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Abstract

We initiate the study of one-wayness under correlated products. We are interested in identify-
ing necessary and sufficient conditions for a function f and a distribution on inputs (x1, . . . , xk),
so that the function (f(x1), . . . , f(xk)) is one-way. The main motivation of this study is the
construction of public-key encryption schemes that are secure against chosen-ciphertext attacks
(CCA). We show that any collection of injective trapdoor functions that is secure under a very
natural correlated product can be used to construct a CCA-secure public-key encryption scheme.
The construction is simple, black-box, and admits a direct proof of security. It can be viewed
as a simplification of the seminal work of Dolev, Dwork and Naor (SICOMP ’00), while relying
on a seemingly incomparable assumption.

We provide evidence that security under correlated products is achievable by demonstrating
that lossy trapdoor functions (Peikert and Waters, STOC ’08) yield injective trapdoor functions
that are secure under the above mentioned correlated product. Although we currently base
security under correlated products on existing constructions of lossy trapdoor functions, we
argue that the former notion is potentially weaker as a general assumption. Specifically, there
is no fully-black-box construction of lossy trapdoor functions from trapdoor functions that are
secure under correlated products.
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1 Introduction

The construction of secure public-key encryption schemes lies at the heart of cryptography. Fol-
lowing the seminal work of Goldwasser and Micali [26], increasingly strong security definitions
have been formulated. The strongest notion to date is that of semantic security against a chosen-
ciphertext attack (CCA) [42, 47], which protects against an adversary that is given access to
decryptions of ciphertexts of her choice.

Constructions of CCA-secure public-key encryption schemes have followed several structural
approaches. These approaches, however, either result in rather complicated schemes, or rely only
on specific number-theoretic assumptions. Our goal in this paper is to construct a simple CCA-
secure public-key encryption scheme based on general computational assumptions.

The first approach for constructing a CCA-secure public-key encryption scheme was put forward
by Naor and Yung [42], and relies on any semantically secure public-key encryption scheme and
non-interactive zero-knowledge (NIZK) proof system for NP. Their approach was later extended by
Dolev, Dwork and Naor [13] for a more general notion of chosen-ciphertext attack, and subsequently
simplified by Sahai [50] and by Lindell [37]. Encryption schemes resulting from this approach,
however, are somewhat complicated and impractical due to the use of generic NIZK proofs.

An additional approach was introduced by Cramer and Shoup [12], and is based on “hash proof
systems”, which were shown to exist based on several number-theoretic assumptions (see also the
refinement by Kiltz et al. [35] and the references therein). Elkind and Sahai [15] observed that
both the above approaches can be viewed as special cases of a single paradigm in which ciphertexts
include “proofs of well-formedness”. Even though in some cases this paradigm leads to elegant and
efficient constructions [11], the complexity of the underlying notions makes the general framework
somewhat cumbersome.

Recently, Peikert and Waters [46] introduced the intriguing notion of lossy trapdoor functions,
and demonstrated that such functions can be used to construct a CCA-secure public-key encryp-
tion scheme in a black-box manner. Their construction can be viewed as an efficient and elegant
realization of the “proofs of well-formedness” paradigm. Lossy trapdoor functions seem to be a
very powerful primitive. In particular, they were shown to also imply oblivious transfer protocols
and collision-resistant hash functions.1 It is thus conceivable that CCA-secure encryption can be
realized based on weaker primitives.

A different approach was suggested by Canetti, Halevi and Katz [6] (followed by [3, 4, 5]) who
constructed a CCA-secure public-key encryption scheme based on any identity-based encryption
(IBE) scheme. Their construction is elegant, black-box, and essentially preserves the efficiency of
the underlying IBE scheme. However, IBE is a rather strong cryptographic primitive, which is
currently realized only based on a small number of specific number-theoretic assumptions.

Finally, a recent line of research has focused on basing chosen-ciphertext security on computa-
tional number-theoretic problems, as opposed to decisional number-theoretic problems [7, 10, 29,
32]. Most notably, Cash, Kiltz, and Shoup [7] proposed the first efficient CCA-secure scheme based
on the computational Diffie-Hellman assumption, and Hofheinz and Kiltz [32] proposed the first
efficient CCA-secure encryption scheme based on the factoring assumption.

1We note that the constructions of CCA-secure encryption and collision-resistant hash functions presented in [46]
require lossy trapdoor functions that are “sufficiently lossy” (i.e., the constructions rely on lossy trapdoor functions
with sufficiently good parameters).
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1.1 Our Contributions

Motivated by the task of constructing a simple CCA-secure public-key encryption scheme, we
initiate the study of one-wayness under correlated products. The main question in this context is
to identify necessary and sufficient conditions for a collection of functions F and a distribution
on inputs (x1, . . . , xk) so that the function (f1(x1), . . . , fk(xk)) is one-way, where f1, . . . , fk are
independently chosen from F . Our results are as follows:

1. We show that any collection of injective trapdoor functions that is secure under a very natural
correlated product can be used to construct a CCA-secure public-key encryption scheme.
The construction is simple, black-box, and admits a direct proof of security. Arguably, both
the underlying assumption and the proof of security are simple enough to be taught in an
undergraduate course in cryptography.

2. We demonstrate that any collection of lossy trapdoor functions (with appropriately chosen
parameters) yields a collection of injective trapdoor functions that is secure under the cor-
related product that is required by our encryption scheme. In turn, existing constructions
of lossy trapdoor functions [1, 46, 49] imply that our encryption scheme can be based on
the hardness of the decisional Diffie-Hellman problem, and of Paillier’s decisional composite
residuosity problem.

3. We argue that security under correlated products is potentially weaker than lossy trapdoor
functions as a general computational assumption. Specifically, we prove that there is no fully-
black-box construction of lossy trapdoor functions from trapdoor functions (and even from
enhanced trapdoor permutations) that are secure under correlated products.

In the remainder of this section we provide a high-level overview of our contributions, and then
turn to describe the related and subsequent work.

1.2 Security Under Correlated Products

It is well known that for every collection of one-way functions F = {fs}s∈S and polynomially-
bounded k ∈ N, the collection Fk = {fs1,...,sk}(s1,...,sk)∈Sk , whose members are defined as

fs1,...,sk(x1, . . . , xk) = (fs1(x1), . . . , fsk(xk))

is also one-way. Moreover, such a direct product amplifies the one-wayness of F [24, 53], and this
holds even when considering a single function (i.e., when s1 = · · · = sk).

In general, however, the one-wayness of Fk is guaranteed only when the inputs are independently
chosen, and when the inputs are correlated no such guarantee can exist. A well-known example for
insecurity under correlated products is H̊astad’s attack [2, 30] on plain-broadcast RSA: there is an
efficient algorithm that is given as input x3 mod N1, x

3 mod N2, and x3 mod N3, and outputs x.
More generally, it is rather easy to show that if collections of one-way functions exist, then there
exists a collection of one-way functions F = {fs}s∈S such that fs1,s2(x, x) = (fs1(x), fs2(x)) is not
one-way. However, this does not rule out the possibility of constructing a collection of one-way
functions whose product remains one-way even when the inputs are correlated.

Informally, given a collection F of functions and a distribution Ck of inputs (x1, . . . , xk), we say
that F is secure under a Ck-correlated product if Fk is one-way when the inputs (x1, . . . , xk) are
distributed according to Ck (a formal definition is provided in Section 3). The main goal in this
setting is to characterize the class of collections F and distributions Ck that satisfy this notion.
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The study of cryptographic primitives that retain their security even when their inputs are
correlated has already been considered before. Specifically, Naor and Reingold [41] put forward
the notion of pseudorandom synthesizers, whose outputs are required to be computationally in-
distinguishable from random even if their inputs are correlated. We note that one-wayness under
correlated inputs differs from the notion of synthesizers in that the latter refer to pseudorandomness,
rather than one-wayness.

We motivate the study of security under correlated products by relating it to the study of
chosen-ciphertext security. Specifically, we show that any collection of injective trapdoor functions
that is secure under a very natural correlated product can be used to construct a CCA-secure
public-key encryption scheme. The simplest form of distribution Ck on inputs that is sufficient for
our construction is the uniform k-repetition distribution that outputs k copies of a uniformly chosen
input x. We note that although this seems to be a strong requirement, we demonstrate that it can
be based on various number-theoretic assumptions.

More generally, our construction can rely on any distribution Ck with the property that any
(x1, . . . , xk) in the support of Ck can be reconstructed given any t = (1−ǫ)k entries from (x1, . . . , xk),
for some constant 0 < ǫ < 1. For example, Ck may be a distribution that evaluates a random
polynomial of degree at most t− 1 on a fixed set of k points (in this case the values xi’s are t-wise
independent, but other choices which do not guarantee such a strong property are also possible).

1.3 Chosen-Ciphertext Security via Correlated Products

Consider the following, very simple, public-key encryption scheme. The public-key consists of an
injective trapdoor function f , and the secret-key consists of its trapdoor td. Given a message m ∈
{0, 1}, the encryption algorithm chooses a random input x and outputs the ciphertext (f(x),m⊕
h(x)), where h is a hard-core predicate of f . The decryption algorithm uses the trapdoor to
retrieve x and then extracts m. In what follows we frame our approach as a generalization of this
fundamental scheme.

The above scheme is easily proven secure against a chosen-plaintext attack. Any adversary A
that distinguishes between an encryption of 0 and an encryption of 1 can be used to construct an
adversary A′ that distinguishes between h(x) and a randomly chosen bit with exactly the same
probability. Specifically, A′ receives a function f , a value y = f(x), and a bit w (which is either
h(x) or a uniformly chosen bit), and emulates A with f as the public-key and (y,m ⊕ w) as the
challenge ciphertext for a random message m. This scheme, however, fails to be proven secure
against a chosen-ciphertext attack (even when considering only CCA1 security). There is a conflict
between the fact that A′ is required to answer decryption queries, and the fact that A′ does not
have the trapdoor for inverting f .

The following simplified variant of our scheme is designed to resolve this conflict. The public-key
consists of k pairs of functions (f0

1 , f
1
1 ), . . . , (f

0
k , f

1
k ), where each function is sampled independently

from a collection F of injective trapdoor functions.2 The secret-key consists of the trapdoors
(td01, td

1
1), . . . , (td

0
k, td

1
k), where each tdbi is the trapdoor of the function f b

i . Given a message m ∈
{0, 1}, the encryption algorithm chooses a random v = v1 · · · vk ∈ {0, 1}

k , a random input x, and
outputs the ciphertext

EPK(m; v, x) = (v, f v1
1 (x), . . . , f vk

k (x),m⊕ h(x)) ,

where h is a hard-core predicate of Fk with respect to the uniform k-repetition distribution. The

2For CCA1 security any k = ω(logn) is sufficient, where n is the security parameter. For our more generalized
construction that guarantees CCA2 security, any k = nǫ for some constant 0 < ǫ < 1 is sufficient.
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decryption algorithm acts as follows: given a ciphertext (v, y1, . . . , yk, z) it inverts y1, . . . , yk to
obtain x1, . . . , xk, and if x1 = · · · = xk then it outputs h(x1)⊕ z (otherwise it outputs ⊥).

In order to prove the CCA1 security of this scheme, we show that any adversary A that breaks
the CCA1 security of the scheme can be used to construct an adversary A′ that distinguishes
between h(x) and a randomly chosen bit with exactly the same probability. The adversary A′

receives as input k functions f1, . . . , fk ∈ F , k values y1 = f1(x), . . . , yk = fk(x), and a bit w
(which is either h(x) or a uniformly chosen bit). A′ simulates the CCA1 interaction to A by

choosing a random value v∗ = v∗1 · · · v
∗
k ∈ {0, 1}

k , and for each pair (f0
i , f

1
i ) it sets f

v∗i
i = fi and

samples f
1−v∗i
i together with its trapdoor from F . Note that now A′ is able to answer decryption

queries as long as none of them contain the value v∗, and in this case we claim that essentially no
information on v∗ is revealed. The challenge ciphertext is then computed as (v∗, y1, . . . , yk,m⊕w)
for a random message m. If A guesses the bit m correctly then A′ outputs that w = h(x), and
otherwise A′ outputs that w is a random bit.

Our scheme can be viewed as a realization of the Naor-Yung paradigm [42, 13] in which a
message is encrypted using several independently chosen keys, and ciphertexts include “proofs of
well-formedness”. Specifically, whereas our public key consists of descriptions of functions, the
public key in the Naor-Yung paradigm consists of public keys for a semantically-secure encryption
scheme, together with a reference string for an NIZK proof system. A message is then encrypted
using several keys, and also includes an NIZK proof that all ciphertexts are indeed encryptions
of the same message. Our scheme simplifies their approach by allowing the decryption algorithm
to verify “well-formedness” of ciphertexts without any additional “proof”: given any one of the
trapdoors it is possible to verify that the remaining values are consistent with the same input x by
simply evaluating the remaining functions on the input x. This is the advantage of using functions
and not (randomized) encryption schemes. A disadvantage of our approach when compared to the
Naor-Yung paradigm, is that even for achieving only CCA1 security we need a super-logarithmic
number of functions, whereas in the scheme of Naor and Yung [42] it suffices to use only two public
keys (and an NIZK proof system). The reason is that in our approach the value v∗ in the challenge
ciphertext must be unpredictable to an adversary, and in [42] the value v∗ actually does not exist
since the verification of well-formedness is done using the NIZK proof system.

In addition, we note that our underlying assumption is incomparable to that required by the
scheme of Dolev, Dwork and Naor [13]: although we require security under correlated products,
we can rely on injective trapdoor functions, whereas their scheme (currently) requires enhanced
trapdoor permutations for constructing the NIZK proof system.

Our scheme is inspired also by the one based on lossy trapdoor functions [46], and specifically,
by the generic construction of all-but-one lossy trapdoor functions from lossy trapdoor functions.
However, the proof security of our construction is simpler than that of [46] due to the additional
hybrids resulting from using both lossy trapdoor functions and all-but-one trapdoor functions. In
addition, our construction only relies on computational hardness, whereas the construction of [46]
relies on the statistical properties of lossy trapdoor functions.

Finally, we note that our proof of security is rather similar to that of the IBE-based schemes
[4, 5, 6]. The value v∗ can be viewed as the challenge identity, for which A′ does not have the
secret key, and is therefore not able to decrypt ciphertexts for this identity. For any other identity
v 6= v∗, A′ has sufficient information to decrypt ciphertexts.

In some sense, our approach enjoys “the best of both worlds” in that both the underlying
assumption and the proof of security are simpler than those of previous approaches.
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1.4 A Black-Box Separation

Although we currently base security under correlated products on lossy trapdoor functions, we
argue that security under correlated products is potentially weaker than lossy trapdoor functions
as a general computational assumption. Specifically, we prove that there is no fully-black-box
construction of lossy trapdoor functions from trapdoor functions that are secure under correlated
products. Moreover, this holds also for lossy functions (i.e., the same as lossy trapdoor functions
but without a trapdoor). We present an oracle relative to which there exists a collection of injective
trapdoor functions (and even of enhanced trapdoor permutations) that is secure under a correlated
product with respect to the above mentioned uniform k-repetition distribution, but there is no
collection of lossy trapdoor functions. The oracle is essentially the collision-finding oracle due to
Simon [51], and the proof follows the approach of Haitner et al. [28] while overcoming several
technical difficulties.

Informally, consider a circuit A which is given as input (f1(x), . . . , fk(x)), and whose goal is to
retrieve x. The circuit A is provided access to an oracle Sam that receives as input a circuit C and
outputs random w and w′ such that C(w) = C(w′). As in the approach of Haitner et al. the idea
underlying the proof is to distinguish between two cases: one in which A obtains information on
x via one of its Sam-queries, and the other in which none of A’s Sam-queries provides information
on x. The proof consists of two modular parts dealing with these two cases separately. In the first
part we generalize an argument of Haitner et al. (who in turn generalized the reconstruction lemma
of Gennaro and Trevisan [18]) to deal with the product of several functions. We show that the
probability that A retrieves x in the first case is exponentially small. In the second part we show
that the second case can essentially be reduced to the first case. This part of the proof is simpler
than the corresponding argument of Haitner et al. that considers a more interactive setting.

1.5 Related and Subsequent Work

Related work. Much research has been devoted for the construction of CCA-secure public-key
encryption schemes. A significant part of this research was already mentioned in the previous
sections, and here we mainly focus on recent results regarding the possibility and limitations of
basing such schemes on general computational assumptions.

Pass, shelat and Vaikuntanathan [43] constructed a public-key encryption scheme that is non-
malleable against a chosen-plaintext attack from any semantically secure one (building on the
scheme of Dolev, Dwork and Naor [13]). Their technique was later shown by Cramer et al. [9] to
also imply non-malleability against a weak notion of chosen-ciphertext attack, in which the number
of decryption queries is bounded. These approaches, however, are rather impractical due to the use
of designated verifier NIZK proofs that are constructed somewhat inefficiently from any public-key
encryption scheme. Choi et al. [8] then showed that the latter notions of security can in fact be
elegantly realized in a black-box manner based on the same assumptions. The reader is referred to
[13, 44] for classifications of the different notions of security.

Impagliazzo and Rudich [34] introduced a paradigm for proving impossibility results for cryp-
tographic constructions. They showed that there are no black-box constructions of key-agreement
protocols from one-way permutations, and substantial additional work in this line followed (see,
for example [17, 19, 21, 36, 51] and many more). The reader is referred to [48] for a comprehen-
sive discussion and taxonomy of black-box constructions. In the context of public-key encryption
schemes, most relevant to our result is the work of Gertner, Malkin and Myers [20], who addressed
the question of whether or not semantically secure public-key encryption schemes imply the exis-
tence of CCA-secure schemes. They showed that there are no black-box constructions in which the
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decryption algorithm of the proposed CCA-secure scheme does not query the encryption algorithm
of the semantically secure one.

Subsequent work. Following our work, Peikert [45] and Goldwasser and Vaikuntanathan [27]
showed that security under correlated products is achievable also under the worst-case hardness
of lattice problems (although these assumptions are currently not known to imply lossy trapdoor
functions with the appropriately chosen parameters that are required for our transformation). Both
Peikert, and Goldwasser and Vaikuntanathan, show that our framework for chosen-ciphertext se-
curity can be extended to deal with a relaxed form of trapdoor functions that take an additional
random input which cannot always be recovered using the trapdoor (these are, in some sense, “ran-
domized” trapdoor functions). Their constructions result in new CCA-secure public-key encryption
schemes that are based on lattices. A similar approach was taken by Dowsley et al. [14] who relied
on our framework to constructed the first CCA-secure variant of the coding-based McEliece en-
cryption scheme [38]. This was later improved by Freeman et al. [16] who constructed a collection
of injective trapdoor functions that are secure under correlated products based on the hardness
of syndrome decoding (this, in particular, implies a CCA-secure public-key encryption scheme).
These demonstrate that the correlated products approach for chosen-ciphertext security is fruit-
ful, and that security under correlated products is achievable under a variety of number-theoretic
assumptions.

Our framework was also used by Mol and Yilek [39] who demonstrated that even a non-negligible
fraction of a single bit of lossiness is sufficient for obtaining chosen-ciphertext secure encryption
from lossy trapdoor functions. In terms of the required amount of lossiness this is a significant
improvement both to our result and to the result of Peikert and Waters [46]. Specifically, Mol
and Yilek show that even “slightly” lossy trapdoor functions are secure under a correlated product
which suffices for instantiating our scheme.

The possibility of realizing security under correlated products based on general assumptions
was recently studied by Vahlis [52] and by Hemenway, Lu, and Ostrovsky [31]. On the negative
side, Vahlis showed that trapdoor permutations do not imply in a black-box manner trapdoor
permutation (or injective trapdoor functions) that are secure under correlated products. On the
positive side, Hemenway et al. showed that if one is not interested in having a trapdoor, then
one-way functions that are secure under correlated product can in fact be constructed from any
one-way functions (in a black-box manner). This strengthens the intuition that security under
correlated products is significantly weaker than lossiness: our black-box impossibility result in
Section 6 rules out in particular black-box constructions of lossy functions (i.e., the same as lossy
trapdoor functions but without a trapdoor) from one-way functions.

1.6 Paper Organization

The remainder of the paper is organized as follows. In Section 2 we briefly review several fundamen-
tal definitions. In Section 3 we provide a formal treatment of security under correlated products,
which is shown to be satisfied by lossy trapdoor functions. In Section 4 we describe a simplified
version of our encryption scheme which already illustrates the main ideas underlying our approach.
The more general construction is described in Section 5. Finally, in Section 6 we prove that there
is no fully-black-box construction of lossy trapdoor functions from trapdoor functions secure under
correlated products.
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2 Preliminaries

We denote by N the set of all integers, and for an integer n ∈ N we denote by [n] the set {1, . . . , n}.
For a finite set X, we denote by x← X the experiment of choosing an element of X according to
the uniform distribution over X. Similarly, for a distribution D over a set X, we denote by x← D
the experiment of choosing an element of X according to the distribution D.

In the remainder of this section we briefly review the notions of one-way functions, hard-
core predicates, trapdoor functions, lossy trapdoor functions, public-key encryption, and one-time
signature schemes. We refer the reader to [22, 23, 46] for more elaborated expositions of these
notions.

2.1 One-Way Functions and Hard-Core Predicates

Informally, a collection F of functions is said to be one-way if: (1) it is easy to sample a function f
from the collection, (2) given an input x it is easy to compute f(x), and (3) it is computationally
infeasible to find a pre-image of f(x) with non-negligible advantage over the choice of x. Typically,
it is assumed that x is chosen uniformly at random from the set of all possible inputs, and thus
the specification of the exact distribution under which the collection of functions is hard to invert
is omitted. However, for the purposes of this paper, it is necessary for us to explicitly specify the
input distribution.

Definition 2.1 (Efficiently computable functions). A collection of efficiently computable functions
is a pair of probabilistic polynomial-time algorithms F = (G,F ) such that:

1. The algorithm G on input 1n outputs a description s ∈ {0, 1}n of a function fs : {0, 1}n →
{0, 1}n.3

2. The algorithm F on input (s, x) ∈ {0, 1}n × {0, 1}n outputs fs(x).

Notation 2.2. Given a collection of function F = (G,F ) and a pair (s, y) ∈ {0, 1}n × {0, 1}n, we
let F−1(s, y) = {x ∈ {0, 1}n | y = F (s, x)}.

Definition 2.3 (One-way functions). Let I be a distribution where I(1n) is distributed over {0, 1}n.
A collection of efficiently computable functions F = (G,F ) is said to be one-way with respect to
the input distribution I if for every probabilistic polynomial-time algorithm A and polynomial p(·),
it holds that

Pr
[

A(1n, s, F (s, x)) ∈ F−1(s, F (s, x))
]

<
1

p(n)
,

for all sufficiently large n, where s← G(1n) and x← I(1n).

Definition 2.4 (Hard-core predicate). Let I be a distribution where I(1n) is distributed over
{0, 1}n, and let F = (G,F ) be a collection of efficiently computable functions. A polynomial-time
algorithm H : {0, 1}∗×{0, 1}∗ → {0, 1} is said to be a hard-core predicate of F with respect to the
input distribution I if for every probabilistic-polynomial time algorithm A and polynomial p(·), it
holds that

Pr [A(1n, s, F (s, x)) = H(s, x)] <
1

2
+

1

p(n)

for all sufficiently large n, where s← G(1n) and x← I(1n).

3Generally speaking, the input, the output and the description of a function may be of different lengths (though
polynomially related). For simplicity, we assume that all three are n-bit strings.
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In this paper we focus on injective functions, and in this case the hardness of predicting the
value of a predicate from the value of the function implies in particular the hardness of inverting
the function. The Goldreich-Levin theorem [25] can be used in our setting (where considering
arbitrary input distributions) to guarantee the existence of a hard-core predicate for any collection
of one-way functions. The hard-core predicate exists with respect to the same input distribution
for which the collection of functions is one-way.

Corollary 2.5. Let I be a distribution where I(1n) is distributed over {0, 1}n, and let F = (G,F )
be a collection of efficiently computable injective functions. Then, F is one-way with respect to I
if and only if F has a hard-core predicate with respect to I.

2.2 Injective Trapdoor Functions and Lossy Trapdoor Functions

In the following we define the notions of injective trapdoor functions and lossy trapdoor functions.

Definition 2.6 (Trapdoor functions). A collection of injective trapdoor functions is a triplet of
probabilistic polynomial-time algorithms F = (G,F, F−1) such that:

• The algorithm G on input 1n outputs a pair (s, td) ∈ {0, 1}n × {0, 1}n.

• The pair (GL, F ) is a collection of injective one-way functions, where GL denotes the left part
of the output of G.

• For every (s, td) in the range of G and x ∈ {0, 1}n, the algorithm F−1 on input (td, F (s, x))
outputs x.

Definition 2.7 (Lossy trapdoor functions). A collection of (n, ℓ)-lossy trapdoor functions is a
triplet of probabilistic polynomial-time algorithms (G,F, F−1) such that:

1. G(1n, injective) outputs a pair (s, td) ∈ {0, 1}n × {0, 1}n. The algorithm F (s, ·) computes an
injective function fs(·) over {0, 1}n, and F−1(td, ·) computes f−1s (·).

2. G(1n, lossy) outputs s ∈ {0, 1}n. The algorithm F (s, ·) computes a function fs(·) over {0, 1}
n

whose image has size at most 2n−ℓ.

3. The descriptions of functions (i.e., s-values) sampled using G(1n, injective) and G(1n, lossy)
are computationally indistinguishable.

2.3 Public-Key Encryption Schemes

The following definition describes the functionality of a public-key encryption scheme:

Definition 2.8 (Public-key encryption). A public-key encryption scheme is a triplet (KG,E,D)
of probabilistic polynomial-time algorithms such that:

1. The key generation algorithm KG receives as input a security parameter 1n and outputs a
public key PK and a secret key SK.

2. The encryption algorithm E receives as input a public key PK and a message m (in some
implicit message space), and outputs a ciphertext c.

3. The decryption algorithm D receives as input a ciphertext c and a secret key SK, and outputs
a message m or the symbol ⊥.
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4. For any message m it holds that D(SK,E(PK,m)) = m with overwhelming probability over
the internal coin tosses of KG, E and D.

In this paper we consider public-key encryption schemes that are secure against adaptive chosen-
ciphertext attacks, defined as follows.

Definition 2.9 (Chosen-ciphertext security). A public-key encryption scheme (KG,E,D) is said
to be CCA2-secure if the advantage of any probabilistic polynomial-time adversary A in the following
interaction is negligible in the security parameter:

1. KG(1n) outputs (PK, SK), and A is given PK.

2. A may adaptively query a decryption oracle D(SK, ·).

3. At some point A outputs two messages m0 and m1 with |m0| = |m1|, and receives a challenge
ciphertext c = E(PK,mb) for a uniformly chosen bit b ∈ {0, 1}.

4. A may continue to adaptively query the decryption oracle D(SK, ·) on any ciphertext other
than the challenge ciphertext.

5. Finally, A outputs a bit b′.

We say that A succeeds if b′ = b, and denote the probability of this event by Pr [Success]. The
advantage of A is defined as |Pr [Success]− 1/2|.

2.4 Signature Schemes

The following definitions describe the functionality of a signature scheme, and the security notion
of one-time strong unforgeability that is used in this paper.

Definition 2.10 (Signature scheme). A signature scheme is a triplet (KGsig,Sign,Ver) of proba-
bilistic polynomial-time algorithms such that:

1. The key generation algorithm KGsig receives as input a security parameter 1n and outputs a
verification key vk and a signing key sk.

2. The signing algorithm Sign receives as input a signing key sk and a message m (in some
implicit message space), and outputs a signature σ.

3. The verification algorithm Ver receives as input a verification key vk, a message m, and a
signature σ, and outputs a bit b ∈ {0, 1}.

4. For any message m it holds that Ver(vk,m,Sign(sk,m)) = 1 with overwhelming probability
over the internal coin tosses of KGsig, Sign and Ver.

Definition 2.11 (One-time strong unforgeability). A signature scheme (KGsig,Sign,Ver) is said
to be one-time strongly unforgeable if the success probability of any probabilistic polynomial-time
adversary A in the following interaction is negligible in the security parameter:

1. KGsig(1
n) outputs (vk, sk), and A is given vk.

2. A may output a message m, and is then given in return σ = Sign(sk,m). If A chooses not
to output any message, we set (m,σ) = (⊥,⊥).

3. A outputs a pair (m∗, σ∗).

We say that A succeeds if Ver(vk,m∗, σ∗) = 1 and (m∗, σ∗) 6= (m,σ).
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3 Security Under Correlated Products

In this section we formally define the notion of security under correlated products, and demonstrate
that the notion is satisfied by any collection of lossy trapdoor functions (with appropriately chosen
parameters) for a very natural and useful correlation. We then discuss the exact parameters that
are required for our encryption scheme, and the number-theoretic assumptions that are currently
known to guarantee such parameters.

A collection of functions is represented as a pair of algorithms F = (G,F ), where G is a
generation algorithm used for sampling a description of a function, and F is an evaluation algorithm
used for evaluating a function on a given input. The following definition formalizes the notion of a
k-wise product which introduces a collection Fk consisting of all k-tuples of functions from F .

Definition 3.1 (k-wise product). Let F = (G,F ) be a collection of efficiently computable functions.
For any integer k, we define the k-wise product Fk = (Gk, Fk) as follows:

• The generation algorithm Gk on input 1n invokes G(1n) for k times independently and outputs
(s1, . . . , sk). That is, a function is sampled from Fk by independently sampling k functions
from F .

• The evaluation algorithm Fk on input (s1, . . . , sk, x1, . . . , xk) invokes F to evaluate each func-
tion si on xi. That is, Fk(s1, . . . , sk, x1, . . . , xk) = (F (s1, x1), . . . , F (sk, xk)).

The notion of a one-way function asks for a function that is efficiently computable but is hard
to invert given the image of a uniformly chosen input. More generally, one can naturally extend
this notion to consider one-wayness under any specified input distribution, not necessarily the
uniform distribution. That is, informally, we say that a function is one-way with respect to an
input distribution I if it is efficiently computable but hard to invert given the image of a random
input sampled according to I (see Section 2 for a formal definition).

In the context of k-wise products, a rather straightforward argument shows that for any col-
lection F which is one-way with respect to some input distribution I, the k-wise product Fk is
one-way with respect to the input distribution which samples k independent inputs from I. The
following definition formalizes the notion of security under correlated products, where the inputs
for Fk may be correlated.

Definition 3.2 (Security under correlated products). Let F = (G,F ) be a collection of efficiently
computable functions, and let Ck be a distribution where Ck(1

n) is distributed over {0, 1}k·n for some
integer k = k(n). We say that F is secure under a Ck-correlated product if Fk is one-way with
respect to the input distribution Ck.

Correlated products security based on lossy trapdoor functions. We conclude this section
by demonstrating that, for an appropriate choice of parameters, any collection of lossy trapdoor
functions yields a collection of injective trapdoor functions that is secure under a Ck-correlated
product. The input distribution under consideration, Ck, samples a uniformly random input x and
outputs k copies of x. We refer to this distribution as the uniform k-repetition distribution, and
this distribution is the one required for the simplified variant of our encryption scheme, presented
in Section 4.

Specifically, given a collection of lossy trapdoor functions F = (G,F, F−1) we define a collection
Finj of injective trapdoor functions by restricting F to its injective functions. That is, Finj =
(Ginj, F, F

−1) where Ginj(1
n) = G(1n, injective). We prove the following theorem:
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Theorem 3.3. Let F = (G,F, F−1) be a collection of (n, ℓ)-lossy trapdoor functions. Then, for

any integer k < n−ω(logn)
n−ℓ , for any probabilistic polynomial-time algorithm A and polynomial p(·),

it holds that

Pr [A(1n, s1, . . . , sk, F (s1, x), . . . , F (sk, x)) = x] <
1

p(n)
,

for all sufficiently large n, where the probability is taken over the choices of s1 ← Ginj(1
n), . . . , sk ←

Ginj(1
n), x← {0, 1}n, and over the internal coin tosses of A.

Proof. Peikert and Waters [46, Lemma 3.1] proved that any collection of (n, ω(log n))-lossy trap-
door functions is one-way. Thus, it is sufficient to prove that Fk is a collection of (n, ω(log n))-lossy
trapdoor functions. For any k functions s1, . . . , sk sampled according to Ginj(1

n), the function
Fk(s1, . . . , sk, x1, . . . , xk) = (F (s1, x1), . . . , F (sk, xk)) is injective. For any k functions s1, . . . , sk
sampled according to Glossy(1

n), the function Fk(s1, . . . , sk, x1, . . . , xk) = (F (s1, x1), . . . , F (sk, xk))

obtains at most 2k(n−ℓ) values, which is upper bounded by 2n−ω(logn) for any k < n−ω(log n)
n−ℓ . Finally,

note that a standard hybrid argument shows that the distribution obtained by independently sam-
pling k functions according to Ginj(1

n) is computationally indistinguishable from the distribution
obtained by independently sampling k functions according to Glossy(1

n). Thus, Fk is a collection
of (n, ω(log n))-lossy trapdoor functions.

The required parameters for our scheme. The assumption underlying our encryption scheme
asks for k(n) = ω(log n) for CCA1 security, and for k(n) = nǫ (for some constant 0 < ǫ < 1)
for CCA2 security. In turn, existing constructions of lossy trapdoor functions guaranteing these
parameters [1, 46, 49] imply that our encryption scheme can be realized under the hardness of
the decisional Diffie-Hellman problem, and of Paillier’s decisional composite residuosity problem.
We note that the lattice-based construction of Peikert and Waters [46] guarantees only a constant
k(n) that is not sufficient for our encryption scheme. However, Peikert [45] and Goldwasser and
Vaikuntanathan [27] recently showed that security under correlated products (with sufficiently large
k(n)) is nevertheless achievable under the worst-case hardness of lattice problems, although these
are currently known to imply lossy trapdoor functions with only a relatively small amount of loss.

4 A Simplified Construction

In this section we describe a simplified version of our construction which already illustrates the
main ideas underlying our approach. The encryption scheme presented in the current section is a
simplification in the sense that it relies on a seemingly stronger computational assumption than
the more generalized construction which is presented in Section 5. In addition, we first present
the scheme as encrypting only one bit messages, and then demonstrate that it naturally extends to
multi-bit messages. In what follows we state the computational assumption, describe the encryption
scheme, prove its security, and describe the extension to multi-bit messages.

The underlying computational assumption. The computational assumption underlying the
simplified scheme is that there exists a collection F of injective trapdoor functions and an integer
function k = k(n) such that F is secure under a Ck-correlated product, where Ck is the uniform
k-repetition distribution (i.e., outputs k copies of a uniformly distributed input x). Specifically,
our scheme uses a hard-core predicate h : {0, 1}∗ → {0, 1} for Fk with respect to Ck. That is, the
underlying computational assumption is that for any probabilistic polynomial-time predictor P it
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holds that
∣

∣

∣

∣

Pr [P(1n, s1, . . . , sk, F (s1, x), . . . , F (sk, x)) = h(s1, . . . , sk, x)]−
1

2

∣

∣

∣

∣

is negligible in n, where the probability is taken over the choices of s1 ← G(1n), . . . , sk ← G(1n),
x← {0, 1}n, and over the internal coin tosses of P.

The integer function k(n) should correspond to the bit-length of verification keys of some one-
time strongly-unforgeable signature scheme (KGsig,Sign,Ver). By applying a universal one-way
hash function to the verification keys (as in [13]) it suffices that the above assumption holds for
k(n) = nǫ for a constant 0 < ǫ < 1. For simplicity, however, when describing our scheme we do
not apply a universal one-way hash function to the verification keys. We also note that for an
even more simplified version which is only CCA1-secure (the one described in Section 1.3), any
k(n) = ω(log n) suffices.

The construction. The following describes our simplified encryption scheme given by the triplet
(KG,E,D).

• Key generation: On input 1n the algorithm invokes G(1n) for 2k times independently to
obtain 2k descriptions of functions from F denoted (s01, s

1
1), . . . , (s

0
k, s

1
k) together with the

corresponding trapdoors (td01, td
1
1), . . . , (td

0
k, td

1
k). The public-key and secret-key are defined

as follows:

PK =
((

s01, s
1
1

)

, . . . ,
(

s0k, s
1
k

))

SK =
((

td01, td
1
1

)

, . . . ,
(

td0k, td
1
k

))

.

• Encryption: On input a message m ∈ {0, 1} and a public key PK, the algorithm samples
(vk, sk) ← KGsig(1

n) where vk = vk1 ◦ · · · ◦ vkk ∈ {0, 1}
k , chooses a uniformly distributed

x ∈ {0, 1}n, and outputs (vk, y1, . . . , yk, c1, c2) where

yi = F
(

svkii , x
)

∀i ∈ [k]

c1 = m⊕ h
(

svk11 , . . . , svkkk , x
)

c2 = Sign(sk, (y1, . . . , yk, c1)) .

• Decryption: On input a ciphertext (vk, y1, . . . , yk, c1, c2) and a secret-key SK, the algorithm
acts as follows. If Ver(vk, (y1, . . . , yk, c1), c2) = 0, it outputs ⊥. Otherwise, for every i ∈ [k]

it computes xi = F−1
(

tdvkii , yi

)

. If x1 = · · · = xk then it outputs c1 ⊕ h
(

svk11 , . . . , svkkk , x1

)

,

and otherwise it outputs ⊥.

The following theorem establishes the security of the scheme.

Theorem 4.1. Assuming that F is secure under a Ck-correlated product, where Ck is the uniform
k-repetition distribution, and that (KGsig,Sign,Ver) is one-time strongly unforgeable, the encryption
scheme (KG,E,D) is CCA2-secure.

Proof. Let A be a probabilistic polynomial-time CCA2-adversary (see Definition 2.9). We denote
by Forge the event in which for one of A’s decryption queries (vk, y1, . . . , yk, c1, c2) during the
CCA2 interaction it holds that vk = vk∗ where vk∗ is the verification key used in the challenge
ciphertext, and Ver(vk, (y1, . . . , yk, c1), c2) = 1. We first argue that the event Forge has a negligible

12



probability due to the security of the one-time signature scheme. Then, we construct a probabilistic
polynomial-time algorithm P that predicts the hard-core predicate h while essentially preserving
the advantage of A.

More formally, we denote by Success the event in which A successfully guesses the bit b used for
encrypting the challenge ciphertext. Then, the advantage of A in the CCA2 interaction is bounded
as follows:
∣

∣

∣

∣

Pr [Success]−
1

2

∣

∣

∣

∣

≤

∣

∣

∣

∣

Pr [Success ∧ Forge]−
1

2
Pr [Forge]

∣

∣

∣

∣

+

∣

∣

∣

∣

Pr
[

Success ∧ Forge
]

+
1

2
Pr [Forge]−

1

2

∣

∣

∣

∣

≤
1

2
Pr [Forge] +

∣

∣

∣

∣

Pr
[

Success ∧ Forge
]

+
1

2
Pr [Forge]−

1

2

∣

∣

∣

∣

.

The theorem follows from the following two claims:

Claim 4.2. Pr [Forge] is negligible.

Proof. We show that any probabilistic polynomial-time adversary A for which Pr [Forge] is non-
negligible, can be used to construct a probabilistic polynomial-time adversary A′ that breaks the
security of the one-time signature scheme with the same probability. The adversary A′ is given a
verification key vk∗ sampled using KGsig(1

n) and simulates the CCA2 interaction to A as follows.
A′ begins by invoking the key generation algorithm on input 1n and gives the public-key to A.
Whenever A submits a decryption query (vk, y1, . . . , yk, c1, c2), A

′ acts as follows. If vk = vk∗

and Ver(vk, (y1, . . . , yk, c1), c2) = 1, then A′ outputs ((y1, . . . , yk, c1), c2) as the forgery and halts.
Otherwise, A′ invokes the decryption procedure. In the challenge phase, upon receiving two message
m0 and m1, A

′ chooses b ∈ {0, 1} and x ∈ {0, 1}n uniformly at random, and computes

yi = F
(

s
vk∗i
i , x

)

∀i ∈ [k]

c1 = mb ⊕ h
(

s
vk∗

1

1 , . . . , s
vk∗k
k , x

)

.

Then, it obtains a signature c2 on (y1, . . . , yk, c1) with respect to vk∗ (recall that A′ is allowed to
ask for a signature on one message). Finally, it sends (vk∗, y1, . . . , yk, c1, c2) to A. We note that
during the second decryption phase, if A submits the challenge ciphertext as a decryption query,
then A′ responds with ⊥.

Note that prior to the first decryption query in which Forge occurs (assuming that Forge indeed
occurs), the simulation of the CCA2 interaction is perfect. Therefore, the probability that A′ breaks
the security of the one-time signature scheme is exactly Pr [Forge]. The security of the signature
scheme implies that this probability is negligible.

Claim 4.3.
∣

∣Pr
[

Success ∧ Forge
]

+ 1
2Pr [Forge]−

1
2

∣

∣ is negligible.

Proof. Given a probabilistic polynomial-time adversaryA, we construct a probabilistic polynomial-
time predictor P for the hard-core predicate h. We show that the advantage of P is exactly
∣

∣Pr
[

Success ∧ Forge
]

+ 1
2Pr [Forge]−

1
2

∣

∣, and this is assumed to be negligible by the unpredictabil-
ity of h. Recall that the advantage of P is defined as

∣

∣

∣

∣

Pr [P(1n, s1, . . . , sk, F (s1, x), . . . , F (sk, x)) = h(s1, . . . , sk, x)]−
1

2

∣

∣

∣

∣

,

where s1 ← G(1n), . . . , sk ← G(1n) independently, and the probability is taken over the uniform
choice of x ∈ {0, 1}n, and over the internal coin tosses of both G and P.
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For simplicity, we first construct an efficient distinguisher A′ which receives input of the form
(1n, s1, . . . , sk, F (s1, x), . . . , F (sk, x)) and a bit w ∈ {0, 1} which is either h(s1, . . . , sk, x) or a uni-
formly random bit, and is able to distinguish between the two cases with a non-negligible probability.
The distinguisher A′ acts by simulating the CCA2 interaction to A. More specifically, on input
(1n, s1, . . . , sk, y1, . . . , yk) and a bit w, the distinguisher A′ first creates a pair (PK,SK) as follows.
It samples (vk∗, sk∗)← KGsig(1

n), where vk∗ = vk∗1 ◦ · · · ◦ vk
∗
k ∈ {0, 1}

k , and for every i ∈ [k] sets

s
vk∗i
i = si and samples

(

s
1−vk∗i
i , td

1−vk∗i
i

)

← G(1n). Then, A′ outputs the public-key

PK =
((

s01, s
1
1

)

, . . . ,
(

s0k, s
1
k

))

.

In the decryption phases, whenever A submits a decryption query of the form (vk, y1, . . . , yk, c1, c2),
A′ acts as follows:

1. If vk = vk∗ and Ver(vk, (y1, . . . , yk, c1), c2) = 1 (note that this means that the event Forge

occurs), then it outputs an independently and uniformly chosen bit and halts.

2. If Ver(vk, (y1, . . . , yk, c1), c2) = 0, then it responds with ⊥.

3. If vk 6= vk∗ and Ver(vk, (y1, . . . , yk, c1), c2) = 1, then it picks some i ∈ [k] for which vki 6= vk∗i
and computes x = F−1

(

tdvkii , yi

)

. If for every j ∈ [k] it holds that yj = F
(

s
vkj
j , x

)

, it

responds with c1 ⊕ h
(

svk11 , . . . , svkkk , x
)

, and otherwise it responds with ⊥.

In the challenge phase, given two messages m0 and m1, A
′ chooses a random bit b ∈ {0, 1} and

replies with the challenge ciphertext

c = (vk∗, y1, . . . , yk, c1, c2) ,

where c1 = mb⊕w, and c2 = Sign(sk∗, (y1, . . . , yk, c1)). We note that during the second decryption
phase, if A submits the challenge ciphertext as a decryption query, then A′ responds with ⊥. At
the end of this interaction A outputs a bit b′ (assuming that A′ did not halt due to the event Forge).
If b′ = b then A′ outputs 1, and otherwise A′ outputs 0.

In order to compute the advantage of A′ in distinguishing between h(s1, . . . , sk, x) and a uni-
formly random bit, we observe the following:

1. If w is a uniformly random bit, then the challenge ciphertext in the simulated interaction is
independent of b. Therefore, independently of whether the event Forge occurs or does not
occur, the probability that A′ outputs 1 in this case is exactly 1/2.

2. If w = h(s1, . . . , sk, x) we consider two cases. If the event Forge occurs, then clearly A′

outputs 1 with probability 1/2. In addition, if the event Forge does not occur, the simulated
interaction is identical to the CCA2 interaction (a formal argument follows). Therefore, the
probability that A′ outputs 1 in this case is exactly Pr

[

Success ∧ Forge
]

+ 1
2Pr [Forge].

Note that the only difference between the CCA2 interaction and the simulated interaction
is the distribution of the challenge ciphertext: In the CCA2 interaction the value vk in the
challenge ciphertext is a randomly chosen verification key, and in the simulated interaction
the value vk is chosen ahead of time by A. In what follows we claim that as long as the event
Forge does not occur, the distribution of vk in the challenge ciphertext is identical in the two
cases.
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Formally, denote by vk1, . . . , vkq the random variables corresponding to the value of vk in A’s
decryption queries (without loss of generality we assume that A always submits q queries,
and that the signature verification never fails on these queries). In the CCA2 interaction,
as long as the event Forge does not occur, it holds that the verification key used for the
challenge ciphertext is a random verification key with the only restriction that it is different
than vk1, . . . , vkq. In the simulated interaction, given that vk∗ /∈ {vk1, . . . , vkq}, we claim
that from A’s point of view, the value vk∗ is also a random verification key which is different
than vk1, . . . , vkq. That is, given that vk∗ /∈ {vk1, . . . , vkq}, the distribution of the resulting
transcript is independent of the specific value of vk∗.

Indeed, first note that the public key is independent of vk∗. Now consider a decryption query
(vk, y1, . . . , yk, c1, c2) for some vk ∈ {vk1, . . . , vkq}. For any vk∗ 6= vk, if y1, . . . , yk have the

same preimage x, then the decryption algorithm will always output c1⊕h
(

svk11 , . . . , svkkk , x
)

.

In addition, for any vk∗ 6= vk, if y1, . . . , yk do not have the same preimage, then the decryption
algorithm will always output ⊥.

The above observations imply that

∣

∣Pr
[

A′ outputs 1 | w = h(s1, . . . , sk, x)
]

− Pr
[

A′ outputs 1 | w is random
]∣

∣

=

∣

∣

∣

∣

Pr
[

Success ∧ Forge
]

+
1

2
Pr [Forge]−

1

2

∣

∣

∣

∣

.

A standard argument (see, for example, [22, Chapter 3.4]) can be applied to efficiently transform
A′ into a predictor P that predicts h(s1, . . . , sk, x) with the same probability.

This completes the proof of Theorem 4.1.

Encrypting any polynomial number of bits. For simplicity we presented the encryption
scheme above for one-bit plaintexts. As recently shown by Myers and shelat [40] it is possible to
generically transform any single-bit CCA-secure encryption scheme into a multi-bit one.4 We now
explain how our approach extends to plaintexts of any polynomial length directly, while relying on
the same computational assumption.

Recall that the underlying computational assumption is the existence of a collection F of injec-
tive trapdoor functions and an integer function k = k(n) such that Fk is one-way under the uniform
k-repetition distribution (i.e., x1 = · · · = xk where x1 is chosen uniformly at random). Specifically,
the scheme uses a hard-core predicate h : {0, 1}∗ → {0, 1} for Fk to mask the plaintext bit. This
assumption clearly implies that for any polynomial T = T (n) there exists a collection F ′ of injective
trapdoor functions such that F ′ is one-way under the uniform k-repetition distribution, and has a
hard-core function h′ : {0, 1}∗ → {0, 1}T that can be used in our scheme to mask T -bit plaintexts.
Specifically, the collection F ′ is defined as follows: for every function f : {0, 1}n → {0, 1}m in F
define a function f ′ : {0, 1}Tn → {0, 1}Tm by f ′(x1, . . . xT ) = (f(x1), . . . , f(xT )). The security
proof of the T -bit encryption scheme is essentially identical to the proof of Theorem 4.1 by showing
that any successful CCA-adversary can be used to either break the one-time signature scheme or
to break the pseudorandomness of h′.

The above transformation can be viewed as a concatenation of bit encryptions that are depen-
dent in the sense that they share the same verification key vk in the concatenated ciphertext. The

4In the case of semantic security under a chosen-plaintext attack it is straightforward to construct a multi-
bit encryption scheme from any one-bit encryption scheme by independently encrypting the individual bits of the
plaintext. For semantic security under an adaptive chosen-ciphertext attack (CCA2), however, this approach fails.
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fact that it retains CCA security is interesting in light of the fact that independently concatenating
bit encryptions does not preserve CCA2 security. Our transformation incurs an efficiency loss and
consequently security deterioration. Our efficiency loss is smaller than the one incurred by the one
of Myers and shelat [40], and specifically, in our case the deterioration is linear in the number of
encrypted bits, whereas in their case it is polynomial. An interesting question would be to find an
alternative transformation that does not suffer from this shortcoming.

5 The Full-Fledged Construction

In this section we present a more generalized variant of the encryption scheme presented in Section
4. The construction is based on the following ingredients:

1. A collection F = (G,F, F−1) of injective trapdoor functions which is secure under a Ck-
correlated product, where Ck can be any input distribution with the following property: Any
(x1, . . . , xk) in the support of Ck(1

n) can be reconstructed given any t = (1− ǫ)k entries from
(x1, . . . , xk), for some 0 < ǫ < 1. The simplified construction from Section 4 represents the
case t = 1.

Specifically, our scheme uses a hard-core predicate h : {0, 1}∗ → {0, 1} for the collection F
with respect to Ck. That is, we assume that for any probabilistic polynomial-time predictor
P it holds that

∣

∣

∣

∣

Pr [P(1n, s1, . . . , sk, F (s1, x1), . . . , F (sk, xk)) = h(s1, . . . , sk, x1, . . . , xk)]−
1

2

∣

∣

∣

∣

is negligible in n, where the probability is taken over the choices of s1 ← G(1n), . . . , sk ←
G(1n), (x1, . . . , xk)← Ck(1

n), and over the internal coin tosses of P.

2. An error-correcting code ECC : Σℓ → Σk with distance t and polynomial-time encoding
(where Σ is an appropriately chosen finite alphabet).

3. A strongly-unforgeable one-time signature scheme (KGsig,Sign,Ver). For simplicity we assume
that verification keys are elements of Σℓ (we implicitly assume the existence of any injective
mapping from the set of verification keys to Σℓ). As mentioned in Section 4, it is possible to
apply a universal one-way hash function to the verification keys to improve the efficiency of
the scheme.

The following describes the encryption scheme given by the triplet (KG,E,D). For simplicity
we consider only one-bit messages, and note that it naturally extends to multi-bit messages, as in
Section 4.

• Key generation: On input 1n the algorithm invokes G(1n) for k · |Σ| times independently
to obtain k · |Σ| descriptions of functions from F denoted {sσ1}σ∈Σ , . . . , {sσk}σ∈Σ together
with the corresponding trapdoors {tdσ1}σ∈Σ , . . . , {tdσk}σ∈Σ. The public key and secret key are
defined as follows:

PK =
(

{sσ1}σ∈Σ , . . . , {sσk}σ∈Σ
)

SK =
(

{tdσ1}σ∈Σ , . . . , {tdσk}σ∈Σ
)

,
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• Encryption: On input a message m ∈ {0, 1} and a public key PK, the algorithm samples
(vk, sk)← KGsig(1

n) and (x1, . . . , xk)← Ck(1
n). Then, it computes ECC(vk) = σ1 ◦ · · · ◦ σk,

and outputs c = (vk, y1, . . . , yk, c1, c2) where

yi = F (sσi
i , xi) ∀i ∈ [k]

c1 = m⊕ h
(

sσ1

1 , . . . , sσk
k , x1, . . . , xk

)

c2 = Sign (sk, (y1, . . . , yk, c1)) .

• Decryption: On input a ciphertext c = (vk, y1, . . . , yk, c1, c2) and a secret key SK, the
algorithm acts as follows. If Ver(vk, (y1, . . . , yk, c1), c2) = 0, it outputs ⊥. Otherwise, the
algorithm picks some distinct i1, . . . , it ∈ [k], computes

xi1 = F−1
(

td
σi1
i1

, yi1

)

...

xit = F−1
(

td
σit
it

, yit

)

,

and uses the values (i1, xi1), . . . , (it, xit) to reconstruct the unique tuple (x1, . . . , xk) in the
support of Ck(1

n) which is consistent with (i1, xi1), . . . , (it, xit). Finally, if for every j ∈ [k]

it holds that yj = F
(

s
σj

j , xj

)

, then it outputs c1 ⊕ h(sσ1

1 , . . . , sσk
k , x1, . . . , xk). Otherwise, it

outputs ⊥.

The following theorem establishes the security of the scheme (KG,E,D).

Theorem 5.1. Assuming that F is secure under a Ck-correlated product, and that the signature
scheme (KGsig,Sign,Ver) is one-time strongly unforgeable, the encryption scheme (KG,E,D) is
CCA2-secure.

Proof. The proof is analogous to that of Theorem 4.1. Given a probabilistic polynomial-time
CCA2-adversary A, we denote by Forge the event in which for one of A’s decryption queries
(vk, y1, . . . , yk, c1, c2) during the CCA2 interaction it holds that vk = vk∗ where vk∗ is the verifi-
cation key used in the challenge ciphertext, and Ver(vk, (y1, . . . , yk, c1), c2) = 1. Denote by Success

the event in which A successfully guesses the bit b used for encrypting the challenge ciphertext.
As in the proof of Theorem 4.1, the advantage of A in the CCA2 interaction can be bounded as
follows:
∣

∣

∣

∣

Pr [Success]−
1

2

∣

∣

∣

∣

≤

∣

∣

∣

∣

Pr [Success ∧ Forge]−
1

2
Pr [Forge]

∣

∣

∣

∣

+

∣

∣

∣

∣

Pr
[

Success ∧ Forge
]

+
1

2
Pr [Forge]−

1

2

∣

∣

∣

∣

≤
1

2
Pr [Forge] +

∣

∣

∣

∣

Pr
[

Success ∧ Forge
]

+
1

2
Pr [Forge]−

1

2

∣

∣

∣

∣

.

Claim 5.2. Pr [Forge] is negligible.

Proof. The proof is essentially identical to the proof of Claim 4.2. We show that any probabilistic
polynomial-time adversary A for which Pr [Forge] is non-negligible, can be used to construct a
probabilistic polynomial-time adversary A′ that breaks the security of the one-time signature with
the same probability. The adversary A′ is given a verification key vk∗ sampled using KGsig(1

n) and
simulates the CCA2 interaction to A as follows. A′ begins by invoking the key generation algorithm
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on input 1n and using vk∗ for forming the public and secret keys. In the decryption phases,
whenever A submits a decryption query (vk, y1, . . . , yk, c1, c2), A

′ acts as follows. If vk = vk∗

and Ver(vk, (y1, . . . , yk, c1), c2) = 1, then A′ outputs ((y1, . . . , yk, c1), c2) as the forgery and halts.
Otherwise, A′ invokes the decryption procedure. In the challenge phase, upon receiving two message
m0 and m1, A

′ computes ECC(vk∗) = σ1 ◦ · · · ◦ σk, chooses b ∈ {0, 1} and x ∈ {0, 1}n uniformly
at random, and computes

yi = F (sσi
i , xi) ∀i ∈ [k]

c1 = m⊕ h
(

sσ1

1 , . . . , sσk
k , x1, . . . , xk

)

.

Then, it obtains a signature c2 on (y1, . . . , yk, c1) with respect to vk∗ (recall that A′ is allowed to
ask for a signature on one message). Finally, it sends (vk∗, y1, . . . , yk, c1, c2) to A. We note that
during the second decryption phase, if A submits the challenge ciphertext as a decryption query,
then A′ responds with ⊥.

Note that prior to the first decryption query in which Forge occurs (assuming that Forge indeed
occurs), the simulation of the CCA2 interaction is perfect. Therefore, the probability that A′ breaks
the security of the one-time signature scheme is exactly Pr [Forge]. The security of the signature
scheme implies that this probability is negligible.

Claim 5.3.
∣

∣Pr
[

Success ∧ Forge
]

+ 1
2Pr [Forge]−

1
2

∣

∣ is negligible.

Proof. The proof is almost identical to the proof of Claim 4.3, which uses A to guess the hard-core
predicate h. The only technical difference is in arguing that whenever the event Forge does not occur
and w = h(s1, . . . , sk, x1, . . . , xk), the simulated interaction is identical to the CCA2 interaction.
The argument, however, is still very similar, and is based on the fact that any decryption query in
which vk is different than vk∗ does not reveal any information on vk∗.

Given a probabilistic polynomial-time adversary A, we construct a probabilistic polynomial-
time predictor P for the hard-core predicate h. We show that the advantage of P is exactly
∣

∣Pr
[

Success ∧ Forge
]

+ 1
2Pr [Forge]−

1
2

∣

∣, and this is assumed to be negligible by the unpredictability
of h. Recall that the advantage of P is defined as

∣

∣

∣

∣

Pr [P(1n, s1, . . . , sk, F (s1, x1), . . . , F (sk, xk)) = h(s1, . . . , sk, x1, . . . , xk)]−
1

2

∣

∣

∣

∣

,

where s1 ← G(1n), . . . , sk ← G(1n), (x1, . . . , xk) ← Ck(1
n), and the probability is taken also over

the internal coin tosses of P.
Similarly to the proof of Claim 4.2, it will be sufficient to construct an efficient distinguisher A′

which receives input of the form (1n, s1, . . . , sk, F (s1, x1), . . . , F (sk, xk)) and a bit w ∈ {0, 1} which
is either h(s1, . . . , sk, x1, . . . , xk) or a uniformly random bit, and is able to distinguish between
the two cases with a non-negligible probability. The distinguisher A′ acts by simulating the CCA2
interaction to A. More specifically, on input (1n, s1, . . . , sk, y1, . . . , yk) and a bit w, the distinguisher
A′ first creates a pair (PK,SK) as follows. It samples (vk∗, sk∗) ← KGsig(1

n) and computes

ECC(vk∗) = σ∗1 ◦ · · · ◦ σ
∗
k. Then, for every i ∈ [k] it sets s

σ∗i
i = si and samples (sσi , td

σ
i ) ← G(1n)

for every σ ∈ Σ such that σ 6= σ∗i . The resulting public-key is

PK =
(

{sσ1}σ∈Σ , . . . , {sσk}σ∈Σ
)

.

In the decryption phases, whenever A submits a decryption query (vk, y1, . . . , yk, c1, c2), A
′ acts

as follows:
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1. If vk = vk∗ and Ver(vk, (y1, . . . , yk, c1), c2) = 1 (note that this means that the event Forge

occurs), then it outputs an independently and uniformly chosen bit and halts.

2. If Ver(vk, (y1, . . . , yk, c1), c2) = 0, then it responds with ⊥.

3. If vk 6= vk∗ and Ver(vk, (y1, . . . , yk, c1), c2) = 1, since ECC has distance t, there must exist
some distinct i1, . . . , it ∈ [k] for which σi 6= σ∗i . This means that A′ is able to compute

xi1 = F−1
(

td
σi1
i1

, yi1

)

...

xit = F−1
(

td
σit
it

, yit

)

,

and then use the values (i1, xi1), . . . , (it, xit) to reconstruct the unique tuple (x1, . . . , xk) in the
support of Ck(1

n) which is consistent with (i1, xi1), . . . , (it, xit). Finally, if for every j ∈ [k]

it holds that yj = F
(

s
σj

j , xj

)

, then it responds with c1 ⊕ h(sσ1

1 , . . . , sσk
k , x1, . . . , xk), and

otherwise it responds with ⊥.

In the challenge phase, given two messages m0 and m1, A
′ chooses a random bit b ∈ {0, 1} and

replies with the challenge ciphertext

c = (vk∗, y1, . . . , yk, c1, c2) ,

where c1 = mb ⊕ w, and c2 = Sign(sk∗, (y1, . . . , yk, c1)). Note that during the second decryption
phase, if A submits the challenge ciphertext as a decryption query, then A′ responds with ⊥. At the
end of this interaction A outputs a bit b′. If b′ = b then A′ outputs 1, and otherwise A′ outputs 0.

In order to compute the advantage of A′ in distinguishing between h(s1, . . . , sk, x1, . . . , xk) and
a uniformly random bit, we observe the following:

1. If w is a uniformly random bit, then the challenge ciphertext in the simulated interaction is
independent of b. Therefore, independently of whether the event Forge occurs or does not
occur, the probability that A′ outputs 1 in this case is exactly 1/2.

2. If w = h(s1, . . . , sk, x1, . . . , xk) we consider two cases. If the event Forge occurs, then clearly
A′ outputs 1 with probability 1/2. In addition, if the event Forge does not occur, the simulated
interaction is identical to the CCA2 interaction (a formal argument follows). Therefore, the
probability that A′ outputs 1 in this case is exactly Pr

[

Success ∧ Forge
]

+ 1
2Pr [Forge].

To see that the above holds, note that the only difference between the CCA2 interaction
and the simulated interaction is the distribution of the challenge ciphertext: In the CCA2
interaction the value vk in the challenge ciphertext is a randomly chosen verification key, and
in the simulated interaction the value vk is chosen ahead of time by A. As was argued in the
proof of Claim 4.3, as long as the event Forge does not occur, the distribution of vk in the
challenge ciphertext is identical in the two cases.

The above observations imply that
∣

∣Pr
[

A′ outputs 1 | w = h(s1, . . . , sk, x1, . . . , xk)
]

− Pr
[

A′ outputs 1 | w is random
]
∣

∣

=

∣

∣

∣

∣

Pr
[

Success ∧ Forge
]

+
1

2
Pr [Forge]−

1

2

∣

∣

∣

∣

,

A standard argument (see, for example, [22, Chapter 3.4]) can be applied to efficiently transform
A′ into a predictor P that predicts h(s1, . . . , sk, x) with the same probability.
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6 A Black-Box Separation

In this section we show that there is no fully-black-box construction of lossy trapdoor functions
(with even a single bit of lossiness) from injective trapdoor functions that are secure under correlated
products. We show that this holds for the seemingly strongest form of correlated product, where
independently chosen functions are evaluated on the same input (i.e., we consider the uniform
k-repetition distribution).

Our proof consists of constructing an oracle O relative to which there exists a collection of
injective trapdoor functions that are permutations secure under a correlated product5, but there
are no collections of lossy trapdoor functions. In what follows, we describe the oracle O, and show
that it breaks the security of any collection of lossy trapdoor functions.

The oracle. The oracle O is of the form (τ,Samτ ), where τ is a collection of trapdoor permu-
tations, and Samτ is an oracle that samples random collision. Specifically, Sam receives as input
a description of a circuit C (which may contain τ -gates), chooses a random input w, and then
samples a uniformly distributed w′ ∈ C−1(C(w)).

We now explain how exactly Sam samples w and w′. We provide Sam with a collection of
permutations F , where for every possible circuit C the collection F contains two permutations f1

C

and f2
C over the domain of C. Given a circuit C : {0, 1}m → {0, 1}ℓ(m) , for some m and ℓ(m), the

oracle Sam uses f1
C to compute w = f1

C(0
m). Then, it computes w′ = f2

C(t) for the lexicographically
smallest t ∈ {0, 1}m such that C(f2

C(t)) = C(w). Note that whenever the permutations f1
C and

f2
C are chosen uniformly at random, and independently of all other permutations in F , then w
is uniformly distributed over {0, 1}m, and w′ is uniformly distributed over C−1(C(w)). In the
remainder of the proof, whenever we consider the probability of an event over the choice of the
collection F , we mean that for each circuit C, two permutations f1

C and f2
C are chosen uniformly

at random and independently of all other permutations. A complete and formal description of the
oracle is provided in Figure 1.

On input a circuit C : {0, 1}m → {0, 1}ℓ(m), the oracle Samτ,F acts as follows:

1. Compute w = f1

C
(0m).

2. Compute w′ = f2

C
(t) for the lexicographically smallest t ∈ {0, 1}m such that C(f2

C
(t)) = C(w).

3. Output (w,w′)

Figure 1: The oracle Sam.

Distinguishing between injective functions and lossy functions. The oracle Sam can be
easily used to distinguish between the injective mode and the lossy mode of any collection of (n, 1)-
lossy functions. Consider the following distinguisher A: given a circuit C (which may contain
τ -gates6), which is a description of either an injective function or a lossy function (with image size
at most 2n−1), A queries Sam with C.

If Sam returns (w,w′) such that w = w′, then A outputs 1, and otherwise A outputs 0. Clearly,
if C corresponds to an injective function, then always w = w′ and A outputs 1. In addition, if C

5These functions are in fact enhanced trapdoor permutations, but we note that this is not essential for our result.
6We allow the circuits given as input to Sam to contain τ -gates, but we do not allow them to contain Sam-gates.

This suffices, however, for ruling out fully-black-box constructions (as in the work of Hsiao and Reyzin [33]).
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corresponds to a lossy function, then with probability at least 1/4 it holds that w 6= w′, where the
probability is taken over the randomness of Sam (i.e., over the collection F)7.

Outline of the proof. For simplicity we first consider only two permutations. Then, we extend
our argument to more than two permutations, and to trapdoor permutations. Our goal is to
upper bound the success probability of circuits having oracle access to Sam in the task of inverting
(π1(x), π2(x)) for random permutations π1, π2 ∈ Πn and a random x ∈ {0, 1}n (where Πn is the set
of all permutations over {0, 1}n). We prove the following theorem:

Theorem 6.1. For any circuit A of size at most 2n/40 and for all sufficiently large n, it holds that

Pr π1,π2,F
x←{0,1}n

[

Aπ1,π2,Samπ1,π2,F (π1(x), π2(x)) = x
]

≤
1

2n/40
.

Consider a circuit A which is given as input (π1(x), π2(x)), and whose goal is to retrieve x. The
idea underlying the proof is to distinguish between two cases: one in which A obtains information
on x via one of its Sam-queries, and the other in which none of A’s Sam-queries provides information
on x. More specifically, we define:

Definition 6.2. A Sam-query C produces a x-hit if Sam outputs (w,w′) such that some π1-gate
or π2-gate in the computations of C(w) or C(w′) has input x.

Given π1, π2, F , a circuit A, and a pair (π1(x), π2(x)), we denote by SamHITx the event in which
one of the Sam-queries made by A produces a x-hit. From this point on, the proof proceeds in two
modular parts. In the first part of the proof, we consider the case that the event SamHITx does not
occur, and generalize an argument of Haitner et al. [28] (who in turn generalized the reconstruction
lemma of Gennaro and Trevisan [18]). We show that if a circuit A manages to invert (π1(x), π2(x))
for many x’s, then π1 and π2 have a short representation given A. This enables us to prove the
following lemma:

Lemma 6.3. For any circuit A of size at most 2n/7 and for all sufficiently large n, it holds that

Pr π1,π2,F
x←{0,1}n

[

Aπ1,π2,Samπ1,π2,F (π1(x), π2(x)) = x ∧ SamHITx

]

≤ 2−n/8 .

In the second part of the proof, we show that the case where the event SamHITx does occur
can be reduced to the case where the event SamHITx does not occur. Given a circuit A that tries
to invert (π1(x), π2(x)), we construct a circuit M that succeeds almost as well as A, without M ’s
Sam-queries producing any x-hits. This proof is a simpler case of a similar argument due to Haitner
et al. [28]. The following theorem is proved:

Lemma 6.4. For any circuit A of size s(n), if

Pr π1,π2,F
x←{0,1}n

[

Aπ1,π2,Samπ1,π2,F
((π1(x), π2(x))) = x

]

≥
1

s(n)

for infinitely many values of n, then there exists a circuit M of size O(s(n)) such that

Pr π1,π2,F
x←{0,1}n

[

Mπ1,π2,Samπ1,π2,F
((π1(x), π2(x))) = x ∧ SamHITx

]

≥
1

s(n)5

for infinitely many values of n.

7Note that with probability at least 1/2 over the choice of w it holds that |C−1(C(w))| > 1. In this case, when
sampling w′ ∈ C−1(C(w)) it holds that w′ 6= w with probability at least 1/2. Therefore, if C corresponds to a lossy
function, then with probability at least 1/4 it holds that w 6= w′. This is a rather pessimistic analysis, but it is clearly
sufficient for our purposes.
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In what follows we show that Theorem 6.1 in obtained as a straightforward corollary of Lemmata
6.3 and 6.4. In Section 6.1 we prove Lemma 6.3, and in Section 6.2 we prove Lemma 6.4. Finally,
in Section 6.3 we extend Theorem 6.1 to consider more than two permutations and to consider
trapdoor permutations.

Proof of Theorem 6.1. Assume towards a contradiction that there exists a circuit A of size at
most s(n) = 2n/40 such that

Pr π1,π2,F
x←{0,1}n

[

Aπ1,π2,Samπ1,π2,F
(π1(x), π2(x)) = x

]

≥
1

2n/40
,

for infinitely many values of n. Lemma 6.4 states that there exists a circuitM of size O(s(n)) ≤ 2n/7

such that

Pr π1,π2,F
x←{0,1}n

[

Mπ1,π2,Samπ1,π2,F ((π1(x), π2(x))) = x ∧ SamHITx

]

≥
1

s(n)5
=

1

2n/8

for infinitely many values of n. This, however, contradicts Lemma 6.3.

6.1 The Reconstruction Lemma

In this section we prove Lemma 6.3. The idea underlying the reconstruction argument is the
following: Fix any two permutations π1 and π2. If a circuit A manages to invert (π1(x), π2(x)) on
some set of x’s, then given the circuit A, the permutations π1 and π2 can be described without
specifying their value on a relatively large fraction of this set.

Claim 6.5. For every π1, π2 ∈ Πn, F , circuit A of size s and integer n, if

Prx←{0,1}n
[

Aπ1,π2,Samπ1,π2,F
(π1(x), π2(x)) = x ∧ SamHITx

]

≥ ǫ ,

then, given F and A, the permutations π1 and π2 can be described using log
(2n

a

)

+ log
(22n

a

)

+
2 log((2n − a)!) bits, where a ≥ ǫ2n/

(

2s2
)

.

Proof. Denote by I ⊆ {0, 1}n the set of points x ∈ {0, 1}n on which A inverts (π1(x), π2(x))
with no x-hits. We claim that there exists a relatively large set X ⊆ I, such that π1 and π2 are
completely determined by F , A, X, Y = {(π1(x), π2(x)) : x ∈ X}, and the values of π1 and π2 on
{0, 1}n \X.

We define the set X via the following sequential process. Let P = {(π1(x), π2(x)) : x ∈ I}.
Initially X is empty, and we remove the lexicographically smallest element (y1, y2) = (π1(x), π2(x))

from P and insert x into X. Then, we follow the computation Aπ1,π2,Samπ1,π2,F (y1, y2), denote by
C1, . . . , Cq the circuits on which A queries Sam, and by (w1, w

′
1), . . . , (wq, w

′
q) the corresponding

answers. In addition, denote by x1, . . . , xt the inputs of all the π1-gates and π2-gates in the compu-
tations of C1(w1), C1(w

′
1), . . . , Cq(wq), Cq(w

′
q) and the inputs of all A’s direct queries to π1 and to

π2. We now remove (π1(x1), π2(x1)), . . . , (π1(xq), π2(xq)) from the set P (note that these are not
necessarily in the set P ). Then, remove the lexicographically smallest element from the remaining
elements of P , and continue in the same manner until the set P is emptied.

Note that at each iteration one element is inserted into the set X, and at most s2 + s+1 ≤ 2s2

elements are removed from the set P (the number q of Sam-queries made by A is at most s, and in
each circuit given by A as input to Sam the number of π1-gates and π2-gates is again at most s. In
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addition, A may directly query π1 and π2 on at most s inputs). Since the set P initially contains
at least ǫ2n elements, then when the process terminates we have that |X| ≥ ǫ2n/(2s2).

We now claim that π1 and π2 are completely determined by F , A, X, Y = {(π1(x), π2(x)) :
x ∈ X}, and the values of π1 and π2 on {0, 1}n \ X. More specifically, we show that the values
{(π1(x), π2(x)) : x ∈ X} can be reconstructed. For each (y1, y2) ∈ Y taken in lexicographical
increasing order, we reconstruct x∗ such that (y1, y2) = (π1(x

∗), π2(x
∗)) by simulating (π1, π2 and

Samπ1,π2,F in the computation Aπ1,π2,Samπ1,π2,F (y1, y2). Note that if the simulation is correct, then
A will output x∗. On input a query Ci with two corresponding permutation f1

Ci
, f2

Ci
∈ F , we

simulate Sam as follows:

1. Let wi = f1
Ci
(0m).

2. Compute C(wi). It is not immediately clear that we can indeed compute this value without
full access to π1 and π2 since the circuit C may contain π1-gates and π2-gates. We need to
show that we can answer of the π1-queries and π2-queries in this computation C(wi). This
computation may involve four possible π1-queries (an identical argument holds for π2-queries):

• π1-query on x ∈ {0, 1}n \X. The value is explicitly given.

• π1-query on x ∈ X for which (π1(x), π2(x)) <lex (y1, y2). The required value was already
reconstructed.

• π1-query on x ∈ X for which (π1(x), π2(x)) >lex (y1, y2). We claim that this is impos-
sible. Assume towards a contradiction that such a π1-query is made. This implies that
both x ∈ X and x∗ ∈ X (recall that x∗ is such that (y1, y2) = (π1(x

∗), π2(x
∗))). Consider

the process which defined the set X. At the beginning of this process we had that both
(π1(x), π2(x)) ∈ P and (π1(x

∗), π2(x
∗)) ∈ P , and in each iteration we chose the minimal

element from the remaining elements in P . Since (π1(x), π2(x)) >lex (π1(x
∗), π2(x

∗)),
then we chose (π1(x

∗), π2(x
∗)) before (π1(x), π2(x)). This implies, however, that we

then removed (π1(x), π2(x)) from P (since a π1-query on x is made in the computation
of C(wi)). Thus, it is not possible that x ∈ X.

• π1-query on x ∈ X for which (π1(x), π2(x)) = (y1, y2). Impossible, otherwise the Sam-
query Ci produces a x-hit.

3. Let w′i = f2
Ci
(t) for the minimal t such that Ci(f

2
Ci
(t)) can be computed (i.e., all π1-queries

and π2-queries can be answered) and its resulting value is Ci(wi). This value can be computed
for the same reason that Ci(wi) can be computed.

4. Output (wi, w
′
i).

We also have to show that we can answer all of A’s direct π1-queries (an identical argument
holds for π2-queries). Whenever A asks for the value of π1 on some value x, we act as follows: if
this value is already known (i.e., explicitly given or already reconstructed), then we output π1(x)
to A. Otherwise, if the value is not known, we claim that it must be that x = x∗, and in this case
we have successfully reconstructed the desired value and halt. Indeed, there are four possible such
queries:

• π1-query on x ∈ {0, 1}n \X. The value is explicitly given.

• π1-query on x ∈ X for which (π1(x), π2(x)) <lex (y1, y2). The required value was already
reconstructed.

• π1-query on x ∈ X for which (π1(x), π2(x)) >lex (y1, y2). This is impossible (as above).

• π1-query on x ∈ X for which (π1(x), π2(x)) = (y1, y2). In this case x = x∗.
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Thus, we can successfully reconstruct the values of π1 ad π2 on the set X. Finally, note that
describing the sets X and Y , and the values of π1 and π2 on the set {0, 1}n \X requires log

( 2n

|X|

)

+

log
(22n

|X|

)

+ 2 log((2n − |X|)!) bits.

Now we are able to prove the following lemma, which is a stronger form of Lemma 6.3.

Lemma 6.6. For every F , circuit A of size at most 2n/7 and for all sufficiently large n,

Prπ1,π2←Πn
x←{0,1}n

[

Aπ1,π2,Samπ1,π2,F (π1(x), π2(x)) = x ∧ SamHITx

]

≤ 2−n/8 .

Proof. Let ǫ = 2−n/7, then Claim 6.5 implies that for every circuit A of size s ≤ 2n/7 and for every
collection F of permutations, the fraction of pairs of permutations (π1, π2) ∈ Πn ×Πn for which

Prx←{0,1}n
[

Aπ1,Samπ1,π2,F (π1(x), π2(x)) = x ∧ SamHITx

]

≥ 2−n/7

is at most
(

N
a

)(

N2

a

)

((N − a)!)2

(N !)2
,

where N = 2n, and a ≥ 2−n/7 · N/(2s2) ≥ N4/7/2. Using the inequalities a! ≥ (a/e)a and
(x/y)y ≤

(x
y

)

≤ (xe/y)y , we can bound the above expression as follows

(

N
a

)(

N2

a

)

((N − a)!)2

(N !)2
=

(

N2

a

)

(

N
a

)

(a!)2

≤

(

N2e
a

)a

(

N
a

)a (a
e

)2a

=

(

N · e3

a2

)a

≤

(

4 · e3

N1/7

)a

≤

(

1

2

)N4/7/2

,

for sufficiently large N . Therefore,

Prπ1,π2←Πn
x←{0,1}n

[

Aπ1,π2,Samπ1,π2,F
(y) = x ∧ SamHITy

]

≤ 2−N
4/7/2 + 2−n/7 ≤ 2−n/8 .

6.2 Avoiding x-Hits

In this section we prove Lemma 6.4. Given a circuit A of size s(n) such that

Pr π1,π2,F
x←{0,1}n

[

Aπ1,π2,Samπ1,π2,F
(π1(x), π2(x)) = x

]

≥
1

s(n)
,

we would like to construct a circuit M which is almost as successful as A, but its Sam-queries do
not produce any x-hits. Recall (Definition 6.2), that we say that a Sam-query C produces a x-hit if
Sam outputs (w,w′) such that some π1-gate or π2-gate in the computations of C(w) or C(w′) has
input x. In addition, we denoted by SamHITx the event in which at least one Sam-query produces
a x-hit.
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Description of M . On input (y1, y2), the circuit M feeds A with (y1, y2) as its input, and
delivers all of A’s queries to Sam and to π1 and π2 with the following exception: for each Sam-query
C : {0, 1}m → {0, 1}ℓ(m) that A submits, M first chooses a random z ∈ {0, 1}m and computes C(z).
If some π1-gate or π2-gate in the computation of C(z) has input x such that (y1, y2) = (π1(x), π2(x))
then M outputs x and halts. Otherwise, M submits C to Sam and delivers the result (w,w′) back
to A. If M did not halt before the termination of A’s computation, then it outputs the output of
A and halts.

Proof of Lemma 6.4. The circuit M does not make any additional Sam-queries other than those
made by A. Therefore, if A inverts (π1(x), π2(x)) without producing any x-hits in its Sam-queries,
then so does M . Formally, if

Pr π1,π2,F
x←{0,1}n

[

Aπ1,π2,Samπ1,π2,F (π1(x), π2(x)) = x ∧ SamHITx

]

≥
1

2s(n)
,

then

Pr π1,π2,F
x←{0,1}n

[

Mπ1,π2,Samπ1,π2,F
(π1(x), π2(x)) = x ∧ SamHITx

]

≥
1

2s(n)
.

Thus, for the rest of the proof we focus on the more interesting case, in which A does produce an
x-hit. That is, we assume that

Pr π1,π2,F
x←{0,1}n

[

Aπ1,π2,Samπ1,π2,F (π1(x), π2(x)) = x ∧ SamHITx

]

≥
1

2s(n)
. (6.1)

We now fix π1, π2 and x ∈ {0, 1}n, and prove the following lemma:

Lemma 6.7. For every π1, π2 and x ∈ {0, 1}n, if

PrF

[

Aπ1,π2,Samπ1,π2,F (π1(x), π2(x)) = x ∧ SamHITx

]

≥
1

8s(n)
, (6.2)

then

PrF

[

Mπ1,π2,Samπ1,π2,F (π1(x), π2(x)) = x ∧ SamHITx

]

≥
1

1024s(n)3
.

Proof of Lemma 6.7. Fix π1, π2 and x ∈ {0, 1}n, and let s = s(n). We introduce the following
conventions and notations:

• Without loss of generality, the circuit A does not query π1 or π2 directly8.

• We denote by C1, . . . , Cq the random variables corresponding to A’s Sam-queries. In addi-
tion, we denote by (w1, w

′
1), . . . , (wq, w

′
q) the random variables corresponding to the answers

returned by Sam.

• Given a circuit C and an input w, we say that w produces a (C, x)-hit if some π1-gate or
π2-gate in the computation of C(w) has input x.

• For every 1 ≤ i ≤ q we denote by αi the probability that wi produces a (Ci, x)-hit (note that
this is exactly the same probability that w′i produces a (Ci, x)-hit). Formally,

αi = Prwi [wi produces a (Ci, x)-hit] .

8The oracle Sam can be modified to output (w,w′, C(w)), and therefore any π1-query and π2-query can be replaced
by a single Sam-query by creating a circuit C that ignores its input and always outputs π1(x) or π2(x) for some x.
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• For every 1 ≤ i ≤ q, we denote by JUMPi the event that αi > 1/(32s2), and let JUMP =
⋃q

i=1 JUMPi.

Equation 6.2 states that A has a noticeable probability in producing a x-hit. Notice that in
this case the event JUMP must occur with noticeable probability. If JUMP does not occur, then
the αi’s are too small in order to produce a x-hit with noticeable probability.

Claim 6.8. PrF
[

SamHITx

∣

∣ JUMP
]

≤ 1/(16s).

Proof. Assuming that the event JUMP does not occur, that is αi ≤ 1/(32s2) for every 1 ≤ i ≤ q,
it holds that

PrF
[

SamHITx

∣

∣ JUMP
]

≤

q
∑

i=1

PrF
[

wi or w
′
i produce a (Ci, x)-hit

]

≤

q
∑

i=1

2αi ≤ s ·
1

16s2
=

1

16s
.

As a result of the previous claim, we now show that the event JUMP has noticeable probability.

Claim 6.9. PrF [JUMP] ≥ 1/(16s).

Proof. On one hand, Equation 6.2 implies in particular that

PrF [SamHITx] ≥
1

8s
.

However, on the other hand, Claim 6.8 implies that

PrF [SamHITx] ≤ PrF [JUMP] + PrF
[

SamHITx

∣

∣ JUMP
]

≤ PrF [JUMP] +
1

16s
.

Therefore,

PrF [JUMP] ≥
1

8s
−

1

16s
≥

1

16s
.

Assume now that the event JUMP occurs, and denote by i∗ the minimal 1 ≤ i ≤ q for which
JUMPi occurs. When A submits the query Ci∗ , then M has probability αi∗ > 1/(32s2) to retrieve
x without submitting the query to Sam. In addition, since i∗ is the minimal 1 ≤ i ≤ q for which
JUMPi occurs, then with high probability Sam’s answers to C1, . . . , Ci∗−1 do not produce an x-hit.
The following claim concludes the proof of Lemma 6.7.

Claim 6.10. PrF

[

Mπ1,π2,Samπ1,π2,F (π1(x), π2(x)) = x ∧ SamHITx

]

≥ 1/
(

1024s3
)

.

Proof. Given that the event JUMP occurs, denote by i∗ the minimal 1 ≤ i ≤ q for which JUMPi

occurs. Whenever the event JUMP occurs, we consider the following events:

• None of the queries C1, . . . , Ci∗−1 produces a x-hit. Since for every such query Ci the event
JUMPi does not occur, then, exactly as in the proof of Claim 6.8, the probability of this event
is at least 1− 1/(16s).
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• Given Ci∗ , M samples a random z which produces a (Ci∗ , x)-hit. Since JUMPi∗ occurs, the
probability of this event is αi∗ ≥ 1/(32s2).

Note that these two events are independent (since the permutations in F are chosen independently).
Putting these together, we obtain

PrF

[

Mπ1,π2,Samπ1,π2,F
(π1(x), π2(x)) = x ∧ SamHITx

]

≥ PrF [JUMP] ·

(

1−
1

16s

)

·
1

32s2

≥
1

16s
·
1

2
·

1

32s2

≥
1

1024s3
.

This concludes the proof of Lemma 6.7. We now turn to complete the proof of Lemma 6.4 using
a standard averaging argument. Recall that we were left to deal with the case that

Pr π1,π2,F
x←{0,1}n

[

Aπ1,π2,Samπ1,π2,F (π1(x), π2(x)) = x ∧ SamHITx

]

≥
1

2s(n)
.

Let

T =

{

(x, π1, π2) : PrF

[

Aπ1,π2,Samπ1,π2,F
(π1(x), π2(x)) = x ∧ SamHITx

]

≥
1

8s(n)

}

.

Then Prx,π1,π2
[(x, π1, π2) ∈ T ] ≥ 1/8s(n), and Lemma 6.7 implies that for every such (x, π1, π2) ∈ T

we have

PrF

[

Mπ1,π2,Samπ1,π2,F (π1(x), π2(x)) = x ∧ SamHITx

]

≥
1

1024s(n)3
.

Therefore

Pr π1,π2,F
x←{0,1}n

[

Mπ1,π2,Samπ1,π2,F
((π1(x), π2(x))) = x ∧ SamHITx

]

≥ Pr π1,π2
x←{0,1}n

[(x, π1, π2) ∈ T ] ·
1

1024s(n)3

≥
1

8s(n)
·

1

1024s(n)3

≥
1

s(n)5
.

6.3 Extensions of Theorem 6.1

In this section we extend Theorem 6.1 to consider more than two permutations and to consider
trapdoor permutations.

More than two permutations. The proof for the case of k > 2 permutations is obtained
as a direct generalization. Recall that the proof consists of two parts: the first part proves the
reconstruction lemma, and the second part shows that x-hits can be avoided. We note that the
second part of the proof is oblivious to the number of permutations, and therefore the proof of
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Lemma 6.4 remains exactly the same. The first part of the proof is not oblivious to the number of
permutations, but can be easily adapted as follows.

The exact same proof of Claim 6.5 easily generalizes to consider permutations π1, . . . , πk. In

this case, given F and A, the permutations π1, . . . , πk can be described using log
(2n

a

)

+ log
(2kn

a

)

+
k log((2n − a)!) bits, where a ≥ ǫ2n/

(

2s2
)

. Then, in the proof of Lemma 6.6 the fraction of
permutations π1, . . . , πk on which A successfully inverts is at most

(N
a

)(Nk

a

)

((N − a)!)k

(N !)k
≤

(

4ek+1

N1/7

)a

,

where N = 2n, and a ≥ 2−n/7 ·N/(2s2) ≥ N4/7/2. As long as k ≤ cn, for some constant 0 < c < 1,
then this fraction is at most 2−n/7, and the exact same argument goes through.

Trapdoor permutations. The extension to trapdoor permutations is almost identical to the
corresponding extension of Haitner et al. [28], and therefore we only provide here the intuition.
The basic idea in extending the result for trapdoor permutation is in applying Theorem 6.1 twice.
Consider a collection τ =

(

G,F, F−1
)

of trapdoor permutations over {0, 1}n, and let A be a
circuit which successfully inverts the correlated product of two independently chosen trapdoor
permutations. That is, we independently sample two pairs (pk1, td1) ← G(1n) and (pk2, td2) ←
G(1n), sample a uniformly distributed x ∈ {0, 1}n, and A given input (F (pk1, x), F (pk2, x)) outputs
x.

We consider now two cases. In the first case, during A’s computation the procedure F−1 is
queried with either td1 or td2. Without loss of generality assume that F−1 is queried with td1. In
this case the circuit A can be used to invert a random permutation π = G on a random input td1.
In the second case, the procedure F−1 is not queried with wither one of td1 and td2. In this case
the circuit A can be used to invert the correlated product (π1(x), π2(x)), where π1 = F (pk1, ·) and
π2 = F (pk2, ·).
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