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Abstract. In this paper we present a real-world hardware-assisted attack on the well-
known A5/1 stream cipher which is (still) used to secure GSM communication in most
countries all over the world. During the last ten years A5/1 has been intensively ana-
lyzed [BB06,BD00,BSW01,EJ03,Gol97,MJB05,PS00]. However, most of the proposed attacks are just
of theoretical interest since they lack from practicability — due to strong preconditions, high compu-
tational demands and/or huge storage requirements — and have never been fully implemented.
In contrast to these attacks, our attack which is based on the work by Keller and Seitz [KS01] is
running on an existing special-purpose hardware device, called COPACOBANA [KPP+06]. With the
knowledge of only 64 bits of keystream the machine is able to reveal the corresponding internal 64-bit
state of the cipher in about 7 hours on average. Besides providing a detailed description of our attack
architecture as well as implementation results, we propose and analyze an optimization that leads
again to an improvement of about 16% in computation time.
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1 Introduction

The Global System for Mobile communications (GSM) was initially developed in Europe in the
1980s. Today it is the most widely deployed digital cellular communication system all over the
world. The GSM standard specifies algorithms for data encryption and authentication. A5/1 and
A5/2 are the two encryption algorithms stipulated by this standard, where the stream cipher
A5/1 is used within Europe and most other countries. A5/2 is the intentionally weaker version of
A5/1 which has been developed — due to the export restrictions — for deploying GSM outside
of Europe. Though the internals of both ciphers were kept secret, their designs were disclosed in
1999 by means of reverse engineering [BGW99]. In this work we focus on the stronger GSM cipher
A5/1.

1.1 The A5/1 Stream Cipher

A5/1 is a synchronous stream cipher accepting a 64-bit session key KS = (k0, . . . , k63) ∈ GF (2)64

and a 22-bit initial vector IV = (v0, . . . , v21) ∈ GF (2)22 derived from the 22-bit frame number
which is publicly known. It uses three linear feedback shift registers (LFSRs) R1, R2, and R3 of
lengths 19, 22 and 23 bits, respectively, as its main building blocks (see Figure 1). The taps of
the LFSRs correspond to primitive polynomials and, therefore, the registers produce sequences of
maximal periods. R1, R2, and R3 are clocked irregularly based on the values of the clocking bits
(CBs) which are bits 8, 10, and 10 of registers R1, R2, and R3, respectively.

The A5/1 keystream generator works as follows. First, an initialization phase is run. At the
beginning of this phase all registers are set to 0. Then the key setup and the IV setup are performed.
In the initialization phase all three registers are clocked regularly and the key bits followed by IV
bits are xored with the least significant bits of all three registers. Thus, after 64 + 22 = 86 clock-
cycles the state Si is achieved.
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Fig. 1. Design of A5/1

Based on this initial state Si the warm-up phase is performed where the generator is clocked
for 100 clock-cycles and the output is discarded. This results directly in the state Sw producing
the first output bit 101 clock-cycles after the initialization phase. Note that already during the
warm-up phase and also during the stream generation phase which starts afterwards, the registers
R1, R2, and R3 are clocked irregularly. More precisely, the stop/go clocking is determined by
the bits R1[8], R2[10], and R3[10] in each clock-cycle as follows: the majority of the three bits is
computed, where the majority of three bits a, b, c is defined by maj(a, b, c) = ab ⊕ ac ⊕ bc. R1 is
clocked iff R1[8] agrees with the majority. R2 is clocked iff R2[10] agrees with the majority. R3 is
clocked iff R3[10] agrees with the majority. Regarding to Table 1 in each cycle at least two of the
three registers are clocked. After these clockings, an output bit is generated from the values of R1,
R2, and R3 by xoring their most significant bits.

Table 1. Clockcontrol of A5/1

CB of R1: R1[8] 0 0 0 0 1 1 1 1
CB of R2: R2[10] 0 0 1 1 0 0 1 1
CB of R3: R3[10] 0 1 0 1 0 1 0 1

R1 clocked?
√ √ √

– –
√ √ √

R2 clocked?
√ √

–
√ √

–
√ √

R3 clocked?
√

–
√ √ √ √

–
√

After warm-up A5/1 produces 228 output bits, one per clock-cycle. 114 of them are used
to encrypt uplink traffic, while the remaining bits are used to decrypt downlink traffic. In the
remainder of this paper we assume that we are given at least 64 consecutive bits of such a 228 bit
keystream.



1.2 Related Work

During the last decade the security of A5/1 has been extensively analyzed. Pioneering work in this
field was done by Anderson [And94], Golic [Gol97], and Babbage [Bab95].

Anderson’s basic idea was to guess the complete content of the registers R1 and R2 and about
half of the register R3. In this way the clocking of all three registers is determined and the second
half of R3 can be derived given 64 bits of keystream. In the worst-case each of the 252 determined
state candidates (i.e., candidates for Sw) needs to be verified against the keystream which imposes
a high workload when done in software.

The hardware-assisted attack by Keller and Seitz [KS01] is based on Anderson’s idea. However,
they proposed a way to exclude a significant fraction of possible candidates at a very early stage of
the verification process. The authors claim that their approach reduces the attack complexity to
241 ·(3

2)11 with an expected computing time of 14 clock-cycles per guess. This results in a worst-case
complexity of 251.24 clock cycles. They implemented the attack on a Xilinx XC4062 FPGA. The
FPGA is hosting seven instances of the guessing algorithm and operates at a frequency of 18.65 MHz
leading to an attack time of about 236 days. Unfortunately, the approach given in [KS01] does
not only immediately discards wrong candidates but a priori restricts the search for candidates
to a certain subspace. This fact is not explicitly mentioned in the paper. Moreover, no complete
analysis of the attack is given. Our analyses in Section 2 show that the success probability of their
attack is only about 18% and the expected computing time for a guess is slightly higher than the
stated one.

The key idea of Golic’s attack [Gol97] is to guess the lower half of each register (these bits
determine the register clocking in the first few clock-cycles) and clock the cipher until the guessed
bits “run-out”. Each output bit immediately yields a linear equation in terms of the internal
state bits belonging to the upper halves of three registers. Then we continue guessing the clocking
sequence yielding again other linear equations that describe the output of the majority function.
Whenever 64 linearly independent equations are obtained in this way the system is solved using
Gaussian elimination. The complexity of this attack is O(240) steps. However, each step is fairly
complex since it comprises to compute the solution of an 64× 64 LSE (and the verification of the
corresponding state candidate).

Pornin and Stern proposed a SW/HW tradeoff attack [PS00] that is based on Golic’s approach
but in contrast to Golic they are guessing the clocking sequence from the very first step. These
guesses create a tree, with 4 branches in each node (each branch represents one clocking combina-
tion, cf. Table 1). While traversing a path down the tree, three equations are obtained at each node
(similarly to the second phase of Golic’s method), namely two equations describing the clocking
and one equation describing the output. Hence, after n steps (in depth) one collected 3n equations.
The tradeoff parameter n is chosen such that 3n < 64. Thus, each path in the tree leads to an
underdetermined LSE that is solved in software resulting into a parametric solution. The basis of
the corresponding linear subspace containing all solutions to such an LSE consists of (64− 3n+1)
64-bit vectors. These vectors are sent to the hardware, where a brute force attack is performed,
i.e., all 264−3n elements of the subspace are generated and verified against the given keystream.
The authors estimated an average running time of 2.5 days when using an XP-1000 Alpha station
for the software part and two Pamettes 4010E for the hardware part of the attack (where n = 18).

Unfortunately, any details about the size and performance of the HW unit are missing which
makes it hard to verify stated figures. However, these figures do not seem to be based on real
measurements and we consider them as too optimistic: we expect that the HW unit occupies a
relatively large area. For instance, when choosing n = 18 the transmitted basis consists of 11
vectors, i.e., 11 × 64 = 704 bits. Since the deployed Xilinx 4010E FPGA contains only 1152 flip-



flops, more than 60% of them would be used for holding the coefficients of basis. So there seems not
to be enough space to place 12 bruteforce units on the FPGA as stated in the paper. Furthermore,
we expect the communication requirements between the workstation and the HW to be fairly high.
For n = 18 one has to transmit 418 bases, i.e., 418 × 704 = 245.46 bits. If the attack should be done
in 5 days in the worst-case, the throughput must be 112 Mbits/s in this case.

Finally, there is a whole class of time-memory-data tradeoff (TMDTO) attacks on A5/1 which
share the common feature that a large amount of known keystream must be available and/or
huge amounts of data must be precomputed and stored in order to achieve reasonable success
rates and workloads for the online phase of these attacks. Simple forms of such attacks has been
independently proposed by Babbage [Bab95] and Golic [Gol97]. Recently, Biryukov, Shamir and
Wagner presented an interesting (non-generic) variant of an TMDTO [BSW01] (see also [BS00])
utilizing a certain property of A5/1 (low sampling resistance). The precomputation phase of this
attack exhibits a complexity of 248 and memory requirements of only about 300 GB, where the
online phase can be executed within minutes with a success probability of 60%. However, 2 seconds
of known keystream (i.e., about 25000 bits) is required to mount the attack making it impractical.
Another important contribution in this field is due to Barkan, Biham and Keller [BBK03] (see
also [BBK06]). They exploit the fact that GSM employs error correction before encryption — which
reveals the values of certain linear combinations of stream bits by observing the ciphertext — to
mount a ciphertext-only TMDTO. However, in the precomputation phase of such an attack huge
amounts of data need to be computed and stored; even more than for known-keystream TMDTOs.
For instance, if we assume that 3 minutes of ciphertext (from the GSM SACCH channel) are
available in the online phase, one needs to precompute about 50 TB of data to achieve a success
probability of about 60% (cf. [BBK06]). There are 2800 contemporary PCs required to perform the
precomputation within one year. These are practical obstacles making actual implementations of
such attacks very difficult. In fact, to the best of our knowledge no full implementation of TMDTO
attack against A5/1 has been reported yet.

1.3 Our Contribution

As seen in the previous section most of the proposed attacks against A5/1 lack from practicability
and/or have never been fully implemented. In contrast to these attacks, we present a real-world
attack revealing the internal state of A5/1 in about 7 hours on average (and about 14 hours in the
worst-case) using an existing low-cost (about 10.000$) special-purpose hardware device. To mount
the attack only 64 bits of a known keystream are required and we do not need any precomputed
data. Also the communication requirements with the host computer are relatively small. The attack
has been fully implemented and tested on our target platform.

On the theoretical side, we present a modification and analysis of the approach sketched
in [KS01]. Furthermore, we propose an optimization of the attack implementation that again
leads to an improvement of about 16% in computation time.

1.4 Implementation Platform

The COPACOBANA (Cost-Optimized Parallel Code Breaker) machine [KPP+06] is a high-
performance, low-cost cluster consisting of 120 Xilinx Spartan3-XC3S1000 FPGAs. Currently,
COPACOBANA appears to be the only such reconfigurable parallel FPGA machine optimized for
code breaking tasks reported in the open literature. Depending on the actual algorithm, the paral-
lel hardware architecture can outperform conventional computers by several orders of magnitude.
COPACOBANA has been designed under the assumptions that (i) computationally costly opera-
tions are parallelizable, (ii) parallel instances have only a very limited need to communicate with



each other, (iii) the demand for data transfers between host and nodes is low due to the fact that
computations usually dominate communication requirements and (iv) typical crypto algorithms
and their corresponding hardware nodes demand very little local memory which can be provided
by the on-chip RAM modules of an FPGA. Considering these characteristics COPACOBANA
appeared to be perfectly tailored for simple guess-and-determine attacks on A5/1 like the one
described in the next section.

2 Analysis and Modification of Keller and Seitz’s Approach

The approach is based on a simple guess-and-determine attack proposed by R. Anderson in 1994
where the shorter registers R1 and R2 are guessed and the longer register R3 is to be determined.
But because Anderson neglected the asynchronous clocking of the registers at first, only the 12
most significant bits of R3 can be determined from the known keystream while the remaining bits
have to be guessed as well.

Keller and Seitz’s attack can be divided into two phases, into the determination phase in which
a possible state candidate consisting of the three registers of A5/1 after its warm-up phase is
generated and into a subsequent postprocessing phase in which the state candidate is checked for
consistency.

2.1 Analysis

In the determination phase, Keller and Seitz try to reduce the complexity of the simple guess-
and-determine attack further by early recognizing contradictions that can occur by guessing the
clocking bit (CB) of R3 such that R3 will not be clocked. Therefore, they first completely guess
the registers R1 and R2 and then derive register R3 in the following manner. Let Ri(t)[n] denote
the n-th bit of register Ri at a time t, where t = 0 is immediately after the warm-up phase of A5/1
and increases by 1 every clock-cycle. Then, foremost compute the first most significant bit (MSB)
of R3, which is R3(0)[22], immediately out of R1(0)[18] and R2(0)[21] and the first bit of the known
keystream (KS). Then inspect the clocking bits of registers R1 and R2, which are R1(0)[8] and
R2(0)[10], and guess the first clocking bit of R3, namely R3(0)[10]. If R1(0)[8] and R2(0)[10] are not
equal, R3 will be clocked in either way and so both possibilities for R3(0)[10] have to be checked.
But if the CBs of R1 and R2 are identical then at least these two registers will be clocked. Assume
now the CB of R3 is chosen to be different from the ones of R1 and R2, i.e., R3(0)[10] 6= R1(0)[8],
and as a consequence R3 will not be clocked. Now in one half of these cases the generated output
bit of the MSBs of all three registers (which are R1(1)[18] = R1(0)[17], R2(1)[21] = R2(0)[20],
R3(1)[22] = R3(0)[22]) does not match the given keystreambit and a contradiction occurs. As a
consequence the CB of R3 has to be guessed in a way that R3 will be clocked together with R1
and R2, i.e., the CB of R3 is to be chosen equal to the CBs of R1 and R2, so that a new MSB can
be computed.

By early recognizing this possible contradiction while guessing R3(t)[10], all arising states of
this contradictory guess neither need to be computed further on nor checked afterwards. To further
reduce the complexity of the attack they do not only discard these described wrong possibilities
for the CB of R3 in case of a contradiction but they also limit the number of choices to the one
of not-clocking R3 if this is possible without any contradiction. After having computed the first
MSB of R3 the process of guessing a CB and computing another MSB of R3 is repeated until R3
is completely determined which is after having clocked R3 for 11 times.

This heuristic reduces the number of possibilities for R3(t)[10] in one half of all cases from
two to one. The number of possible state candidates to be checked decreases thus from 211 to



(2− 1
2)11 = (3

2)11 ≈ 26.43 ≈ 86 for every fixed guess of registers R1 and R2 in general. This results
in 241 · 26.43 = 247.43 possible state candidates. But because they discard some valid states as well
as states leading to a contradiction they have only a low success probability. The number of all
valid state candidates for one fixed guess of R1 and R2 is (2 − 1

4)11 = (7
4)11 ≈ 28.88 ≈ 471. Thus,

the number of state candidates inspected by Keller and Seitz in proportion to the number of valid
state candidates results in a success probability of only 86

471 ≈ 0.18 = 18%.
Immediately after the determination phase, the A5/1 is performed with the generated state

candidate in the postprocessing phase and the generated output bits are checked against the
remaining bits of the 64 bit known keystream. Keller and Seitz just state that this consistency
check in the postprocessing phase will proceed fast and that both, determining a state candidate
and checking it against the known keystream, will take 14 ≈ 23.81 clock-cycles. This leads to a
complexity of 247.43 ·23.81 = 251.24 clock-cycles. But with this expected amount of clock-cycles they
underestimated the time complexity as will be shown in Section 2.2.

One instance of Keller and Seitz’s guessing algorithm occupies 313 out of the 2304 configurable
logic blocks (CLBs) of the XC4062 FPGA. It is hard to estimate how fast the original Keller-Seitz
attack would be when implemented on COPACOBANA, since the architecture and the performance
of the XC4062 [Xil99] and the Spartan-3 XC3S1000 [Xil07] FPGAs are different. For example, one
XC4000 CLB only roughly corresponds to one Spartan-3 slice, because it contains two 4-input look-
up tables (LUT), one 3-input LUT and two flip-flops (FF), while a Spartan-3 slice contains only
two 4-input LUTs and two FFs. Because the available number of slices on a Spartan-3 XC3S1000
FPGA is 7680 and if we assume that one instance of the guessing algorithm would occupy 313
slices, a maximum number of 24 instances could be implemented on one FPGA. This leaves just
168 slices for other circuits for controlling the instances. According to the datasheets the “internal
performance of XC4000 family chips can exceed 150 MHz” while the “maximum toggle frequency
of Spartan-3 chips is 630 MHz”. That represents a performance ratio of less than 4.2. Out of these
figures we estimate that the attack would not be faster than 24

7 ×4.2×120 = 1728 times when run
on COPACOBANA. This yields to a minimum of 3.27 hours to perform the search of Keller and
Seitz. But if we recall again that (i) the attack searches only through 18% of the valid states, the
search through all valid states would take at least 18.19 hours, (ii) the number of guessing instances
implemented in one FPGA would be less than 24 since at least an additional control logic has to
be implemented, and (iii) Keller and Seitz underestimate the time complexity as will be shown in
Section 2.2, the computation time is expected to increase significantly.

2.2 A Slight Modification

Our algorithm is similar to the one proposed by Keller and Seitz except that we only discard wrong
possibilities for R3(t)[10] that would immediately lead into a contradiction. But if no contradiction
appears we still check both possibilities for R3(t)[10], which means clocking and not-clocking R3.
Because of this, we take every possible state candidate into account and therefore will find unlike
Keller and Seitz the correct state candidate in any case. This reduces only in 1

4 of all cases the
number of choices from two to one and, hence, the expected number of possibilities for R3 that need
to be checked is approximately 471 for every fixed guess of registers R1 and R2 (cf. Section 2.1).

A flowchart of the decisions during the determination phase and the postprocessing phase
shows Figure 2. A more detailed overview of how R3(t)[10] is guessed and how certain subtrees are
discarded is given in Figure 3.

Example. An example for the first steps of the reduction of possibilities performed by the al-
gorithm is given in Figure 4. It shows next to the first 4 bits of a known keystream the first 4
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Fig. 2. Flowchart of the FSM of a guessing-engine

MSBs and the first 3 CBs of the guessed registers R1 and R2 and of the derived register R3. The
algorithm proceeds as follows.

1. Compute R3(0)[22] = R1(0)[18] ⊕ R2(0)[21] ⊕ KS[0] = 0.

2. R1(0)[8] 6= R2(0)[10]: Choose R3(0)[10] = 0 6= R1(0)[8] first and clock registers R2 and R3.

3. Compute R3(1)[22] = R3(0)[21] = R1(0)[18] ⊕ R2(0)[20] ⊕ KS[1] = 0.

4. R1(0)[8] = R2(0)[9]: Not clocking register R3 would result in a contradiction because R1(0)[17]⊕
R2(0)[19] ⊕ R3(0)[21] 6= KS[2].
Hence, discard the possibility R3(1)[10] = 0 = R3(0)[9] 6= R1(1)[8], instead choose R3(1)[10] =
1 = R3(0)[9] = R1(0)[8], and clock all registers R1, R2, R3.

5. Compute R3(2)[22] = R3(0)[20] = R1(0)[17] ⊕ R2(0)[19] ⊕ KS[2] = 1.

6. ...

The example ends here because it is apparent from Figure 5, which shows the binary decision
tree for R3(t)[10] up to a depth of 3, that discarding possibilities for R3(t)[10] results in cutting
whole subtrees. In the example above we chose edge a(0) = R3(0)[10] = 0 6= R1(1)[8] at the root
node first and then discarded the possibility a(1) = R3(1)[10] = 0 6= R1(1)[8] at the corresponding
node of depth 1.

Time Complexity of the Attack. Generating one possible state candidate during determination
phase takes one clock-cycle for deriving R3(0)[22] and then eleven times clocking register R3 to
determine the remaining MSBs of the register. With a probability of Pclk = 3

4 for clocking a register
of A5/1 it takes an expected number of 1+ 4

3 ·11 = 152
3 clock-cycles to generate the state candidate
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Fig. 3. Guessing the clocking bit of R3 in detail

for fixed registers R1 and R2 and the known keystream. Because every clock-cycle one bit of the
known keystream is inspected, the expected number of needed known keystream bits to generate
a state candidate corresponds to the number of clock-cycles needed for this process.

After having generated one state candidate it needs to be checked in the postprocessing phase
further on against the remaining bits of the known keystream. To be able to perform this check
immediately after the determination phase we additionally compute the feedback bits of regis-
ter R3 with its linear feedback function. We start with this computation from the time when
R3(3)[10] = R3(0)[7] is guessed. So we already computed 8 of the 11 feedback bits of R3 when
the state candidate is generated. The remaining 3 feedback bits are computed in parallel and we
continue with performing A5/1. Now, the produced output is compared to the known keystream. A
contradiction between the generated output and a known keystream bit is expected to occur with a
probability of α = 1

2 in the first clock-cycle of postprocessing. Every cycle the algorithm is clocked
further on, the probability of a contradiction is again 1

2 . Generally speaking, it is αn = 1
2n for the

n-th cycle after the determination phase and the algorithm will clock on with an expected value of
1
α

= 2 further needed clock-cycles to inspect the output. If it is clocked without any contradiction
up to the 64-th bit of the known keystream we found a valid state candidate for reconstructing
the session key. Although there might be more than just one state candidate generating the same
64 bit of output, the probability for this event is negligible.

So, we get an expected number of T = 152
3 +2 = 172

3 clock-cycles to determine a state candidate
and check it for consistency with the given keystream instead of just 14 clock-cycles as stated by
Keller and Seitz. Thus, the time complexity of our whole attack is C ≈ 241 · (7

4)11 · 172
3 ≈ 254.02.
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b(t) : R3(t) [10] = R1(t)[8]a(t) : R3(t) [10] ≠ R1(t)[8]a(0) a( 1)a(2)
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Fig. 5. An example for a reduced binary decision
tree of R3(t)[10]

3 Breaking A5/1 on COPACOBANA

3.1 Our Hardware Architecture

This section presents an efficient implementation of a guessing-engine in hardware which performs
the determination phase and the postprocessing phase of the attack. On every FPGA, several
instances of this guessing-engine will be implemented. Therefore, we will additionally introduce a
hardware-software-interface controlling these instances and providing intercommunication.

The Guessing-Engine. Figure 6 shows an overview of the guessing-engine with its different
components. A large part of the architecture for implementing this guessing-engine consists of flip-
flops (FFs) for storing the content of different registers. This is in detail the state candidate register,
storing the computed register R3 and the fixed guess of registers R1 and R2 in 64 bits. Additionally,
we need FFs to store the 64 bits of known keystream and an additional simple shift register to
evaluate a different known keystream bit every clock-cycle. To perform the consistency check in the
postprocessing phase, all three A5/1 LFSRs have to be implemented, too. But the most important
part of this architecture is the finite state machine (FSM ) performing the determination phase
and the postprocessing phase. Its functionality was already presented in Figures 2 and 3. The
shown process is repeated until all possible state candidates, i.e., the whole binary decision tree of
R3(t)[10], for one fixed guess of registers R1 and R2 have been checked. The fact, that the guess
R3(t)[10] 6= R1(t)[8] is always checked first corresponds to the binary decision tree of Figure 5.
This binary decision tree storing the discarded or already checked possibilities is mapped into the
branching state register.

The most straightforward way of mapping such a binary decision tree with a certain height
h into hardware, is to use an h-bit wide binary counter. In our case all leaves are at a depth of
d = h = 11. Turning left at a node of the tree, i.e., R3(t)[10] 6= R1(t)[8], is represented by 0 in
the corresponding counter bit and turning right at a node, i.e., R3(t)[10] = R1(t)[8], is represented
by 1. Now, to reach all leaves from the leftmost unto the rightmost one by one, we initialize the
11 bit wide counter to all 0 and read it in 11 clock-cycles bit by bit from the most significant bit
(MSB) to the least significant bit (LSB). When having reached the leftmost leaf in such a manner,
we increase the register by one and restart reading bit by bit at the MSB again. This will lead us
to the second leaf from the left. To reach the rest of the leaves we count through this 11-bit wide
register up to all bits being 1. Now it is claimed by the attack that certain subtrees of the binary
decision tree are discarded (cf. Section 2.2). To be able to do that while passing through the tree,
we have to set the corresponding bits of the 11-bit wide counter manually to 1 with an 1-to-11 bit
demultiplexer. The FSM does this with bit number b every time a contradiction is detected at a
node of depth d = b + 1 and a possibility of R3(t)[10] is discarded. This results in the reduced
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Fig. 6. An overview of the guessing-engine

number of leaves of the binary decision tree of (7
4)11 ≈ 471 meaning the amount of possible state

candidates for a fixed guess of R1 and R2.

The Control-Interface. Because several instances of the guessing-engine are implemented on
one FPGA they need to be controlled continuously. This is done by the control-interface and
there is exactly one instance of it implemented on each FPGA of COPACOBANA. It accepts
the 64 bit known keystream and a sub-searchspace which has to be searched by the FPGA. By
sub-searchspace we mean a certain amount of fixed guesses for registers R1 and R2. Therefore, a
software divides the searchspace consisting of the 241 possibilities into these sub-searchspaces and
transmits to each FPGA another one of them together with the known keystream. The control-
interface of the FPGA then counts through this sub-searchspace and provides each guessing-engine
with a fixed guess of registers R1 and R2 to be searched. Every time a guessing-engine finishes
its search it sends a report to the control-interface whether it was successful or not on finding a
state candidate and requests for another fixed guess of registers R1 and R2 out of the current
sub-searchspace. In case of success the valid state candidate is propagated to the software. This is
repeated until the whole sub-searchspace is searched by the FPGA. During the search, the software
retrieves regularly at reasonable intervals the status information of each FPGA and assigns a new
sub-searchspace to an FPGA if requested. The search is finished when all state candidates that
can be generated with the 241 possibilities for guessing R1 and R2, i.e., the whole searchspace, are
checked for consistency.

3.2 Implementation Results for COPACOBANA

We used Xilinx ISE Foundation 9.2i to synthesize and implement all components for a Xilinx
Spartan3-XC3S1000-FT256 FPGA used in COPACOBANA. The simulation of the hardware model
was done in MentorGraphics ModelSim SE 6.3d. Table 2 shows the post place-and-route results of
the implementation process for a single instance of the guessing-engine and the control-interface,
for 28 instances of the guessing-engine with their corresponding control-interface, and the available
resources of one FPGA.

The implementation of the 28 instances of the guessing-engine was tested on COPACOBANA
with a system inherent operating frequency of f = 96 MHz. Thus, the preliminary estimation of the
computation time to determine and check all possible state candidates is test = 254.02

120·28·96·106 ·
1

3600 h ≈

15.73 h. Time measurements of several extended test runs on COPACOBANA showed an average
computation time of 14.37 h to perform a complete search for a given 64 bit known keystream.
Comparing the results shows that the complexity of the estimation differs only by 0.13 bit from
our measurements. Thus, the expected average time for finding the valid state candidate is 7.19 h.



Table 2. Implementationresults for the guessing-engine and the control-interface

1 instance of control-interface and available on

parameter guessing-engine control-interface 28 inst. of search.-alg. XC3S1000

slices 236 371 6983 7680

flip-flops 360 304 10265 15360

Look-Up-Tables 356 254 9996 15360

fmax [MHz] 118.38 123.19 114.39 300

However, the implementation results of Table 2 show that there is still room for further improve-
ments, i.e., implementing more instances of the guessing-engine or an operating frequency higher
than 96 MHz.

3.3 Optimization: Storing Intermediate States

When completely passing through a binary decision tree, edges near the root node are traversed
much more often than edges near the leaf nodes. The number of cycles R3 needs to be clocked to
reach any leaf of the tree is 11 (cf. Section 3.1). For example, when inspecting the two leftmost
leaves we have to go bit by bit through the states 00000000000 and 00000000001 of the 11-bit wide
counter corresponding to the tree. Apparently, the first ten edges up to the node of depth 10 for
both leaves are identical. Therefore, we can create recovery points at some depth in the search
tree, i.e, it is possible to store the intermediate state (the content of all A5/1 registers) at such
a point (node of tree) and search the subtree starting at the recovery point instead of starting at
the root. This apparently demands a larger area, but saves a certain amount of clock-cycles. Let
us assume that reloading takes exactly one clock-cycle. If we store and reload the intermediate
states at depth 10, then the number of clock-cycles for R3 reduces from 11 to 11+1+1

2 = 6.5 on
average. If we store the intermediate states at depth 9, the corresponding subtree has 4 leaves. To
reach the leftmost one takes 11 clock-cycles, but to reach the other 3 leaves will take just 1+2 = 3
clock-cycles each. Therefore, the average number of times R3 needs to be clocked is in this case
only 11+3+3+3

4 = 8+4·3
4 = 5.

Generalizing this approach of storing and reloading intermediate states at a depth of 10 or 9 to
a depth of d = b+1, where b denotes the number of the bit in the 11-bit wide counter consecutively
numbered from 0 to 10, we need to clock R3

f(b) =
b + (11 − b) · 2(10−b)

2(10−b)
(1)

times on average to reach one leaf. The function f(b) is shown in Figure 7. It has a minimum
of 4.875 times clocking R3 on average to reach a leaf for storing and reloading intermediate states
at a depth of bmin = 7 for b ∈ N.

Taking also into account that some subtrees are discarded while passing through the tree (cf.
Section 2.2) and the number of possibilities is reduced from 2 to 7

4 , the function needs to be
adapted:

g(b) =
b + (11 − b) · (7

4)(10−b)

(7
4)(10−b)

. (2)

The value for the minimum of this function now changes to approximately 5.31 at bmin = 7
for b ∈ N. Therefore, the expected number of clock-cycles for generating and checking one state



5

6

7

8

9

10

11

0 2 4 6 8 10

b

Fig. 7. Function f(b): The average number of clocking R3 to generate a state candidate with reloading intermediate
states at recovery position b

candidate is now Topt = 1 + 4
3 · 5.31 + 2 ≈ 10.10 ≈ 23.33 instead of T = 172

3 (cf. Section 2.2). This
results in a time complexity of Copt ≈ 241 · 28.88 · 23.33 ≈ 253.21.

For implementing this optimization additional hardware is needed in terms of flip-flops for
storing the intermediate states of registers R1, R2, the determined bits of R3, and the shifted
keystream. Furthermore, we need a slightly more sophisticated control logic. Because the additional
circuits are not located in the critical path, we were able to implement the optimized design with
the same maximum frequency. Table 3 shows a comparison of the computing time in clock-cycles,
the number of needed slices, and the time-area-product in clock-cycles · slices for our standard and
optimized implementation. As the complexity of the combinatorial logic is the limiting factor of
our design we will be able to implement slightly less instances of the optimized guessing-engine on
one FPGA. Therefore, the most important value is the quotient of the time-area-products of the
standard and the optimized guessing-engine. This value shows that there is an overall improvement
of about 13% for one single guessing-engine.

Table 3. Implementation results for the standard and the optimized searching algorithm

computing-time number of slices time-area-product

[clock-cycles] [clock-cycles·slices]
optimized 10.10 359 3626.90

standard 17.67 236 4169.33

optimized
standard

0.57 1.52 0.87

First simulations and implementation results show that we are able to implement next to
the control-interface at least 19 instances of the optimized guessing-engine on one FPGA at the
same frequency as the standard guessing-engine. This leads to a reduced estimated computation
time of t′est =

Copt

120·19·96·106 · 1
3600 h ≈ 13.23 h to generate and check all possible state candidates.

This represents a reduced computation time of 16% compared to the estimated computation time
test ≈ 15.73 h of the standard guessing-engine.
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