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Abstract

In this note we give a precise formulation of “resistance oiteary side information” and show
that several relaxations of differential privacy imply ithe formulation follows the ideas originally
due to Dwork and McSherry, stated implicitly ifl [4]. This ts, our knowledge, the first place such a
formulation appears explicitly. The proof that relaxed digifins (and hence the schemes|[dfi[5, [10, 9])
satisfy the Bayesian formulation is new.

1 Introduction

Privacy is an increasingly important aspect of data publgshReasoning about privacy, however, is fraught
with pitfalls. One of the most significant is the auxiliarfjormation (also called external knowledge, back-
ground knowledge, or side information) that an adversazguggt from other channels such as the web, public
records, or domain knowledge. Schemes that retain privaayagtees in the presence of independent re-
leases are said twompose securelyThe terminology, borrowed from cryptography (which beveal, in
turn, from software engineering), stems from the fact thihemes which compose securely can be designed
in a stand-alone fashion without explicitly taking otheleeses into account. Thus, understanding inde-
pendent releases is essential for enabling modular desigfact, one would like schemes that compose
securely not only with independent instances of themsghugiswith arbitrary external knowledge

Certain randomization-based notions of privacy (such fisrdntial privacy [6]) are believed to com-
pose securely even in the presence of arbitrary side infimaln this note we give a precise formulation
of this statement. First, we provide a Bayesian formulatibdifferential privacy which makes its resistance
to arbitrary side information explicit. Second, we provattthe relaxed definitions ofl[§] 9] still imply the
Bayesian formulation. The proof is non-trivial, and rel@s the “continuity” of Bayes’ rule with respect
to certain distance measures on probability distributiddsr result means that the recent techniques men-
tioned above[l5,12,10] 9] can be used modularly with the samteo$ assurances as in the case of strictly
differentially-private algorithms.

1.1 Differential Privacy

Databases are assumed to be vector®'irfor some domairD. The Hamming distancé(x,y) on D" is
the number of positions in which the vectorsy differ. We letPr[-] andE[-] denote probability and expec-
tation, respectively. Given a randomized algoritbinwe let.4(x) be the random variable (or, probability



distribution on outputs) corresponding to inputlf P andQ are probability measure on a discrete spage
the statistical differencda.k.a.total variation distancgbetweerP andQ is defined as:

SD (P,Q) = max | P [S]—Q[S)].

Definition 1.1 (e-differential privacy [6]) A randomized algorithrd is said to bee-differentialy private if
for all databases:, y € D™ at Hamming distance at most 1, and for all subsetsf outputs

Pr[A(x) € S] < e Pr[A(y) € S]. 1)

This definition states that changing a single individuabsadin the database leads to a small change in
the distribution on outputs. Unlike more standard measures of distance sutdtad variation (also called
statistical difference) or Kullback-Leibler divergendbe metric here is multiplicative and so even very
unlikely events must have approximately the same prolthitider the distributionsi(x) and.A(y). This
condition was relaxed somewhat in other paper<][3] 7] L} BOZ9]. The schemes in all those papers,
however, satisfy the following relaxatiohl [5]:

Definition 1.2 ((e, 0)-differential privacy) A randomized algorithr is (¢, ¢)-differentially private if for all
databases,y € D" that differ in one entry, and for all subsefsof outputsPr[A(x) € S] < e Pr[A(y) €
Sl+6.

The relaxations used i][7] [l 9] were in fact stronger (iless relaxed) than Definition—1.1. One
consequence of the results below is that all the definitisaseguivalent up to polﬁnomial changes in the
parameters, and so given the space constraints we work dtfiyhe simplest notioH.

2 Semantics of Differential Privacy

There is a crisp, semantically-flavored interpretation ifecential privacy, due to Dwork and McSherry,
and explained inJ4]Regardless of external knowledge, an adversary with adoeb® sanitized database
draws the same conclusions whether or not my data is inclunéde original data. (the use of the term
“semantic” for such definitions dates back to semantic sgooirencryption [8]). In this section, we develop
a formalization of this interpretation and show that therdgéin of differential privacy used in the line of
work this paper follows [[317,1 L] 6]) is essential in ordesttisfy the intuition.

We require a mathematical formulation of “arbitrary extdrknowledge”, and of “drawing conclu-
sions”. The first is captured via@ior probability distributionb on D™ (b is a mnemonic for “beliefs”).
Conclusions are modeled by the corresponding posteritiitiison: given a transcript, the adversary
updates his belief about the databasesing Bayes’ rule to obtain a posteriar

blx[t] = (2)

PriA(x) = tjblx]
2oy PriA(y) = tJbly] -

Note that in an interactive scheme, the definition/tlepends on the adversary’s choices; for legibility
we omit the dependence on the adversary in the notation., Adssimplicity, we discuss only discrete
probability distributions. Our results extend directiythe interactive, continuous case.

That said, some of the other relaxations, such as probibiigferential privacy from [[9], might lead to better panaters in
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For a database, definex_; to be the same vector where positibhas been replaced by some fixed,
default value inD. Any valid value inD will do for the default value. We can then imaginer 1 related
games, numbered 0 through In Game 0, the adversary interacts willix). This is the interaction that
actually takes place between the adversary and the randdraigorithmA. In Gamei (for 1 < i < n), the
adversary interacts withl(x_;). Game: describes the hypothetical scenario where pei&data is not
included.

For a particular belief distributioh and transcript, we can then define + 1 a posteriordistributions
bo, - .., bn, Where thebg is the same aks (defined irf2) and, for largey thei-th belief distribution is defined
with respect to Game

PriA(x_) = t]b[x]

S PrAW ) = 0]

Given a particular transcript, the privacy has been breached if the adversary would dréereit
conclusions about the world and, in particular, about agreisiepending on whether or négs data was
used. It turns out that the exact measure of “different” feves not matter much. We chose the weakest
notion that applies, namely statistical difference. Wetkaye is a problem for transcriptf the distributions
bo[-|t] andb;[-|t] are far apart in statistical difference. We would like toigvbis happening for any potential
participant. This is captured by the following definition.

bilx|t] =

Definition 2.1 (e-semantic privacy)A randomized algorithr is said to be.-semantically private if for all
belief distributionsh on D™, for all databases € D", for all possible transcriptg, and foralli = 1,...,n

SD (50[X|t] s 62[X|t] ) <e

Dwork and McSherry proposed the notion of semantic priverdgymally, and observed that it is equiv-
alent to differential privacy. We now formally show that thetions ofe-differential privacy (Definitiod_LJ1)
ande-semantic privacy (Definition 2. 1) are very closely related

Theorem 2.2. (Dwork-McSherry)k-differential privacy implieg-semantic privacy, where= e — 1. €/2-
semantic privacy implie2e-differential privacy.

We extend the previous Bayesian formulation to captureasins where bad events can occur with
some negligible probability (say). We relaxe-semantic privacy tde, §)-semantic privacy and show that it
is closely related tde, §)-differential privacy.

Definition 2.3 ((¢, 0)-semantic privacy) A randomized algorithm ige, §)-semantically private if for all
belief distributionsh on D", with probability at leastl — § over pairs(x, t), where the databaseis drawn
according tob, and transcriptt is drawn according tod(x), and foralli = 1,...,n

SD (bo[x|t] , bi[x|t] ) <e

This definition is only interesting when > §; otherwise just use statistical differen2é and leave
e = 0. Below, we assume > 4. In fact, in many of the proofs we will be assuming tlas a negligible
function (of O(1/n?)). In Appendix A, we provide another related definition(efés)-semantic privacy.

Theorem 2.4(Main Theorem) (e, §)-differential privacy impliege’, §')-semantic privacy for arbitrary (not
necessarily informed) beliefs with= ¢3¢ — 1 4 2v/6 andd’ = O(nV/5). (€/2, §)-semantic privacy implies
(2¢, 29)-differential privacy withe = e — 1.



3 Some Properties of e, §)-Differential Privacy

We now describe some properties(efd)-differential privacy that would be useful later on. Thizsen
could be of independent interest. Instead of restricting&ues to outputs of randomized algorithms, we
consider a more general definition (ef ¢)-differential privacy.

Definition 3.1 ((e, ¢)-indistinguishability) Two random variables(, Y taking values in a seb are (e, §)-
indistinguishable if for all set$ C D,

PrX € S]<efPr[Y € S]+6 and Pr[Yy € S] <e®Pr[X € S]+4.

We will also be using a simpler variant ¢f, §)-indistinguishability, which we calpoint-wise(e, §)-
indistinguishability. Claini=313 (Parfd 1 afill 2) shows thab)-indistinguishability and point-wisée, §)-
indistinguishability are almost equivalent.

Definition 3.2 (Point-wise(e, §)-indistinguishability) Two random variables andY” are point-wis€(e, ¢)-
indistinguishable if with probability at leadt— ¢ overa drawn from eitherX or Y, we have:

e “PrlY =a] <Pr[X =a] <ePr[Y =a.
Claim 3.3. The following are useful facts about indistinguishabty
1. If X, Y are point-wise(e, ¢)-indistinguishable then they afe, §)-indistinguishable.
2. If X, Y are (¢, 6)-indistinguishable then they are point-wig, j—i)-indistinguishable.

3. Let X be a random variable orD. Suppose that for every € D, A(a) and A’(a) are (e, 4)-
indistinguishable (for some randomized algorithdsand A’). Then the pairs(X,.A(X)) and
(X, A'(X)) are (e, §)-indistinguishable.

4. LetX be arandom variable. Suppose with probability at lebsto overa « X (a drawn fromX),
A(a) and A’(a) are (¢, 6)-indistinguishable (for some randomized algorithmisand A’). Then the
pairs (X, A(X)) and(X, A’'(X)) are (¢, 20)-indistinguishable.

5. If X, Y are (¢, ¢)-indistinguishable andj is some randomized algorithm, théitX) andG(Y") are
(e, 0)-indistinguishable.

6. If X,Y are (¢, 0)-indistinguishable, the8D (X,Y") < €+ §, wheree = e — 1.
Proof of Parfl.Let Bad be the set obadvalues ofa, that is
Bad = {a : Pr[X =a] < e “Pr]Y =a]or Pr[X =a] > e Pr[Y = al}.
By definition, Pr[X € Bad] < 4. Now consider any sef of outcomes.
Pr[X € S] < Pr[X € S\ Bad] + Pr[X € Bad].

The first term is at most Pr[Y € S\ Bad] < e Pr[Y € S]. HencePr[X € S] < e“Pr[Y € S|+ 4, as
required. The case d@fr[Y" € S] is symmetric. ThereforeX andY are(e, §)-indistinguishable.

2A few similar properties relating to statistical differenerere shown in[[l11]. Note thdk, §)-indistinguishability is not a
metric, unlike statistical difference. But it does inhexdtme nice metric like properties.
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Proof of Parf2.Let S = {a : Pr[X = a] > €2 Pr[Y = a]}. Then,
Pr[X € S] > e*Pr[Y € S] > e“(1 +¢)Pr[Y € S] = Pr[X € S] — e“Pr[Y € S] > ee“Pr[Y € 9].

Since,Pr[X € S] — e“Pr[Y € S| < §, we mush havee® Pr[Y € S| < §. A similar argument when
considering the sef’ = {a : Pr[X = a] < e 2 Pr[Y = a|} shows thate® Pr[Y € S’] < 4. Putting both
arguments togethePr[Y € S US| < 25/(ee). Therefore, with probability at least— 26/(ee) for anya
drawn from eithetX or Y we have:e 2 Pr[Y = a] < Pr[X = a] < e** Pr]Y = a.

Proof of Part[3. Let (X,.A(X)) and (X, .A’(X)) be random variables op x E. Let S be an arbitrary
subset ofD x E and, for everyu € D, defineS, = {b € E : (a,b) € S}.

Pr((X,A(X)) €8] < Y PrlA(X)€S, : X =a]Pr[X =d
aceD
< D (e PrlA(X) €8, + X =a]+6)Pr[X =]
aceD

< §+ePr[(X, A(X)) € 9.

By symmetry, we also haver[(X,A' (X)) € S] < § + Pr[(X,.A(X)) € S]. SinceS was arbitrary,
(X, A(X))and(X, A’ (X)) are(e, 6)-indistinguishable.

Proof of Parf3.Let (X, A(X)) and(X, A'(X)) be random variables oP x E. LetT C D be the set of
a's for which A(a) < efA’(a). Now, letS be an arbitrary subset @ x E and, for everyu € D, define
Se={beE : (a,b) €S}
Pr{(X,A(X)) € S] < PrX ¢T|+ Y PrlA(X) €S, : X =a|Pr[X =g
acT
< 5+ (e PrlA(X) €S, : X =a] +0)Pr[X = a]
acT
< 254 Pr[(X, A (X)) € 89].

By symmetry, we also haver[(X, A (X)) € S] < 2§ 4+ Pr[(X,A(X)) € S]. SinceS was arbitrary,
(X, A(X))and(X, A’ (X)) are(e, 29)-indistinguishable.

Proof of Partl$. Let D be some domain. A randomized procedgrés a pairG = (g, R), whereR is a
random variable on some sBtandg is a function fromD x FE to any setF'. If X is a random variable on
D, thenG(X) denotes the random variable éhobtained by sampling’ @ R and applyingy to the result,
where the symbok denotes the tensor product. Now for any Set F',
PriG(X) € S] — e Pr[G(Y) € 5]

= Prlg(X®R)e S| —ePrig(Y @ R) € 5]

= PrlX®@Reg 1(S) —ePr[Y ®Re g 1(9)]

< ZPr[X €S, : R=r|Pr[R=r] —eEZPr[Y €S, R=r|Pr[R=r]

rekl rel

= Z(Pr[X €S, R=r|—€ePr[YesS, : R=r])Pr[R=r7]
rel

< Z&Pr[R:r] = 0.
rel



By symmetry, we also haver[G(Y) € S] — e Pr[G(X) € S| < 4. SinceS was arbitraryG(X) andg(Y)
are(e, 0)-indistinguishable.

Proof of Part{. Let X andY be random variables ob. By definitionSD (X,Y) = maxgcp | Pr[X €
S]—Pr[Y € S]|. Forany sefS C D,

2| Pr[X € §] - Pr[Y € 9|
— |Pr[X € 8] - Pr[Y € S| + [Pr[X ¢ S] — Pr[Y ¢ S|

— ZS(PI"[X =] - Pr[Y =¢])| + Z;(Pr[X =] - Pr[Y = ¢])
< i;\Pr[X =d = PrlY = |+ ZjPr[X = —Pr[Y = |
- Z IPr[X = ] — Pr[Y = (]| ’
< Cg(ef PrlY =]+ 6 —Pr[Y =) + Y (e“Pr[X =] + 6 — Pr[X =)
= ;TSDJF (e°— 1)) Pr[Y = + (e — 1)% Pr[X =
ceD ceD

= 2(e*—1)+25 =2+ 26

This implies that Pr[X € S] — Pr[Y € S]| < €+ 4. Since the above inequality holds for evefyC D, it
immediately follows that the statistical difference beéne& andY is at mosE + 6. O

4 Proofs of Theorem$ZR an@ 214

This section is devoted to proving Theordmg 2.2[and 2.4. Grorenience we restate the theorem statements.

Theorem [2Z2 (Dwork-McSherry) e-differential privacy impliess-semantic privacy, where = e¢ — 1.
€/2-semantic privacy impliege-differential privacy.

Proof. Consider any database Consider belief distributionk[x|t] andb; [x|t]. differential privacy implies
that the ratio ofby[x|t] and b;[x|t] is within e*< on every point, i.e., for every and for every possible
transcriptt:

e~ bi[x[t] < bo[x[t] < eby[x[t].

In the remainder of the proof we fikandt. Substitutingé = 0 in Claim[Z3 (par{D), implies that
SD (bo[x[t], b;[x]t]) = €.

To see that-semantic privacy impliege-differential privacy, consider a belief distributidgnwhich is
uniform over two databases y which are at Hamming distance of one. Ldie the position in whick
andy differ. The distributionb; - |[¢] will be uniform overx andy since they induce the same distribution on
transcripts in Gamé This means thai[-|t] will assign probabilities /2 + ¢/2 to each of the two databases
(follows from e-semantic privacy definition). Working through Bayes’ rateows that

g
=
i
o
sl
i

Il

(I1+¢
(1-9)

S

t X
= — <
f] = Pribolyl) =x

S 625.

D= D] =



This implies thatA is point-wise2e-differentialy private. Using Clairic3 3 (pdd 1), implidsat A is 2e-
differentialy private. O

We will use the following lemma to establish connectionsateein(e, )-differential privacy ande, ¢)-
semantic privacy. LeB| 41—, denote the conditional distribution &f given thatA = « for jointly distributed
random variablest and B.

Lemma 4.1(Main Lemma) Suppose two pairs of random variables, A(X)) and (Y, A (Y)) are (e, §)-
differentialy private (for some randomized algorithmdsand .A’). Then with probability at least — §”

overt « A(X) (equivalentlyt — A’(Y)), the random variablesX| 4 x)—; and Y| 4 y)—, are (é,0)-
differentialy private witht = 3¢, § = 2/6, andd” = V6 + 22 = O(V/9).

eec

Proof. Let (X,.A(X)) and(Y, A’ (Y)) be random variables o x E. The first observation is that(X)
and A(Y) are(e, 0)-differentialy private. To prove that consider any get F,

PrlA(X) e P] = Pr[(X,A(X))e D x P]<ePr|[(Y,A(Y)) eDxP]+§
e Pr[A'(Y) € P] +.
Since P was arbitrary,A(X) and A'(Y') are (e, §)-differentialy private. In the remainder of the proof, we
will use the notationX|; for X| 4(x)—; andY|; for Y| 4/(y—,. Define,
Bady = {a : e 2 Pr[A'[Y] = a] > Pr[A(X) = a] > e* Pr[A'[Y] = a|}
Bady = {a : 35 C D such thatPr[X|, € S] > ¢ Pr[Y], € S] + &}
Bady = {a : 35 c D such thatPr[Y|, € S] > ¢ Pr[X|, € ] + 6}

We need an upper bound for the probabilities.A(X ) € Bad; U Bads] andPr[A'(Y) € Bady U Bads).
We know from ClainZ3B (park]2), that

Pr[A(X) € Bady] < 2?55 and Pr[A(Y) € Bady] < 2—5
€

eec

Note that from the initial observatiad (X) and.A’'(Y') are(e, §)-differentialy private, therefore the condi-
tion required for applying Claifi=3.3 (pdtk 2) holds. Now defin

Bad) = Bad; \ Bady and Bad,y = Bads \ Badp.

For eachu € Bad) andT C D x E, defineS, = {b € D : (b,a) € T'}. DefineT) = S, x UaeBad,l{a}.

Pri(X,A(X))eTy] = Y PrXeS,: AX)=dPrlA(X) = q

a€Bad)

> Z (e“PrlY € S, : A(Y) =da] +6)Pr[A(X) = d]
a€Bad)

= > PrYeS, : AY)=aPrlAX)=a]+4 Y PrlAX)=d|
a€Bad} a€Bad)

= Y e Py eS, : AY)=ale *Pr[A(Y) = a] + § Pr[A(X) € Badj]
a€Bad)

= e Pr(Y,A(Y)) € Th] + 6 Pr[A(X) € Bad,).

7



The inequality follows because of the definition Bf:d;. By (e, §)-differential privacy,Pr[(X, A(X)) €
T1] < e Pr[(Y, A(X)) € Th] + 6. Therefore,

SPr[A(X) € Bad}] < § = Pr[A(X) € Bad)] < /.
Similarly, Pr[A(X) € Bady) < §/6. Finally,

Pr[A(X) € Bady U Bads] < Pr[A(X) € Bady] + Pr[A(X) € Bad}] + Pr[A(X) € Bady)
26 6 0 20
= + x+=x=—++ \/S

ee ) ee

By symmetry, we also haver[A'(Y) € Bad; U Bads] < g + /6. Therefore, with probability at least
1—0", X|, andY|, are(¢, §)-differentialy private. O

The following corollary follows by using the above propasit (with Y = X) in conjunction with
Claim[Z3 (parfb).

Corollary 4.2. Let (X, A(X)) and (X, A'(X)) be (¢, §)-differentialy private. Then, with probability at
least1 — 0" overt «— A(X) (equivalentlyt — A’(X)), the statistical difference betweef| 4(x)—; and
X| gr(x)=t i at Moste — 1 4§ with ¢ = 3¢, § = 2v/8, andd” = O(/3).

Theorem[Z3. (e, §)-differential privacy implieq€’, ¢')-semantic privacy for arbitrary (not necessarily in-
formed) beliefs with! = ¢3¢ — 1 + 2V/§ and§’ = O(nV/9). (€/2,6)-semantic privacy implieg2e, 26)-
differential privacy withée = e — 1.

Proof. Let A be a(e, d)-differentialy private algorithm. Leb be any belief distribution. From Clailn-3.3
(part[3), we know thatb, A(b)) and (b, A;(b)) are (¢, §)-differentialy private. Let” = O(v/). From
Corollary[Z2, we get that with probability at ledst- 6" overt < A(b), the statistical difference between
bl a@)=¢ @ndb| 4, )= is at moste’. Therefore, for anyk « b, with probability at leasf1 — ¢") overt «
A(x), SD (bl a(x)=t, bl 4, (x)=¢) < €. Taking union bound over all coordinatédmplies that for any «— b
with probability at least —né” overt — A(b), foralli = 1,...,n, we haveSD (b| 4(x)=t, bl 4, (x)=t) < €.
Therefore, A satisfies(¢’, ’)-semantic privacy fob. Sinceb was arbitrary, we get that (0)-differential
privacy implies(¢’, §")-semantic privacy.

To see thate/2, §)-semantic privacy implie§€2e, 24)-differential privacy, consider a belief distribution
b which is uniform over two databasesy which are at Hamming distance of one. The proof idea is same
as in Theoreri 212. Letbe the position in whick andy differ.

Let A be an algorithm that with probability/2 draws an output fromd(x) and with probability1 /2
draws an output fromd(y). Consider a transcrigtdrawn from.A. The distributionb;[-|t] will be uniform
overx andy since they induce the same distribution on transcripts im&a This means that with prob-
ability at leastl — § overt « A, bo[-|t] will assign probabilitiesl /2 + /2 to each of the two databases.
Working through Bayes’ rule as in Theor&€ml2.2 shows thé point-wise(2e, §)-differentialy private (with
probability at least at least— 25 of t «— A(x), e 2 Pr[A(y) = t] < Pr[A(x) = t] < e Pr[A(y) = t]).
Therefore, with probability at least-6 of t « A, e=2¢ Pr[A(y) = t] < Pr[A(x) = t] < 2> Pr[A(y) = t].
Similarly, fort < A(y). This implies thatA is point-wise(2¢, 26)-differentialy private. Using Clairi=33
(partld), implies thatd is (2¢, 20)-differentialy private. O



5 Discussion and Consequences

TheorenZW states that the relaxations notions of diffexgorivacy used in some previous work still imply
privacy in the face of arbitrary side information. Thisnst the case forll possible relaxations, even
very natural ones. For example, if one replaced the mudtifilie notion of distance used in differential
privacy with total variation distance, then the followingahitizer” would be deemed private: choose an
indexi € {1,...,n} uniformly at random and publish the entire record of inditli together with his

or her identity (example 2 if[6]). Such a “sanitizer” wouldtrbe meaningful at all, regardless of side
information.

Theorem$Zl4 and A.3 give some qualitative improvements existing security statements. Theorem
A.3 implies that the claims of[3,] 7] 1] can be strengthenetididl for all predicates of the input simul-
taneously (a switch in the order of quantifiers). The strieeiging does come at some loss in parameters
sinced is increased. This incurs a factor of 21y (%) or a factor ofy/2 in the standard deviation. More
significantly, Theoreni.214 shows that noise processes weftigible probability of bad events have nice
differential privacy guarantees even for adversaries whamat necessarily informed. There is a hitch how-
ever only adversaries whose beliefs somehow represeitiyréal for whom the real database is somehow
“representative” of the adversary’s view can be said tonearthing.

Finally, the techniques used to prove Theofen 2.4 can alssée to analyze schemes which do not
provide privacy forll pairs of neighboring databasesndy, but rather only fomostsuch pairs (remember
that neighboring databases are the ones that differ in otrg)erSpecifically, it is sufficient that those
databases where the “differential privacy” conditiondakcur only with small probability.

Theorem 5.1. Let.4A be a randomized algorithm. Let
& = {x: ¥V neighborsy of x, A(x) and.A(y) are (¢, 0)-differentialy private.

ThenA satisfieg¢’, §')-semantic privacy for any belief distributidrsuch thab[€] = Pry.4[x € £] > 1—0
withe' = e3 — 1+ 2V andd’ = O(nx/g)

Proof. Let b be a belief distribution wittb[] > 1 — §. Letd” = O(v/§). From ClaimCZB (parfl4),
we know that(b, A(b)) and (b, A;(b)) are (e, 20)-differentialy private. From Corollarf.4.2, we get that
with probability at leastl — ¢” overt « A(b), the statistical difference betweeéfy)—, andb| 4, x)—

is at moste’. Therefore, with probability at leastl — ") over pairs(x,t) wherex «— b andt¢ «
A(x), SD (b] 4(x)=t> bl 4;(x)=¢) < €. Taking union bound over all coordinatésimplies that with prob-
ability at leastl — nd” over pairs(x,t) wherex «— b and¢ «— A(x), foralli = 1,...,n, we have
SD (] a(x)=t» bl a;(x)=t) < €. Therefore,A satisfieg(¢’, §’)-semantic privacy for belief distributioh [

Let LS¢(-) denote the local sensitivity of functigh(defined in[10]). LetLap(\) denote the Laplacian
distribution. This distribution has density functidify) o exp(—|y|/\), mean0, and standard deviatiokh
Using the Laplacian noise addition procedurel6f16, 10]nglwith Theoreni 211 we get,

Corollary 5.2. Let€ = {x : LSy(x) < s}. LetA(x) = f(x) + Lap(2). Letb be a belief distribution such
thatb[€] = Pryp[x € €] > 1 — 4. ThenA satisfies(¢, ¢’')-semantic privacy for the belief distributidn
with ¢ = e3¢ — 1 4+ 2V andd’ = O(nV5).
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Appendix A: Another View of Semantic Privacy

In this section, we discuss another possible definitiofx af)-semantic privacy. Even though this definition
seems to be the more desirable one, it also seems hard toechie

Definition A.1 (reality-oblivious €, §)-semantic privacy)A randomized algorithm is reality-oblivious, 9)-
semantically private if for all belief distributionlson D", for all databases € D", with probability at least
1 — ¢ over transcriptst drawn fromA(x), and foralli = 1,... n:

SD (bo[x|t] , bi[x[t] ) <.
We first prove if the adversary has arbitrary beliefs, then)-differential privacy doesn’t provide any

reasonable reality-oblivioug’, §’)-semantic privacy guarantee.
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Theorem A.2.H (e, §)-differential privacy does not imply reality-oblivioys', §’)-semantic privacy for any
reasonable values ef and¢’.

Proof. This counterexample is due to Dwork and McSherry: suppastetiie belief distribution is uniform
over {(0™), (1,0""1)}, but that real database ($"). Let the database = (z1,...,,). Say we want to
reveal f(x) = Y, z;. Adding Gaussian noise with variane@ = log (§) /€ satisfies(e, §)-differential
privacy (refer [6,/1D] for details). However, with overwhehg probability the output will be close to
n, and this will in turn induce a very non-uniform distributi@ver {(0"), (1,0"~1)} since(1,0""!) is
exponentially (inn) more likely to generate a value neathan (0™). More precisely, due to the Gaussian
noise added,

—n2

PrlA(x) =n|x = (0")] €xXp (T) (—2n + 1>

o = — =exp| — | .

PrlA(x) = n|x = (1,0n1)] exp < (201)2) 20
Therefore, given that the output is closertathe posterior distribution of the adversary would be exgmon
tially more biased towardl, 0" 1) than(0"). Hence, it is exponentially far away from the prior disttiba
which was uniform. On the other hand, if the adversary beleke is seeingd(x_1), then no update
will occur and the posterior distribution will remain unifo. Since the posterior distributions in these
two situations are exponentially far apart (one expontytiar from uniform, other uniform), it shows that
(¢, 6)-differential privacy does not imply any reasonable gagga on reality-oblivious semantic privacy]

However, (¢, 0)-differential privacy does provide a strong reality-oivs (¢, §')-semantic privacy
guarantee foinformedbelief distributions. Using terminology froml[L] 6], we sthat a belief distribu-
tion b is informed if b is constant om — 1 coordinates and agrees with the database in those co@slinat
This corresponds to the adversary knowing some set-ofi entries in the database before interacting with
the algorithm, and then trying to learn the remaining oneyenbm the interaction. Le#; be a randomized
algorithm such that for all databasesA;(x) = A(x_;).

Theorem A.3. (¢, d)-differential privacy implies reality-obliviou§&’, §")-semantic privacy for informed be-
liefs withe' = e3¢ — 1 4+ 2v/5 andd’ = O(nV/5)

Proof. Let A be a(e, 0)-differentialy private algorithm. Lek be any database. Létbe any informed
belief distribution. This means thatis constant on alh — 1 coordinates, and agrees within those
n — 1 coordinates. Let be the coordinate which is not yet fixed in From Claim3B (parfl3), we know
that (b,.A(b)) and (b, A;(b)) are (¢, )-differentialy private. Therefore, we can apply Lemmal 4llet
§" = O(+/4). From CorollaryfZPR, we get that with probability at least 6” overt — A(b), the statistical
difference betweeh| 4)—; andb| 4, )~ is at moste’. Therefore, for, with probability at leas{1 — ¢")
overt «— A(x), SD (b| a(x)=t> bl 4,(x)=t) < €. Taking union bound over all coordinatgsmplies that with
probability at least. — nd” overt «— A(x), foralli = 1,...,n, we haveSD (b] ()=, bl4;(x)=t) < €.
Therefore, A satisfies reality-obliviouge’, 8’)-semantic privacy fob. Sincex was arbitrary, we get that
(¢, 0)-differential privacy implies reality-obliviouge’, §")-semantic privacy for informed beliefs. O

3Note that adversaries whose belief distribution is verfedint from the real database (as in the counterexample efrém
A.2 may think they have learned a lot. But does such “learhiagresent a breach of privacy? We do not think so, but lebge t
final decision to the reader.

“Reality-oblivious(¢/2, §)-semantic privacy implieg2e, 26)-differential privacy withe = e — 1. For details see the proof of

Theoren ZHK.
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