
Efficient Lossy Trapdoor Functions based

on the Composite Residuosity Assumption

Alon Rosen∗ Gil Segev†

Abstract

Lossy trapdoor functions (Peikert and Waters, STOC ’08) are an intriguing and powerful
cryptographic primitive. Their main applications are simple and black-box constructions of
chosen-ciphertext secure encryption, as well as collision-resistant hash functions and oblivious
transfer. An appealing property of lossy trapdoor functions is the ability to realize them from a
variety of number-theoretic assumptions, such as the hardness of the decisional Diffie-Hellman
problem, and the worst-case hardness of lattice problems.

In this short note we propose a new construction of lossy trapdoor functions based on
the Damg̊ard-Jurik encryption scheme (whose security relies on Paillier’s decisional composite
residuosity assumption). Our approach also yields a direct construction of all-but-one trapdoor
functions, an important ingredient of the Peikert-Waters encryption scheme. The functions we
propose enjoy short public descriptions, which in turn yield more efficient encryption schemes.

∗Efi Arazi School of Computer Science, Herzliya Interdisciplinary Center (IDC), Herzliya 46150, Israel. Email:
alon.rosen@idc.ac.il.

†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,
Israel. Email: gil.segev@weizmann.ac.il.

1 Lossy Trapdoor Functions

A collection of lossy trapdoor functions consists of two families of functions. Functions in the first
family are injective (and can be inverted using a trapdoor), whereas functions in the second family
are lossy, namely the size of their image is significantly smaller than the size of their domain. The
only computational requirement is that a description of a randomly chosen function from the first
family is computationally indistinguishable from a description of a randomly chosen function from
the second family.

Definition 1.1 (Lossy trapdoor functions). A collection of (n, ℓ)-lossy trapdoor functions is a
triplet of probabilistic polynomial-time algorithms (G,F, F−1) such that:

1. G(1n, injective) outputs a pair (s, td) ∈ {0, 1}n × {0, 1}n. The algorithm F (s, ·) computes an
injective function fs(·) over {0, 1}n, and F−1(td, ·) computes f−1

s (·).

2. G(1n, lossy) outputs s ∈ {0, 1}n. The algorithm F (s, ·) computes a function fs(·) over {0, 1}n

whose image has size at most 2n−ℓ.

3. The description of functions sampled using G(1n, injective) and G(1n, lossy) are computation-
ally indistinguishable.

The encryption scheme of Peikert Waters makes use of an intermediate primitive, called all-but-
one trapdoor functions. A collection of all-but-one trapdoor functions is associated with a set B,
whose members are referred to as branches. The sampling algorithm of the collection receives an
additional parameter b∗ ∈ B, called the lossy branch, and outputs a function f(·, ·) and a trapdoor
td. The function f has the property that for any branch b 6= b∗ the function f(b, ·) is injective
(and can be inverted using td), but the function f(b∗, ·) is lossy. Moreover, the lossy branch b∗ is
computationally hidden. We refer the reader to [3] for a discussion on the relationship between
lossy trapdoor functions and all-but-one trapdoor functions.

Definition 1.2 (All-but-one trapdoor functions). A collection of (n, ℓ)-all-but-one trapdoor func-
tions is a triplet of probabilistic polynomial-time algorithms (G,F, F−1) and a sequence of branch
sets B = {Bn} such that:

1. Given b∗ ∈ Bn the algorithm G(1n, b∗) outputs a pair (s, td) ∈ {0, 1}n × {0, 1}n. For every
b ∈ Bn \ {b∗} the algorithm F (s, b, ·) computes an injective function fs,b(·) over {0, 1}n,
and F−1(td, b, ·) computes f−1

s,b (·). The algorithm F (s, b∗, ·) computes a function fs,b∗(·) over

{0, 1}n whose image has size at most 2n−ℓ.

2. For any b∗1, b
∗
2 ∈ Bn the description of functions sampled using G(1n, b∗1) and G(1n, b∗2) are

computationally indistinguishable.

2 This Paper

Peikert and Waters constructed collections of lossy trapdoor functions and of all-but-one trapdoor
functions assuming the hardness of the decisional Diffie-Hellman problem, and the worst-case hard-
ness of the learning with errors problem, as defined by Regev [4]. While their constructions are
elegant and simple, the public descriptions of the functions are fairly large. Specifically, functions
with n-bit inputs are described using Θ((n/ log n)2) bits.

We construct collections of lossy trapdoor functions and of all-but-one trapdoor functions based
on the Damg̊ard-Jurik encryption scheme [1], which is a generalization of Paillier’s homomorphic

1

encryption scheme [2]. The construction relies on the decisional composite residuosity assumption
introduced by Paillier, and is as secure as Paillier’s original scheme. The functions we propose
enjoy short public descriptions. Specifically, we avoid the quadratic overhead that results from the
techniques of Peikert and Waters.

In the remainder of this paper we provide a high-level overview of the Damg̊ard-Jurik encryption
scheme, and then describe our constructions.

3 The Damg̊ard-Jurik Encryption Scheme

Damg̊ard and Jurik [1] proposed an encryption scheme based on computations in the group ZNs+1 ,
where N = PQ is an RSA modulus and s ≥ 1 is an integer (it contains Paillier’s encryption scheme
[2] as a special case by setting s = 1). Consider a modulus N = PQ where P and Q are odd
primes and gcd(N,φ(N)) = 1 (when P and Q are sufficiently large and randomly chosen, this will
be satisfied except with negligible probability). Such an N will be called admissible in the following
discussion. For such an N , the group Z∗

Ns+1 as a multiplicative group is a direct product G ×H,
where G is cyclic of order N s and H is isomorphic to Z∗

N .

Theorem 3.1 ([1]). For any admissible N and s < min{P,Q}, the map ψs : ZNs × Z∗
N → Z∗

Ns+1

defined by ψs(x, r) = (1 +N)xrNs

mod N s+1 is an isomorphism, where

ψs(x1 + x2 mod N s, r1r2 mod N) = ψs(x1, r1) · ψs(x2, r2) mod N s+1 .

Moreover, it can be inverted in polynomial time given λ(N) = lcm(P − 1, Q− 1).

The following describes the Damg̊ard-Jurik encryption scheme:

• Key generation: On input 1n choose an admissible n-bit RSA modulus N = PQ. The
public-key is (N, s) and the secret-key is λ = lcm(P − 1, Q− 1).

• Encryption: Given a message m ∈ ZNs and the public-key (N, s), choose a random r ∈ Z∗
N ,

and output (1 +N)mrNs

mod N s+1.

• Decryption: Given a ciphertext c ∈ ZNs+1 and the secret-key λ, apply the inversion algo-
rithm provided by Theorem 3.1 to compute ψ−1

s (c) = (m, r) and output m.

The semantic security of the scheme (for any s ≥ 1) is based on the decisional composite
residuosity assumption, introduced by Paillier [2], formally stated as follows: Any probabilistic
polynomial-time algorithm which receives as input an n-bit RSA modulus N , cannot distinguish
between a random element in Z∗

N2 and a random N -th power in Z∗
N2 with probability noticeable

in n. We refer the reader to [1] for the proof of security.

4 Our Constructions

We construct a collection of lossy trapdoor functions by exploiting the algebraic structure of the
above encryption scheme. Each function in our construction is described by a pair (N, c), whereN is
an admissible RSA modulus and c ∈ ZNs+1 . In the injective mode c is a random encryption of 1, and
in the lossy mode c is a random encryption of 0. In order to evaluate a function f(N,c) on an input
x ∈ ZNs we compute f(N,c)(x) = cx mod ZNs+1 . The semantic security of the encryption scheme
guarantees that the two modes are computationally indistinguishable. For an injective function
f(N,c) it holds that f(N,c)(x) = E(1)x = E(x) (where the “randomness” in this ciphertext depends

2

on x), and this can be efficiently inverted using the secret-key λ(N) according to Theorem 3.1. For
a lossy function f(N,c) it holds that f(N,c)(x) = E(0)x = E(0) and in this case we use the underlying
algebraic structure to argue that the function is many-to-one and most of the information on x is
lost. More formally, given an integer s ≥ 1 we define a collection F (s) = (G,F, F−1) as follows:

• Sampling an injective function: On input 1n the generation algorithm chooses an ad-
missible n-bit RSA modulus N = PQ. Then, it chooses a random r ∈ Z∗

N and lets
c = (1 + N)rNs

mod N s+1. The description of the function is (N, c) and the trapdoor is
λ = lcm(P − 1, Q− 1).

• Sampling a lossy function: On input 1n the generation algorithm chooses an admissible
n-bit RSA modulus N = PQ. Then, it chooses a random r ∈ Z∗

N and lets c = rNs

mod N s+1.
The description of the function is (N, c).

• Evaluation: Given a description (N, c) of a function and x ∈ ZNs , output cx mod N s+1.

• Inversion: Given a description (N, c) of an injective function together with its trapdoor λ
and y ∈ ZNs+1 , apply the inversion algorithm provided by Theorem 3.1 to compute ψ−1

s (y) =
(x, rx) and output x.

A minor technical detail in the above description is that different functions sampled using
the same security parameter 1n have different domains since a random modulus N is chosen for
each function. However, since N is chosen as an n-bit modulus, with exponentially high probability
N ≥ 2n/2 and all the functions can share the domain {0, . . . , (2n/2)s−1}, or alternatively {0, 1}ns/2.

Theorem 4.1. F (s) is a collection of (ns/2, ns/2−(n+1))-lossy trapdoor functions for any integer

s ≥ 1.

Proof. Theorem 3.1 guarantees that any function sampled using the injective mode is indeed
injective, and can be efficiently inverted using the trapdoor information. The semantic security
of the Damg̊ard-Jurik encryption scheme guarantees that the descriptions of injective and lossy
functions are computationally indistinguishable. We now prove that any function sampled using
the lossy mode with security parameter 1n indeed have image size of at most 2n+1.

Let (N, c) be a description of a function sampled using the lossy mode with security parameter
1n. Then, N is an n-bit modulus (in particular N < 2n+1) and c = rNs

mod N s+1 for some r ∈ Z∗
N .

Using the isomorphism ψs described in Theorem 3.1 we can express the image of the function as
follows:

Image(N, c) =
{

cx mod N s+1 : x ∈ ZNs

}

=
{

rxNs

mod N s+1 : x ∈ ZNs

}

= {ψs(0, r
x mod N) : x ∈ ZNs} .

Clearly, rx mod N obtains at most N values, and therefore |Image(N, c)| ≤ N < 2n+1.

Finally, we show that the construction can be extended to a collection of all-but-one trapdoor
functions. We describe the extension, and note that the proof of security is almost identical to the
proof of Theorem 4.1. Given an integer s ≥ 1 we define a collection F̂ (s) = (Ĝ, F̂ , F̂−1) as follows:

• Sampling a function: On input 1n and a lossy branch v∗ < 2n/4 the generation algorithm
chooses an admissible n-bit RSA modulus N = PQ. Then, it chooses a random r ∈ Z∗

N and
lets c = (1+N)−v∗

rNs

mod N s+1. The description of the function is (N, c) and the trapdoor
is λ = lcm(P − 1, Q− 1) and v∗.

3

• Evaluation: Given a description (N, c) of a function, a branch v < 2n/4 and an input
x ∈ ZNs , output ((1 +N)vc)x mod N s+1.

• Inversion: Given a description (N, c) of a function, its trapdoor (λ, v∗), a branch v 6= v∗ and
y ∈ ZNs+1 , apply the inversion algorithm provided by Theorem 3.1 to compute ψ−1

s (y) = ((v−
v∗)x, rx). Note that the restriction v, v∗ < 2n/4 implies that with overwhelming probability1

v − v∗ is relatively prime to N , and in this case x can be extracted by computing (v − v∗)x ·
(v − v∗)−1 mod N s.

Theorem 4.2. F̂ (s) is a collection of (ns/2, ns/2− (n+ 1))-all-but-one trapdoor functions for any

integer s ≥ 1, with branch set {0, . . . , 2n/4 − 1}.

Acknowledgements

We thank Chris Peikert for useful discussions.

References

[1] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In Proceedings of the 4th International Workshop on Prac-

tice and Theory in Public Key Cryptography, pages 119–136, 2001. An updated version (with
additional co-author J. B. Nielsen) is available at www.daimi.au.dk/~ivan/GenPaillier_

finaljour.ps.

[2] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances

in Cryptology - EUROCRYPT ’99, pages 223–238, 1999.

[3] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. To appear in
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 2008.

[4] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In Pro-

ceedings of the 37th Annual ACM Symposium on Theory of Computing,, pages 84–93, 2005.

1Where the probability is taken over the choices of the n/2-bit primes P and Q.

4

