9.

20. Lih-Chung Wang, Yuh-Hua Hu, Feipei Lai, Chun-Yen Chou, and Bo-Yin Yang.
Tractable rational map signature. In PKC [19], pages 244�257. ISBN 3-540-24454-
9.

21. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
sha-1. In CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages
17�36. Victor Shoup, ed., Springer, 2005.

22. Christopher Wolf, An Braeken, and Bart Preneel. E�cient cryptanalysis of
RSE(2)PKC and RSSE(2)PKC. In Conference on Security in Communication
Networks � SCN 2004, volume 3352 of Lecture Notes in Computer Science, pages
294�309. Springer, September 8�10 2004. Extended version: http://eprint.iacr.
org/2004/237.

23. Christopher Wolf and Bart Preneel. Super�uous keys in Multivariate Quadratic
asymmetric systems. In PKC [19], pages 275�287. Extended version http://
eprint.iacr.org/2004/361/.

24. Bo-Yin Yang and Jiun-Ming Chen. All in the XL family: Theory and practice.
In ICISC 2004, volume 3506 of Lecture Notes in Computer Science, pages 67�86.
Springer, 2004.

25. Bo-Yin Yang and Jiun-Ming Chen. Building secure tame-like multivariate public-
key cryptosystems: The new TTS. In ACISP 2005, volume 3574 of Lecture Notes
in Computer Science, pages 518�531. Springer, July 2005.

26. Bo-Yin Yang, Owen Chia-Hsin Chen, Daniel J. Bernstein, and Jiun-Ming Chen.
Analysis of QUAD. In Alex Biryukov, editor, FSE, volume 4593 of Lecture Notes in
Computer Science, pages 290�307. Springer, 2007.

