
New proofs for old modes

Mark Wooding
mdw@distorted.org.uk

13 March 2008

Abstract We study the standard block cipher modes of operation: CBC, CFB, and OFB
and analyse their security. We don’t look at ECB other than briefly to note its insecurity,
and we have no new results on counter mode. Our results improve over those previously
published in that (a) our bounds are better, (b) our proofs are shorter and easier, (c) the proofs
correct errors we discovered in previous work, or some combination of these. We provide
a new security notion for symmetric encryption which turns out to be rather useful when
analysing block cipher modes. Finally, we pay attention to different methods for selecting
initialization vectors for the block cipher modes, and prove security for a number of different
selection policies. In particular, we introduce the concept of a ‘generalized counter’, and
prove that generalized counters suffice for security in (full-width) CFB and OFB modes and
that generalized counters encrypted using the block cipher (with the same key) suffice for all
three modes.

1

New proofs for old modes

Contents

1 Introduction 3

1.1 Block cipher modes 3
1.2 Previous work 3
1.3 Our contribution 3
1.4 The rest of the paper 4

2 Notation and definitions 4

2.1 Bit strings 4
2.2 Other notation 5
2.3 Algorithm descriptions . . 5
2.4 Pseudorandom functions

and permutations 5
2.5 Symmetric encryption . . . 6
2.6 Initialization vectors and

encryption modes 9

3 Ciphertext block chaining (CBC)
encryption 13

3.1 Description 13
3.2 Security of CBC mode . . . 14
3.3 Ciphertext stealing 15
3.4 Proof of theorem 3.2.1 . . . 16

4 Ciphertext feedback (CFB) en-
cryption 19
4.1 Description 19
4.2 Sliding strings 20
4.3 Security of CFB mode . . . 21
4.4 Proof of theorem 4.3.1 . . . 22

5 OFB mode encryption 26
5.1 Description 26
5.2 Security of OFB mode . . . 27

6 Acknowledgements 28

7 References 28

List of figures

3.1 Encryption using CBC mode . . . 13
3.2 Encryption and decryption using

CBC mode with ciphertext steal-
ing 15

3.3 Garbage emitter W for CBC
mode 17

3.4 Notation for the proof of theo-
rem 3.2.1. 18

4.1 Encryption using CFB mode . . . 20
4.2 Adversary S attacking

E-CFBLFℓ,t,0ℓ

. 21
4.3 Notation for the proof of

lemma 4.4.2. 24
5.1 Encryption using OFB mode . . . 26

List of tables

1.1 Summary of our results 4

2

1. Introduction

1 Introduction

1.1 Block cipher modes

Block ciphers – keyed pseudorandom permutations – are essential cryptographic tools, widely
used for bulk data encryption and to an increasing extent for message authentication. Because
the efficient block ciphers we have operate on fixed and relatively small strings of bits – 64 or
128 bits at a time, one needs a ‘mode of operation’ to explain how to process longer messages.

A collection of encryption modes, named ECB, CBC, CFB and OFB, were defined in [Uni81].
Of these, ECB – simply divide the message into blocks and process them independently with
the block cipher – is just insecure and not to be recommended for anything much. We describe
the other three, and analyse their security using the standard quantitative provable-security
approach. All three require an ‘initialization vector’ or ‘IV’ which diversifies the output
making it hard to correlate ciphertexts with plaintexts. We investigate which conditions on
these IVs suffice for secure encryption.

1.2 Previous work

The first quantitative security proof for a block cipher mode is the analysis of CBCMAC of
[BKR94]. Security proofs for the encryption modes CBC and CTR appeared in [BDJR97],
which also defines and relates the standard security notions of symmetric encryption. The
authors of [AGPS01] offer a proof of CFB mode, though it is incomplete, as we discuss below.

1.3 Our contribution

We introduce a new security notion for symmetric encryption, named ‘result-or-garbage’,
or ‘ROG-CPA’, which generalizes the ‘real-or-random’ notion of [BDJR97] and the ‘random-
string’ notion of [RBBK01]. Put simply, it states that an encryption scheme is secure if an
adversary has difficulty distinguishing true ciphertexts from strings chosen by an algorithm
which is given only the length of the adversary’s plaintext. This turns out to be just the right
tool for analysing our encryption modes. We relate this notion to the standard ‘left-or-right’
notion and, thereby, all the others.

Our bound for CBC mode improves over the ‘tight’ bound proven in [BDJR97] by almost
a factor of two. The difference comes because they analyse the construction as if it were
built from a PRF and add in a ‘PRP-used-as-a-PRF’ correction term: our analysis considers
the effect of a permutation directly. We prove that CBC mode is still secure if an encrypted
counter is used in place of a random string as the IV for each message. Finally, we show that
the ‘ciphertext stealing’ technique is secure.

For CFB, we first discuss the work of [AGPS01], who offer a proof for both CFB mode and an
optimized variant which enhances the error-recovery properties of standard CFB. We show
that their proof is incomplete, as shown in sections 4.2. We then offer our own proof. We show
that full-width CFB is secure if the IV is any ‘generalized counter’, and that both full-width
and truncated t-bit CFB are secure if the IV is an encrypted counter. We also show that, unlike
CBC mode, it is safe to ‘carry over’ the final shift-register value from the previous message as
the IV for the next message.

Finally, OFB mode is in fact a simple modification to CFB mode, and we prove the security of
OFB by relating it to CFB.

3

New proofs for old modes

Mode Section Notion
Security with

(t, q, ε)-PRF (t, q, ε)-PRP

CBC 3 LOR-CPA — 2ε +
q(q − 1)

2ℓ − q

CFB 4 LOR-CPA 2ε +
q(q − 1)

2ℓ
2ε +

q(q − 1)

2ℓ−1

OFB 5 LOR-CPA 2ε +
q(q − 1)

2ℓ
2ε +

q(q − 1)

2ℓ−1

Table 1.1: Summary of our results. In all cases, q is the number of block cipher applications used in the
game.

As a convenient guide, our security bounds are summarized in table 1.1.

1.4 The rest of the paper

In section 2 we define the various bits of notation and terminology we’ll need in the rest of
the paper. The formal definitions are given for our new ‘result-or-garbage’ security notion,
and for our generalized counters. In section 3 we study CBC mode, and ciphertext stealing.
In section 4 we study CFB mode. In section 5 we study OFB mode.

2 Notation and definitions

2.1 Bit strings

Most of our notation for bit strings is standard. The main thing to note is that everything is
zero-indexed.

• We write Σ = {0, 1} for the set of binary digits. Then Σn is the set of n-bit strings, and Σ∗

is the set of all (finite) bit strings.

• If x is a bit string then |x| is the length of x. If x ∈ Σn then |x| = n.

• If x, y ∈ Σn are strings of bits of the same length then x⊕ y ∈ Σn is their bitwise XOR.

• If x is a bit string and i is an integer satisfying 0 6 i < |x| then x[i] is the ith bit of x. If a
and b are integers satisfying 0 6 a 6 b 6 |x| then x[a .. b] is the substring of x beginning
with bit a and ending just before bit b. We have |x[i]| = 1 and |x[a..b]| = b−a; if y = x[a..b]
then y[i] = x[a + i].

• If x and y are bit strings then xy is the result of concatenating y to x. If z = xy then
|z| = |x|+ |y|; z[i] = x[i] if 0 6 i < |x| and z[i] = y[i− |x|] if |x| 6 i < |x|+ |y|. Sometimes,
for clarity (e.g., to distinguish from integer multiplication) we write x ‖ y instead of xy.

• The empty string is denoted λ. We have |λ| = 0, and x = xλ = λx for all strings x ∈ Σ∗.

• If x is a bit string and n is a natural number then xn is the result of concatenating x to
itself n times. We have x0 = λ and if n > 0 then xn = xn−1 ‖ x = x ‖ xn−1.

4

2. Notation and definitions

• If x and y are bit strings, |x| = ℓ, and |y| = t, then we define x≪t y as:

x≪t y = (xy)[t .. t + ℓ] =

{

x[t .. ℓ] ‖ y if t < ℓ, or

y[t− ℓ .. t] if t > ℓ.

Observe that, if z = x≪t y then |z| = |x| = ℓ and

z[i] = (xy)[i + t] =

{

x[i + t] if 0 6 i < ℓ− t, or

y[i + t− ℓ] if min(0, ℓ− t) 6 i < ℓ.

Obviously x≪0 λ = x, and if |x| = |y| = t then x≪t y = y. Finally, if |y| = t and |z| = t′

then (x≪t y)≪t′ z = x≪t+t′ (yz).

2.2 Other notation

• The symbol ⊥ (‘bottom’) is a value different from every bit string.

• We write F l,L as the set of all functions from Σl to ΣL, and P l as the set of all
permutations on Σl.

2.3 Algorithm descriptions

An adversary is a probabilistic algorithm which attempts (possibly) to ‘break’ a cryptographic
scheme. We will often provide adversaries with oracles which compute values with secret
data. The running time of an adversary conventionally includes the size of the adversary’s
description: this is an attempt to ‘charge’ the adversary for having large precomputed tables.

Most of the notation used in the algorithm descriptions should be obvious. We briefly note a
few features which may be unfamiliar.

• The notation a← x denotes the action of assigning the value x to the variable a.

• We write oracles as superscripts, with dots marking where inputs to the oracle go, e.g.,
AO(·).

• The notation a
R
← X , where X is a finite set, denotes the action of assigning to a a random

value x ∈ X according to the uniform probability distribution on X ; i.e., following a
R
←

X , we have Pr[a = x] = 1/|X | for any x ∈ X .

The notation is generally quite sloppy about types and scopes. We don’t think these informal-
ities cause much confusion, and they greatly simplify the presentation of the algorithms.

2.4 Pseudorandom functions and permutations

Our definitions of pseudorandom functions and permutations are standard. We provide them
for the sake of completeness.

2.4.1 Definition (Pseudorandom function family) A pseudorandom function family (PRF) F = {FK}K is a
collection of functions FK : Σℓ → ΣL indexed by a key K ∈ keysF . If A is any adversary, we
define A’s advantage in distinguishing F from a random function to be

Adv
prf
F (A) = Pr[K

R
← keysF : AFK(·) = 1]− Pr[R

R
← Fℓ,L : AR(·) = 1]

5

New proofs for old modes

where the probability is taken over all choices of keys, random functions, and the internal
coin-tosses of A. The insecurity of F is given by

InSecprf(F ; t, q) = max
A

Adv
prf
F (A)

where the maximum is taken over all adversaries which run in time t and issue at most q
oracle queries. If InSecprf(F ; t, q) 6 ε then we say that F is a (t, q, ε)-PRF. �

2.4.2 Definition (Pseudorandom permutation family) A pseudorandom permutation family (PRP) E =
{EK}K is a collection of permutations EK : Σℓ → Σℓ indexed by a key K ∈ keysE. If A is
any adversary, we define A’s advantage in distinguishing E from a random permutation to be

Adv
prp
F (A) = Pr[K

R
← keysE : AEK(·) = 1]− Pr[P

R
← Pℓ : AP (·) = 1]

where the probability is taken over all choices of keys, random permutations, and the internal
coin-tosses of A. Note that the adversary is not allowed to query the inverse permutation
E−1

K (·) or P−1(·). The insecurity of E is given by

InSecprp(E; t, q) = max
A

Adv
prf
E (A)

where the maximum is taken over all adversaries which run in time t and issue at most q
oracle queries. If InSecprp(E; t, q) 6 ε then we say that E is a (t, q, ε)-PRP. �

The following result is standard; we shall require it for the security proofs of CFB and OFB
modes. The proof is given as an introduction to our general approach.

2.4.3 Proposition Suppose E is a PRP over Σℓ. Then

InSecprf(E; t, q) 6 InSecprp(E; t, q) +
q(q − 1)

2ℓ+1
.

Proof We claim

InSecprf(Pℓ; t, q) 6
q(q − 1)

2ℓ+1
,

i.e., that a perfect ℓ-bit random permutation is a PRF with the stated bounds. The proposition
follows immediately from this claim and the definition of a PRP.

We now prove the claim. Consider any adversary A. Let xi be A’s queries, and let yi be the
responses, for 0 6 i < q. Assume, without loss of generality, that the xi are distinct. Let Cn

be the event in the random-function game Expt
prf-0

Pℓ (A) that yi = yj for some i and j where
0 6 i < j < n. Then

Pr[Cn] 6
∑

06i<n

i

2ℓ
=

n(n− 1)

2ℓ+1
. (1)

It’s clear that the two games proceed identically if Cq doesn’t occur in the random-function
game. The claim follows. �

2.5 Symmetric encryption

We begin with a purely syntactic description of a symmetric encryption scheme, and then
define our two notions of security.

6

2. Notation and definitions

2.5.1 Definition (Symmetric encryption) A symmetric encryption scheme is a triple of algorithms E =
(G, E, D), with three (implicitly) associated sets: a keyspace, a plaintext space, and a
ciphertext space.

• G is a probabilistic key-generation algorithm. It is invoked with no arguments, and returns
a key K which can be used with the other two algorithms. We write K ← G().

• E is a probabilistic encryption algorithm. It is invoked with a key K and a plaintext x in the
plaintext space, and it returns a ciphertext y in the ciphertext space. We write y ← EK(x).

• D is a deterministic decryption algorithm. It is invoked with a key K and a ciphertext y,
and it returns either a plaintext x or the distinguished symbol ⊥. We write x← DK(y).

For correctness, we require that whenever y is a possible result of computing EK(x), then
x = DK(y). �

Our primary notion of security is left-or-right indistinguishability under chosen-plaintext attack
(LOR-CPA), since it offers the best reductions to the other common notions. (We can’t achieve
security against chosen ciphertext attack using any of our modes, so we don’t even try.) See
[BDJR97] for a complete discussion of LOR-CPA, and how it relates to other security notions
for symmetric encryption.

2.5.2 Definition (Left-or-right indistinguishability) Let E = (G, E, D) be a symmetric encryption scheme.
Define the function lr(b, x0, x1) = xb. Then for any adversary A, we define A’s advantage
against the LOR-CPA security of E as

Adv
lor-cpa
E (A) = Pr[K ← G() : AEK(lr(1,·,·)) = 1]− Pr[K ← G() : AEK(lr(0,·,·)) = 1].

We define the LOR-CPA insecurity of E to be

InSeclor-cpa(E ; t, qE , µE) = max
A

Adv
lor-cpa
E (A)

where the maximum is taken over all adversaries which run in time t and issue at most qE

encryption queries totalling at most µE bits. If InSeclor-cpa(E ; t, qE , µE) 6 ε then we say that E
is (t, qE , µE , ε)-LOR-CPA. �

Our second notion is named result-or-garbage and abbreviated ROG-CPA. It is related to
the notion used by [RBBK01], though different in important ways: for example, there are
reductions both ways between ROG-CPA and LOR-CPA (and hence the other standard
notions of security for symmetric encryption), whereas the notion of [RBBK01] is strictly
stronger than LOR-CPA. Our idea is that an encryption scheme is secure if ciphertexts of
given plaintexts – results – hard to distinguish from strings constructed independently of any
plaintexts – garbage. We formalize this notion in terms of a garbage-emission algorithm W which
is given only the length of the plaintext. The algorithm W will usually be probabilistic, and
may maintain state. Unlike [RBBK01], we don’t require that W ’s output ‘look random’ in any
way, just that it be chosen independently of the adversary’s plaintext selection.

2.5.3 Definition (Result-or-garbage indistinguishability) Let E = (G, E, D) be a symmetric encryption
scheme, and let W be a possibly-stateful, possibly-probabilistic garbage-emission algorithm.
Then for any adversary A, we define A’s advantage against the ROG-CPA-W security of E as

Adv
rog-cpa-W
E (A) = Pr[K ← G() : AEK(·) = 1]− Pr[AW (|·|) = 1].

7

New proofs for old modes

We define the ROG-CPA insecurity of E to be

InSeclor-cpa(E ; t, qE , µE) = max
A

Adv
lor-cpa
E (A)

where the maximum is taken over all adversaries which run in time t and issue at most qE

encryption queries totalling at most µE bits. If InSecrog-cpa-W (E ; t, qE , µE) 6 ε for some W
then we say that E is (t, qE , µE , ε)-ROG-CPA. �

The following proposition relates our new notion to the existing known notions of security.

2.5.4 Proposition (ROG⇔ LOR) Let E be a symmetric encryption scheme. Then,

1. for all garbage-emission algorithms W ,

InSeclor-cpa(E ; t, qE , µE) 6 2 · InSecrog-cpa-W (E ; t + tEµE , qE , µE)

and

2. there exists a garbage-emission algorithm WROR for which

InSecrog-cpa-WROR(E ; t, qE , µE) 6 InSeclor-cpa(E ; t + tEµE , qE , µE)

for some fairly small constant tE .

2.5.5 Remark Note the asymmetry between these two statements. ROG-CPA-W implies LOR-CPA
for any garbage emitter W , but LOR-CPA implies ROG-CPA-WROR for the specific emitter
WROR only. �

Proof of proposition 2.5.4 1. Let W and E be given, and let A be an adversary attacking the
LOR-CPA security of E . Consider adversary B attacking E ’s ROG-CPA-W security.

Adversary BE(·):

b∗
R
← Σ;

b← AE(lr(b∗,·,·));
if b = b∗ then return 1 else return 0;

Function lr(b, x0, x1):
if b = 0 then return x0 else return x1;

If E(·) is the ‘result’ encryption oracle, then B simulates the left-or-right game for the

benefit of A, and therefore returns 1 with probability (Adv
lor-cpa
E (A) + 1)/2. On the

other hand, if E(·) returns ‘garbage’ then the oracle responses are entirely independent
of b∗. This follows because A is constrained to query only on pairs of plaintexts with
equal lengths, and the responses are dependent only on these (common) lengths and any
internal state and coin tosses of W . So b is independent of b∗ and Pr[b = b∗] = 1

2 . The
result follows.

2. Let E = (G, E, D) be given. Our garbage emitter simulates the real-or-random game of
[BDJR97]. Let KW = ⊥ initially: we define our emitter WROR thus:

Garbage emitter WROR(n):
if KW = ⊥ then KW ← G();

x
R
← Σn;

return EKW
(x);

We now show that InSecrog-cpa-WROR(E ; t, qE , µE) 6 InSeclor-cpa(E ; t + tEµE , qE , µE) for
our WROR. Let A be an adversary attacking the ROG-CPA-WROR security of E . Consider
adversary B attacking E ’s LOR-CPA security:

8

2. Notation and definitions

Adversary BE(·,·):
b← Alorify(·);
return b;

Function lorify(x):

x′ R
← Σ|x|;

return E(x′, x);

The adversary simulates the ROG-CPA-WROR games perfectly, since the game has chosen
the random KW for us already: the ‘left’ game returns only the results of encrypting
random ‘garbage’ plaintexts x′, while the right game returns correct results of encrypting
the given plaintexts x. The result follows. �

2.6 Initialization vectors and encryption modes

In order to reduce the number of definitions in this paper to a tractable level, we will
describe the basic modes independently of how initialization vectors (IVs) are chosen, and
then construct the actual encryption schemes by applying various IV selection methods from
the modes.

We consider the following IV selection methods.

Random selection An IV is chosen uniformly at random just before encrypting each message.

Counter The IV for each message is a generalized counter (see discussion below, and
definition 2.6.1).

Encrypted
counter

The IV for a message is the result of applying the block cipher to a
generalized counter, using the same key as for message encryption.

Carry-over The IV for the first message is fixed; the IV for subsequent messages is some
function of the previous plaintexts or ciphertexts (e.g., the last ciphertext
block of the previous message).

Not all of these methods are secure for all of the modes we consider.

2.6.1 Definition (Generalized counters) If S is a finite set, then a generalized counter in S is an bijection
c: {0, 1, . . . , |S| − 1} ↔ S. For brevity, we shall refer simply to ‘counters’, leaving implicit the
generalization. �

2.6.2 Remark (Examples of generalized counters)

• There is a ‘natural’ binary representation of the natural numbers {0, 1, . . . , 2ℓ − 1} as
ℓ-bit strings: for any n ∈ {0, 1, . . . , 2ℓ − 1}, let R(n) be the unique r ∈ Σℓ such that
n =

∑

06i<ℓ 2ir[i]. Then R(·) is a generalized counter in Σℓ.

• We can represent elements of the finite field F2ℓ as ℓ-bit strings. Let p(x) ∈ F2[x] be a
primitive polynomial of degree ℓ; then represent F2ℓ by F2[x]/(p(x)). Now for any a ∈
F2ℓ , let R(a) be the unique r ∈ Σℓ such that a =

∑

06i<ℓ xir[i]. Because p(x) is primitive,
x generates the multiplicative group F

∗
2ℓ , so define c(n) = R(xn) for 0 6 n < 2ℓ − 1 and

c(2ℓ−1) = 0ℓ; then c(·) is a generalized counter in Σℓ. This counter can be implemented
efficiently in hardware using a linear feedback shift register. �

2.6.3 Definition (Encryption modes) A block cipher encryption mode mP = (encrypt, decrypt) is a pair of
deterministic oracle algorithms (and implicitly-defined plaintext and ciphertext spaces) which
satisfy the following conditions:

1. The algorithm encrypt runs with oracle access to a permutation P : Σℓ ↔ Σℓ; on input a

9

New proofs for old modes

plaintext x and an initialization vector v ∈ Σℓ, it returns a ciphertext y and a chaining

value v′ ∈ Σℓ. We write (v′, y) = encryptP (·)(v, x).

2. The algorithm decrypt runs with oracle access to a permutation P : Σℓ ↔ Σℓ and its inverse
P−1(·); on input a ciphertext y and an initialization vector v ∈ Σℓ, it returns a plaintext

x. We write that x = decryptP (·),P−1(·)(v, y).

3. For all permutations P : Σℓ ↔ Σℓ, all plaintexts x and all initialization vectors v, if (v′, y) =

encryptP (·)(v, x) then x = decryptP (·),P−1(·)(v, y).

Similarly, a PRF encryption mode mF = (encrypt, decrypt) is a pair of deterministic oracle al-
gorithms (and implicitly-defined plaintext and ciphertext spaces) which satisfy the following
conditions:

1. The algorithm encrypt runs with oracle access to a function F : Σℓ → ΣL; on input a
plaintext x and an initialization vector v ∈ Σℓ, it returns a ciphertext y and a chaining

value v′ ∈ Σℓ. We write (v′, y) = encryptF (·)(v, x).

2. The algorithm decrypt runs with oracle access to a function F : Σℓ → ΣL; on input a
ciphertext y and an initialization vector v ∈ Σℓ, it returns a plaintext x. We write that

(v′, x) = decryptF (·)(v, y).

3. For all functions F : Σℓ → ΣL, all plaintexts x and all initialization vectors v, if (v′, y) =

encryptF (·)(v, x) then x = decryptF (·)(v, y). �

2.6.4 Definition (Symmetric encryption schemes from modes) Let F be a pseudorandom permutation on
Σℓ (resp. a pseudorandom function from Σℓ to ΣL); let m = (encrypt, decrypt) be a block cipher
(resp. PRF) encryption mode. (To save on repetition, if F is a PRF then define F−1

K (x) = ⊥ for
all keys K and inputs x.) We define the following symmetric encryption schemes according
to how IVs are selected.

• Randomized selection: define E-m$
F

= (G-m$
F
, E-m$

F
, D-m$

F
), where

Algorithm G-m$
F
():

K
R
← keysF ;

return K ;

Algorithm E-m$
F
(K, x):

v
R
← Σℓ;

(v′, x)← encryptFK(·)(v, x);
return (v, y);

Algorithm D-m$
F
(K, y′);

(v, y)← y′;
(v′, x)←

decryptFK(·),F−1

K
(·)(v, y);

return x;

• Generalized counters: define E-mCF,c = (G-mCF,c, E-mCF,c, D-mCF,c), where c is a
generalized counter in Σℓ, and

Algorithm G-mCF,c():

K
R
← keysF ;

i-msg← 0;
return K ;

Algorithm E-mCF,c(K, x):
i← c(i-msg);

(v′, x)← encryptFK(·)(i, x);
i-msg← i-msg + 1;
return (i, y);

Algorithm D-mCF,c(K, y′);
(i, y)← y′;
(v′, x)←

decryptFK(·),F−1

K
(·)(i, y);

return x;

• Encrypted counters: if L > ℓ, then define E-mEF,c = (G-mEF,c, E-mEF,c, D-mEF,c),
where c is a generalized counter in Σℓ, and

10

2. Notation and definitions

Algorithm G-mEF,c():

K
R
← keysF ;

i-msg← 0;
return K ;

Algorithm E-mEF,c(K, x):
i← c(i-msg);
v ← FK(i)[0 .. ℓ];

(v′, x)← encryptFK(·)(v, x);
i-msg← i-msg + 1;
return (i, y);

Algorithm D-mEF,c(K, y′);
(i, y)← y′;
v ← FK(i)[0 .. ℓ];
(v′, x)←

decryptFK(·),F−1

K
(·)(v, y);

return x;

(We require L > ℓ for this to be well-defined; otherwise the encrypted counter value is
too short.)

• Carry-over: define E-mLF,V0 = (G-mLF,V0 , E-mLF,V0 , D-mLF,V0) where V0 ∈ Σℓ is the
initialization vector for the first message, and

Algorithm G-mLF,V0():

K
R
← keysF ;

v-next← V0;
return K ;

Algorithm E-mLF,V0(K, x):
v ← v-next;

(v′, x)← encryptFK(·)(v, x);
v-next← v′;
return (v, y);

Algorithm D-mLF,V0(K, y′);
(v, y)← y′;
(v′, x)←

decryptFK(·),F−1

K
(·)(v, y);

return x;

Note that, while the encryption algorithms of the above schemes are either randomized or
stateful, the decryption algorithms are simple and deterministic. �

The following simple and standard result will be very useful in our proofs.

2.6.5 Proposition

1. Suppose that EP = (GP , EP , DP) is one of the symmetric encryption schemes of definition 2.6.4,
constructed from a pseudorandom permutation P : Σℓ ↔ Σℓ. If q is an upper bound on the
number of PRP applications required for the encryption qE messages totalling µE bits, then there
is some small constant t′ such that

InSeclor-cpa(EP ; t, qE , µE) 6 InSeclor-cpa(EP
ℓ

; t, qE , µE) + 2 · InSecprp(P ; t + qt′, q).

2. Similarly, suppose that EF = (GF , EF , DF) is one of the symmetric encryption schemes of
definition 2.6.4, constructed from a pseudorandom function F : Σℓ → ΣL. If q is an upper bound
on the number of PRP applications required for the encryption qE messages totalling µE bits,
then there is some small constant t′ such that

InSeclor-cpa(EF ; t, qE , µE) 6 InSeclor-cpa(EF
ℓ,L

; t, qE , µE) + 2 · InSecprf(F ; t + qt′, q).

Proof 1. Let A be an adversary attacking the LOR-CPA security of EP , which takes time t
and issues qE encryption queries totalling µE bits. We construct an adversary B attacking
the security of the PRP P as follows. B selects a random b∗ ∈R Σ. It then runs A,
simulating the LOR-CPA game by using b∗ to decide whether to encrypt the left or right
plaintext, and using its oracle access to P to do the encryption. Eventually, A returns a
bit b. If b = b∗, B returns 1 (indicating ‘pseudorandom’); otherwise it returns 0.

If B’s oracle is selected from the PRP P , then B correctly simulates the LOR-CPA game

for EP , and B returns 1 with probability precisely (Adv
lor-cpa

EP (A) + 1)/2. Conversely, if
B’s oracle is a random permutation, then B correctly simulates the LOR-CPA game for

EP
ℓ

, so B returns 1 with probability (Adv
lor-cpa

EP (A) + 1)/2. Thus, we have

Adv
prp
P (B) = (Adv

lor-cpa

EP (A) + 1)/2− (Adv
lor-cpa

EPℓ (A) + 1)/2 (2)

11

New proofs for old modes

= (Adv
lor-cpa

EP (A) −Adv
lor-cpa

EPℓ (A))/2. (3)

Note that the extra work which B does over A – initialization, tidying up and encrypting
messages – is bounded by some small constant tP multiplied by the number of oracle
queries q made by B, and the required result follows by multiplying through by 2 and
rearranging.

2. The proof for this case is almost identical: merely substitute F for P , ‘PRF’ for ‘PRP’ and
Fℓ,L for Pℓ in the above. �

Of course, proving theorems about each of the above schemes individually will be very
tedious. We therefore define a ‘hybrid’ scheme which switches between the above selection
methods. This isn’t a practical encryption scheme – just a ‘trick’ to reduce the number of
complicated proofs we need to give.

2.6.6 Definition (Hybrid encryption modes) Let nL, nC and nE be nonnegative integers, with nL +
nC + nE 6 2ℓ; let F be a pseudorandom permutation on Σℓ (resp. a pseudorandom function
from Σℓ to ΣL); let m = (encrypt, decrypt) be a block cipher (resp. PRF) encryption mode
let V0 ∈ Σℓ be an initialization vector; and let c: {0, 1, . . . , 2ℓ − 1} → Σℓ be a generalized
counter. (Again, if F is a PRF, we set FK(x) = ⊥ for all K and x.) We define the scheme

E-mHF,V0,c
nL,nC ,nE

= (G-mHF,V0,c
nL,nC ,nE

, E-mHF,V0,c
nL,nC ,nE

, D-mHF,V0,c
nL,nC ,nE

) as follows.

Algorithm G-mHF,V0,c
nL,nC ,nE

():

K
R
← keysF ;

i-msg← 0;
v-next← V0;
return K ;

Algorithm D-mHF,V0,c
nL,nC ,nE

(K, y′);
(v, y)← y′;

(v′, x)← decryptFK(·),F−1

K
(·)(v, y);

return x;

Algorithm E-mHF,V0,c
nL,nC ,nE

(K, x):
if i-msg < nL then v ← v-next;
else if i-msg < nL + nC then v ← c(i-msg);
else if i-msg < nL + nC + nE then v ← FK(c(i-msg)[0 .. ℓ]);

else v
R
← Σℓ;

(v′, x)← encryptFK(·)(v, x);
v-next← v′;
i-msg← i-msg + 1;
return (v, y);

For this to be well-defined, we require that L > ℓ or nE = 0 – otherwise the encrypted counter
values are too short. �

The following proposition relates the security of our artificial hybrid scheme to that of the
practical schemes defined in definition 2.6.4.

2.6.7 Proposition Let F be a pseudorandom permutation on Σℓ (resp. a pseudorandom function from Σℓ to
ΣL); let m be a block cipher (resp. PRF) encryption mode. Then:

1. InSeclor-cpa(E-m$
F

; t, qE, µE) 6 InSeclor-cpa(E-mHF,V0,c
0,0,0 ; t, qE , µE)

2. InSeclor-cpa(E-mCF,c; t, qE , µE) 6 InSeclor-cpa(E-mHF,V0,c
qE ,0,0; t, qE , µE)

3. InSeclor-cpa(E-mEF,c; t, qE , µE) 6 InSeclor-cpa(E-mHF,V0,c
0,qE ,0; t, qE , µE)

12

3. Ciphertext block chaining (CBC) encryption

x0

⊕v

E

y0

K

x1

⊕

E

y1

K

xi

⊕

E

yi

K

xn−1

⊕

E

yn−1

K

Figure 3.1: Encryption using CBC mode

4. InSeclor-cpa(E-mLF,V0 ; t, qE , µE) 6 InSeclor-cpa(E-mHF,V0,c
0,0,qE

; t, qE , µE)

Proof For 1, it suffices to observe that E-m$
F
≡ E-mHF,V0,c

0,0,0 for any c, V0. For 2, note that

E-mCF,c behaves identically to E-mHF,V0,c
qE ,0,0 for any c, V0 for the first qE encryption queries;

but no adversary is permitted to exceed this limit, and hence no adversary can distinguish the

two. Similarly, for 4, note that E-mLF,V0 behaves identically to E-mHF,V0,c
0,0,qE

for any c, V0 for
the first qE encryption queries.

The case of 3 is slightly more complicated: E-mEF,c behaves identically to E-mHF,V0,c
0,qE ,0 for the

first qE encryption queries except that the latter returns different initialization vectors from
its encryption oracle. However, since the counter c is fixed public knowledge, it is trivial
to construct a fully faithful replica of the mE game given the hybrid oracle, such that no
adversary can distinguish the two. �

3 Ciphertext block chaining (CBC) encryption

3.1 Description

Suppose E is an ℓ-bit pseudorandom permutation. CBC mode works as follows. Given a
message X , we divide it into ℓ-bit blocks x0, x1, . . ., xn−1. Choose an initialization vector
v ∈ Σℓ. Before passing each xi through E, we XOR it with the previous ciphertext, with v
standing in for the first block:

y0 = EK(x0 ⊕ v) yi = EK(xi ⊕ yi−1 (for 1 6 i < n). (4)

The ciphertext is then the concatenation of v and the yi. Decryption is simple:

x0 = E−1
K (y0)⊕ v xi = E−1

K (yi)⊕ yi−1 (for 1 6 i < n) (5)

See figure 3.1 for a diagram of CBC encryption.

3.1.1 Definition (CBC algorithms) For any permutation P : Σℓ → Σℓ, any initialization vector v ∈ Σℓ,
any plaintext x ∈ ΣℓN and any ciphertext y ∈ Σ∗, we define the encryption mode CBC =
(cbc-encrypt, cbc-decrypt) as follows:

13

New proofs for old modes

Algorithm cbc-encryptP (·)(v, x):
y ← λ;
for i = 0 to |x|/ℓ do

xi ← x[ℓi .. ℓ(i + 1)];
yi ← P (xi ⊕ v);
v ← yi;
y ← y ‖ yi;

return (v, y);

Algorithm cbc-decryptP (·),P−1(·)(v, y):
if |y| mod ℓ 6= 0 then return ⊥;
x← λ;
for 1 = 0 to |y|/ℓ do

yi ← y[ℓi .. ℓ(i + 1)];
xi ← P−1(yi)⊕ v;
v ← yi;
x← x ‖ xi;

return (v, x);

Now, let c be a generalized counter in Σℓ. We define the encryption schemes E-CBC$
P

,

E-CBCEP,c and E-CBCHP,c,⊥
0,0,nE

, as described in definition 2.6.4. �

3.2 Security of CBC mode

We now present our main theorem on CBC mode.

3.2.1 Theorem (Security of hybrid CBC mode) Let P : keysP × Σℓ → Σℓ be a pseudorandom permutation;
let V0 ∈ Σℓ be an initialization vector; let nL ∈ {0, 1}; let c be a generalized counter in Σℓ; and let
nC ∈ N be a nonnegative integer; and suppose that at most one of nL and nC is nonzero. Then, for
any t, qE > n and µE ,

InSeclor-cpa(E-CBCHP,c,V0

nL,0,nE
; t, qE , µE) 6 2 · InSecprp(P ; t + qtP , q) +

q(q − 1)

2ℓ − q

where q = nL + nE + µE/ℓ and tP is some small constant.

The proof of this theorem we postpone until section 3.4. As promised, the security of our
randomized and stateful schemes follow as simple corollaries.

3.2.2 Corollary (Security of practical CBC modes) Let P and c be as in theorem 3.2.1. Then for any t, qE

and µE , and some small constant tP ,

InSeclor-cpa(E-CBC$
P
; t, qE , µE) 6 2 · InSecprp(P ; t + qtP , q) +

q(q − 1)

2ℓ − q

InSeclor-cpa(E-CBCEP,c; t, qE , µE) 6 2 · InSecprp(P ; t + q′tP , q′) +
q′(q′ − 1)

2ℓ − q′

and

InSeclor-cpa(E-CBCLP,V0 ; t, 1, µE) 6 2 · InSecprp(P ; t + qtP , q) +
q(q − 1)

2ℓ − q

where q = µE/ℓ, and q′ = q + qE .

Proof Follows from theorem 3.2.1 and proposition 2.6.7. �

3.2.3 Remark The insecurity of CBC mode over that inherent in the underlying PRP is essentially
a birthday bound: note for q 6 2ℓ/2, our denominator 2ℓ − q ≈ 2ℓ, and for larger q, the term
q(q − 1)/2ℓ > 1 anyway, so all security is lost (according to the above result). Compared to
[BDJR97, theorem 17], we gain the tiny extra term in the denominator, but lose the PRP-as-a-
PRF term q2/2ℓ−1.1 �

1 In fact, they don’t prove the stated bound of q(3q − 2)/2ℓ+1 but instead the larger q(2q − 1)/2ℓ . The error is in
the application of their proposition 8: the PRF-insecurity term is doubled, so the PRP-as-a-PRF term must be also.

14

3. Ciphertext block chaining (CBC) encryption

x0

⊕v

E

y0

K

x1

⊕

E

y1

K

xi

⊕

E

yi

K

xn−2

⊕

EK

xn−1 ‖ 0ℓ−t

⊕

yn−1[0 .. t]

EK

yn−2

y0

DK

⊕⊕v

x0

y1

DK

⊕

x1

yi

DK

⊕

xi

yn−2

D K

z

⊕

0t‖z[t..ℓ]

⊕

xn−1[0 .. t]

yn−1 ‖ 0ℓ−t

DK

xn−2

Figure 3.2: Encryption and decryption using CBC mode with ciphertext stealing

3.3 Ciphertext stealing

Ciphertext stealing [Dae95, Sch96, BR96] allows us to encrypt any message in Σ∗ without the
need for padding. The trick is to fill in the ‘gap’ at the end of the last block with the end
bit of the previous ciphertext, and then to put the remaining short penultimate block at the
end. Decryption proceeds by first decrypting the final block to recover the remainder of the
penultimate one. See figure 3.2.

Encrypting messages shorter than the block involves ‘IV stealing’ – using the IV instead of
the ciphertext from the last full-length block – which is a grotty hack but works fine if IVs are
random; if the IVs are encrypted counters then there’s nothing (modifiable) to steal from.

We formally present a description of a randomized CBC stealing mode.

3.3.1 Definition (CBC mode with ciphertext stealing) Let P : keysP × Σℓ → Σℓ be a pseudorandom
permutation. Let c be a generalized counter on Σℓ. We define the randomized symmetric

encryption scheme E-CBC$-stealP = (G-CBC$-stealP , E-CBC$-stealP , D-CBC$-stealP) for mes-
sages in Σ∗ as follows:

15

New proofs for old modes

Algorithm G-CBC$-steal
P
():

K
R
← keysP ;

return K ;

Algorithm E-CBC$-steal
P

(K, x):
t← |x| mod ℓ;
if t 6= 0 then x← x ‖ 0ℓ−t;

v
R
← Σℓ;

y ← v ‖ cbc-encrypt(K, v, x);
if t 6= 0 then

b← |y| − 2ℓ;
y ←y[0 .. b] ‖ y[b + ℓ .. |y|] ‖

y[b .. b + t];
return y;

Algorithm D-CBC$-steal
P
(K, y):

if |y| < ℓ then return ⊥;
v ← y[0 .. ℓ];
t = |y| mod ℓ;
if t 6= 0 then

b← |y| − t− ℓ;
z ← P−1

K (y[b .. b + ℓ]);
y ←y[0 .. b] ‖ y[b + ℓ .. |y|] ‖

z[t .. ℓ];
x← cbc-decrypt(K, v, y[ℓ .. |y|]);
if t 6= 0 then

x← x ‖ z[0 .. t]⊕ y[b .. b + t];
return x;

�

The security of ciphertext stealing follows directly from the definition and the security CBC
mode.

3.3.2 Corollary (Security of CBC with ciphertext stealing) Let P : keysP × Σℓ → Σℓ be a pseudorandom
permutation. Then

InSeclor-cpa(E-CBC$-steal; t, qE , µE) 6 InSeclor-cpa(E-CBC$; t, qE , µE + qE(ℓ− 1))

6 2 · InSecprp(P ; t + qtP , q) +
q(q − 1)

2ℓ − 2ℓ/2

where q =
⌊(

µE + qE(ℓ− 1)
)

/ℓ
⌋

and tP is some small constant.

Proof From the definition, we see that the encryption algorithm E-CBC-steal simply pads a
plaintext, encrypts it as for standard CBC mode, and postprocesses the ciphertext. Hence, if A
is any adversary attacking E-CBC-steal, we can construct an adversary A′ which simply runs
A except that, on each query to the encryption oracle, it pads both plaintexts, queries its CBC
oracle, postprocesses the ciphertext returned, and gives the result back to A. The fact that
plaintexts can now be up to ℓ − 1 bits shorter than the next largest whole number of blocks
means that B submits no more than µE + qE(ℓ− 1) bits of plaintext to its oracle. The required
result follows then directly from theorem 3.2.1. �

3.4 Proof of theorem 3.2.1

The techniques and notation used in this proof will also be found in several of the others. We
recommend that readers try to follow this one carefully.

We begin considering CBC mode using a completely random permutation. To simplify
notation slightly, we shall write n = nL + nE . Our main goal is to prove the claim that
there exists a garbage-emitter W such that

InSecrog-cpa-W (E-CBCHPℓ,c,V0

nL,0,nE
; t, qE , µE) 6

q(q − 1)

2 · (2ℓ − n)
.

From this, we can apply proposition 2.5.4 to obtain

InSeclor-cpa(E-CBCHPℓ,c,⊥
0,0,n ; t, qE , µE) 6

q(q − 1)

2ℓ − n
.

16

3. Ciphertext block chaining (CBC) encryption

Initialization:
i← 0;
gone← ∅;

Function fresh()

x
R
← Σℓ \ gone;

gone← gone ∪ {x};
return x;

Garbage emitter W (m):
if i > 2ℓ then abort;
if i < nL then v ← V0;
else if i < n then v ← fresh();
i← i + 1

else v
R
← Σℓ;

y ← λ;
for j = 0 to m/ℓ;

yj ← fresh();
y ← y ‖ yj ;

return (v, y);

Figure 3.3: Garbage emitter W for CBC mode

and, noting that there are precisely q = µE/ℓ PRP-applications, we apply proposition 2.6.5 to
obtain the required result.

Our garbage-emitter W is a bit complicated. It chooses random but distinct blocks for the
‘ciphertext’; for the IVs, it uses V0 for the first message if nL = 1, and otherwise it chooses
random blocks distinct from each other and the ‘ciphertext’ blocks for the next nE messages,
and just random blocks for subsequent ones. The algorithm W is shown in figure 3.3.

Fortunately, it doesn’t need to be efficient: the above simulations only need to be able to do
the LOR game, not the ROG one. The unpleasant-sounding abort only occurs after 2ℓ queries.
If that happens we give up and say the adversary won anyway: the claim is trivially true by
this point, since the adversary’s maximum advantage is 1.

Now we show that this lash-up is a good imitation of CBC encryption to someone who doesn’t
know the key. The intuition works like this: every time we query a random permutation at a
new, fresh input value, we get a new, different, random output value; conversely, if we repeat
an input, we get the same value out as last time. So, in the real ‘result’ CBC game, if all the
permutation inputs are distinct, it looks just like the garbage emitted by W . Unfortunately,
that’s not quite enough: the adversary can work out what the permutation inputs ought to be
and spot when there ought to have been a collision but wasn’t. So we’ll show that, provided
all the P -inputs – values which would be input to the permutation if we’re playing that game
– are distinct, the two games look identical.

We need some notation to describe the values in the game. Let ci = c(i) be the ith counter
value, for 0 6 i < nE , and let vi be the ith initialization vector, where v0 = V0 is as given if
nL = 1, vi = P (ci − nL) if nL 6 i < n, and vi ∈R Σℓ if n 6 i < qE . Let q′ = µE/ℓ = q − n be
the total number of plaintext blocks in the adversary’s queries, let xi be the ith plaintext block
queried, let yi be the ith ciphertext block returned, let

wi =

{

vj if block i is the first block of the jth query, and

yi−1 otherwise

and let zi = xi ⊕wi, all for 0 6 i < q′. This is summarized diagrammatically in figure 3.4. The
P -inputs are now precisely the ci and the zi. We’ll denote probabilities in the ‘result’ game as
PrR[·] and in the ‘garbage’ game as PrG[·].

17

New proofs for old modes

ci E

K

vi

xi ⊕ zi E

K

yi

wi

vj yi−1or

Figure 3.4: Notation for the proof of theorem 3.2.1.

Let Cr be the event, in either game, that zi = zj for some 0 6 i < j < r, or that zi = cj

for some 0 6 i < r and some 0 6 j < nE . We need to bound the probability that Cq′

occurs in both the ‘result’ and ‘garbage’ games. We’ll do this inductively. By the definition,
PrR[C0] = PrG[C0] = 0.

Firstly, tweak the games so that all of the IVs corresponding to counters are chosen at the
beginning, instead of as we go along. Obviously this doesn’t make any difference to the
adversary’s view of the proceedings, but it makes our analysis easier.

Let’s assume that Cr didn’t happen; we want the probability that Cr+1 did, which is obviously
just the probability that zr collides with some zi for 0 6 i < r or some ci for 0 6 i < n. At this
point, the previous zi are fixed. So:

Pr[Cr+1|C̄r] =
∑

z∈Σℓ

(

∑

06i<n

Pr[z = ci] +
∑

06i<r

Pr[z = zi]

)

· Pr[zr = z] (6)

Now note that zr = wr⊕xr. We’ve no idea how xr was chosen; but, one of the following cases
holds.

1. If xr is the first block of the first plaintext, i.e., r = 0, and nL = 1, then wr = v0. However,
in this case we know that nE = 0 by hypothesis. There are no zi which zr might collide
with, so the probability of a collision is zero.

2. If xr is the first block of plaintext i, and 0 6 i < n, then wr = vi, and was chosen at
random from a set of 2ℓ − i 6 2ℓ − n 6 2ℓ − n − r possibilities, either by our random
permutation or by W . We know xr is independent of wr because none of the previous
P -inputs were equal to ci, by our assumption of C̄r.

3. If xr is the first block of plaintext i, and n 6 i < q′, then wr = vi, and was chosen at
random from all 2ℓ possible ℓ-bit blocks. We know xr is independent of wr because we
just chose wr at random, after xr was chosen.

4. Otherwise, xr is a subsequent block in some message, and wr = yr−1, and was chosen at
random from a set of 2ℓ−n− r possibilities, either by our random permutation or by W .
We know xr is independent of wr because zr−1 is a new P -input, by our assumption of
C̄r.

So, except in case 1, which isn’t a problem anyway, wr is independent of xr, and chosen
uniformly at random from a set of at least 2ℓ − r − n elements, in either game – so we can
already see that PrR[Ci] = PrG[Ci] for any i > 0. Finally, the zi and ci are all distinct, so the

18

4. Ciphertext feedback (CFB) encryption

zi ⊕ x and ci ⊕ x must all be distinct, for any fixed x. So:

Pr[Cr+1|C̄r] =
∑

x∈Σℓ

(

∑

06i<n

Pr[wr = x⊕ ci] +
∑

06i<r

Pr[wr = x⊕ zi]

)

· Pr[xr = x] (7)

6
∑

x∈Σℓ

r + n

2ℓ − r − n
Pr[xr = x] =

r + n

2ℓ − r − n

∑

x∈Σℓ

Pr[xr = x] (8)

=
r + n

2ℓ − r − n
. (9)

Now we’re almost home. All the ci and zi are distinct; all the vi and yi are random, assuming
Cq′ . We can bound Pr[Cq′] thus:

Pr[Cq′] 6
∑

0<i6q′

Pr[Ci|C̄i−1] 6
∑

06i6q′

i + n− 1

2ℓ − i− n + 1
(10)

Now, let i′ = i + n− 1. Then

Pr[Cq′] 6
∑

n−16i′6q′+n−1

i′

2ℓ − i′
6

∑

06i′<q

i′

2ℓ − q
=

q(q − 1)

2 · (2ℓ − q)
(11)

Finally, let R be the event that the adversary returned 1 at the end of the game – indicating a
guess of ‘result’. Then, noting as we have, that PrR[Cq′] = PrG[Cq′], we get this:

Adv
rog-cpa-W

E-CBCHP,c,n(A) = PrR[R]− PrG[R] (12)

= (PrR[R|Cq′] PrR[Cq′] + PrR[R|C̄q′] PrR[C̄q′])−

(PrG[R|Cq′] PrR[Cq′] + PrG[R|C̄q′] PrG[C̄q′]) (13)

= PrR[R|Cq′] PrR[Cq′]− PrG[R|Cq′] PrG[Cq′] (14)

6 Pr[Cq′] 6
q(q − 1)

2 · (2ℓ − q)
(15)

And we’re done! �

4 Ciphertext feedback (CFB) encryption

4.1 Description

Suppose F is an ℓ-bit-to-L-bit pseudorandom function, and let t 6 L. CFB mode works
as follows. Given a message X , we divide it into t-bit blocks x0, x1, . . ., xn−1. Choose an
initialization vector v ∈ Σℓ. We maintain a shift register si, whose initial value is v. To encrypt
a block xi, we XOR it with the result of passing the shift register through the PRF, forming yi,
and then update the shift register by shifting in the ciphertext block yi. That is,

s0 = v yi = xi ⊕ FK(si) si+1 = si≪t yi (for 0 6 i < n). (16)

Decryption follows from noting that xi = yi ⊕ FK(si). See figure 4.1 for a diagrammatic
representation.

Also, we observe that the final plaintext block needn’t be t bits long: we can pad it out to t bits
and truncate the result without affecting our ability to decrypt.

19

New proofs for old modes

v ≪t
ℓ

E

ℓ

K

⊕

t

x0 t

y0

t

t

≪t
ℓ

E

ℓ

K

⊕

t

x1 t

y1

t

t

≪t
ℓ

E

ℓ

K

⊕

t

xi t

yi

t

t
E

ℓ

K

⊕

t

xn−1 t

yn−1

t

Figure 4.1: Encryption using CFB mode

4.1.1 Definition (CFB algorithms) For any function F : Σℓ → Σt, any initialization vector v ∈ Σℓ,
any plaintext x ∈ Σ∗ and any ciphertext y ∈ Σ∗, we define PRF encryption mode CFB =
(cfb-encrypt, cfb-decrypt) as follows:

Algorithm cfb-encrypt(F, v, x):
s← v;
L← |x|;
x← x ‖ 0t⌈L/t⌉−L;
y ← λ;
for i = 0 to (|x| − t′)/t do

xi ← x[ti .. t(i + 1)];
yi ← xi ⊕ F (s);
s← s≪t yi;
y ← y ‖ yi;

return (s, y[0 .. L]);

Algorithm cfb-decrypt(F, v, y):
s← v;
L← |y|;
y ← y ‖ 0t⌈L/t⌉−L;
x← λ;
for i = 0 to (|x| − t′)/t do

yi ← y[ti .. t(i + 1)];
xi ← xi ⊕ F (s);
s← s≪t yi;
x← x ‖ xi;

return x[0 .. L];

We now define the schemes E-CFB$
F

, E-CFBCF,c, E-CFBEF,c, and E-CFBLF,V0 according

to definition 2.6.4; and we define the hybrid scheme E-CFBHF,V0,c
nL,nC ,nE

according to defini-
tion 2.6.6. �

4.2 Sliding strings

Consider for a moment the mode CFBL, i.e., with carry-over of IV from one plaintext to the
next, with t < ℓ. Then we find that some IVs are weak.

Pretend for a moment that we’re an adversary playing the LOR-CPA game using an ideal
random function F ∈R F

ℓ,t, and that the initial IV V0 = 0ℓ. We choose two distinct 8-bit
plaintexts l and r as our first left-or-right query. With probability 2−t, the result of encrypting
that first query is 0t. However, in this case, the IV for the next query is V0 ≪t 0t = 0ℓ = V0.
If this happens, we have only to submit the pair (l, l) as our second query. If the ciphertext
to this second query also comes back zero, we guess that we’re dealing with a left oracle;
otherwise we guess right. If we don’t get lucky with our first query, we just guess randomly.

This attack is shown more formally as adversary S in figure 4.2. Its resource usage is almost
trivial – negligible computation and at most two encryption queries. However, its advantage

20

4. Ciphertext feedback (CFB) encryption

Adversary SE(·,·):
l← 0t; r ← 0t−11;
y ← E(l, r);
if y[ℓ .. ℓ + t] = 0t then

if E(l, l) = y then b← 0 else b← 1;
else

b
R
← {0, 1};

return b;

Figure 4.2: Adversary S attacking E-CFBLFℓ,t,0ℓ

is quite good:

AdvLOR-CPA

E-CFBLFℓ,t,0ℓ (S) =
1

2t

(

1−
1

2t

)

.

This attack works because V0[t .. ℓ] = V0[0 .. ℓ − t]. There are similar attacks for other such
relationships. The following definition characterizes these kinds of ‘bad’ IVs.

4.2.1 Definition (Sliding strings) We say that an ℓ-bit string x t-slides if there exist integers i and j such
that 0 6 j < i < ℓ/t and x[it .. ℓ] = x[jt .. ℓ− (i− j)t]. �

4.2.2 Remark For all ℓ > 0 and t < ℓ, the string 0ℓ−11 does not t-slide. �

Alkassar, Geraldy, Pfitzmann and Sadeghi [AGPS01] offer a proof of security for CFB mode.
However, they prove security only for a random initialization vector. There is a cryptic note:

We do this for the case with random initialization vector IV . (The difference in the
other case is negligible).

As we have shown above, some non-random initialization vectors lead to much decreased
security. Their proof entirely ignores this possibility.

(Their result is a factor of two better than ours. We’ve lost this factor in passing from ROG-
CPA to LOR-CPA. One can prove LOR-CPA security directly in more-or-less the same way as
section 4.4 and not lose this factor.)

4.3 Security of CFB mode

4.3.1 Theorem (Security of CFB mode) Let F be a pseudorandom function from Σℓ to Σt; let V0 ∈ Σℓ be a
non-t-sliding string; let c be a generalized counter in Σℓ; and let nL, nC , nE and qE be nonnegative
integers; and furthermore suppose that

• nL + nC + nE 6 qE ,

• nL = 0, or nC = nE = 0, or ℓ 6 t and V0 6= c(i) for any nL 6 i < nL + nC + nE , and

• either nC = 0 or ℓ 6 t.

21

New proofs for old modes

Then, for any tE and µE , and whenever we have

InSeclor-cpa(E-CFBHF,V0,c
nL,nC ,nE

; tE , qE , µE) 6 2 · InSecprf(F ; tE + qtF , q) +
q(q − 1)

2ℓ

where q =
⌊(

µE + qE(t− 1)
)

/t
⌋

+ nE , and tF is some small constant.

The proof is a bit involved; we postpone it until section 4.4.

4.3.2 Corollary Let F , c and V0 be as in theorem 4.3.1. Then for any tE , qE and µE ,

InSeclor-cpa(E-CFB$
F
; tE , qE , µE) 6 2 · InSecprf(F ; tE + qtF , q) +

q(q − 1)

2ℓ

InSeclor-cpa(E-CFBEF,c; tE , qE , µE) 6 2 · InSecprf(F ; tE + q′tF , q′) +
q′(q′ − 1)

2ℓ

InSeclor-cpa(E-CFBLF,V0 ; tE , qE , µE) 6 2 · InSecprf(F ; tE + qtF , q) +
q(q − 1)

2ℓ

and, if ℓ 6 t,

InSeclor-cpa(E-CFBCF,c; tE , qE , µE) 6 2 · InSecprf(F ; tE + qtF , q) +
q(q − 1)

2ℓ

where q =
⌊(

µE + qE(t− 1)
)

/t
⌋

+ nE , q′ = q + qE , and tF is some small constant.

Proof Follows from theorem 4.3.1 and proposition 2.6.7. �

4.3.3 Corollary Let P be a pseudorandom permutation on Σℓ, and let c and V0 be as in theorem 4.3.1. Then
for any tE , qE and µE ,

InSeclor-cpa(E-CFB$P ; tE , qE , µE) 6 2 · InSecprp(P ; tE + qtF , q) +
q(q − 1)

2ℓ−1

InSeclor-cpa(E-CFBEP,c; tE , qE , µE) 6 2 · InSecprp(P ; tE + q′tF , q′) +
q′(q′ − 1)

2ℓ−1

InSeclor-cpa(E-CFBLP,V0 ; tE , qE , µE) 6 2 · InSecprp(P ; tE + qtF , q) +
q(q − 1)

2ℓ−1

and, if ℓ 6 t,

InSeclor-cpa(E-CFBCP,c; tE , qE , µE) 6 2 · InSecprp(P ; tE + qtF , q) +
q(q − 1)

2ℓ−1

where q =
⌊(

µE + qE(t− 1)
)

/t
⌋

+ nE , q′ = q + qE , and tF is some small constant.

Proof Follows from corollary 4.3.2 and proposition 2.4.3. �

4.4 Proof of theorem 4.3.1

Our proof follows the same lines as for CBC mode: we show the ROG-CPA security of hybrid-
CFB mode using an ideal random function, and then apply our earlier results to complete the
proof. However, the ROG-CPA result will be useful later when we consider the security of
OFB mode, so we shall be a little more formal about defining it.

The garbage emitter is in some sense the ‘perfect’ one: it emits a ‘correct’ IV followed by a
uniform random string of the correct length.

22

4. Ciphertext feedback (CFB) encryption

4.4.1 Definition (The W$ garbage emitter) Let natural numbers nL, nC , and V0 ∈ Σℓ be given; then we
define the garbage emitter W$ as follows.

Initialization:
i← 0;
v ← V0;

Garbage emitter W$(m):
if i < nL then v′ ← v;
else if nL 6 i < nL + nC then v′ ← c(i);

else if nL + nC 6 i then v′
R
← Σℓ;

i← i + 1;
m′ ← t⌊(m + t− 1)/t⌋;

y
R
← Σm′

;
v ← v′≪m′ y;
return (v′, y[0 .. m]) �

We now show that CFB mode with a random function is hard to distinguish from W$.

4.4.2 Lemma (Pseudorandomness of CFB mode) Let ℓ, t, nL, nC , nE , qE , c, V0, and q be as in theorem 4.3.1.
Then, for any tE and µE ,

InSecrog-cpa-W$(E-CFBHFℓ,t,V0,c
nL,nC ,nE

; t, qE , µE) 6
q(q − 1)

2ℓ+1
.

Theorem 4.3.1 follows from this result by application of propositions 2.5.4 and 2.6.5. It remains
therefore for us to prove lemma 4.4.2.

To reduce the weight of notation, let us agree to suppress the adornments on Adv and InSec
symbols. Also, let mL = nL; let mC = nL + nC ; and let mE = nL + nC + nE . (Remember: the
ms are cumulative.)

The truncation of ciphertext blocks makes matters complicated. Let us say that an adversary
is block-respecting if all of its plaintext queries are a multiple of t bits in length; obviously all of
the oracle responses for a block-respecting adversary are also a multiple of t bits in length.

Claim Let A′ be a block-respecting adversary querying a total of µE bits of plaintext queries; then

Adv(A′) 6
q(q − 1)

2ℓ+1

where q = µE/t.

Lemma 4.4.2 follows from this claim: if A is any adversary, then we construct a block-
respecting adversary A′ by padding A’s plaintext queries and truncating the oracle responses;
and if A makes qE queries totalling µE bits, then the total bits queried by A′ is no more than
⌊(

µE + qE(t− 1)
)⌋

bits. We now proceed to the proof of the above claim.

Suppose, then, that we are given a block-respecting adversary A which makes q queries to
its encryption oracle. Let F (·) denote the application of the random function. We want to
show that, provided all of the F -inputs are distinct, the F -outputs are uniformly random, and
hence the CFB ciphertexts are uniformly random. As for the CBC case, life isn’t that good to
us: we have to deal with the case where the adversary can see that two F -inputs would have
collided, and therefore that a garbage string couldn’t have been generated by CFB encryption
of his plaintext.

23

New proofs for old modes

zi F
ℓ

wi
t

⊕
t

xi

t

yi

t

vj zi−1≪t yi−1or

Figure 4.3: Notation for the proof of lemma 4.4.2.

Our notation will be similar to, yet slightly different from, that of section 3.4.

Let q′ = q − nE be the number of t-bit plaintext blocks the adversary submits, and for 0 6 i <
q′, let xi be the ith plaintext block queried, and let yi be the ith ciphertext block returned.

For mL 6 i < mE , let ci = c(i) be the ith counter value. For 0 6 i < qE let vi be the ith
initialization vector, i.e.,

vi =































V0 if i = 0 and nL > 0;

vi−1≪t Yi−1 if 1 6 i < mL and Yi−1 was the ciphertext from query i− 1;

ci if mL 6 i < mC ;

F (ci) if the oracle is ‘result’, and mC 6 i < mE ; or

Ri for some Ri ∈R Σℓ, otherwise.

Note that the only difference in the vi between the ‘result’ and ‘garbage’ games occurs in the
encrypted-counters phase. Furthermore, if no other F -input is equal to any ci for mC 6 i <
mE then the IVs are identically distributed.

Now, for 0 6 i < q′, define

zi =

{

vj if block i is the first block of the jth query, or

zi−1≪t yi−1 otherwise

and let wi = xi ⊕ yi. In the ‘result’ game, we have wi = F (zi), of course. All of this notation
is summarized diagrammatically in figure 4.3. The F -inputs are precisely the zi and ci for
mC 6 i < mE .

We’ll denote probabilities in the ‘result’ game as PrR[·] and in the ‘garbage’ game as PrG[·].

Let Cr be the event, in either game, that zi = zj for some 0 6 i < j < r, or that zi = cj for
some 0 6 i < r and some mC 6 j < mE .

Let’s assume that Cr didn’t happen; we want the probability that Cr+1 did, which is just the
probability that zr collides with some zi where 0 6 i < r, or some ci for mC 6 i < mE .
Observe that, under this assumption, all the wi, and hence the yi, are uniformly distributed,
and that therefore the two games are indistinguishable.

One of the following cases holds.

1. If r = 0 and mL > 0 then zr = V0. There is no other zi yet for zr to collide with, though it
might collide with some encrypted counter F (ci), with probability nE/2ℓ.

2. If zr = ci is the IV for some message i where mL 6 i < mC , life is a bit complicated.
It can’t collide with V0 or other ci by assumption; the encrypted counters and random

24

4. Ciphertext feedback (CFB) encryption

IVs haven’t been chosen yet; and either nC = 0 (in which case there’s nothing to do here
anyway) or ℓ 6 t, so there are no zi containing partial copies of V0 to worry about. This
leaves non-IV zi: again, ℓ 6 t, so zi = yi[t− ℓ .. t], which is random by our assumption of
C̄r; hence a collision with one of these zi occurs with probability at most r/2ℓ.

3. If zr is the IV for some message i where mC 6 i < mE , then it can collide with previous
zi or either previous or future ci. We know, however, that no F -input has collided with
ci, so in the ‘result’ game, zr = F (cr) is uniformly distributed; in the ‘garbage’ game,
W$ generates zr at random anyway. It collides, therefore, with probability at most (r +
nE)/2ℓ.

4. If zr is the IV for some message i where mE 6 i < q′ then zr was chosen uniformly at
random. Hence it collides with probability at most (r + nE)/2ℓ.

5. Finally, either zr is not the IV for a message, or it is, but the message number i < nL, so
in either case, zr = zr−1≪t yr−1. We have two subcases to consider.

(a) If 1 6 r < ℓ/t (we dealt with the case r = 0 above) then some of V0 remains in the
shift register. If zr collides with some zi, for 0 6 i < r, then we must have zr[0 .. ℓ−
tr] = zi[0 .. ℓ− tr]; but zr[0 .. ℓ− tr] = V0[tr .. ℓ], and zi[0 .. ℓ− tr] = V0[ti .. ℓ− t(r− i)],
i.e., we have found a t-sliding of V0, which is impossible by hypothesis. Hence, zr

cannot collide with any earlier zi. Also by hypothesis, nC = nE = 0 if ℓ > t, so zr

cannot collide with any counters ci.

(b) Suppose, then, that r > ℓ/t. For 0 6 j < ℓ/t, let Hj = ℓ− tj, Lj = max(0, Hj− t), and
Nj = Hj−Lj . (Note that

∑

06j<ℓ/t Nj = ℓ.) Then zr[Lj ..Hj] = yr−j−1[t−Nj ..t]; but
the yi for i < r are uniformly distributed. Thus, zr collides with some specific other

value z′ only with probability 1/2
P

j
Nj = 1/2ℓ. The overall collision probability for

zr is then at most (r + nE)/2ℓ.

In all these cases, it’s clear that the collision probability is no more than (r + nE)/2ℓ.

The probability that there is a collision during the course of the game is Pr[Cq′], which we can
now bound thus:

Pr[C′
q] 6

∑

0<i6q′

Pr[Ci|C̄i−1] 6
∑

0<i6q′

i + nE

2ℓ
. (17)

If we set i′ = i + nE , then we get

Pr[C′
q] 6

∑

06i′6q

i′

2ℓ
=

q(q − 1)

2ℓ+1
. (18)

Finally, then, we can apply the same argument as we used at the end of section 3.4 to show
that

Adv(A′) 6
q(q − 1)

2ℓ+1
(19)

as claimed. This completes the proof.

25

New proofs for old modes

v ≪t
ℓ

E

ℓ

K

⊕

t

x0 t

y0

t

t

≪t
ℓ

E

ℓ

K

⊕

t

x1 t

y1

t

t

≪t
ℓ

E

ℓ

K

⊕

t

xi t

yi

t

t E

ℓ

K

⊕

t

xn−1 t

yn−1

t

Figure 5.1: Encryption using OFB mode

5 OFB mode encryption

5.1 Description

Suppose F is an ℓ-bit-to-L-bit pseudorandom function, and let t 6 L. OFB mode works
as follows. Given a message X , we divide it into t-bit blocks x0, x1, . . ., xn−1. Choose an
initialization vector v ∈ Σℓ. We maintain a shift register si, whose initial value is v. To encrypt
a block xi, we XOR it with the result zi of passing the shift register through the PRF, forming
yi, and then update the shift register by shifting in the PRF output zi. That is,

s0 = v zi = FK(si) yi = xi ⊕ zi si+1 = si≪t zi (for 0 6 i < n). (20)

Decryption is precisely the same operation.

Also, we observe that the final plaintext block needn’t be t bits long: we can pad it out to t bits
and truncate the result without affecting our ability to decrypt.

5.1.1 Definition (OFB algorithms) For any function F : Σℓ → Σt, any initialization vector v ∈ Σℓ,
any plaintext x ∈ Σ∗ and any ciphertext y ∈ Σ∗, we define PRF encryption mode OFB =
(ofb-encrypt, ofb-decrypt) as follows:

Algorithm ofb-encrypt(F, v, x):
s← v;
L← |x|;
x← x ‖ 0t⌈L/t⌉−L;
y ← λ;
for i = 0 to (|x| − t′)/t do

xi ← x[ti .. t(i + 1)];
zi ← F (s);
yi ← xi ⊕ zi;
s← s≪t zi;
y ← y ‖ yi;

return (s, y[0 .. L]);

Algorithm ofb-decrypt(F, v, y):
return ofb-encrypt(F, v, y);

We now define the schemes E-OFB$
F

, E-OFBCF,c, E-OFBEF,c, and E-OFBLF,V0 according

to definition 2.6.4; and we define the hybrid scheme E-OFBHF,V0,c
nL,nC ,nE

according to defini-
tion 2.6.6. �

5.1.2 Remark (Similarity to CFB mode) OFB mode is strongly related to CFB mode: we can OFB

26

5. OFB mode encryption

encrypt a message x by CFB-encrypting the all-zero string 0|x| with the same key and IV. That
is, we could have written ofb-encrypt and ofb-decrypt like this:

Algorithm ofb-encrypt(F, v, x):
(s, z)← cfb-encrypt(F, v, 0|x|);
return (s, x⊕ z);

Algorithm ofb-decrypt(F, v, y):
return ofb-encrypt(F, v, y);

We shall use this fact to prove the security of OFB mode in the next section. �

5.2 Security of OFB mode

5.2.1 Theorem (Security of OFB mode) Let F be a pseudorandom function from Σℓ to Σt; let V0 ∈ Σℓ be a
non-t-sliding string; let c be a generalized counter in Σℓ; and let nL, nC , nE and qE be nonnegative
integers; and furthermore suppose that

• nL + nC + nE 6 qE ,

• nL = 0, or nC = nE = 0, or ℓ 6 t and V0 6= c(i) for any nL 6 i < nL + nC + nE , and

• either nC = 0 or ℓ 6 t.

Then, for any tE and µE , and whenever we have

InSeclor-cpa(E-OFBHF,V0,c
nL,nC ,nE

; tE , qE , µE) 6 2 · InSecprf(F ; tE + qtF , q) +
q(q − 1)

2ℓ

where q =
⌊(

µE + qE(t− 1)
)

/t
⌋

+ nE , and tF is some small constant.

Proof We claim that

InSecrog-cpa-W$(E-OFBHFℓ,t,V0,c
nL,nC ,nE

; t, qE , µE) 6
q(q − 1)

2ℓ+1
.

This follows from lemma 4.4.2, which makes the same statement about CFB mode, and the
observation in remark 5.1.2. Suppose A attempts to distinguish OFBH encryption from W$.
We define the adversary B which uses A to attack CFBH encryption, as follows:

Adversary BE(·):
return Aofb(·);

Function ofb(x):
(v, z)← E(0|x|);
return (v, x⊕ z);

Now we apply proposition 2.5.4; the theorem follows. �

5.2.2 Corollary Let F , c and V0 be as in theorem 5.2.1. Then for any tE , qE and µE ,

InSeclor-cpa(E-OFB$
F
; tE , qE , µE) 6 2 · InSecprf(F ; tE + qtF , q) +

q(q − 1)

2ℓ

InSeclor-cpa(E-OFBEF,c; tE , qE , µE) 6 2 · InSecprf(F ; tE + q′tF , q′) +
q′(q′ − 1)

2ℓ

InSeclor-cpa(E-OFBLF,V0 ; tE , qE , µE) 6 2 · InSecprf(F ; tE + qtF , q) +
q(q − 1)

2ℓ

and, if ℓ 6 t,

InSeclor-cpa(E-OFBCF,c; tE , qE , µE) 6 2 · InSecprf(F ; tE + qtF , q) +
q(q − 1)

2ℓ

where q =
⌊(

µE + qE(t− 1)
)

/t
⌋

+ nE , q′ = q + qE , and tF is some small constant.

27

New proofs for old modes

Proof Follows from theorem 5.2.1 and proposition 2.6.7. �

5.2.3 Corollary Let P be a pseudorandom permutation on Σℓ, and let c and V0 be as in theorem 5.2.1. Then
for any tE , qE and µE ,

InSeclor-cpa(E-OFB$P ; tE , qE , µE) 6 2 · InSecprp(P ; tE + qtF , q) +
q(q − 1)

2ℓ

InSeclor-cpa(E-OFBEP,c; tE , qE , µE) 6 2 · InSecprp(P ; tE + q′tF , q′) +
q′(q′ − 1)

2ℓ

InSeclor-cpa(E-OFBLP,V0 ; tE , qE , µE) 6 2 · InSecprp(P ; tE + qtF , q) +
q(q − 1)

2ℓ

and, if ℓ 6 t,

InSeclor-cpa(E-OFBCP,c; tE , qE , µE) 6 2 · InSecprp(P ; tE + qtF , q) +
q(q − 1)

2ℓ

where q =
⌊(

µE + qE(t− 1)
)

/t
⌋

+ nE , q′ = q + qE , and tF is some small constant.

Proof Follows from corollary 5.2.2 and proposition 2.4.3. �

6 Acknowledgements

Thanks are due to David Wagner for pointing me at [AGPS01] and warning me of the dangers
of sliding IVs in CFB mode. Thanks also to Clive Jones for his suggestions on notation, and
his help in structuring the proofs.

7 References

[AGPS01] Ammar Alkassar, Alexander Geraldy, Birgit Pfitzmann, and Ahmad-Reza Sadeghi;
Optimized self-synchronizing mode of operation; in Mitsuru Matsui, ed., FSE; vol.
2355 of Lecture Notes in Computer Science; Springer; 2001; ISBN 3-540-43869-6; URL
http://citeseer.nj.nec.com/alkassar01optimized.html.

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway; A
concrete security treatment of symmetric encryption; in IEEE Sympo-
sium on Foundations of Computer Science; 1997; pp. 394–403; URL
http://www-cse.ucsd.edu/users/mihir/papers/sym-enc.html.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway; The security of cipher block chaining;
in Yvo G. Desmedt, ed., Advances in cryptology, CRYPTO ’94: 14th annual inter-
national cryptology conference, Santa Barbara, California, USA, August 21–25, 1994:
proceedings; vol. 839 of Lecture Notes in Computer Science; Springer-Verlag, Berlin,
Germany / Heidelberg, Germany / London, UK / etc.; 1994; ISBN 3-540-58333-5
(Berlin), 0-387-58333-5 (New York); ISSN 0302-9743; pp. 341–358.

[BR96] R. Baldwin and R. Rivest; RFC 2040: The RC5, RC5-CBC,
RC5-CBC-pad, and RC5-CTS algorithms; October 1996; URL
ftp://ftp.internic.net/rfc/rfc2040.txt,ftp://ftp.math.utah.edu/pub/rfc/rfc2040.txt;
status: INFORMATIONAL.

28

http://citeseer.nj.nec.com/alkassar01optimized.html
http://www-cse.ucsd.edu/users/mihir/papers/sym-enc.html
ftp://ftp.internic.net/rfc/rfc2040.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc2040.txt

7. References

[Dae95] Joan Daemen; Cipher and hash function design strategies based on linear and differential
cryptanalysis; Ph.D. thesis; K. U. Leuven; 1995.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz; OCB: a block-
cipher mode of operation for efficient authenticated encryption; in ACM Con-
ference on Computer and Communications Security; 2001; pp. 196–205; URL
http://www.cs.ucdavis.edu/~rogaway/ocb/.

[Sch96] Bruce Schneier; Applied Cryptography: Protocols, Algorithms, and Source
Code in C; John Wiley and Sons, Inc., New York, NY, USA; Second
edn.; 1996; ISBN 0-471-12845-7 (cloth), 0-471-11709-9 (paper); URL
http://www.counterpane.com/applied.html.

[Uni81] United States. National Bureau of Standards; FIPS pub 81: DES modes of operation;
December 1981.

29

http://www.cs.ucdavis.edu/~rogaway/ocb/
http://www.counterpane.com/applied.html

	1 Introduction
	1.1 Block cipher modes
	1.2 Previous work
	1.3 Our contribution
	1.4 The rest of the paper

	2 Notation and definitions
	2.1 Bit strings
	2.2 Other notation
	2.3 Algorithm descriptions
	2.4 Pseudorandom functions and permutations
	2.5 Symmetric encryption
	2.6 Initialization vectors and encryption modes

	3 Ciphertext block chaining (CBC) encryption
	3.1 Description
	3.2 Security of CBC mode
	3.3 Ciphertext stealing
	3.4 Proof of theorem 3.2.1

	4 Ciphertext feedback (CFB) encryption
	4.1 Description
	4.2 Sliding strings
	4.3 Security of CFB mode
	4.4 Proof of theorem 4.3.1

	5 OFB mode encryption
	5.1 Description
	5.2 Security of OFB mode

	6 Acknowledgements
	7 References

