
Fast Multiple Point Multiplication on Elliptic
Curves over Prime and Binary Fields using the

Double-Base Number System
Jithra Adikari†, Vassil S. Dimitrov†, and Pradeep Mishra‡

†Department of Electrical and Computer Engineering
Schulich School of Engineering

‡Department of Mathematics and Statistics

The University of Calgary
2500 University Drive N.W.

Calgary AB
Canada T2N 1N4

{jithra.adikari, dimitrov}@atips.ca, pradeep@math.ucalgary.ca

Abstract— Multiple-point multiplication on elliptic curves is
the highest computational complex operation in the elliptic curve
cyptographic based digital signature schemes. We describethree
algorithms for multiple-point multiplication on elliptic curves
over prime and binary fields, based on the representations
of two scalars, as sums of mixed powers of 2 and 3. Our
approaches include sliding window mechanism and some pre-
computed values of points on the curve. A proof for formulae to
calculate the number of double-based elements, doublings and
triplings below 2

n is listed. Affine coordinates and Jacobian
coordinates are considered in both prime fields and binary fields.
We have achieved upto 24% of improvements in new algorithms
for multiple-point multiplication.

I. I NTRODUCTION

The public key cryptography which was proposed by Diffie
and Hellman in [5] in 1976, changed directions, in the field
of cryptography. Thereafter, the RSA[23] algorithm dominated
the commercial world for public key cryptography. In 1985,
Koblitz[18] and Miller[21] proposed the elliptic curve cryptog-
raphy (ECC) which is basedelliptic curve discrete logarithm
problem (ECDLP). The main advantage of the elliptic curve
cryptography is the relatively small key-size. For an example,
a 160-bit elliptic curve key provides the same security as a
1024-bit RSA key[15].

The concept ofDigital signature which is derived from
public key cryptography, is equivalent to that of handwritten
signature in paper-based communications. RSA signature[23],
Elgamal signature[13], and Digital Signature Algorithm (DSA)
[1][2] are widely used in today’s commercial applications.
Elliptic curve digital signature algorithm (ECDSA)[2] and
elliptic curve Korean certificate-based digital signaturealgo-
rithm (EC-KCDSA)[16] are the most common two elliptic
curve cryptographic digital signature algorithms.

Generally, elliptic curve point multiplication consumes high
computational power in elliptic curve cryptography. Number
of techniques have been introduced to overcome this problem
[3], [15], [19]. In addition to that, in elliptic curve digital
signature verification, the multiple point multiplicationcon-
sumes huge amount of computational power. Shamir method
simultaneous multiple point multiplication[13], fast Shamir
method, non-adjacent form (NAF)[25], joint sparse form[24]
and interleaving with NAF and sliding window methods[15]
have been used for improving the efficiency of the multiple
point multiplication. In this paper, we propose double-base
number system techniques to improve the efficiency of verify-
ing the digital signature in both prime and binary fields. The
coordinate systems that we considered, are Affine coordinates
and Jacobian projective coordinates over both fields.

The double-base number system (DBNS) was introduced
in [9] for cryptographic applications and later extended for
elliptic curve cryptography in [7] and [8]. We apply double-
base number system for multiple point multiplication because
it inherits sparsity and redundancy in the DBNS number
representation. We propose three new algorithms for multiple
point multiplication derived from double-base number system.
Moreover, combination of doublings and triplings with point
additions improves performance in prime and binary fields.

The sequel of the paper is organized as follows: In the
Section II, we review theory of ECC and DBNS. The existing
multiple point multiplication algorithms are briefly reviewed
in the Section III. We propose all three new algorithms for
multiple point multiplication based on DBNS in Section IV
and presents and analyze the experimental results in Section
V. Finally, we discuss the significant improvements using this
new algorithms and conclude the paper in Section VI with a
discussion in implementation and future work.

II. BACKGROUND

Theory of elliptic curve cryptography and double-base num-
ber system are briefly reviewed in this section.

A. Elliptic Curve Cryptography

Elliptic curves have been introduced to public key
cryptography by Koblitz and Miller independently in 1985.

1) Elliptic Curve Cryptography:-

Definition 1 (elliptic curve): An elliptic curve E over a field
K is defined by the Weierstrass equation, given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

where,{a1, a2, a3, a4, a6} ∈ K and ∆ 6= 0, where∆ is the
discriminant of E and is defined as follows:

∆ = −d2
2d8 − 8d4

3 − 27d6
2 + 9d2d4d6

d2 = a1
2 + 4a2

d4 = 2a4 + a1a3

d6 = a3
2 + 4a6

d8 = a1
2a6 + 4a2a6 − a1a3a4 + a2a3

2 − a4
2

(2)

E is defined overK, and coefficientsa1, a2, a3, a4, a6 are
elements ofK. The condition∆ 6= 0 ensures that elliptic curve
is smooth, which means that there are no points at which the
curve has two or more distinct tangent lines.

The fieldK can be either prime, binary, ternary or optimal
extension field. All of these fields are used for cryptographical
purposes. Properties of the elliptic curve depends on the field
and the characteristics of the Eqn. 1.

If K is a prime field (Fp), E transforms into the curve which
is represented in Eqn. 3.

y2 = x3 + ax2 + b (3)

where,a, b ∈ K and the discriminant of this curve is∆ =
−16(4a3+27b2). The Weierstrass equation,E can be reduced
to Eqn. 4, ifK is a binary field (F2m) anda1 6= 0.

y2 + xy = x3 + ax2 + b (4)

where, a, b ∈ K and ∆ = b. Such a curve is said to be
non-supersingular.

2) Elliptic Curve Arithmetic: -

Let E be an elliptic curve defined over the fieldK and
P, Q be two points inE/K. The third point inE/K which
is derived by adding two points inE/K by using the chord-
and-tangent rule [3], [15]. The set of pointsE/K forms an
abelian group with∞ serving as its identity. The sum ofP
andQ is defined as follows: draw a line throughP andQ; the
intersection of this line and the elliptic curve is the negation of
the resultant point; take the reflection of that point about the
x-axis. This point gives the resultant point as depicted in the
Fig. 1. The double of a point,P is defined: draw the tangent

line to the pointP; intersection of this tangent line and the
elliptic curve is the negation of the double of the point; take
the reflection aboutx-axis to get the resultant point. Given

Fig. 1. Elliptic Curve Addition

a point P ∈ E(K) and k ∈ N, the operation of computing
the new pointk × P is called point multiplication or scalar
multiplication. This operation is computationally dominant in
ECC.

Digital signature algorithms need multiple point multiplica-
tion for the verification process. In this process, much of the
computational power is spent on multiple point multiplication.
If both pointsP, Q are on the elliptic curve and both integers
k, l are less than the order of the elliptic curve over the field,
the operation of computing the new pointkP + lQ is called
the multiple point multiplication.

TABLE I

OPERATION COUNTS FOR POINT ADDITION, DOUBLING & TRIPLING OVER

PRIME FIELD USINGAFFINE COORDINATES& JACOBIAN PROJECTIVE

COORDINATES[8], [12], [15].

Curve operation Affine Jacobian

Addition 1I + 2M + 2S 12M + 4S

Doubling 1I + 2M + 1S 4M + 6S

Tripling 2I + 3M + 3S 10M + 6S

Key: I - inversion, M - multiplication, and S - squaring.

Elliptic curve addition, doubling and tripling are involved in
these multiple point multiplication algorithms. When the point
addition, doubling and tripling are calculated in the fieldK, it
requires field inversions, multiplications and squarings.Refer
Table II-A.2 and II-A.2 for the operational costs for curve
additions, doublings and triplings in terms of feild operations.

It may be advantageous to represent points using projective
coordinates, when the inversion inK is significantly more
expensive than multiplication. For an example, one inversion
is equal to 40 multiplications in prime fields. Further, in binary
fields the inversion is equivalent to 3 to 10 multiplications. We
eliminate inversions by using Jacobian projective coordinates.
However, in our approaches we consider the both Affine

TABLE II

OPERATION COUNTS FOR POINT ADDITION, DOUBLING & TRIPLING OVER

BINARY FIELD USING AFFINE COORDINATES& JACOBIAN PROJECTIVE

COORDINATES[8], [12], [15].

Curve operation Affine Jacobian

Addition 1I + 2M + 1S 6M + 3S

Doubling 1I + 2M + 1S 5M + 5S

Tripling 2I + 6M + 3S 15M + 7S

Key: I - inversion, M - multiplication, and S - squaring.

coordinates and Jacobian projective coordinates. Table II-A.2
& II-A.2 gives the number of field operations involved in
elliptic curve operations over prime and binary fields in Affine
coordinates and Jacobian projective coordinates.

Jacobian coordinates are a special class of projective
coordinates, where the point(X : Y : Z) corresponds to the
affine point

(

X/Z2 : Y/Z3
)

, when Z 6= 0. The point at
infinity is represented as (1:1:0). The opposite of(X : Y : Z)
is (X : −Y : Z). For further details on projective coordinates,
reader can refer to [8], [12], [15].

3) Elliptic Curve Digital Signature Algorithms:-

Digital signatures serve authentication, data integrity,and
non-repudiation in the digital space [3], [15], [20], [22].A
signature scheme consists of four segments: namely, domain
parameter generation, key generation, signature generation and
signature verification algorithms [20]. Two standardized signa-
ture schemes based on elliptic curve cryptography are Elliptic
Curve Digital Signature Algorithm (ECDSA) and Elliptic
Curve Korean Certificate-based Digital Signature Algorithm
(EC-KCDSA) [15].

ECDSA is the most widely standardized elliptic curve-based
signature scheme. ANSI X9.62, FIPS 186-2, IEEE 1363-2000
and ISO/IEC 15946-2 standards have included ECDSA. EC-
KCDSA appears in the ISO/IEC 15946-2 standard. Both sig-
nature schemes need to perform multiple point multiplication
in the signature verification process.

Domain parameters define the elliptic curve,E which is
defined over a finite field,Fq. These parameters should be
chosen in a way that the elliptic curve discrete logarithm
problem (ECDLP) is resistant to all known attacks [15]. In
both signature schemes we have to use domain parameters,
field order (q), field representation (FR), a seed if the elliptic
curve is randomly generated (S), two coefficients of the
equation (a, b ∈ Fq), a finite point (P = (xp, yp) ∈ Fq), order
of finite point (n) and the cofactor (h = #E(Fq)/n). Further
details on digital signatures are available in [5], [13], [20] and
elliptic curve digital signature schemes can be found in [15].

B. Double-Base Number System

The double-base number system (DBNS) has been studied
extensively, due to its applicability in signal processingand
cryptography. We will begin DBNS background study with
following definition from [4], [6], [9], [10], [11].

Definition 2 (s-integer): An s-integer is a positive integer,
whose largest prime factor does not exceed the s-th prime
number.

Definition 3 (double-based number system):The double-
based number system (DBNS) is a representation scheme in
which every positive integer,n, is represented as the sum or
difference of 2-integers that is, numbers of the form2a3b.

n =

M
∑

i=1

si2
bi3ti (5)

where, si ∈ {−1, 1}, and bi, ti ≥ 0.

The DBNS representation is highly sparse and redundant.
If only the positive signs (si = 1) are considered for the
DBNS representations; 100 has exactly 402 different DBNS
representations and 1000 has exactly 1,295,579 different
DBNS representations. The following theorems give an
important result about DBNS[10].

Theorem 1: Every positive integer,n, can be represented as
the sum of at mostO

(

log n

log log n

)

2-integers.

Theorem 2: There exists an absolute constant, C, such that
there is always a number of the form2b3t betweenn and
n− n

(log n)C .

Algorithm 1: A greedy algorithm to convert integers to DBNS

Input : A positive integern.
Output : the sequence of exponents(bn, tn) leading to one
DBNS representation ofn.

1. while n > 0 do.
2. find z = 2a3b, the largest 2-integer less than or equal ton.
3. print (b, t).
4. n← n− z.

Some of these representations have the minimal number 2-
integer representation. An integer can be represented as the
sum of m 2-integers, but cannot be represented as the sum
of (m − 1) 2-integers. That is called canonic representation
and very sparse. The Algorithm 1 gives a nearly canonical
unsigned DBNS representation of a number (in this case,si =
1 only).

In the new point multiplication algorithm we need to
calculate number of DBNS elements below some2n number.
This helps us to calculate the required number of doublings
and triplings involved in the algorithms. The total number
of DBNS elements below2n (dn) is given by the following
expression:

dn =

n
∑

i=1

⌈log3 2i⌉ (6)

The inductive method is used to prove Eqn. 6 in Proof 1.
We have extended Eqn. 6 to calculate number of doublings
and triplings involved in calculating all DBNS elements
below 2n.

Proof 1: Number of DBNS Elements less than2n

Consider the expression forn = 1

d1 =

1
∑

i=1

⌈log3 2i⌉

= ⌈log3 21⌉

= 1

dn is the number of elements less than21. The only DBNS
element less than21 is 1.
Assuming the Eqn. 6 is true forn− 1, then;

dn−1 =

n−1
∑

k=1

⌈log3 2k⌉

Find the number of DBNS elements in
[

2n−1, 2n
)

:
First element =2n−1

Second element =2n−2 · 3
Third element =2n−4 · 32

· · ·
Last element =2x · 3⌊log3

2n⌋, In this case0 ≤ x < n.
According to the above calculation we have⌈log3 2n⌉ number
of elements in

[

2n−1, 2n
)

.
Therefore,

dn = dn−1 + ⌈log3 2n⌉

=

n
∑

k=1

⌈log3 2k⌉

We use tripling algorithm to calculate all3i (i ∈
[1, ⌊log3 2n⌋]) DBNS elements less than2n. To calculate other
DBNS elements we use doublings. We can calculate number
of doublings (DBLn) and triplings (TPLn) that we need to
calculate all DBNS elements less than2n in the following
manner:

TPLn = ⌊log3 2n⌋

DBLn = dn − TPLn − 1

=

n
∑

k=1

⌈log3 2k⌉ − ⌊log3 2n⌋ − 1

=

n
∑

k=1

⌈log3 2k⌉ − ⌈log3 2n⌉

=
n−1
∑

k=1

⌈log3 2k⌉

(7)

We have minimized calculation of tripling operations in
DBNS element calculations, because tripling operation utilizes
more cost than doubling operation.

III. M ULTIPLE POINT MULTIPLICATION ALGORITHMS

In elliptic curve digital signature algorithms, we consider
the resultant,kP + lQ for multiple point multiplication.
Where k and l are t-bit numbers, bothP and Q are two
points on the elliptic curve. There are number of multiple
point multiplication algorithms have been proposed, namely
simultaneous multiple point multiplication based on Shamir’s
trick, sliding window and non-adjacent form (NAF), joint
sparse form (JSF) and interleaving with NAF [14], [15], [24].

A. Simultaneous Multiple Point Multiplication (SMPM)

In this method, we representk and l in w-bit, d =
⌈t/w⌉ number of blocks and do the pre-computation for
iP + jQ for 0 ≤ i, j < 2w. Then,k and l are represented
Kd−1‖....‖K1‖K0 andLd−1‖....‖L1‖L0 respectively. Calcu-
lating R ← 2wR + (KiP + LiQ) for d − 1 times, the final
answer can be obtained. See Algorithm 2.

Algorithm 2: Simultaneous Multiple Point Multiplication

Input : Window width w, k, l, P, Q ∈ E(Fq)
Output : kP + lQ

1. computeiP + jQ for all i, j ∈ [0, 2w − 1].
2. write k = Kd−1‖....‖K1‖K0 and l = Ld−1‖....‖L1‖L0

where allKi, Li arew-bit long andd = ⌈t/w⌉.
3. R←∞.
4. for ifrom d− 1 downto0 do

4.1 R← 2wR.
4.2 R← R + (KiP + LiQ).

5. returnR.

Sliding window method can be used to improve this algorithm
[15]. In Table VI & VII, cost of SMPM and that of sliding
SMPM are compared. Further note that storage required
for the sliding SMPM is less than storage required for
SMPM. 9 + 15t/32 and 2 + t give the number of additions
and doublings involved in the elliptic curve additions of
two t-bit numbers, under the Simultaneous Multiple Point
Multiplication.

B. Simultaneous Multiple Point Multiplication with NAF
(NAF-SMPM) and Joint Sparse Form (JSF)

For fixed-window, we have3t/4 point additions on average
for kP + lQ. When the non-adjacent form (NAF) representa-
tion of bothk and l are considered the average point addition
comes down to5t/9. The joint sparse form (JSF) of two
integers introduced by Solinas in [24] reduces the average
point addition tot/2. Algorithm 3 explains the JSF and it
needs only 4 storage positions for the calculation.

P , Q, P + Q and P − Q is pre-computed and stored in
both algorithms. Advantage of JSF over NAF method is that
the bit distribution for both numbers in JSF is determined,
after considering the relationship between two numbers.

Algorithm 3: Joint Sparse Form

Input : Positive integersk1 andk2

Output : JSF (k1, k2)

1. l ← 0, d1 ← 0, d2 ← 0.
2. while (k1 + d1 > 0 or k2 + d2 > 0)

2.1 l1 ← d1 + k1, l2 ← d2 + k2.
2.2 for i from 1 to 2 do

if li is even thenu← 0;
else

u← li mods4.
if li ≡ ±3 (mod 8) and l3−i ≡ 2 (mod 4)
thenu← −u.

ki
l ← u.

2.3 for i from 1 to 2 do
if 2di = 1 + ki

l thendi ← 1− di.
ki ← ⌊ki/2⌋.

2.4 l← l + 1.
3. returnJSF (k1, k2).

Under the joint sparse form, the number of additions and
doublings involved in an elliptic curve addition of twot-width
numbers are2 + t/2 and t, respectively.

C. Interleaving with w-NAF (I-w-NAF)

The interleaving with w-NAF method needs pre-
computation of iPj for i ∈

{

1, 3, ..., 2wj−1 − 1
}

and
1 ≤ j ≤ 2. Therefore, required storage positions are2wj−2

for the point Pj . The other benefit of this method is that
we can use different windows,wj for different points,Pj .
Algorithm 4 describes the steps for interleaving with NAF
for v number of points.

Algorithm 4: Interleaving with w-NAF

Input : v, Positive integerskj , widthswj and pointsPj , 1 ≤
j ≤ v
Output :

∑v

j=1 kjPj

1. computeiPj for i ∈
{

1, 3, ..., 2wj−1 − 1
}

, 1 ≤ j ≤ v.
2. calculateNAFwj

(kj), 1 ≤ j ≤ v
3. let l = max {lj : 1 ≤ j ≤ v}.
4. definekj

i = 0 for lj ≤ i ≤ l, 1 ≤ j ≤ v
5. Q←∞.
6. for i from l − 1 downto0 do

6.1 Q← 2Q
6.2 for j from 1 to v do

if kj
i 6= 0 then

if kj
i > 0 thenQ← Q + kj

i Pj ;

elseQ← Q− kj
i Pj

7. returnQ.

When we add twot-bit numbers with interleaving with
w-NAF algorithm, there are3 + 11t/30 additions and1 + t
doublings. This algorithms can easily be extended for any

other number of point multiplication.

IV. DBNS BASED ALGORITHMS FORMULTIPLE POINT

MULTIPLICATION

We have proposed three algorithms based on DBNS,
namely, sliding DBNS, sliding DBNS with simultaneous point
multiplications and interleaving with signed DBNS. In all three
approaches, we consider the point,P is known in advance.

A. Sliding DBNS Algorithm

In sliding DBNS algorithm, we usew-bit blocks to represent
k and l numbers as in Eqn. 8 and Eqn. 9. In that case, we
have maximum ofd = ⌈ t

w
⌉ number of blocks in a given pair

of t-bit numbers. This algorithm is shown in the Fig. 2 and it
representsk = k1, l = k2, P = P1 and Q = P2. Note that
BIN(k) gives the binary representation ofk, in Fig 2.

Fig. 2. Sliding DBNS Algorithm

k = Kd−1‖....‖K1‖K0

l = Ld−1‖....‖L1‖L0
(8)

where,
Ki = ki

w−1,, k
i
1, k

i
0

Li = liw−1,, l
i
1, l

i
0

(9)

We have pre-computed all the DBNS elements less than2w

for Q, P + Q and P − Q. Then the canonical joint double-
base format (CJDBF) for a pair of numbers is considered. This
enables to get aP +Q or P −Q representation into the point
multiplication. Our approach has a sliding window mechanism
to improve the performance further. Sliding is considered from
left-to-right. Once the adding is done for thei-th block, we
take the first non-zero column as the most significant of the
(i−1)-st block. Algorithm 5 illustrates the sliding DBNS, step-
by-step and Table VI & VII gives the cost of point additions
under this algorithm.

Algorithm 5: Sliding DBNS

Input : t-bit positive integers,kj , width, w, and pointsPj ,
j = 2
Output :

∑2
j=1 kjPj

1. computeiP2, i(P1 + P2), i(P1 − P2) for
i ∈

{

1, 2, 3, ..., 2ax3bx
}

,
0 ≤ ax < w, 0 ≤ bx < ⌊log32

w⌋, 2ax3bx < 2w.
2. Q←∞
3. p← 0
4. s← 0
5. for p from d− 1 downto0 do

5.1 lookup CJDBF of(Kp
1) and(Kp

2)
for r from 0 to y do

lookup = dr
qPq or dr

q(P1 + P2) or dr
q(P1 − P2)

Q← Q + lookup
5.2 p← p + 1
5.3 find the next non-zero column on the right & shift

s bits to right
5.4 take leftmost bit as the MSB ofKp

q

5.5 Q← 2s ·Q
5.6 if no columns then;

break
6. returnQ.

Table III gives the average number of additions involved in
the multiple point multiplication forw−bit width window
(w ∈ [4, 8]). In this calculation we assume that we have
pre-computed all the DBNS elements less than2w for Q,
P + Q and P − Q. The Eqn. 10 gives the average number

TABLE III

AVERAGE NUMBER OF ADDITIONS INVOLVED IN THE MULTIPLE POINT

MULTIPLICATION FOR w−BIT WIDTH WINDOW.

window width average additions

8 2.26

7 1.99

6 1.77

5 1.52

4 1.22

of elliptic curve additions (ADDw) needed for the multiple
point multiplication using the above algorithm withw−bit
window. The average number of elliptic curve additions for
w−bit window (aw) can be taken from the Table III. Further
the numbers of elliptic curve doublings (DBLw) and triplings
(TPLw) can be obtained by equation 7. Because we have to
pre-calculateQ, P +Q andP−Q our elliptic curve doublings
and triplings as follows:

ADDw = (1 + aw) ·

(

1−
1

4w

)

·
t

w

DBLw = 3×
w−1
∑

k=1

⌈log3 2k⌉

TPLw = 3× ⌊log32
w⌋

(10)

Cost involved in pre-computation ofP terms is excluded,
assuming thatP is known in advance.

B. Sliding DBNS Simultaneous Multiple Point Multiplication
Algorithm (Sliding DSMPM)

In sliding DBNS simultaneous multiple point multiplication
algorithm, thet-bit number is broken intod number ofw-bit
numbers and with the sliding mechanism, it reduces the
number ofw-bit numbers less thand.

Algorithm 6: Sliding DBNS Simultaneous Multiple Point
Multiplication

Input : t-bit positive integers,kj , width, w, and pointsPj ,
j = 2
Output :

∑2
j=1 kjPj

1. computeiP2 for i ∈
{

1, 2, 3, ..., 2ax3bx
}

,
0 ≤ ax < w, 0 ≤ bx < ⌊log32

w⌋, 2ax3bx < 2w.
2. Q←∞
3. p← 0
4. s← 0
5. for p from d− 1 downto0 do

5.1 for q from 1 to 2 do
lookupDBNS(Kp

q) = d0
q + · · ·+ dy

q

for r from 0 to y do
lookup= dr

qPq

Q← Q + dr
qPq

5.2 p← p + 1
5.3 find the next non-zero column on the right & shift

s bits to right
5.4 take leftmost bit as the MSB ofKp

q

5.5 Q← 2s ·Q
5.6 if no columns then;

break
6. returnQ.

In previous algorithm we had pre-computed all DBNS repre-
sentation point multiplications ofP1, P1 − P2 and P1 + P2.
However in this algorithm, only the DBNS element point
multiplications ofP2 is pre-computed, to save memory.

TABLE IV

AVERAGE NUMBER OF ADDITIONS INVOLVED IN ALL NUMBERS IN w−BIT

WIDTH WINDOW.

window width average additions

10 1.32

9 1.16

8 0.98

7 0.86

6 0.75

5 0.61

4 0.47

Further, the representation oft-bit number is converted to
the canonical DBNS representation which reduces the number
of additions in each step. The step-by-step description of the

sliding DBNS simultaneous multiple point multiplication is
described in Algorithm 6.

The main advantage of this algorithm is that we need less
memory compared to the previous algorithm, because we
calculate only all the DBNS representations of pointP2. Fig.
3 illustrates the sliding DBNS simultaneous multiple point
multiplication.

Fig. 3. Sliding DBNS Simultaneous Multiple Point Multiplication Algorithm

The Table IV gives the average number of additions that
needs for the DBNS representations of all the numbers be-
low 2w (w−width window). Eqn. 11 gives the number of
elliptic curve additions, doublings and triplings. Comparing
with sliding DBNS, we have one more elliptic curve addition
introduced to a window. Refer Eqn. 11.

ADDw = (2 + aw) ·

(

1−
1

4w

)

·
t

w

DBLw =

w−1
∑

k=1

⌈log3 2k⌉

TPLw = ⌊log32
w⌋

(11)

However, number of doublings and triplings has gone down

in this algorithm by a factor of2/3. Further, number of
storage also has gone down by the same factor.

C. Interleaving with DBNS (I-DBNS)

The third algorithm is based on non-adjacent form
(NAF)[17] representation of numbers. When thew-NAF
representation is used we need only to calculate odd
numbers below2w−1. For an example, if we consider 5-NAF
representation of a number, there will be odd co-efficients
from -15 to 15. Thew-NAF representation of a number

reduces the non-zero elements in the representation. Therefore
the sliding mechanism of the DBNS representation ofw-NAF
has less number of elliptic curve additions. Algorithm 7
demonstrates the Interleaving with double-base number
system.

Algorithm 7: Interleaving with DBNS

Input : w-bit positive integers,kj , width, w, and pointsPj ,
j ∈ {1, 2}
Output :

∑2
j=1 kjPj

1. computeiPj for i ∈
{

1, 2, 3, ..., 2ax3bx
}

, j ∈ {1, 2},
0 ≤ ax < w, 0 ≤ bx < ⌊log32

w⌋, 2ax3bx < 2w.
2. Q←∞
3. p← 0
4. s← 0
5. for p from d− 1 downto0 do

5.1 for q from 1 to 2 do
lookupDBNS(Kp

q) = d0
q + · · ·+ dy

q

for r from 0 to y do
lookup= dr

qPq

Q← Q + dr
qPq

5.2 p← p + 1
5.3 find the next non-zero column on the right & shift

s bits to right
5.4 take leftmost bit as the MSB ofKp

q

5.5 Q← 2s ·Q
5.6 if no columns then;

break
6. returnQ.

Fig. 4 shows the Interleaving with DBNS algorithm for a
w−bit sliding window. Note that we have the NAF represen-
tation of the two numbers before coming into sliding window
mechanism. In Fig. 4, NAF(k) means that the non-adjacent
form representation ofk.

Table V gives the average number of additions that needs
for the DBNS representations of all the odd numbers below2w

(w−width window). We have considered only the odd numbers
because in thew−NAF representation we need to have only
the odd numbers below(w − 1)−width.

TABLE V

AVERAGE NUMBER OF ADDITIONS INVOLVED IN ALL ODD NUMBERS IN

w−BIT WIDTH WINDOW.

window width average additions

11 1.5

10 1.36

9 1.13

8 1.03

7 0.91

6 0.75

5 0.63

Eqn. 12 gives the number of elliptic curve additions, dou-
blings and triplings. Note that we have to capture only non-

Fig. 4. Interleaving with DBNS

zero elements in each number.

ADDw = (2 + aw) ·
t

(w + 1)

DBLw =

w−1
∑

k=1

⌈log3 2k⌉

TPLw = ⌊log32
w⌋

(12)

When the additions are calculated, we assume that we

have t/ (w + 1) number of elements in each number’s NAF
representation. Calculating number of Doublings and Triplings
are same as Sliding DSMPM algorithm.

V. COMPARISON

In this section we compare sliding simultaneous multiple
point multiplication, joint sparse form, interleaving with w-
NAF with our new algorithms which are based on sliding
DBNS, sliding DBNS simultaneous multiple point multipli-
cation and Interleaving with DBNS, respectively. For the
comparison, we consider 2-bit window width for the simulta-
neous multiple point multiplication and sliding simultaneous
multiple point multiplication, while 5-bit and 4-bit window
is used for Interleaving with NAF. We have used 4-bit to 8-
bit window sizes for the sliding DBNS and 5-bit to 10-bit
window width for sliding DBNS simultaneous multiple point
multiplication. Finally, 5-bit to 12-bit window sizes are used
for the Interleaving with DBNS algorithm.

Table VI gives the experimental results of operational counts
for computingkP + lQ over prime fields. When the operation
cost is calculated, both affine and Jacobian coordinates are
considered. It is assumed that field cost per a squaring over
a prime field is equal to 0.8 times of a multiplication. Com-
parison has been carried out for 160-bit, 230-bit and 570-bit

numbers. We have assumed one point is known as a domain
parameter and point multiplications related to that point are
pre-calculated. Similarly, Table VII gives the experimental
results of operational counts for computingkP + lQ over
binary fields. Again this table gives the operational cost for the
both affine and Jacobian coordinates. For the final calculation,
we have assume that squaring is almost free in binary fields.

TABLE VI

EXPERIMENTAL RESULTS OFOPERATIONAL COUNTS FORCOMPUTING

kP + lQ OVER PRIME FIELDS

Algorithm bit length
operational cost

Affine Jacobian

sliding SMPM

160 10326 2608

230 14634 3682

570 35560 8896

JSF

160 10423 2654

230 14945 3802

570 36909 9378

I-w-NAF
160 9603 2362

230 13728 3372

570 33765 8276

sliding DBNS

160 11465 2860

230 16050 3965

570 37420 9126

sliding DSMPM

160 10323 2470

230 14464 3446

570 34077 8112

I-DBNS

160 9856 2349

230 13904 3297

570 33099 7761

In Table VI & VII, the window size and the storage required
are different in the new alorithms for different bit lengths.

A. Curves defined overFp with Affine Coordinates

According to the Table VI, it is noticable that sliding
DBNS does not give us any improvement compared to any
other algorithms in consideration. However we can notice that
sliding DBNS window width is increasing with the bit length
of the two numbers.

Sliding DBNS simple multiple point multiplication has an
improvement with respect to sliding SMPM and JSF. The
improvement is significant when the bit length is increasing.
According to our calculations the improvement for 570-bit is
8% against JSF.

Interleaving DBNS withw-NAF algorithm is giving the
most impressive improvements. The most existing algorithm
for multiple point multiplication is interleaving withw-NAF.
The new algorithm based onw-NAF and DBNS is 2%
more efficienct than the interleaving withw-NAF. When it
is compared with JSF, it is a 10% improvement.

B. Curves defined overFp with Jacobian Coordinates

The most significant result from the Table VI and VII is that
the affine coordinates need more computational power. That

is due to the inversions in the calculations using affine coor-
dinates. When it comes to Jacobian coordinates, we eliminate
inversions and it saves a lot of computational power.

In prime fields Jacobian coordinates give a some improve-
ment with sliding DBNS over JSF. This advantage is visible
when the bit length is high. For an example, 570-bit length is
having a clear improvment with the new algorithm.

Considering the sliding DBNS simultaneous multip point
multiplication and JSF, we can notice that 7%, 9% and 14%
improvements for 160-bit, 230-bit and 570-bit numbers respec-
tively. However, there is no notable improvements, compared
to the interleaving withw-NAF.

TABLE VII

EXPERIMENTAL RESULTS OFOPERATIONAL COUNTS FORCOMPUTING

kP + lQ OVER BINARY FIELDS

Algorithm bit length
operational cost

Affine Jacobian

sliding SMPM

160 10072 2055

230 14276 2886

570 34696 6926

JSF

160 10164 2112

230 14574 3022

570 35994 7442

I-w-NAF

160 9374 1800

230 13402 2565

570 32966 6277

sliding DBNS
160 10958 2216

230 15429 3052

570 36082 6952

sliding DSMPM

160 9930 1834

230 13944 2546

570 32931 6007

I-DBNS

160 9502 1736

230 13418 2419

570 32123 5654

Interleaving DBNS withw-NAF has 6% and 17% improve-
ment compared to interleaving withw-NAF and JSF for 570-
bit numbers. Table VI gives the costs for 160-bit and 230-bit
numbers using the same algorithm.

C. Curves defined overF2m with Affine Coordinates

In the binary fields we have the advantage in squaring
because that can be considered as a no cost operation. Fur-
ther, inversion costs less than ten multiplications in binary
fields. This reduces overall cost in binary fields with affine
coordinates.

Table VII gives the summary of the operational cost for
all the algorithms. In comparison, we can notice that sliding
DBNS has 9% improvement against JSF. While interleaving
DBNS with w-NAF has gained 3% improvement against
interleaving withw-NAF. The improvement is 11% when we
compare the same algorithm with JSF. Further all of above
comparisons are valid for 570-bit numbers.

D. Curves defined overF2m with Jacobian Coordinates

The improvement due to new algorithms is noticable when
they are operated in the binary field with Jacobian coordinates.
In this combination, we have less cost for the squaring and
field inverse. That leads to a significant improvement in these
algorithms.

Considering 160-bit numbers, sliding DBNS multiple point
multiplication gives 13% enhancement over JSF. This number
goes upto 16% and 19% with the same algorithm when the
bit length is increased to 230-bit and 570-bit numbers.

Interleaving DBNS withw-NAF has 4%, 6% and 10%
improvements over Interleaving withw-NAF with 160-bit,
230-bit and 570-bit numbers, respectively. When the same al-
gorithm is compared with JSF, it gives upto 24% improvement
with 570-bit numbers. For other two bit lengths, i.e. 160-bit
and 230-bit, improvement is 18% and 20% over JSF.

VI. CONCLUSIONS

In all three new algorithms, the required memory is larger
than the other algorithms due to pre-computations. However
the performance has been improved, specially, in the Inter-
leaving with DBNS algorithm upto 24%. In the conclusion,
we have draw the attention to the most popular multiple point
multiplication algorithms, JSF and interleaving withw-NAF.

Sliding DBNS algorithm needs to have more memory and
it is not giving greater performance improvements in 160-
bit numbers. However, when the 230-bit and 570-bit numbers
are considered it gives much improved performances. It never
beats JSF and Interleaving with NAF for 4 and 5-bit widths.
4-bit width window is giving the optimum performance when
the 160-bit numbers are considered. Whereas, 230-bit numbers
and 570-bit numbers will have optimum performances with the
sliding DBNS algorithm, when the window sizes are 6-bit and
7-bit, respectively.

Sliding DBNS simultaneous multiple point multiplication
gives better performances against JSF, with Jacobian coordi-
nates over binary fields. It has 13%, 16% and 19% improve-
ment in 160-bit, 230-bit and 570-bit numbers, respectivelyand
window sizes are 10-bit for all cases.

Finally, we have the most successful algorithm which is
Interleaving with DBNS is giving 18%, 20% and 24% im-
provements with the JSF and 4%, 6% and 10% improvements
with Interleaving NAF for 160-bit, 230-bit and 570-bit num-
bers respectively in each case, with Jacobian coordinates over
binary fields. According to the comparison, we can conclude
that Interleaving DBNS withw-NAF algorithm gives the
optimal performance with Jacobian coordinates over binary
fields.

For future work, research will be carried out to im-
prove the calculation of multiple point multiplication of
(kP + lQ + mR) on elliptic curves using double-base number
system. Further, we will consider the triple-base number
system for multiple point multiplication. In addition to these
Koblitz curves will be considered with the double-base rep-
resentation inτ andτ − 1. This idea will be extended to the
hardware implementation.

REFERENCES

[1] FIPS 186. Digital signature standard.National Institute of Standards
and Technology, 1994.

[2] FIPS 186-2. Digital signature standard.National Institute of Standards
and Technology, 2000.

[3] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen,
and F. Vercauteren. Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Chapman & Hall/CRC, July 2005.

[4] B. M. M. de Weger. Algorithms for diophantine equations.volume 65,
Amsterdam, 1989. Centrum voor Wiskunde en Informatica.

[5] W. Diffie and M. Hellman. New directions in cryptography.Information
Theory, IEEE Transactions on, 22:644–654, 1976.

[6] V. S. Dimitrov and T. Cooklev. Two algorithms for modularexponen-
tiation using nonstandard arithmetics.Technical report of IEICE. ISEC,
93(525):11–17, 1994.

[7] V. S. Dimitrov, L. Imbert, and P. Mishra. Fast elliptic curve point
multiplication using double-base chains. 2005.

[8] V. S. Dimitrov, L. Imbert, and P. Mishra. The double base number system
and its application to elliptic curve cryptography. 77(262):10751104,
April 2008.

[9] V. S. Dimitrov, G. A. Jullien, and W. C. Miller. Theory andapplications
for a double-base number system. InARITH ’97: Proceedings of the
13th Symposium on Computer Arithmetic, page 44, Washington, DC,
USA, 1997. IEEE Computer Society.

[10] V. S. Dimitrov, G. A. Jullien, and W. C. Miller. An algorithm for modular
exponentiation. 66:155–159, 1998.

[11] V.S. Dimitrov and G.A. Jullien. Loading the bases: a newnumber
representation with applications.Circuits and Systems Magazine, IEEE,
3(2):6–23, 2003.

[12] Christophe Doche, Thomas Icart, and David R. Kohel. Efficient scalar
multiplication by isogeny decompositions. 2005.

[13] T. Elgamal. A public key cryptosystem and a signature scheme based on
discrete logarithms.Information Theory, IEEE Transactions on, 31:469–
472, 1985.

[14] D. M. Gordon. A survey of fast exponentiation methods.J. Algorithms,
27(1):129–146, 1998.

[15] D. Hankerson, A. J. Menezes, and S. Vanstone.Guide to Elliptic Curve
Cryptography. Springer, 1 edition, 2004.

[16] ISO/IEC. Information technology - security techniques - cryptographic
techniques based on elliptic curves - part 2: Digital signatures. Interna-
tional Organization for Standardization, 2002.

[17] D. E. Knuth. THE ART OF COMPUTER PROGRAMMING VOLUME
2 SEMINUMERICAL ALGORITHMS. Addsion Weslsey Longman
Publishing Group, May 1969.

[18] N. Koblitz. Elliptic curve cryptosystems.Mathematics of Computation,
48:203–209, 1987.

[19] N. Koblitz. CM-Curves with Good Cryptographic Properties, page 279.
1992.

[20] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.Handbook of
Applied Cryptography. CRC, October 1996.

[21] V. S. Miller. Use of Elliptic Curves in Cryptography, page 417. 1986.
[22] C. P. Pfleeger and S. L. Pfleeger.Security in Computing. Prentice Hall

PTR, 3 edition, December 2002.
[23] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems.Commun. ACM, 21:120–126,
1978.

[24] J. Solinas. Low-weight binary representations for pairs of integers, 2001.
[25] J.H. van Lint. Introduction to Coding Theory. Springer, 3rd rev. and

exp. ed. edition, December 1998.

