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Abstract. We present a subquadratic ternary field multiplier based on the com-

bination of several variants of the Karatsuba-Ofman scheme recently published.

Since one of the most relevant applications for this kind of multipliers is pairing

computation, where several field multiplications need to be computed at once,

we decided to design a k-stage pipeline structure for k = 1, . . . , 4, where each

stage is composed of a 49-trit polynomial multiplier unit. That architecture can

compute an average of k field multiplications every three clock cycles, which

implies that our four-stage pipeline design can perform more than one field mul-

tiplication per clock cycle. When implemented in a Xilinx Virtex V XC5VLX330

FPGA device, this multiplier can compute one field multiplication over GF(397)

in just 11.47ns.
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1 Introduction

Arithmetic over ternary extension fields GF(3m) has gained an increasing im-

portance in several relevant cryptographic applications, quite especially, in (hy-



per) elliptic Curve Cryptography and pairing based cryptography. Those appli-

cations typically require efficient implementation of the basic arithmetic finite

field operations such as field addition, subtraction, multiplication, division, ex-

ponentiation, cubing and cube root computation. Among the aforementioned

arithmetic operations, multiplication is by far the one that has received more at-

tention, mostly because of its crucial role in the aforementioned cryptographic

schemes.

We formally define a ternary finite field as follows. Let P (x) be an irre-

ducible polynomial over GF(3). Then, the ternary extension field GF(3m) of

degree m ∈ N can be defined as,

GF(3m) ∼= GF(3)[x]/ (P (x)) =
{(

a0 + a1x + · · ·+ am−1x
m−1

)
| ai ∈ GF(3), i = 0, . . . , m− 1

}
.

The ternary coefficients ai are sometimes called trits. Addition and subtrac-

tion are the simplest arithmetic operations in GF (3m) as these two operations

can be performed by adding/subtracting each trit in arithmetic modulo three. On

the contrary, field multiplication is a more complicated operation that deserves

much more attention.

Let A(x), B(x) and C ′(x) ∈ GF (3m) and P (x) be the irreducible poly-

nomial used to construct the field GF (3m). Multiplication in GF (3m) is de-

fined as polynomial multiplication modulo the irreducible polynomial P (x),

i.e., C ′(x) = A(x)B(x) mod P (x). Hence, we can obtain the field product by

first computing the polynomial product C(x) of degree at most 2m− 2 as,

C(x) = A(x)B(x) = (
m−1∑
i=0

aix
i)(

m−1∑
i=0

bix
i)



Followed by a reduction step modulo P (x) that can be obtained through addi-

tion and subtraction operations only. This implies that the reduction step can

be accomplished at a linear complexity cost and therefore its cost is modest

compared with that of the first step. Depending on the specific scheme selected,

polynomial multiplication may have either super linear or quadratic complexity.

Hence, it results convenient to classify parallel field multiplier schemes accord-

ing to their space complexity as quadratic and subquadratic space complexity

multipliers.

Parallel multiplier schemes exhibiting quadratic space complexity have been

profusely reported in the literature. Some famous examples are, the school-

book method, interleaving multipliers, matrix-vector multipliers, Montgomery

multipliers and Horner’s rule-based multipliers, along with many other variants

of them. Curiously, there exist much less literature on subquadratic multiplier

schemes. A non exhaustive list of those schemes includes, the Toeplitz matrix-

vector product, DFT Multipliers, Chinese Remainder Theorem (CRT) multipli-

ers, and Divide-and-Conquer multipliers such as the Winograd Multiplier, the

Toom-Cook Multiplier discovered in 1963 and the Karatsuba-Ofman Multiplier

(KOM) [9].

Due to the subquadratic space complexity enjoyed by KOM, which is sup-

ported by closed complexity formulae bounds, this scheme has become a very

attractive design option for implementing fully or semi parallel field multipliers

over prime extension fields in the cryptographic range of interest (i.e., exten-

sion degrees m ∈ [70, 560]). Till now several fast hardware and software KOM

implementations have been reported [5, 13, 16], all of them over binary exten-



sion fields GF(2m). In [7] a digit-serial LFSR multiplier combined with KOM

techniques over GF(3m) was reported.

In this paper we present the design specifics of a Karatsuba-Ofman field

multiplier over GF(3m) that borrows ideas of the KOM variants proposed in [4]

and [6]. Further, since the main applications of a ternary field multiplier require

the batch computation of a relatively large number of products, we decided to

utilize a k-stage pipeline structure for k = 1, . . . , 4. Our architecture is able to

perform k field multiplications every three clock cycles. This way, the fastest

design reported in this research work can compute one field multiplication over

GF(397) in 11.47 ns, whereas our most efficient multiplier achieves a Speed Per

Area (SPA) factor of 15, 442 when implemented in a Xilinx Virtex V FPGA

device. 1

The rest of this paper is organized as follows. In §2, the Karatsuba-Ofman

multiplier algorithm and its variants are explained. Then, in §3 we describe the

multiplier design architecture and we give in §4 a summary of the implemen-

tation results achieved, and a comparison with other ternary field multipliers

recently reported. Final remarks are drawn in §5.

2 Karatsuba-Ofman Multiplication

Let the field GF(3m) be constructed using the polynomial P (x) irreducible over

GF(3), with m > 1 an odd number and n = dm
2 e. Let A,B be two elements in

1 The Speed Per Area (SPA) factor is defined as SPA = (slices · latency)−1, where slices
refers to the number of XILINX FPGA slices required by the design and latency is the time
elapsed till one computation is ready.



GF (3m). Then, both elements can be represented in the polynomial basis as,

A =
m−1∑
i=0

aix
i =

m−1∑
i=n

aix
i +

n−1∑
i=0

aix
i = xn

n−2∑
i=0

ai+nxi +
n−1∑
i=0

aix
i = xnAH + AL;

B =
m−1∑
i=0

bix
i =

m−1∑
i=n

bix
i +

n−1∑
i=0

bix
i = xn

n−2∑
i=0

bi+nxi +
n−1∑
i=0

bix
i = xnBH + BL.

The Karatsuba-Ofman Multiplier (KOM) is based on the observation that

the polynomial product C = A ·B can be written as,

C = x2nAHBH + (AHBL + ALBH)xn + ALBL

= x2nAHBH + ALBL +
[
(AH + AL)(BL + BH)− (AHBH + ALBL))

]
xn

(1)

With a computational cost of three n-trit polynomial multiplications and 4 addi-

tions/subtractions. By applying this strategy recursively, in each iteration each

degree polynomial multiplication is transformed into three polynomial multi-

plications with their degrees reduced to about half of its previous value. The

algorithm ends after dlog2(m)e iterations, where all the polynomial operands

collapse into single coefficients. Nevertheless, practice has shown that is better

to truncate the KOM algorithm earlier, with the aim of performing the under-

lying multiplications using alternative techniques that are more compact and/or

faster for small operands (typically the so-called school book method has been

selected [13, 16]). For example, if m = rs, with r = 2k, k a positive integer,

we can halt the KOM recursion after k iterations and then compute the underly-

ing s-trit polynomial multiplications using the school-book method. It has been

shown that in this case the space and time complexities of that hybrid scheme



are upper bounded as [13, 16, 6],

# Additions/subtractions ∈ GF(3) ≤
(m

s

)log2 3
(s2 + 6s− 1)− 8m + 2 ;

# Multiplications ∈ GF(3) ≤
(m

s

)log2 3
s2;

Latency ≤ TMult + (log2 s + 3 log2 r)TAdd .

(2)

Where TMult and TAdd represents the time delay of one multiplication and

one addition over GF(3), respectively. Some design disadvantages associated

to KOM schemes include the redundant computation of several multiplications

when the extension degree m is not a power of two; and also the fact that the

KOM scheme has an associated time delay higher than other bit-parallel mul-

tiplier schemes. Because of these drawbacks, several KOM variants that try to

remedy these issues have been proposed [5, 13, 4, 11, 6]. In [6] a novel KOM

proposal was presented, where instead of dividing the operands in upper and

lower halves, the operands are split according to the parity of the powers of the

variable x, i.e., in odd and even coefficients. Hence, if A,B ∈ GF(3m) they can

be split as,

A =

m−1∑
i=0

aix
i =

n−1∑
i=0

a2ix
2i + x ·

n−2∑
i=0

a2i+1x
2i =

n−1∑
i=0

a2iy
i + x ·

n−2∑
i=0

a2i+1y
i = Ae(y) + xAo(y);

B =

m−1∑
i=0

bix
i =

n−1∑
i=0

b2ix
2i + x ·

n−2∑
i=0

b2i+1x
2i =

n−1∑
i=0

b2iy
i + x ·

n−2∑
i=0

b2i+1y
i = Be(y) + xBo(y).

Where as before n = dm
2 e and y = x2. This partition leads to the following

Karatsuba-Ofman like multiplication equation,

C = [Ae(y) + xAo(y)) · (Be(y) + xBo(y)] = Ae(y)Be(y)+

+yAo(y)Bo(y) + x
[
(Ae(y) + Ao(y))(Be(y) + Bo(y))− (Ae(y)Be(y) + ALBL))

]
(3)

which improves the KOM latency of Eq.2 to TMult + (log2 s + 2 log2 r)TAdd.



In this work we present the design of a Karatsuba-Ofman field multiplier

over GF(3m) that borrows some of the ideas already proposed in [4] and [6].

The interested reader is referred to Appendix A where a brief description of the

KOM variant proposed in [4] is given. A pipelined architecture realization of

such multiplier is explained in the next Section.

3 A Pipelined Karatsuba-Ofman Multiplier over GF(3m)

We describe here the design of a KOM operating in the ternary extension field

GF(3m), with m = 97, which was constructed using the irreducible trinomial

P (x) = x97 + x12 − 1. This ternary extension field is a popular choice for

pairing computations and that is the reason why we selected it. However, the

same design principles to be explained in this Section can be applied for other

field selections.

Since 2 ≡ −1 mod 3, it results convenient to encode a trit a ∈ GF(3) using

a positive bit a+ and a negative bit a− such that a = a+ − a−. Multiplication

of two elements a, b ∈ GF(3) is now defined by [3],

a · b =
(
(1− b−)b+a+ V b−(1− b+)(1− a+)

)
−

(
(1− b−)b+a− V b−(1− b+)(1− a−)

)

and requires two 3-input LUTs or one 6-input/two-output LUT. Thus, the fanout

of the array multiplier is equal to m. Additionally, trit negation can be accom-

plished by just bit swapping. An arbitrary field element in GF(397) is therefore

represented as a 97-trit word that occupies 194 bits of memory. Hence, a par-

allel field adder/subtracter in GF(397) is composed of 97 adders/subtracters in

GF(3).



Since we are considering the case m = 97, then d97
2 e = 49, and we have

that a 97-trit polynomial multiplication can be accomplished via Karatsuba-

Ofman strategy by invoking three times a 49-trit polynomial multiplier unit

along with four 49-trits adders/subtracters. The 49-trit polynomial multiplier

unit was designed as shown in Fig.5, following the non redundant KOM vari-

ant introduced in [4] (See Appendix A for a brief description of this variant).

We also utilized the even-odd partition introduced in [6] in all the sub-modules

shown in Fig.5. The overlapping module was accomplished according to Eqs.

1 and 3, whereas the reduction module was implemented using the reduction

equation xm+i = xi − x12+i for i ≥ 0, dictated by the irreducible trinomial,

P (x) = x97 + x12 − 1.

Fig. 1. Two-Stage Pipeline Architecture of a GF(397) KOM Multiplier

Having designed a 49-trit polynomial multiplier unit we proceeded to use it

as a stage for building a pipelined multiplier architecture. This can be useful for

applications where multiple field multiplications need to be computed, such as



Fig. 2. GF(397) Field Multiplier Dataflow when Using a Two-Stage Pipeline
Architecture

when computing field exponentiations and/or pairings. A concrete application

of this is the evaluation-interpolation scheme introduced by Gorla et al. in [15]

to perform multiplication over GF(36m) by means of five multiplications over

GF(32m). In turn, each multiplication over GF(32m) can be computed with three

multiplications over GF(3m). Thus, the scheme proposed in [15] to multiply two

elements in GF(36m) involves 15 multiplications over GF(3m). The pipeline

multiplier architecture proposed here appears to be well suited for an efficient

computation of the GF(36m) multiplication algorithm just described.

In this work we designed a pipeline architecture using up to four 49-trit

multiplier stages. However, due to space constraints, only the architecture of the

two-stage pipeline multiplier will be fully explained.

Figures 1 and 2 show the general architecture and the dataflow associated

to a two-stage pipeline architecture. As it is shown in Figure 1 our structure is

divided into two main blocks, namely, the block composed of two polynomial

multiplier units and the overlapping & reduction block. We recall that accord-

ing to Eq.1, one full GF(397) multiplication requires three 49-trit polynomial

multiplications. Therefore, we decided to use the first 49-trit multiplier unit



Fig. 3. GF(397) Field Multiplier Dataflow when Using a Three-Stage Pipeline
Architecture

for computing the partial products (AH
i + AL

i )(BL
i + BH

i ), and AH
i BH

i for

i ≥ 1 in the first and second clock cycles of a new computation, respectively. 2

Meanwhile, the second multiplier unit is used to compute the products AL
i BL

i

and AH
i+1B

H
i+1 in the first and second clock cycles, respectively. The outputs

of the multiplier unit are coupled to two demultiplexer blocks that either store

the computed values in latches or, if the dataflow permits, directly add/subtract

the multiplier’s output with other products previously computed. Notice that the

products AL
i BL

i and AH
i BH

i are also needed to feed the overlapping module.

This is accomplished by using the multiplexer blocks 1 and 3, respectively. The

multiplexer 2, on the other hand, is in charge of collecting the partial product

(AH
i + AL

i )(BL
i + BH

i ), which can come from two different adder blocks. The

control signals S0, S1 and S2 are provided by the control unit which orchestrates

the dataflow in the way illustrated in Fig. 2. As it is shown in Fig. 2, starting

from the third clock cycle, the two-stage pipelined multiplier can compute two

products every three clock cycles.

2 Here and in the rest of this discussion the notation AH
i , AL

i and BH
i , BL

i is used to indicate
the upper and lower halves of the operands Ai and Bi, respectively for i ≥ 1.



Following the same strategy, we designed a three and four-stage pipeline

multiplier. Figures 3 and 4 show the field multiplier dataflow when using a three

and a four-stage structure, respectively. It can be seen that starting from the

second clock cycle, those multipliers can compute three and four field multipli-

cations every three clock cycles, respectively. This implies that the four-stage

pipelined multiplier enjoys a super scalar computation capability, in the sense

that it can compute more than one product per clock cycle.

Fig. 4. GF(397) Field Multiplier Dataflow when Using a Four-Stage Pipeline
Architecture

4 Results and Comparison

The fastest design reported in this research work, the four-stage pipeline struc-

ture, can compute one field multiplication over GF(397) in 11.467ns, whereas

our most efficient multiplier, the three-stage pipeline structure achieves a Speed

Per Area (SPA) factor of 15, 442.0 when implemented in a Xilinx Virtex V



Table 1. Hardware Cost of several GF(397) Multipiers Specifically Designed
for Pairings

Multiplier Platform Cycles Time Latency Frequency Area Efficiency
(ns) (ns) (MHz) (Slices)

Beuchat et al. [2] Cyclone II 33 6.711 221.46 149 700 6450.0

Shokrollahi et al. [15] Virtex II 97 3.33 323.3 300 327 9458.0
Virtex II 14 9.0 126.12 111 2954 2684.0
Virtex II 7 13.9 97.2 72 4006 2568.2

Ronan et al. [14] Virtex II Pro 7 16.23 113.6 61.6 3, 737 2355.6

Grabher et al. [8] Virtex II Pro 28 6.67 186.6 150 946 5664.9

Kerings et al. [10] Virtex II Pro 25 34.129 853.22 29.3 1, 821 644.0

Bertoni et al. [1] Virtex II Pro 7 10.6 74.15 94.4 3, 561 3787.2

Here Pipe1 Virtex V 3 11.939 35.817 83.759 2, 337 11947.0

Here Pipe2 Virtex V 3
2

14.219 21.328 70.328 4, 163 11262.0

Here Pipe3 Virtex V 1 13.229 13.229 75.591 4, 895 15442.0

Here Pipe3 Virtex II Pro 1 17.895 17.895 56.786 9, 041 6180.9

Here Pipe4 Virtex V 3
4

15.289 11.467 65.407 7, 740 11267.2

XC5VLX330 FPGA device. The synthesis and place-and-route steps were per-

formed using Xilinx ISE 9.2i and ModelSimSE 6.2c design tools.

Table 1 shows several field multipliers over GF(3m) recently reported in

the open literature. Since most of these designs were implemented in Xilinx

Virtex II Pro, for comparison purposes we decided to implement our three-stage

pipeline multiplier in the XC2VP70 device, which belongs to the same family.

5 Conclusion

In this paper we have presented a field multiplier in characteristic three, whose

design is based on a combination of two variants recently proposed of the well-

known Karatsuba-Ofman multiplication algorithm. In an effort to obtain a faster

multiplier without increasing the critical path of the algorithm, we introduced

a pipelined architecture which can be useful in those applications were sev-

eral or many field multiplications need to be computed in batch. To the best of



our knowledge, this work presents the first GF(397) field multiplier with super

scalar computation capability, i.e., a multiplier that is able to compute in aver-

age more than one field multiplication per clock cycle. Taking advantage of the

subquadratic space complexity of the Karatsuba-Ofman algorithm along with

the pipelined architecture just described we obtained place-and-route simula-

tion results showing that our multipliers are among the most efficient designs

recently published. In particular, the four-stage pipeline architecture appears to

be the fastest ternary field multiplier reported in the open literature.
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Appendix A Non Redundant Karatsuba-Ofman Multiplier

Authors in [4], presented a non redundant KOM algorithm that strives for avoid-

ing the redundancy of the KOM terms when computing polynomial products



with trit-length m not a power of two. Let A(x), B(x) ∈ GF(3m), with m =

r + s, 0 < s < r = 2k, k a positive integer. Then the polynomial product

C = A ·B can be computed using an unbalanced splitting as follows,

A(x) =

m∑
i=0

aix
i −→ AL =

∑r−1
i=0 aix

i; AH = xr ·
s−1∑
i=0

ai+rx
i.

B(x) =

m∑
i=0

bix
i −→ BL =

∑r−1
i=0 bix

i; BH = xr ·
s−1∑
i=0

bi+rx
i.

thus,

AH + AL =
s−1∑
i=0

(ai + ai+r)xi +
m−1∑
i=s

aix
i;

BH + BL =
s−1∑
i=0

(bi + bi+r)xi +
m−1∑
i=s

bix
i.

Fig. 5. A Non-Redundant 49-Trit Polynomial Multiplier Unit

Authors in [4] observed that the upper m− s trits of the terms (AH + AL),

AL are identical. The same occurs with the terms (BH + BL), BL. Therefore,

if the KOM partial multiplication (AL ·BL) and (AH + AL) · (BH + BL) are

carefully computed, the upper m− s-trit product can be shared, thus computing

it just once and not twice. Because of practical reasons, authors in [4] save



this computation only when the extra condition s < 2k−1 is satisfied. They do

this by using two specialized functions, namely, NRKOA, and NRHKOA, that

separates into two parts the redundant and non-redundant factors that appear

from the KOM dataflow. Figure 5 shows a non redundant 49-trit KOM, where

the shadowed MUL8 blocks can be shared as explained above.
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