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Abstract. The main purpose of this paper is to suggest that public key
encryption can be secure against the “encryption emulation” attack (on
the sender’s encryption) by computationally unbounded adversary, with
one reservation: a legitimate receiver decrypts correctly with probability
that can be made arbitrarily close to 1, but not equal to 1.

1 Summary of our claims

We thought it would make sense to summarize, for the reader’s convenience,
our two main claims in a separate section, before proceeding to a narrative
introduction.

In Section 3, we describe a public-key encryption protocol that allows Bob
(the sender) to send secret information to Alice (the receiver), encrypted one bit
at a time, so that:

1. Assuming that Eve (the adversary):
(a) is computationally unbounded,
(b) knows everything about Bob’s encryption algorithm and hardware,
(c) does not know Alice’s algorithm for creating public key, then:
she cannot decrypt any single bit correctly with probability > 3

4 by emulating
Bob’s encryption algorithm.
We note that the assumption (c) is not in line with what is called “Kerckhoffs’
assumptions”, or “Kerckhoffs’ principle” (see e.g. [3]), which is considered
mandatory in practical cryptography. However, the assumption (a) is not
encountered in real life either, so this claim of ours should be considered
from a purely theoretical point of view, although we speculate in the end of
the Introduction that this claim may be of interest in real-life non-commercial
cryptography.

The second claim is in line with Kerckhoffs’ assumptions.
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2. Assuming that Eve:
(a) knows everything about Alice’s and Bob’s algorithms and hardware (Ker-
ckhoffs’ assumptions),
(b) is exponentially, but not superexponentially, computationally superior
to Alice and Bob, then:
she cannot decrypt any single bit correctly with probability significantly
higher than 3

4 by using the encryption emulation attack in the broad sense
(i.e., where she can emulate both the sender’s and the receiver’s algorithms).
We do not want to be too formal here about what “exponentially, but not
superexponentially, computationally superior” means. Intuitively, the reader
can think of the following interpretation: if Alice and Bob are capable of
performing at most n operations per second, then Eve can perform at most
Cn operations per second for some fixed constant C independent of n.
More specifically, we show that there is a k-step algorithm for the receiver
(Alice) to obtain her public key that takes time O(k3), whereas the adversary
who would like to emulate this algorithm with all possible randomness would
have to take time O(kk).

Our focus in this paper is on claim (1) because, in our opinion, it is more
interesting from the theoretical point of view.

2 Introduction

In this paper we continue to explore how non-recursiveness of a decision problem
(as opposed to computational hardness of a search problem) can be used in public
key cryptography. This line of research was started in [6] (note that the earlier
protocol of Magyarik and Wagner [2] was not based on non-recursiveness of a
decision problem, contrary to what the title of their paper may suggest; this was
recently pointed out in [1]). One of the problems with the paper [6] is that it is
somewhat too heavy on combinatorial group theory, at least for a non-expert.
Most of that group theory is needed to separate the receiver (Alice) and the
adversary (Eve) in power. This is, indeed, a very non-trivial problem that opens
several interesting research avenues.

Here our primary focus is on the “encryption emulation” attack on the
sender’s (Bob’s) transmissions. We suggest that Bob’s encryption can be made
reasonably secure against the “encryption emulation” attack by computation-
ally unbounded adversary, with one reservation: a legitimate receiver decrypts
correctly with probability that can be made arbitrarily close to 1, but not equal
to 1.

First we recall what the “encryption emulation” attack on the sender’s en-
cryption is:

Eve emulates the encryption algorithm over and over again, each time
with fresh randomness, until the transmission to be attacked is obtained;
this will happen eventually with overwhelming probability. The correct-
ness of the scheme then guarantees that the corresponding secret key (as



obtained by the adversary performing key generation) allows to decrypt
illegitimately.

This attack would indeed work fine (at least, for computationally unbounded
adversary) if the correctness of the scheme was perfect. However, if there is a
gap, no matter how small (it can be easily made on the order of 10−200, see [6]),
between 1 and the probability of correct decryption by a legitimate receiver, then
this gap can be very substantially “amplified” for the adversary, thus making
the probability of correct illegitimate decryption anything but overwhelming. To
explain how and why this is possible, we do not really need to introduce any
serious group theory.

We emphasize at this point that when we talk about security against “compu-
tationally unbounded adversary” in this paper, we do not claim security against
the “encryption emulation” (or any other) attack on the receiver’s public key or
decryption algorithm, but we only claim security against the encryption emula-
tion attack on the sender’s transmission. It seems that the problem of security
of the sender’s encryption algorithm is of independent interest. Of course, in
commercial applications to, say, Internet shopping or banking, both the sender’s
and the receiver’s algorithms are assumed to be known to the adversary (“Kerck-
hoffs’ assumptions”), and the receiver’s decryption algorithms (or algorithms for
obtaining public keys) are usually more vulnerable to attacks. However, in some
other applications, say, to electronic signatures (not to mention non-commercial,
e.g. military applications), decryption algorithms or algorithms for generating
public keys (by the receiver) need not be public, whereas encryption algorithms
(of the sender) always are. It is therefore important to have a consensus in the
cryptographic community on the first of the two security claims in Section 1 of
the present paper.

Thus, in Section 3, we present a protocol which is reasonably secure against
the encryption emulation attack on the sender’s transmission by a computation-
ally unbounded adversary who has complete information on the algorithm(s)
and hardware that the sender uses for encryption. More precisely, in our proto-
col the sender transmits his private bit sequence by encrypting one bit at a time,
and the receiver decrypts each bit correctly with probability that can be made
arbitrarily close to 1, but not equal to 1. At the same time, the (computationally
unbounded) adversary decrypts each bit (by emulating the sender’s encryption
algorithm) correctly with probability at most 3

4 .
There are essentially no requirements on the sender’s computational abilities;

in fact, encryption can be done by hand, which can be a big advantage in some
situations; for example, a field operative can receive a public key from a command
center and transmit encrypted information over the phone, without even using a
computer. In the same scenario, there is nothing about the receiver’s algorithms
(or even about the general setup) that has to be known to the public. The only
public information that comes from the receiver in this scenario is the encrypting
instructions that she transmits to the sender (along with the public key).

In Section 5, we use the same protocol to address the second claim from our
Section 1; in particular, we allow the adversary to emulate both the encryption



and decryption algorithms. More precisely, here we allow the adversary to em-
ulate the receiver’s algorithm for obtaining the public key. If such an attack is
successful, the adversary recovers the receiver’s private key used for decryption,
and then the encryption emulation attack on the sender’s encryption will al-
low the adversary to decrypt correctly with the same probability as the receiver
would. We show however that there is an algorithm for the receiver to obtain
her public key that takes time O(k3) (where k is the complexity of the public
key), whereas the adversary who would like to emulate this algorithm with all
possible randomness would have to take time O(kk).

3 Encryption protocol

In this section, we describe an encryption protocol with the following features:

(F1) Bob encrypts his secret bit by a word in a public alphabet X.
(F2) Alice (the receiver) decrypts Bob’s transmission correctly with probability

that can be made arbitrarily close to 1, but not equal to 1.
(F3) The adversary, Eve, is assumed to have no bound on the speed of computa-

tion or on the storage space.
(F4) Eve is assumed to have complete information on the algorithm(s) and hard-

ware that Bob uses for encryption. However, Eve cannot predict outputs of
Bob’s random numbers generator (the latter could be just coin tossing, say).
Neither does she know Alice’s algorithm for obtaining public keys.

(F5) Eve cannot decrypt Bob’s secret bit correctly with probability > 3
4 by emu-

lating Bob’s encryption algorithm.

Once again: in this section, we only claim security against the “encryption
emulation” attack (by computationally unbounded adversary) on the sender’s
transmissions. This does not mean that the receiver’s private keys in our protocol
are insecure against real-life (i.e., computationally bounded) adversaries, but this
is the subject of Section 5. Here we prefer to focus on what is secure against
computationally unbounded adversary since this paradigm shift looks important
to us (at least, from the theoretical point of view).

We also have to reiterate that the encryption protocol which is presented in
this section is probably not very suitable for commercial applications (such as
Internet shopping or banking) due to a large amount of work required from Alice
to receive just one bit from Bob. Bob, on the other hand, may not even need a
computer for encryption.

Now we are getting to the protocol description. In one round of this protocol,
Bob transmits a single bit, i.e., Alice generates a new public key for each bit
transmission.

(P0) Alice publishes two group presentations by generators and defining relators:

Γ1 = 〈x1, x2, . . . , xn | r1, r2, . . . , rk〉



Γ2 = 〈x1, x2, . . . , xn | s1, s2, . . . , sm〉.
One of them defines the trivial group, whereas the other one defines an
infinite group, but only Alice knows which one is which. In the group that is
infinite, Alice should be able to efficiently solve the word problem, i.e., given
a word w = w(x1, x2, . . . , xn), she should be able to determine whether or
not w = 1 in that group. There is a large and easily accessible pool of such
groups (called small cancellation groups), see [6] for discussion.
Bob is instructed to transmit his private bit to Alice as follows:

(P1) In place of “1”, Bob transmits a pair of words (w1, w2) in the alphabet
X = {x1, x2, . . . , xn, x−1

1 , . . . , x−1
n }, where w1 is selected randomly, while w2

is selected to be equal to 1 in the group G2 defined by Γ2.
(P2) In place of “0”, Bob transmits a pair of words (w1, w2), where w2 is selected

randomly, while w1 is selected to be equal to 1 in the group G1 defined by
Γ1.

Now we have to specify the algorithms that Bob should use to select his
words.

Algorithm “0” (for selecting a word v = v(x1, . . . , xn) not equal to 1 in a Γi)
is quite simple: Bob just selects a random word by building it letter-by-letter,
selecting each letter uniformly from the set X = {x1, . . . , xn, x−1

1 , . . . , x−1
n }. The

length of such a word should be a random integer from an interval that Bob
selects up front, based on his computational abilities. In the end, Bob should
cancel out all subwords of the form xix

−1
i or x−1

i xi.

Algorithm “1” (for selecting a word u = u(x1, . . . , xn) equal to 1 in a Γi) is
slightly more complex. It amounts to applying a random sequence of operations
of the following two kinds, starting with the empty word:

1. Inserting into a random place in the current word a pair hh−1 for a random
word h.

2. Inserting into a random place in the current word a random conjugate g−1rig
of a random defining relator ri.

In the end, Bob should cancel out all subwords of the form xix
−1
i or x−1

i xi.
The length of the resulting word should be in the same range as the length of the
output of Algorithm “0”. We do not go into more details here because all claims
in this section remain valid no matter what algorithm for producing words equal
to 1 is chosen, as long as it returns a word whose length is in the same range as
that of the output of Algorithm “0”.

Now let us explain why the legitimate receiver (Alice) decrypts correctly with
overwhelming probability. Suppose, without loss of generality, that the group G1

is trivial, and G2 is infinite. Then, if Alice receives a pair of words (w1, w2) such
that w1 = 1 in G1 and w2 6= 1 in G2, she concludes that Bob intended to
transmit a “0”. This conclusion is correct with probability 1. If Alice receives



(w1, w2) such that w1 = 1 in G1 and w2 = 1 in G2, she concludes that Bob
intended to transmit a “1”. This conclusion is correct with probability which is
close to 1, but not equal to 1 because it may happen, with probability ε > 0,
that the random word w2 selected by Bob is equal to 1 in G2. The point here
is that, if G2 is infinite, this ε is negligible and, moreover, for “most” groups
G2 this ε tends to 0 exponentially fast as the length of w2 increases. For more
precise statements, see [6]; here we just say that it is easy for Alice to make sure
that G2 is one of those groups.

4 Emulating encryption

Now we are going to discuss Eve’s attack on Bob’s transmission. Under our
assumptions (F3), (F4) Eve can identify the word(s) in the transmitted pair
which is/are equal to 1 in the corresponding group(s), as well as the word, if
any, which is not equal to 1. Indeed, for any particular transmitted word w she
can use the “encryption emulation” attack, as described in our Introduction:
she emulates algorithms ‘0” and “1” over and over again, each time with fresh
randomness, until the word w is obtained. Thus, Eve is building up two lists,
corresponding to two algorithms above. Our first observation is that the list
that corresponds to the Algorithm “0” is useless to Eve because it is eventually
going to contain all words in the alphabet X = {x1, . . . , xn, x−1

1 , . . . , x−1
n }, with

overwhelming probability. Therefore, Eve may just as well forget about this list
and concentrate on the other one, that corresponds to the Algorithm “1”. Now
the situation boils down to the following: if the word w appears on the list, then
it is equal to 1 in the corresponding group Gi. If not, then not.

It may seem that Eve should encounter a problem detecting w 6= 1: how
can she conclude that w does not appear on the list if the list is infinite (more
precisely, of a priori unbounded length) ? This is where our condition (F4) plays
a role: if Eve has complete information on the algorithm(s) and hardware that
Bob uses for encryption, then she does know a bound on the size of the list.

Thus, Eve can identify the word(s) in the transmitted pair which is/are equal
to 1 in the corresponding group(s), as well as the word, if any, which is not equal
to 1. There are the following possibilities now:

1. w1 = 1 in G1, w2 = 1 in G2;
2. w1 = 1 in G1, w2 6= 1 in G2;
3. w1 6= 1 in G1, w2 = 1 in G2.

It is easy to see that one of the possibilities (2) or (3) cannot actually occur,
depending on which group Gi is trivial. Then, the possibility (1) occurs with
probability 1

2 (either when Bob wants to transmit “1” and G1 is trivial, or when
Bob wants to transmit “0” and G2 is trivial). If this possibility occurs, Eve cannot
decrypt Bob’s bit correctly with probability > 1

2 because she does not know
which group Gi is trivial. If Eve knew Alice’s algorithm for generating the public
key as well as Alice’s hardware capabilities, then Eve would be able to find out
which Gi is trivial, but we specifically consider attacks on the sender’s encryption



in this paper. We just note, in passing, that for a real-life (i.e., computationally
bounded) adversary to find out which presentation Γi defines the trivial group
is by no means easy and deserves to be a subject of separate investigation; we
discuss this in the next section. Here we just say that there are many different
ways to efficiently construct very complex presentations of the trivial group,
some of them involving a lot of random choices. See e.g. [5] for a survey on the
subject.

In any case, our claim (F5) was that Eve cannot decrypt Bob’s bit correctly
with probability > 3

4 by emulating Bob’s encryption algorithm, which is obvi-
ously true in this scheme since the probability for Eve to decrypt correctly is, in
fact, precisely 1

2 · 12 + 1
2 ·1 = 3

4 . (Note that Eve decrypts correctly with probability
1 if either of the possibilities (2) or (3) above occurs.)

Someone may say that 3
4 is a rather high probability of illegitimate decryp-

tion, even though this is just for one bit. Recall however that we are dealing
with computationally unbounded adversary, while Bob can essentially do his en-
cryption by hand! All he needs is a generator of uniformly distributed random
integers in the interval between 1 and 2n (the latter is the cardinality of the
alphabet X). Besides, note that with the probability of correctly decrypting one
bit equal to 3

4 , the probability to correctly decrypt, say, a credit card number
of 16 decimal digits would be on the order of 10−7, which is comparable to the
chance of winning the jackpot in a lottery. Of course, there are many tricks that
can make this probability much smaller, but we think we better stop here be-
cause, as we have pointed out before, our focus here is on the new paradigm
itself.

5 Encryption/decryption emulation attack by a
computationally superior yet bounded adversary

In this section, we show that Eve would need a serious computational power
(superexponential compared to that of Alice) to run an emulation attack on
Alice’s algorithm for generating a public key if this algorithm is sophisticated
enough. This attack is similar to the emulation attack on Bob’s encryption that
we considered before:

Eve emulates Alice’s algorithm for generating a public key over and over
again, each time with fresh randomness, until the actual public key is
obtained; this will happen eventually with overwhelming probability.

Obviously, if this attack is successful, then the encryption emulation attack
on the sender’s encryption, as described in the Introduction, will allow Eve to
decrypt Bob’s bit correctly with overwhelming probability because Eve would
know, just like Alice does, which public presentation Γi is a presentation of the
trivial group.

Thus, we are going to focus on the above attack and describe a particular
algorithm that Alice can use to generate a presentation of the trivial group, such



that emulating this algorithm with all possible randomness would entail going
over superexponentially many possibilities.

The algorithm itself is quite simple, and it produces special kinds of pre-
sentations of the trivial group. It is known (see e.g. [4], [5]) that the following
presentations define the trivial group:

〈x, y| x−1ynx = yn+1, w = 1〉,
where n ≥ 1 and w is any word in x and y with exponent sum 1 on x. Let us
assume that the length of w is k, a sufficiently large integer selected by Alice,
which can be considered a measure of complexity of the above presentation.
Technically, the integer n, too, influences complexity of the presentation, but it
is less important to us, so we will consider n fixed (and rather small) in what
follows.

Now we are going to describe a k-step algorithm that Alice can use to obtain
a presentation of complexity O(k3) that would define the trivial group.

1. At the first step, Alice selects a presentation of the form

〈x1, y1| x−1
1 yn

1 x1 = yn+1
1 , w1 = 1〉,

with a random word w1 in x1 and y1 of length k, having exponent sum 1 on
x1.

2. At the ith step, 1 < i < k, Alice adds two new generators, xi and yi, and
a new relator wi, which is a random word in xi and yi of length k, having
exponent sum 1 on xi. Also, she adds the relation x−1

i yn
i xi = yn+1

i . The
resulting presentation still defines the trivial group; in particular, xi = 1
and yi = 1 in this group. After that, Alice “mixes” new generators with old
ones by inserting x±1

i and y±1
i in k random places in each old relator. The

idea is to have roughly k generators with index i in each old relator.
3. The kth step is special. Alice adds two new generators, xk and yk, and

two relators, x−1
k ykxky−2

k and wk of small length (say, between 3 and 6)
having exponent sum 1 on xk. The resulting group is therefore still trivial;
in particular, all generators are equal to 1 in this group. Then Alice adds
roughly k more relators to this presentation, where each relator is a random
word of length 1, 2, or 3 in the generators x1, y1, . . . , xk, yk. The only thing
Alice takes care of is that each generator occurs in at least one of these new
relators. Then Alice mixes these new relators with each other and with the
two relators x−1

k ykxky−2
k and wk by using operations of the following kinds:

ri → rirj , or ri → rir
−1
j , or ri → rjri, or ri → r−1

j ri for different relators
ri, rj , until all relators will have roughly k occurrences of each generator.

4. Finally, Alice randomly renames the generators to hide the order of steps.

It is fairly obvious that the complexity of the resulting presentation is O(k3),
whereas to emulate all possible randomness in the above algorithm Eve would
have to take time O(kk) because she would have to explore, in particular, random
(sub)words of length k on 2k letters (and their inverses).



6 A challenge

Here we offer a computational challenge to illustrate one of our points, namely,
that Eve might need a serious computational power to detect a presentation of
the trivial group among two given presentations.

Let
Γ1 = 〈x, y, z | x−1zy−1x−1yxzx−1y−1xyz−1, y−1x−1yxz−1x−1y−1xyxzx−1y−1x,
xy−1z2x−1y−2x3z−1x−1y〉,
Γ2 = 〈x, y, z | x−1zy−1x−1yxzx−1y−1xyz−1, y−1x−1yxz−1x−1y−1xyx−1zxy−1x,
xy−1z2x−1y−2x3z−1x−1y〉.
The question is: which Γi is a presentation of the trivial group?
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