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Abstract. The ASTIRRA CAPTCHA [6], recently proposed at ACM CCS 2007, relies on the problem of
distinguishing images of cats and dogs (a task that humans are very good at). The security of ASTRRA
is based on the presumed difficulty of classifying these images automatically. In this paper, we describe
a classifier which is 82.7% accurate in telling apart the images of cats and dogs used in ASTIRRA. This
classifier is a combination of support-vector machine classifiers trained on color and texture features
extracted from images. Our classifier allows us to solve a 12-image ASIRRA challenge automatically
with probability 10.3%. This probability of success is significantly higher than the estimate given in [6]
for machine vision attacks. The weakness we expose in the current implementation of ASIRRA does
not mean that ASTRRA cannot be deployed securely. With appropriate safeguards, we believe that
ASIRRA offers an appealing balance between usability and security. One contribution of this work is
to inform the choice of safeguard parameters in ASIRRA deployments.

1 Introduction

The ASIRRA CAPTCHA [6], recently proposed at ACM CCS 2007, relies on the problem of
distinguishing images of cats and dogs. An ASIRRA challenge consists of 12 images, each of which
is of either a cat or a dog. To solve the CAPTCHA, the user must select all the cat images, and
none of the dog images. This is a task that humans are very good at. According to [6], ASIRRA
“can be solved by humans 99.6% of the time in under 30 seconds”. The usability of ASIRRA is a
significant advantage compared to CAPTCHAS [7] based on recognizing distorted strings of letters
and numbers.

The security of ASTRRA is based on the presumed difficulty of classifying images of cats and
dogs automatically. As reported in [6], evidence from the 2006 PASCAL Visual Object Classes
Challenge suggests that cats and dogs are particularly difficult to tell apart algorithmically. A
classifier based on color features, described in [6], is only 56.9% accurate. The authors conjecture
that “based on a survey of machine vision literature and vision experts at Microsoft Research, we
believe classification accuracy of better than 60% will be difficult without a significant advance in
the state of the art”. With a 60% accurate classifier, the probability of solving a 12-image ASIRRA
challenge is only about 0.2%.

In this paper, we describe a classifier which is 82.7% accurate in telling apart the images of cats
and dogs used in ASIRRA. This classifier allows us to solve a 12-image ASTRRA challenge with
probability 10.3%. This success probability is significantly higher than the estimate given in [6] for
machine vision attacks. While low in absolute terms, it nevertheless poses a threat to ASTRRA
if safeguards are not deployed to prevent machine adversaries from requesting, and attempting to
solve, too many CAPTCHASs. Various such safeguards are proposed in [6]. We hope that our results
will inform the choice of these safeguards and will contribute to the secure deployment of ASIRRA.

Our classifier is a combination of two support-vector machine (SVM) classifiers trained on color
and texture features of images. The classifier is entirely automatic, and requires no manual input



other than the one-time labelling of training images. Using 15,760 color features, and 5,000 texture
features per image, our classifier is 82.7% accurate. The classifier was trained on a commodity PC,
using 13,000 labelled images of cats and dogs downloaded from the ASIRRA website [1].

Organization. We describe our SVM classifiers in section 2, using color features (section 2.1),
texture features (section 2.2) and finally a combination of both (section 2.3). We discuss the use
of these classifiers in attacking ASIRRA in section 3, as well as counter-measures. We conclude in
section 4.

2 SVM Classifiers for ASTRRA Images

ASIRRA relies on a large and growing database of some 3,000,000 images of cats and dogs obtained
from Petfinder.com. The images presented by ASIRRA are 250-by-250 pixels. In the majority of
images, there is either a single cat or a single dog. Some images contain multiple cats or multiple
dogs. In a very few images, there is no recognizable animal, or else there is both a cat and a dog
(these images cannot be classified according to the rules of ASIRRA).

Image collection. We collected 13,000 distinct images from the ASIRRA website [1], and classified
them manually into 3 classes: Cat, Dog and Other. The Cat and Dog classes are self-explanatory.
The Other class was for images which either contained no recognizable animal, or contained both
a cat and a dog. Manual classification was followed by a manual verification step, in which 159
misclassified images (1.2% of the total) were detected and moved to the correct category. After
verification, we obtained 6,403 images of cats (49.3%), 6,466 images of dogs (49.7%) and 131 other
images (1.0% of the total). In the rest of our work, we kept only the images of cats and dogs and
discarded the other images.

Building a classifier. We experimented with different color and texture features computed from
images. These features are described in the rest of this section. We trained a support vector ma-
chine [4] (SVM) classifier with each set of features, and measured the accuracy of the classifier using
5-fold cross-validation on subsets of our image collection. Cross-validation operates by dividing a
subset of images into 5 randomly chosen partitions; 4 of these partitions are used for training while
the remaining one is used for validation. We report results using subsets of various sizes (5,000
and 10,000 images), to show the influence of the size of the training sample on the accuracy of our
classifier. The accuracy reported for our classifiers in the following sections is the average accuracy
(and its standard deviation) over the 5 experiments of 5-fold cross-validation.

SVM implementation. We trained our SVM with a radial basis kernel. This kernel defines the
inner product of two feature vectors v and v’ as K (v,v") = exp (—y|v — v'|?). The parameter v was
tuned with 5-fold cross-validation to approximately achieve the best test error performance. We
found that v = 10~2 worked well for color features and v = 10~! worked well for texture features.
We used the LIBSVM [3] Java implementation of SVM. We rewrote parts of the LIBSVM library
to make more economical use of memory for vectors of boolean features. All computations were
done on a commodity desktop PC running Windows XP with dual 3.40 GHZ CPUs and 3.00 GB
of RAM.

2.1 Color Features

Recall that an ASIRRA image is 250-by-250 pixels. We divide the image into N vertical and N
horizontal strips of equal width. We thus obtain a division of the image into a grid of N? cells.
Each cell is a square of width and height 250/N (rounded to the nearest integer).



We also partition the color space. We use the HSV (hue, saturation, value) model of color, since
it is closer to human perception of color, and thus easier to interpret, than the RGB (red, green,
blue) model. We subdivide the hue channel of the color spectrum into Cj, bands of equal width,
the saturation channel into Cs bands of equal width and the value channel into C, bands of equal
width. Altogether, this gives us a partition of the color space into C}CsC), color regions.

Informally, the feature vector associated with an image indicates, for every cell in the image
and every color region, whether there is at least one pixel in the cell which belongs to the color
region. Note that these features are boolean: they do not indicate how many pixels in a given
cell fall within a certain color region, but only whether one or more pixel in the cell falls in the
color region. Our experiments show that these boolean features yield more accurate classifiers than
integer pixel counts, in addition to being more efficient.

More precisely, the feature vector F(N,Cy, Cs, C,) is a boolean vector of length N2.C,C,C,.
The boolean feature associated with cell (z,y) € [1,...,N] x [1,..., N] and color region (h,s,v) €
[1,...,Ch) x [1,...,C5] x [1,...,C,] takes the value 1 (or true) if there is one or more pixel in
cell (z,y) of a color that belongs to color region (h,s,v). Otherwise, the feature takes the value 0

(false).

We trained SVM classifiers with these color features, and measured their accuracy using 5-
fold cross-validation, as explained above. Our results are given in Table 1 for various values of
the parameters N, C},Cs, C, and for training sets of various sizes. For example, the feature set
F3 = F(5,10,6,6) consists of 9,000 color features obtained with a division of images into 25 cells
(N = 5) and a division of the color space into 360 color regions (C, = 10, Cs = 6 and C, = 6).
With 4,000 training images, an SVM classifier using the feature set F3 is on average 74.6% accurate
(over the 5 experiments of 5-fold cross-validation). With 8,000 training images, the accuracy of this
classifier increases to 75.7 %.

Color features # Images Classifier accuracy
Feature set| N Ch Cs Ch # features || Total |Training set mean stdev
n 1 10 10 10 1,000 5,000 4,000 67.3% 1.6
Fy 3 10 8 8 5,760 5,000 4,000 74.6 % 1.1
F3 5 10 6 6 9,000 5,000 4,000 74.6 % 0.6
F3 5 10 6 6 9,000 10,000 8,000 75.7% 0.7

Table 1. Accuracy of SVM classifiers trained on color features.

Combining color features computed on cells of various sizes further improves the accuracy of
our classifier. We experimented with the union of the feature sets Fy = F(1,10,10,10), F» =
F(3,10,8,8) and F3 = F(5,10,6,6) of Table 1. The total number of color features in Fy U F» U F3
is 15,760. The accuracy of a classifier using these features is given in Table 2. With 4,000 training
images, the classifier is 76.3 % accurate. With 8,000 training images, it is 77.1 % accurate.

Color features # Images Classifier accuracy
Feature set | # features Total |Training set mean stdev
FLUF,UFs 15,760 5,000 4,000 76.3% 0.9
FiUF,UF3 15,760 || 10,000 8,000 771 % 0.6

Table 2. Accuracy of SVM classifier trained on a combination of color features.



2.2 Texture Features

We start with an informal presentation of our approach to texture recognition. We extract small
sub-images (5-by-5 pixels) from training images of cats and dogs. We call these sub-images tezture
tiles. We collect a set 7 of texture tiles of size t = |7, such that the distance between any two
tiles in 7 is above a certain threshold (we define below our measure of distance between tiles). This
ensures that the tiles in 7 are sufficiently diverse, and that there are no duplicate tiles. The feature
vector associated with an image is the vector of distances between the image and each texture tile
in 7 (we define below our measure of distance between an image and a tile). Finally, we train an
SVM classifier with these feature vectors. More precisely, we proceed as follows.

Selection of texture tiles. We select random images of cats and dogs from the set of training
images. We divide each image into vertical and horizontal strips of equal width (5 pixels). We thus
obtain a division of each image into (250/5)? = 2500 feature tiles. Each feature tile is a square of
5-by-5 pixels. Let us denote 7y this initial set of candidate tiles. We define the distance between
two tiles as the average Euclidian distance between the pixels of the tiles in RGB color space. From
7o, we then compute a subset 7 of texture tiles iteratively as follows. Initially, 7 is empty. We
consider in turn each tile T € 7y. If there already exists a tile in 7 whose distance to T is below a
certain threshold §, we discard T'. Otherwise, we add the tile T to 7. We repeat this computation
for all candidate tiles in 7y until we obtain a set 7 of size ¢. Note that the initial set 7y must be
chosen sufficiently large to ensure the existence of a subset 7 of size t.

Feature vector. The feature vector associated with an image is the vector of distances between
the image and each of the t texture tiles in 7. The distance between an image A and a texture tile
T € T is defined as follows. For 0 <1, j < (250 — 5), let us denote A, ; the square sub-image of A,
of width 5 pixels and height 5 pixels, whose top left corner is the pixel of A in row ¢ and column j.
We define the distance d(A;;,T) between a sub-image A;; and a texture tile 7" as the maximum
of the Euclidean distance between their pixels in RGB space. The distance between A and T is
defined as d(A,T) = min; j d(A; ;,T). Distances are normalized to the range [0, 1].

Results. We trained an SVM classifier with these texture features, and measured its accuracy
using 5-fold cross-validation. Our results are given in Table 3. The feature set GG1 consists of 1,000
features which record the distance of an image to 1,000 texture tiles. The texture tiles are selected
such that the distance between any two of them is at least 40.0. With 4,000 training images, an
SVM classifier using the feature set G is 74.5 % accurate. We define a feature set G5 which consists
of 5,000 features which record the distance of an image to 5,000 texture tiles similarly selected.
Using this larger feature set and 4,000 training images, the accuracy of our SVM classifier increases
to 78.0%. With 8,000 training images, it is 80.4 % accurate.

Texture features # Images Classifier accuracy
Feature set| # tiles| § Total |Training set mean stdev
G 1,000 | 40.0 || 5,000 4,000 74.5% 2.0
G2 5,000 | 40.0 || 5,000 4,000 78.0% 1.9
G2 5,000 | 40.0 |{10,000 8,000 80.4% 0.9

Table 3. Accuracy of SVM classifier trained on texture features.



2.3 Combination of Color and Texture Features

The SVM classifiers of sections 2.1 and 2.2 produce for each image a real-valued estimate of whether
the image is of a cat or of a dog. We mapped the “cat” class to the value 1.0 and the “dog” class
to the value —1.0. Thus, an image which produces a positive output is labelled “cat” and an image
which produces a negative output is labelled “dog”. The output of different SVM classifiers can be
combined simply by a weighted average of the estimates they produce. We combined in this way
an SVM classifier which uses the set of color features Fy U Fy U F3 (with weight 1/3) and a second
SVM classifier which uses the set of texture features Gy (with weight 2/3). The accuracy of this
combination is given in Table 4. With a training set of 8,000 images, we obtain a classifier which is
82.7 % accurate.

Features # Training Classifier accuracy
images mean stdev
(FAUF>,UF3)+ Gy 4,000 80.3% 14
(F1UF; U F3)+ Gy 8,000 82.7% 0.5

Table 4. Accuracy of combined color and texture classifiers.

Figure 1 shows the probability distribution of the combined outputs of the color and texture
SVM classifiers, for the “cat” and “dog” classes.
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Fig. 1. Probability distribution of the combined output of the color and texture classifiers.

Accuracy versus completeness. We can achieve lower error rates if we allow the classifier to
assign some images a “don’t know” label. The quality of this 3-class classifier is measured by
completeness (the fraction of images classified as either “cat” or “dog”) and accuracy (the fraction
of images in the “cat” and “dog” classes which are accurately classified). We turn our combined
color and texture classifier into a 3-class classifier as follows. The classifier is parameterized by a
real-valued parameter € > 0. Images which produce an output smaller than —e are labelled “dog”.
Images which produce an output between —e and € are labelled “don’t know”. Finally, images which
produce an output larger than e are labelled “cat”.



Figure 2 shows a plot of the accuracy versus completeness of this classifier. The base accuracy
of the combined color and texture classifier, when classifying all images (completeness of 1.0), is
82.7 %. If the classifier can ignore half the images (completeness of 0.5), its accuracy rises to 94.8 %.
For 20 % completeness, accuracy rises to 98.5 % .
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Fig. 2. Accuracy versus completeness of the combined color and texture classifier.

3 Attacking ASTRRA

In this section, we describe the application of our machine classifiers to attacking ASTRRA. Recall
that an ASIRRA challenge consists of 12 images of cats and dogs. To solve the challenge, one must
identify correctly the subset of cat images.

Generic attack. A classifier with a success probability 0 < p < 1 of correctly classifying a single
ASIRRA image succeeds in solving a 12-image ASIRRA challenge with probability p'2. Our best
classifier is 82.74 % accurate, which implies that we can solve an ASIRRA challenge completely
automatically with probability 10.3 %. Note that this success probability is independent of the
probability distribution according to which ASIRRA challenges are generated.

Leveraging prior information. This success probability can be improved, if the attacker has
knowledge of the prior probability distribution of ASIRRA challenges over the space {Cat, Dog}!?
(whatever that distribution may be). Let C' = {I3,..., 12} denote a 12-image ASIRRA challenge
and let A = {a1,...,a12}, where a; € {Cat, Dog} denote an assignment of the images I,..., 12 to
the “cat” and “dog” classes. According to Bayes’ rule,

Pr[A|C] = Pr[A] Pr[C|A]/ Pr[C].

The attacker’s goal is to compute max4 Pr[A|C], or equivalently max4(Pr[A] Pr[C|A]). The first
term, Pr[A] is the prior probability distribution that we are assuming is known to the attacker.
The second term, Pr[C|A] can be estimated by the attacker as follows. Let us assume that the
attacker uses a classifier C which produces real-valued outputs, as in section 2.3. Let 0.5t denote



the probability distribution of the output of C over images of cats, and ¢4, denote the probability
distribution of the output of C over images of dogs. With this classifier, the attacker can estimate

PrClA]= ] Gcat@Cl)) ] daog(CL)).

i|a;=cat i|a;=dog

Practical example. The exact rules for creating ASTRRA challenges are not specified precisely
in [6]. The basic rule, however, seems to be that the 12 images of an ASIRRA challenge are drawn
uniformly at random, either from the full ASTRRA database of more than 3,000,000 images, or from
a subset of images of pets located in the geographic vicinity of the user. If this assumption is correct,
it implies that each image in an ASTRRA challenge is drawn independently at random from the “cat”
class with probability ¢ and from the “dog” class with probability 1 — ¢. An attacker can learn the
value of the parameter ¢ by observing ASIRRA challenges. Our own measurements suggest ¢ = 0.5
since we found approximately the same number of cats and dogs in our sample of the ASTRRA
database. As explained above, we can leverage this information to compute max 4 (Pr[A] Pr[C|A]).
In this example, Pr[A] = ¢¥(1 — ¢)!2~*, where w is the number of cats in A. Using the combined
color and texture classifier of section 2.3 to estimate Pr[C|A], we solve an ASIRRA challenge with
probability 10.4 %. This probability of success is only barely higher than that of the generic attack.
The reason is that, with the classifier of section 2.3, the generic attack already produces assignments
that nearly follow a binomial distribution of cats and dogs.

Hypothetical example. Consider an hypothetical variant of ASTIRRA in which every challenge
contains exactly 6 images of cats and 6 images of dogs (this variant is not proposed in [6]). We
now have Pr[A] = 0 if the number of cats and dogs in A are not equal, and Pr[A] = 1/(162)
otherwise. Using the classifier of section 2.3, we can solve challenges of this variant of ASTRRA
with probability 23.8 %. While this variant may be attractive from a usability point-of-view (users
may solve ASIRRA challenges faster if they know they must find exactly 6 cats), our attack shows
that it is insecure and should be avoided.

3.1 Partial Credit and Token Bucket Schemes

Two enhancements to ASIRRA are proposed in [6]. The first is a partial credit algorithm designed
to improve the usability of ASTRRA for human users. The second is a token bucket scheme de-
signed to harden ASTRRA against automated attacks. In this section, we study the impact of these
enhancements on the classifier of section 2.3.

Partial credit algorithm (PCA). A user who correctly classifies 11 of the 12 images in an
ASIRRA challenge is considered to have “nearly” solved the challenge. The user is placed in an
intermediate state and presented with a second challenge. If the user solves or nearly solves the
second challenge (i.e. identifies 11 or 12 images correctly), the user passes. Otherwise, the user fails
and is returned to the default (non intermediate) state. Table 5 shows the impact of the partial
credit algorithm on the success of the classifier of section 2.3 (for comparison, the table also includes
the figures for the human success rate, taken from [6]). With PCA, the success rate of our automatic
classifier is 38.0 % after 3 challenges. This is unacceptably high, and leads us to recommend that
PCA should not be deployed.



Challenges solved Classifier success rate Human success rate

no PCA with PCA no PCA with PCA
1 10.3% 10.3% 83.4% 83.4 %
2 19.5% 26.2 % 97.2% 99.6 %
3 27.8% 38.0% 99.5 % 99.9%

Table 5. Impact of the partial credit algorithm on the success of the classifier of section 2.3. For comparison, the
table also includes the human success rates reported in [6].

Token bucket scheme. A full description of the token bucket scheme can be found in [6]. In
essence, the token bucket scheme punishes users who fail a lot of ASIRRA challenges. These users
must solve correctly two ASIRRA challenges in close succession to be considered successful. The
token bucket scheme is parameterized by a parameter TB-refill, which specifies how many chances
the user is given to correctly solve a second CAPTCHA after solving the first one. A value TB-
refill= 1 means that the user must solve two successive CAPTCHASs correctly. In [6], the value
TB-refill=3 is suggested, which means the user is allowed 3 trials to solve a second CAPTCHA
correctly. Table 6 shows the impact of the token bucket scheme on the success of the classifier of
section 2.3. Our results suggest that PCA leads to weak security, even in combination with the
token bucket scheme. On the other hand, ASIRRA appears secure with the parameter TB-refill=1,
since our attack in that case is only 1.1% successful.

Enhancement TB-refill] Classifier success rate
Token bucket 3 2.9%
Token bucket 2 2.0%
Token bucket 1 1.1%
Token bucket + PCA 3 19.0%
Token bucket + PCA 2 15.3%
Token bucket + PCA 1 13.0%

Table 6. Impact of the token bucket scheme on the success of the classifier of section 2.3. In [6], the parameter
TB-refill is set to 3.

3.2 Defenses

The best defense against the machine learning attacks that we have described is the bucket scheme
proposed in [6]. The strictest version of the bucket scheme reduces the probability of solving an
ASIRRA challenge automatically to 1.1%. The bucket scheme could be further strengthened by
requiring users to correctly solve more than 2 ASTRRA challenges in a row. Unfortunately, this
would also negatively affect the ability of humans to pass ASIRRA challenges. Another approach to
improving the security of ASTRRA is to increase the number of images used in challenges. Finally,
ASIRRA would benefit from being deployed in conjunction with IP monitoring schemes which
prevent an adversary from requesting, and attempting to solve, too many ASIRRA challenges.
The bucket scheme described above is also very successful in decreasing the probability of success
of a machine. Distorting, warping or degrading the quality of the images is unlikely to do much
to lower the accuracy of SVM classifiers based on color and texture features, since these features
are largely unaffected by global image distortions. Using greyscale images, instead of color images,
may decrease the accuracy of the color classifiers of section 2.1, but would likely have little effect on



the texture classifiers of section 2.2. These techniques do not appear promising: they are unlikely
to dent the effectiveness of automatic classifiers without also significantly reducing the usability
advantage that is ASTRRA’s greatest strength. They would amount to “the arms race found in text
CAPTCHAs that [ASIRRA is] trying to avoid” [6].

4 Conclusion

We describe a classifier which is 82.7% accurate in telling apart the images of cats and dogs
used in ASTRRA. This classifier allows us to solve a 12-image ASIRRA challenge with probability
10.3%. The weakness we’ve exposed in the current implementation of ASTIRRA does not mean that
ASIRRA cannot be deployed securely. With appropriate safeguards, we believe that ASIRRA offers
an appealing balance between security and usability. We hope that this work will contribute to the
secure deployment of ASTIRRA.
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