
Robust Combiners for Software Hardening

Amir Herzberg? and Haya Shulman??

Bar-Ilan University
Department of Computer Science

Ramat-Gan, 52900, Israel

Abstract. All practical software hardening schemes, as well as practical encryption schemes, e.g., AES,
were not proven to be secure. One technique to enhance security is robust combiners. An algorithm C
is a robust combiner for speci�cation S, e.g., privacy, if for any two implementations X and Y , of a
cryptographic scheme, the combined scheme C(X, Y) satis�es S provided either X or Y satisfy S.
We present the �rst robust combiners for software hardening, speci�cally for obfuscation [2], and for
White-Box Remote Program Execution (WBRPE) [14]. WBRPE and obfuscators are software hard-
ening techniques that are employed to protect execution of programs in remote, hostile environment.
WBRPE provides a software only platform allowing secure execution of programs on untrusted, remote
hosts, ensuring privacy of the program, and of the inputs to the program, as well as privacy and in-
tegrity of the result of the computation. Obfuscators protect the code (and secret data) of the program
that is sent to the remote host for execution.
Robust combiners are particularly important for software hardening, where there is no standard whose
security is established. In addition, robust combiners for software hardening are interesting from soft-
ware engineering perspective since they introduce new techniques of reductions and code manipulation.

Keywords:White-box security, software hardening, obfuscation, robust combiners, cryptographic pro-
tocols, two-party computation.

1 Introduction

Many applications rely on secure execution of programs in untrusted, potentially hostile, envi-
ronments. White-box security, refers to ensuring security of programs running in such untrusted
environments. Over the last two decades there is a growing interest in white-box security, in order
to enable distributed network applications including on-line software distribution and licensing, mo-
bile agents, grid computing, and others. In white-box security the software is at full control of the
platform executing the software. The originator loses all control over her software, which is com-
pletely exposed to the hosting environment, and the entity controlling the execution environment
obtains full access to the program, and can observe and manipulate the execution, code and data.

White box security stands in contrast to traditional cryptography, which assumes a trusted
platform, i.e., a black-box, on which secrets, e.g., private keys, can be stored. In black-box security
all the computations are performed inside a trusted black-box, and secrets (keys) never leave its
boundaries. Attackers can only observe the input/output behaviour, but cannot access the code or
data, or observe the execution inside the black-box. To support execution in untrusted environment,
this approach requires and relies on an additional tamper-resistant hardware module, e.g., a trusted
server as in [1]. In contrast, white box security does not assume a trusted module, and relies on
software hardening techniques, rather than depending on (specialized) hardware. In particular, the
software is hardened in order to prevent undetected tampering or exposure of secret information,
by providing integrity and con�dentiality of the execution and of the computations performed.

? Amir.Herzberg@gmail.com
?? Haya.Shulman@gmail.com

Although provably secure software hardening techniques exist for many applications, e.g., [4],
they are highly ine�cient for practical applications, and due to e�ciency considerations, software
hardening techniques employed in practice do not have a proof of security. Heuristic implementations
are a typical choice in practice, and often implementations gain reasonable security reputation
as a result of failed e�orts to cryptanalyse them, and as a result of build-break-�x1 paradigm.
Same approach is also taken in black-box cryptography, e.g., instead of implementing schemes with
provable security, cryptanalysis secure standards, such as AES [9], are employed, resulting in e�cient
and practical implementations. When security of the cryptographic primitive is not proven, robust
combiner is a safe choice, to ensure that the overall security of the cryptosystem will be as that of the
most secure underlying primitive. In this work we focus on robust combiners for software hardening
techniques. More speci�cally, we present a robust combiner for obfuscators, [2], in Section 2, and
a robust combiner for White-Box Remote Program Execution (WBRPE) schemes, [14], in Section
3. Our approach and constructions may constitute a methodology for future heuristic white-box
primitives. Robust combiners ensure that the scheme is at least as secure as the stronger one of
the underlying candidates. Robust combiners are employed for practical constructions to provide
security when the security of the underlying primitives is not known, e.g., the primitive is believed
to be secure due to failed crypt-analysis. Robust combiners are especially important in white-box
security, where mostly heuristic or cryptanalysis secure solutions are employed, since provably secure
solutions are ine�cient for practical purposes.

Obfuscation is a prevalent software hardening techniques used in practice, and can be employed
as a building block in higher layer protocols. Obfuscator O is an e�cient algorithm, that when
applied on some program P , see Figure 4, produces an obfuscated program P ′, that has the same
functionality as P (for any input, O(P) produces the same result as P), but its code is harder to
understand and analyse. There are many practical constructions of obfuscators, yet none is known to
be provably secure, and due to result of Barak et al. [2] we cannot hope for a universal obfuscator that
would turn the code of every program into one that is hard to understand and reverse engineer.
Since the security of existing obfuscators is not proven, robust combiners is a natural choice to
enhance security.

WBRPE is a white-box security building block, for remote program execution in hostile envi-
ronment presented by [14]. The authors suggest to apply a build-break-�x cycle to produce e�cient,
heuristic WBRPE constructions. This process may result in multiple, incomparable candidate prac-
tical and e�cient schemes; a robust combiner can combine such candidate schemes, and assure
security provided at least one of the candidates is secure.

We illustrate the WBRPE scheme in Figure 1. The WBRPE is comprised of two phases, the
generation phase, run by an o�ine trusted third party, and the protocol execution phase, run by
and between the local and the remote hosts. The trusted third party generates the parameters of
the scheme, i.e. the hardening key hk which is sent to local host, and the obfuscated virtual machine
(ovm), a `hardened' program, which is transfered to the remote host. The ovm emulates a trusted
(software only) platform, and executes the input programs supplied by the local host in a secure
manner. The local host uses the hardening key hk to harden programs P which it receives in an
input; it sends the `hardened program' Hhk(P) to the remote host for execution. The remote host
provides the hardened program and optionally local (`auxiliary') input a into the ovm; it also inputs

1 A software implementation is published for public scrutiny and undergoes extensive e�orts to cryptanalyse it.
If a weakness is found, it is being �xed, and the software is tested again for security. Eventually, a software
implementation is believed to be cryptanalysis secure, due to failed e�orts to cryptanalyse it.

2

the required running time t and the output length l to the ovm (to prevent side channel attacks).
The remote host returns the hardened result to the local host. We require that the local host learns
only the result of the computation of its program P on the input a of the remote, while the remote
host learns nothing at all.

WBRPE and obfuscator are software only techniques which are employed to harden programs for
execution in remote environment, yet depending on the application di�erent security requirements
should be ensured. Both WBRPE and obfuscator aim to hide the code of the executing program,
yet WBRPE, in contrast to obfuscation, also hides the output of the program, which can then be
recovered by the party that has the corresponding secret unhardening key. In obfuscation on the
other hand, once the program is obfuscated and sent to remote host, there is no further interaction
with the originator of the program, and the remote environment can execute the obfuscated program
on any input of its choice and observe the output.

Obfuscator can be used for software protection and licensing, where a program (implementing
some secret, proprietary algorithm) is distributed to users, that can evaluate the program on any
input and obtain result. For instance, a program can implement an algorithm that �nds prime
factors of a given composite number. The user purchases the program and can factor any number of
its choice. The goal is to prevent the malicious acts targeted at circumventing software protection
to recover the secret algorithm, e.g., by competitors.

WBRPE can be applied to ensure security to applications such as network gaming and on-
line trading center, voice over IP, and more. In these applications the goal not only to protect
the program but also the result of the program, to ensure privacy and to prevent tampering and
meaningful modi�cation of the result. We next review robust combiners, and then discuss obfusca-
tors and WBRPE. Eventually we present our contribution - robust combiners for WBRPE and for
obfuscators.

1.1 Our contribution: Robust Combiners for Obfuscators and for WBRPE schemes

We present robust combiners for software hardening, speci�cally for obfuscation [2] and for White-
Box Remote Program Execution (WBRPE) [14].

Applying obfuscator on an obfuscated program, i.e., combining obfuscators, is a folklore way
to enhance security, yet no formal construction prior to this work was given. In addition, whether
combining obfuscators indeed contributes to overall security has been controversial among practi-
tioners. In this work we precisely de�ne cascade combiner for obfuscation, and provide a formal
proof of security, i.e., we show that cascade is a robust combiner for obfuscation. Our combiner for
obfuscators is (1,2)-robust, i.e., it receives two obfuscators O′ and O′′, and produces a third obfus-
cator O that is secure according to virtual black-box property, if one of the underlying obfuscators
is virtual black-box secure. The cascade combiner for obfuscator O, see Figure 2, receives a program
P in an input, applies O′ and receives O′(P). It then provides O′(P) in an input to obfuscator O′′,
and returns the resulting obfuscated program O′′(O′(P)).

We also present a robust combiner for White-box RPE. WBRPE cascade combiner is (1,2)-
robust; it receives two WBRPE schemes, and produces a third WBRPE scheme that is secure if
one of the underlying schemes is secure. In fact, cascade is a robust combiner independently for the
con�dentiality (indistinguishability) and integrity (unforgeability) properties of WBRPE schems.
By cascading two WBRPE schemes, as in Figure 3, if one of the two provides indistinguishability
(unforgeability), then the cascade is a WBRPE scheme that provides indistinguishability (unforge-
ability, respectively). The combiners we present introduce an additional overhead, since the resulting

3

Hhk

a,t,l

Hhk(P)

OVM(Hhk(P),a,t,l)

G(1k)

Local Host

Remote Host

OVM

Trusted Third Party

P

y

uk
hk

OVM

Decode P

Encode y

y=Pt,l(a)

U

Fig. 1. WBRPE scheme is comprised of three parties the software originator, i.e., local host, the evaluator, i.e., the
remote host, and the trusted third party. The trusted party is used during the o�ine generation phase, to produce
the ovm and the hardening key hk. The local host obtains the hardening key hk which it uses to harden programs for
execution on remote host. The local host applies the hardening algorithm on the program which results in a one time
unhardening key uk and a hardened program Hhk(P), which it sends to the remote. The remote host obtains the ovm
from the trusted party and uses it to evaluate hardened programs which it receives from the local host. Intuitively,
ovm evaluates the program on the input of the remote host, and outputs the result. ovm can be implemented without
decoding the result and this is just an abstract, simpli�ed representation.

O

P

O'(P)

O''(O'(P))

O(P)

O'

O''

Fig. 2. Cascade obfuscator O receives a program P , and applies O′ and O′′ sequentially. The resulting obfuscated
program O′′(O′(P)) is then output.

complexity is the multiple of the complexities of the candidate schemes. Hence when the combiner
is applied repeatedly to combine n schemes, the complexity would be exponential in n (although in
practice we expect to combine only very few schemes, e.g., two). We leave it as an open question, to
investigate more e�cient constructions, or to prove lower bounds. In practice, programs are often

4

a,t,l

Hhk(P')

OVM(Hhk(P),a,t,l)

Local Host Remote Host

OVM

Trusted Third Party

P

y

uk

hk OVM

G'(1k)

G''(1k)

G(1k)

Hhk

H'hk'

CreatePrg

c
H''hk''

P'

uk' uk''

Uuk

U''uk''U'uk'

(hk',OVM')

Decode P'

Run P'

Encode P'

OVM''

ω'

OVM'

H'(P)P'=
uk=uk',uk''

CreateOVM

(hk'',OVM'')

hk=hk',hk'',OVM'

Fig. 3. Cascade WBRPE scheme.

run (or emulated) inside other programs, i.e., emulators. The basic idea of the WBRPE combiner
is the same, the ovm is executed inside another ovm.

1.2 Robust Combiners

The security of cryptographic constructions often depends on unproven hardness assumptions, or on
the security of primitives that withstood cryptanalysis attacks. A common approach employed to en-
hance security is to construct robust combiners, by combining two or more cryptographic primitives
into one, s.t. the resulting construction is secure even when only some of the candidates are secure.
Robust combiners can also be applied to ensure the correctness of the resulting combined scheme
and to prevent erroneous implementations or design bugs. Robust combiners for various crypto-
graphic primitives were shown, and alternately, an impossibility of achieving robust constructions
for others was presented.

The most well-known combiner is the cascade combiner, which is a sequential application of two
cryptographic primitives. Even and Goldreich [10] showed that cascade is a robust combiners of block
ciphers, against message recovery attacks. Cascade, and other basic robust combiners, were studied
by Herzberg [15], for encryption, MAC, signature and commitment schemes. Robust combiners were
also studied for other primitives, e.g. hash functions Fischlin and Lehmann [11], Boneh and Boyen
[3], private information retrieval (PIR) Meier and Przydatek [17] and oblivious transfer Harnik et al.
[13].

Robust combiners are especially important in the context of white-box security, where security
of practical candidates is not proven. Furthermore, the existing provably secure white-box primitives
are either restricted to a limited class of functions or ine�cient and as a result not applicable to

5

practical implementations. Therefore, practitioners have to use heuristic constructions, and currently
there isn't even a candidate whose security is su�ciently established; therefore robust combining of
candidates is highly desirable.

1.3 Software Hardening Techniques:

White-Box Remote Program Execution and Virtual Black-Box Obfuscation

In white-box security the attacker obtains full access to the implementation. This is in contrast to
traditional cryptography where a black-box (such as trusted hardware) is assumed to exist, on which
secrets can be stored. An attacker cannot access this black-box but can only observe the input-output
behavior of the cryptographic implementation, e.g. a server performing signature computations on
request. The inherent distinction in the attacker's abilities between the two models implies that
traditional cryptographic tools are not applicable to remote environments, since they rely on the
fact that the secrets used by the software do not reside on the same execution platform as the
malicious host, and are not accessible to the attacker. Therefore, alternative tools and techniques
have been proposed. We review these next.

Obfuscation A prevailing technique employed by practitioners to harden software for execution
in a remote environment is obfuscation, e.g. [7, 8]. There are practical and theoretical works on
obfuscation, including formal de�nitions and negative and positive results, which we brie�y survey
below. In [2] Barak et al. formalised the notion of obfuscation: an obfuscator O(·), is a probabilistic
polynomial time algorithm, which on an input a program P generates an obfuscated program O(P),
such that O(P) has the same functionality as P , is at most polynomially slower than P , but leaks
no more information about P than a black-box access would. Obfuscated program is then sent
o� to remote platform, see Figure 4. Intuitively this means that the resulting obfuscated program
should be harder to reverse engineer and to analyse. That is, the goal of obfuscation is to prevent
reverse engineering, and to make it hard to extract information from the binary code. Consider a

P

O
O(P)(·)

Fig. 4. A program P is obfuscated, and then sent to remote platform. The user controlling the execution environment
can execute the obfuscated program on any input of its choice and can observe the outputs. The virtual black-box
property requires that the user does not learn more about the program than an oracle access to the program would
reveal.

mobile agent purchasing goods on behalf of its originator. The agent purchases best o�er based

6

on its internal parameters and signs the purchase with an embedded secret signing key. If the
platform hosting the agent could extract the secret key, it could use it to sign any document of its
choice. However given a secure obfuscator, it would be possible to obfuscate the agent's code, thus
preventing key extraction and analysis of agent's code and data.

The result in [2] also showed that there are programs which cannot be obfuscated. Namely,
they showed that there does not exist an obfuscator that can protect every program's code from
exposing more than the program's input-output behavior. Thus the goal is to investigate obfuscators
for speci�c function families. Positive results in obfuscation presented constructions of obfuscated
functions e.g. [5, 18, 16], which are secure according to [2]. However none of these works show how
to construct an obfuscator, but construct obfuscated programs from `scratch'. Those results do not
su�ce for practical de�nition of `obfuscation' but they do exhibit a feasibility.

As for practical and commercial mechanisms based on obfuscation, those lack a clearly stated
security analysis, and rely on security by obscurity, which contradicts basic cryptographic principles,
and assume limited patience of the attackers when reverse engineering. Other proposed obfuscations
may rely on program analysis that is known to be pragmatically di�cult, however, are very suscep-
tible to continuing improvements in program analysis. Unfortunately, to date, no secure practical
obfuscation candidates are known to exist, e.g. it is not known how to obfuscate simple programs
that upon receipt of an encrypted input, decrypt and execute it, without revealing anything of the
inputs or computation.

Although virtual black box obfuscation is a prevalent software hardening technique used in
practice, it does not address security requirements of various applications, e.g., applications that
require privacy of the result of the obfuscated program's computation. In [14], authors presented
the White-Box Remote Program Execution scheme, which ensures privacy of the inputs as well as
of the result. We brie�y recap it next.

White Box Remote Program Execution (WBRPE) In Remote Program Execution, programs
are sent by a local host (a.k.a. the originator) for execution on a remote host, and possibly use some
data available to the remote host. The local and the remote hosts may be with con�icting interests,
therefore the related security issues need to be dealt with. In particular, these include con�dentiality
and integrity of input programs supplied by the local host and con�dentiality of inputs provided by
the remote host.

White-box remote program execution (WBRPE) schemes are designed to ensure con�dentiality
of the input program P and of the output (P (a)), and integrity of the output. In addition, WBRPE
ensures that the local host does not learn anything about the remote input a, beyond the result
of the program applied to it (P (a)). All this should be ensured using software only, i.e., without
assuming secure hardware, e.g. smartcards. WBRPE schemes can be employed to facilitate a variety
of applications. For example, they can be applied in grid computing applications, to send a program
for execution on an (untrusted or insecure) remote host. Another example is a mobile agents that
traverse the Web, e.g. purchasing goods or searching for speci�c information. Such agents may
include secret data, e.g., signing key, and therefore needs to be protected from a possibly hostile
host, which may try to learn the secrets. There are also applications where the `plain' WBRPE
may not su�ce, since it does not su�ciently protect the interests of the remote host, i.e., does not
restrict the programs that can be executed on the input of the remote host a. The local host can
send any program to the remote host; in particular it can learn arbitrary parts of the data a of the
remote host or even all of it, by sending a program that computes an identity function. Speci�cally,

7

in many cases, the remote host may want to restrict the set of programs it is willing to run, e.g., to
limit exposure of the remote input a, to charge di�erently for di�erent types of queries, or to apply
access control policy. Many of these applications fall into the category of online databases kept by
the remote host, which needs to restrict access by the local host to the database. This is related
to the problem of Private Information Retrieval in [6], but we want to protect the privacy of both
parties, the remote host (server) which holds the database and the local host (client) who wishes
to query the database. The input `program' supplied by the local host (client) is a query, and the
remote input of the remote host (server) is the database. We want to allow the remote host to de�ne
some restrictions (policy) on the allowable queries (or programs).

This can be achieved by validating the inputs supplied by the local host. The remote host
provides its validation policy V as input to the generation process run by the trusted third party;
The ovm will now also validate that P (supplied by local host) is `valid', by applying V . As a result,
the privacy and the integrity of both inputs of the client and the server are preserved, since the
server cannot observe the queries submitted by the client, and the client receives results only for
allowed queries.

We now give few details on the components of WBRPE scheme. A WBRPE scheme is composed
of three e�cient procedures, generation, hardening and unhardening, see Figure 1:

� The generation procedure produces a hardening key hk, and a program, which we call the
obfuscated virtual machine (ovm).

� The hardening key hk is used by the hardening procedure to harden, e.g. encrypt and/ or
authenticate, the input programs.

� The obfuscated virtual machine ovm receives a hardened input program along with input from
the remote host. It decodes the hardened program, e.g. decrypts and/ or validates it, and returns
the encoded result, e.g., encrypted and/or authenticated, of the program applied to the inputs.

� The unhardening procedure `unhardens', e.g. decrypts and validates the result received from the
remote host.

2 Cascade Combiner for Obfuscators

In this section we present the �rst robust cascade combiner for obfuscation. The combiner we
construct is natural and folklore, yet was not formally de�ned and proved secure prior to this work.
The construction of the combiner is simple yet the security is not directly implied, and needs to be
explicitly proven. More speci�cally, the proof requires a re�ned de�nition of obfuscation, which we
give and motivate below.

We initiate with re�ned de�nition of obfuscation, which is based on the de�nition given by Barak
et al. in [2], and then present cascade combiner construction for obfuscation and prove its security.

2.1 Virtual Black-Box Obfuscation: De�nition

According to [2], universal obfuscator for every program does not exist, therefore we use the de�nition
of obfuscation w.r.t. a family of programs. To simplify exposition, in de�nition below we de�ne
obfuscation w.r.t. a family of circuits (instead of programs). The di�erence between circuits and
programs, is that circuits are de�ned for a speci�c input size, therefore no need to explicitly refer
to running time and other technicalities. We next give two de�nitions of obfuscation: De�nition 1
says nothing of security, but only speci�es correctness and functionality properties; De�nition 2,

8

in addition to correctness and functionality, also de�nes security of the obfuscator. The distinction
between the two de�nitions, 1 and 2, is essential to emphasise that not every obfuscator delivers on
the `expected' security.

De�nition 1 (Obfuscation). Let C = {Ck} be a family of polynomial size circuits of input length

k. A polynomial time algorithm O on C is an obfuscator that takes as input a circuit C from Ck,
and outputs an obfuscated circuit O(C) ∈ Ck, s.t.:

� (Preserving Functionality) For every k, and every C ∈ Ck, O(C) is a circuit that computes the

same function as C.

� (Polynomial Slowdown) Obfuscated circuit O(C) is roughly as e�cient as a circuit C, i.e., there

exists a polynomial p(·), such that for su�ciently large k's, for every C ∈ Ck holds: |O(C)| ≤
|p(|C|)|

De�nition 2 (Virtual Black-Box Obfuscation). Let C = {Ck} be a family of polynomial size

circuits of input length k. A polynomial time algorithm O on C is an obfuscator that takes as input

a circuit C from Ck, and outputs an obfuscated circuit O(C) ∈ Ck, s.t.:

� (Preserving Functionality) For every k, and every C ∈ Ck, O(C) is a circuit that computes the

same function as C.

� (Polynomial Slowdown) Obfuscated circuit O(C) is roghly as e�cient as a circuit C, i.e., there

exists a polynomial p(·), such that for su�ciently large k's, for every C ∈ Ck holds: |O(C)| ≤
|p(|C|)|

� (Virtual Black-Box) For every polynomial p(·) and every probabilistic polynomial time algorithm

A, there exists a probabilistic polynomial time simulator S, such that for all su�ciently large

k's, for all C ∈ Ck, holds:∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1k) = 1]
∣∣∣ < 1

p(k)

Where the probabilities are taken over the random coins of A and S.

Several comments related to above de�nitions are in order:

� The de�nition presented in [2] is a special case of virtual black-box de�nition given in 2, where
the family of circuits Ck is de�ned to be all the circuits.

� De�ning two types of obfusctors, one w.r.t. functionality and correctness, and another that is
also secure (which is also true in reality, an obfuscator can be correct, but not deliver on its
security guarantees) is important for cascade combiner, which we show below, to show that it
su�ces for only one of the underlying obfuscators, input to the combiner, to be secure according
to De�nition 2, so that the cascade obfuscator results in a secure obfuscator, according to
De�nition 2.

� Another subtlety which should be explicitly dealt with when de�ning obfuscation (and cascade
combiner thereof) w.r.t. family of circuits, is that the family of circuits should be closed for
obfuscation and for cascade of obfuscators. Namely, upon input a circuit C from family of
circuits Ck, the result is an obfuscated circuit O(C) which is also an element in the family Ck.
The obfuscated circuit O(C) can thus be supplied in an input to obfuscator O (since O is de�ned
for Ck) again, and will result in O(O(C)), which is also an element in Ck. This technicality is
motivated by the fact that practical obfuscators are typically written in the same language as
the programs on which they are applied.

9

2.2 Cascade Combiner for Obfuscation: Construction

De�nition 3 (Cascade of Obfuscators). Let O′ and O′′ be two obfuscators for circuits family

Ck. Their cascade obfuscator O = O′ ◦ O′′ is presented in Algorithm 1.

Algorithm 1 Construction of cascade obfuscator O.On input a circuit C ∈ Ck, O �rst applies O′ on C and obtains
C′ ∈ Ck. Then O runs O′′ on C′ and as a result receives C′′ ∈ Ck; O outputs C′′.

O(C) {
C′ ← O′(C)
C′′ ← O′′(C′)
return C′′

}

Intuitively, the resulting combined obfuscator O is virtual black-box secure, according to De�nition
2, if at least one of the underlying obfuscators, O′ or O′′, is virtual black-box secure, i.e., satis�es
the properties in De�nition 2, and the other is obfuscator according to De�nition 1. Assume that
O′ is virtual black-box secure, then the circuit is hidden and even if the external O′′ exposes it, the
security relies on the security of O′. A similar argument holds for O′′. We next present a formal
and detailed proof of the cascade construction (Algorithm 1), and show that cascade is robust for
virtual black-box obfuscation.

Lemma 1 (Cascade is Robust for Obfuscation) Let O′ and O′′ be two obfuscators for circuits
family C, the cascade O = O′ ◦ O′′ is a virtual black-box obfuscator for circuits family C, according
to De�nition 2, if at least one of O′ or O′′ is virtual black-box secure for C.

Proof. In order to show that cascade is robust for obfuscators, we prove that O satis�es the func-
tionality and the security requirements in De�nition 2. We �rst show that O is indeed an obfuscator,
i.e., satis�es the e�ciency and correctness requirements in De�nition 1.
Preserving Functionality: Let C ∈ Ck. Then according to functionality requirement of O′, the ob-
fuscated circuit O′(C) = C ′ is also an obfuscator, i.e., C ′ ∈ Ck, and has the same functionality
as C. Obfuscator O′′ also satis�es a functionality requirement, and therefore when applied on C ′

it produces an obfuscated circuit C ′′, i.e., C ′′ = O′′(C ′), such that C ′′ is also a circuit C ′′ ∈ Ck,
and has the same functionality as C ′. Since C, C ′ and C ′′ all compute the same function, cascade
obfuscator preseves the functionality of the original circuit C.

Polynomial Slow Down: Cascade obfuscator O applies O′ on C, then O′′ on O′(C), and out-
puts the result. According to de�nition, there exists a polynomial p′(·) bounding the encoding
of the obfuscated circuit O′(C) (and thus its running time), and there exists a polynomial p′′(·),
bounding the size of O′′(O′(C)); composition of polynomials p′(·) and p′′(·) is a polynomial, i.e.,
|O(C)| ≤ p′′(|p′(|C|)|), thus O is e�cient if O′ and O′′ are.

We next show that obfuscator O is virtual black-box secure, according to De�nition 2.
Virtual Black-Box: Assume towards contradiction that there exists a PPT algorithm A and a poly-
nomial p(·), such that for every simulator S holds:∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1k) = 1]

∣∣∣ ≥ 1
p(k)

10

Given a PPT algorithm A against O we construct PPT algorithms A′ and A′′ against O′ and O′′
respectively, s.t. for every C ∈ Ck holds:

Pr[A′(O′(C)) = 1] = Pr[A(O(C)) = 1] (1)

∀C,∃C ′, s.t. Pr[A′′(O′′(C ′)) = 1] = Pr[A(O(C)) = 1] (2)

Where C ′ is a result application of O′ on C. We prove equations (1) and (2) in Claims 2 and 3.
We then show, in Claims 4, and 5, that there do not exist simulators S′ and S′′ for A′ and A′′

respectively. Namely, given S′ (respectively S′′) we show how to construct a simulator S for A, thus
obtaining:

Pr[S
′C(1k) = 1] = Pr[SC(1k) = 1] (3)

Pr[S
′′C
′
(1k) = 1] = Pr[SC(1k) = 1] (4)

However, existence of a simulator S for A contradicts the initial assumption, that there does not
exist a simulator for A. More speci�cally, if there exists an A for which no simulator exists, we can
use it to construct A′ and A′′ against O′ and O′′. Thus the advantage of A′ and A′′ over S′ and S′′

respectively, is equivalent to the advantage of A over S:∣∣∣Pr[A′(O′(C)) = 1]− Pr[S
′C(1k) = 1]

∣∣∣ = ∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1k) = 1]
∣∣∣ (5)∣∣∣Pr[A′′(O′′(C ′)) = 1]− Pr[S

′′C
′
(1k) = 1]

∣∣∣ = ∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1k) = 1]
∣∣∣ (6)

Therefore, cascade is robust for virtual black-box obfuscation, and O is a secure obfuscator. ut

Claim 2 Given a PPT algorithm A, there exists a PPT algorithm A′, s.t., for in�nitely many k's
equation 1 holds.

Proof. Let A be a PPT algorithm against O. We use A to construct A′. The algorithm A′, in Algo-
rithm 2, will receive an obfuscated program O′(C), and will emulate the execution of A providing
it with O′′(O′(C)) and will output whatever A outputs. Since A′ applies O′′ on O′(C) and invokes
A with the resulting program, it is e�cient if A is e�cient, and achieves the same probability as A,
i.e., Equation 1 holds. ut

Claim 3 Given a PPT algorithm A, there exists a PPT algorithm A′′, s.t., for in�nitely many k's
equation 2 holds.

Proof. Let A be a PPT algorithm against O. We use A to construct A′′. The algorithm A′′, in
Algorithm 2, will receive an obfuscated program O′′(O′(C)), will invoke A with O′′(O′(C)) and will
output whatever A outputs. Since A′′ only invokes A, it is e�cient if A is e�cient, and achieves the
same probability as A, i.e., Equation 2 holds. ut

Claim 4 Given a PPT simulator S′ there exists a PPT simulator S such that Equation 3 holds.

Proof. Let S′ be a PPT simulator for which A′ cannot achieve a non-negligible advantage against
O′. We use S′ to construct S, such that A will not be able to achieve non-negligible advantage
against S contradicting the assumption. The algorithm S is given access to C, it simply invokes S′

and provides it with an oracle access to C, in Algorithm 3. For each input query of S′, S queries C
and returns the result to S′, precisely simulating the real execution to S′; thus Equation 3 holds. ut

11

Algorithm 2 Given an algorithm A against O, we construct algorithms A′ and A′′, against O′ and O′′ respectively,
that achieve the same advantage as A.

A′(C′ = O′(C)) {
C′′ ← O′′(C′)
return A(C′′)
}

A′′(C′′ = O′′(O′(C))) {
return A(C′′)
}

Claim 5 Given a PPT simulator S′′ there exists a PPT simulator S such that Equation 4 holds.

Proof. Let S′′ be a PPT simulator for which A′′ cannot achieve a non-negligible advantage against
O′. We use S′′ to construct S such that A will not be able to achieve non-negligible advantage
against S contradicting the assumption. The algorithm S is given access to C, it invokes S′′ and
provides it with an oracle access to C, in Algorithm 3. For each input query of S′′, S queries C and
returns the result to S′, precisely simulating the real execution to S′; thus Equation 4 holds. ut

Note that the simulator S is implemented identically when using S′ or S′′. This is due to the fact that
the simulator S obtains an oracle access to C, and has to simulate execution for S′ and S′′, which
receive an oracle access to C and C ′. Yet according to de�nition of obfuscator, the functionality is
preserved, thus all S should do, is query its own oracle upon requests from S′ (resp. S′′) and return
the responses as is.

Algorithm 3 Given a simulator S′ (respectively, S′′) we show how to construct S that will achieve the same
advantage when given a black-box access to C.

SC(1k) {
return S

′C(1k)
}

SC(1k) {
return S

′′C
′
(1k)

}

3 Cascade Combiner for WBRPE Schemes

In this section, we present a `cascade' combiner for WBRPE scheme (see recap of de�nitions in
Appendix, Section A), as illustrated in Figure 5. Given two candidate WBRPE schemes W ′ and
W ′′, we combine them into one WBRPE scheme W = W ′ ◦W ′′. Essentially, we combine the OVM
of W ′ with the input program P , to create the program to be hardened by W ′′. The construction
is presented in Algorithm 4. In the sequel we shall refer to W ′ as an internal scheme and to W ′′ as
an external scheme. We next give an intuitive, high level description of the design.

The main idea behind the combiner is that even if one of the schemes is insecure, e.g., one
of the OVM's does not protect the memory contents, or if one of the schemes is incorrect, e.g.,
exposes the secret input program, then the overall construction will pertain security and correctness.
Namely, the resultant scheme preserves indistinguishability, if one of the input candidates preserve
indistinguishability. This holds since the inner OVM' is hidden by an outer OVM�. Therefore, even if
the outerOVM� is not secure, i.e., does not `hide' the programs that it executes, the combined scheme
is secure, since the attacker cannot inspect the original input and output. Alternately, if the inner
OVM' is not secure, the outer OVM� protects the computations. Similarly, the combined scheme
preserves unforgeability of program and output, if one of the candidates ensures unforgeability of
program and output, respectively.

12

Technicalities

� we include the t and l parameters in the construction, in order to prevent the adversary from
distinguishing the input programs by their running times or output length. The t and l speci�ed
by the remote host are the bounds on the running time and output length of the input program
P . In the combiner we have two programs P and P ′, such that for each input program P , we
generate an external program P ′ that is to be executed by OVM. Hence we need to supply
the OVM with the correct bound on P ′ running time and output length. We assume that we
are given the polynomial bounds T ′(·) and L′(·), on the running time and the output length
of the internal WBRPE scheme W ′. The OVM upon input t and l will calculate the respective
running time t′ and output length l′, and supply them to OVM'. More speci�cally, there are
t′ = T ′(t, k, l) steps performed by P ′, and the output length of P ′ is l′ = L′(l, k). In particular,
the t′ and l′ will specify the length of ω′ returned by the inner scheme W ′, and the running time
of P ′.

� The macros createOVM and createPrg receive input parameters and generate a string, which
is an encoding of a program. The createOVM receives an OVM� and a security parameter k.
It then generates and returns an encoding of the OVM program which will be executed on the
remote host (the OVM program is encoded as a string). Similarly, the createPrg generates a
string encoding the program P ′.

De�nition 4 (Cascade of WBRPE schemes). Let T (·) and L(·) be two polynomials. Given

two candidate WBRPE schemes W ′ and W ′′, where W ′′ = (G′′,H′′,U ′′) and W ′ = (G′,H′,U ′), we
denote their cascade by W = W ′ ◦W ′′, where W = (G,H,U) with L(·) bounding its output length

and T (·) bounding its running time, and (G,H,U) are PPT algorithms, presented in Algorithm 4.

Algorithm 4 The cascade WBRPE combiner (G,H,U) with createOV M and createPrg macros, creating the
OVM of the cascade WBRPE and the external program P ′ supplied as input to H′′, respectively. Macros return the
code (program) after incorporating their parameters.

G(1k) {
〈hk′, OV M ′ 〉 R← G′(1k)

〈hk′′, OV M ′′ 〉 R← G′′(1k)
hk = 〈hk′, hk′′, OV M ′〉
OV M ← createOV M(OV M ′′, k)
return 〈hk, OV M〉
}

H〈hk′,hk′′,OV M′〉(P) {
(c′, uk′)← H′hk′(P)
P ′ ← createPrg(c′, OV M ′)
(c, uk′′)← H′′hk′′(P

′)
uk = 〈uk′, uk′′, P, P ′〉
return 〈c, uk〉
}

U(uk=〈uk′,uk′′〉)(ω, P, t) {
〈y, P ∗, t∗〉 ← U ′uk′(U ′′uk′′(ω))
if ((P = P ∗) ∧ (t = t∗)) return y
else return ⊥
}

createOV M(OVM� ,k) {
return "OV M(c, a, t, l)

t′ = T ′(t, l,k) + 2
l′ = L′(l,k)
a′ = (a, t, l)
return OVM�(c, a′, t′, l′)"

}
createPrg(c',OVM') {

return "P ′(a′)
(a, t, l)← a′

return OVM'(c', a, t, l)"
}

13

3.1 Generation Procedure G

The generation procedure G of W = W ′ ◦W ′′, in Algorithm 4, is performed by a trusted third party,
and generates the parameters of WBRPE by applying the generation procedures of both candidates
(G′ of W ′ and G′′ of W ′′). The generated parameters are as follows:

� The hardening key hk consists of the concatenation of the hardening keys generated by both
candidates W ′ and W ′′, and of the encoding of the OV M ′ generated by G′. The hardening key
hk is returned to the local host, and in case of a private WBRPE the hk is kept secret on the
local and is assumed not to be known to other parties.

� The OV M of the combined scheme W is generated applying the createOV M macro, in Sub-
section 3.1, during the generation phase by the third party. The third party is particularly
important due to the fact that the local and the remote may not trust each other, e.g., each
may have con�icting interests. As a result, neither the local nor the remote can be trusted to
generate the OVM correctly, since the local may try to expose the secret input of the remote,
or to disrupt the execution platform of the remote, while the remote host may try to expose the
secret input of the local, or to change the computation.

createOVM and createPrg Macros These are functions that encode programs as strings, in
order to transfer them securely to remote host for execution. More speci�cally, they generate the
programs for W ′′, in particular the OVM� and the program P ′. The createOV M macro calculates
the corresponding running time t′ and output length l′, for OVM�, generates the remote input a′

which is comprised of the remote input a and the original t and l parameters for OVM', and runs
the OVM�. The createPrg macro generates the input program P ′ for W ′′, which is an OVM' with
the input parameters (a, t, l).

3.2 Hardening Procedure H

The hardening procedure, H of W = W ′ ◦ W ′′, in Algorithm 4, applies H′ and then H′′. This
ensures that the overall construction will still protect the input programs even if one of the schemes
is insecure. In particular, H, upon input a program P and a hardening key hk = 〈hk′, hk′′, OV M ′〉,
operates as follows:

� Upon input a program P , the local host applies the `internal' hardening procedure H′hk′ on P ,
obtains the hardened program c′ and the unhardening key uk′.

� The local host then generates a program P ′, de�ned in 4, which is essentially an OVM' instanti-
ated with a hardwired hardened program c′. The P ′ program returns the result of the execution
of OVM' on c′ and a remote input a. P ′ itself is run inside OVM�, ensuring that even if one of
the obfuscated virtual machines, OVM'or OVM� are not secure, e.g., leaks information about
the program it executes, the overall construction remains secure.

� Then the program P ′ is hardened using the external hardening procedure H′′hk′′ , resulting in a
pair c and uk′′, such that c is sent to the remote host for execution by OVM, while 〈uk′′, uk′〉
is stored on the local host in order to recover the �nal result of the computation upon response
from the remote host.

14

3.3 Unhardening Procedure U

The unhardening procedure U of W = W ′◦W ′′, in Algorithm 4, receives the ephemeral unhardening
keys, i.e. uk = 〈uk′, uk′′〉, and applies U ′ and U ′′, of the given candidates, and recovers the result
of the computation of P on a. If the input program P , and the number of computations steps t
are provided, the local host can also validate the result. Both validations by U ′ and by U ′′ ensure
robustness in case one of the candidates is erroneous.

OVM(c,a,t,l)
t'=T'(t); L'=L'(L);
a'=(a,t,L);
run OVM''

OVM''(c,a',t',l')
unharden c and obtain P'
run P't',l'(a')P'(a'')

Parse a' and obtain (a,t,l)
return OVM'(c',a,t,l)

OVM'(c',a,t,l)
unharden c' and obtain P

harden w' and obtain w
return wreturn w'

c= H''hk''(P').c

return w

run VM(P,a,t,l), obtain y

Harden y and obtain w'

Fig. 5. OVM on the remote host.

4 Cascade is a Robust Combiner for WBRPE Schemes

In this section we show that cascade is a (1,2)-robust combiner for the security speci�cations of
WBRPE. Namely, if one of the candidates satis�es the security speci�cations of WBRPE, then the
cascade satis�es the security speci�cations of WBRPE, i.e. indistinguishability and unforgeability
of the program and result. We prove this in Theorem 6 below.

We use ϕ = PK to indicate public key scheme, i.e. the adversary receives the public hardening
key hk, and ϕ = SK to de�ne private key scheme, i.e. the adversary obtains oracle access to the
hardening functionality.

Theorem 6 (Cascade is a Robust Combiner for WBRPE Schemes). Let W ′ and W ′′ be
WBRPE schemes. For ϕ ∈ {PK,SK}, the combined WBRPE scheme W = W ′′ ◦W ′, is:

� WB − IND−CPA− ϕ secure if at least one of W ′ or W ′′ is WB − IND−CPA− ϕ secure.

15

� UNF − ϕ secure if at least one of W ′ or W ′′ is UNF − ϕ secure.

Proof. Given a PPT algorithm A against W we construct PPT algorithms A′ and A′′ against W ′

and W ′′, respectively, s.t.:

AdvWB−IND−CPA−ϕ
W ′,A′ (k) = AdvWB−IND−CPA−ϕ

W,A (k) (7)

AdvWB−IND−CPA−ϕ
W ′′,A′′ (k) = AdvWB−IND−CPA−ϕ

W,A (k) (8)

AdvWB−UNF−ϕ
W ′,A′ (k) = AdvWB−UNF−ϕ

W,A (k) (9)

AdvWB−UNF−ϕ
W ′′,A′′ (k) = AdvWB−UNF−ϕ

W,A (k) (10)

Due to space restrictions full proofs of equations (7), (8), (9), (10), are in Appendix, Sections B.1
and B.2.

References

[1] Joy Algesheimer, Christian Cachin, Jan Camenisch, and Gunter Karjoth. Cryptographic security for mobile
code. In SP '01: Proceedings of the 2001 IEEE Symposium on Security and Privacy, page 2, Washington, DC,
USA, 2001. IEEE Computer Society.

[2] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang.
On the (im)possibility of obfuscating programs. In CRYPTO '01: Proceedings of the 21st Annual International
Cryptology Conference on Advances in Cryptology, London, UK, 2001. Springer-Verlag. ISBN 3-540-42456-3.

[3] D. Boneh and X. Boyen. On the impossibility of e�ciently combining collision resistant hash functions.
[4] Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Muller. One-round secure computation and secure

autonomous mobile agents. In Automata, Languages and Programming, pages 512�523, 2000. URL citeseer.

ist.psu.edu/article/cachin00oneround.html.
[5] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial information. In Burton S.

Kaliski, Jr., editor, Advances in Cryptology � CRYPTO ' 97, volume 1294 of Lecture Notes in Computer Science,
pages 455�469. International Association for Cryptologic Research, Springer-Verlag, Berlin Germany, 1997. URL
http://philby.ucsd.edu/psfiles/97-07.ps(longerToCLversion,June2,97).

[6] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private Information Retrieval. Journal of the ACM, 45
(6):965�982, 1998.

[7] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations. University of Auckland
Technical Report, 170, 1997.

[8] CS Collberg and C. Thomborson. Watermarking, tamper-proo�ng, and obfuscation-tools for software protection.
Software Engineering, IEEE Transactions on, 28(8):735�746, 2002.

[9] J. Daemen and V. Rijmen. The Design of Rijndael: AES�the Advanced Encryption Standard. Springer, 2002.
[10] S. Even and O. Goldreich. On the power of cascade ciphers. In D. Chaum, editor, Proc. CRYPTO 83, pages

43�50, New York, 1984. Plenum Press.
[11] M. Fischlin and A. Lehmann. Multi-Property Preserving Combiners for Hash Functions.
[12] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press New

York, NY, USA, 2004.
[13] D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On robust combiners for oblivious transfer and other

primitives. Proc. EUROCRYPT 2005, pages 96�113, 2005.
[14] A. Herzberg, H. Shulman, A. Saxena, and B. Crispo. Towards a theory of white-box security. In Emerging

Challenges for Security, Privacy and Trust: 24th I�p Tc 11 International Information Security Conference, SEC
2009, Pafos, Cyprus, May 18-20, 2009, Proceedings, page 342. Springer, 2009.

[15] Amir Herzberg. Folklore, practice and theory of robust combiners. Cryptology ePrint Archive, Report 2002/135,
2002. http://eprint.iacr.org/.

[16] S. Hohenberger and G.N. Rothblum. Securely Obfuscating Re-Encryption. TCC, pages 233�252, 2007.
[17] R. Meier and B. Przydatek. On robust combiners for private information retrieval and other primitives. Proc.

CRYPTO 2006, pages 555�569, 2006.
[18] Wee. On obfuscating point functions. In STOC: ACM Symposium on Theory of Computing (STOC), 2005.

16

citeseer.ist.psu.edu/article/cachin00oneround.html
citeseer.ist.psu.edu/article/cachin00oneround.html
http://philby.ucsd.edu/psfiles/97-07.ps (longer ToCL version, June 2, 97)
http://eprint.iacr.org/

A White-Box RPE De�nitions

In this section, we recap the de�nitions of WBRPE from [14]. A WBRPE scheme W , in Figure
1, is comprised of three e�cient algorithms, (G,H,U) for generation, hardening and unhardening,
respectively. The generation procedure G generates the obfuscated virtual machine ovm and the
hardening key hk. The hardening procedure Hhk is applied by the local host on the input program
P , and produces two outputs: the `hardened' program Hhk(P), which is sent to the remote host for
execution, and a one time unhardening key uk, which is to be used by the local host to unharden,
i.e., recover, the result of the program executed by the remote host. The remote host passes the
hardened program, along with the remote input a to the ovm for execution. The ovm has the
required corresponding keys, and can therefore extract and evaluate the program. Next, the ovm
computes the result of P on a, and returns the (hardened) output ω. The local host, upon receipt of
the hardened output ω, applies the unhardening procedure U with the unhardening key uk, that it
received from the hardening procedure, to obtain the �nal result of the computation. The de�nition
follows.

Given a Turing machine P ∈ TM, let P (a) denote a value of the computation of P on a. In order
to prevent side channel attacks, we bound the computation time of P on a to t steps and restrict
the output length to l bits. Let Pt,l(a) = Pt(a)[1...l] denote an l bit value of the t step computation
of P on input a.

De�nition 5 (WBRPE). A White Box RPE scheme W for programs family {Pk}k∈N is a tuple

W = 〈G,H,U〉 of PPT algorithms, s.t. for all (hk,ovm) R← G(1k), P ∈ TM, ovm ∈ PPT , a ∈
{0, 1}∗, t, l ∈ N and (c, uk)← Hhk(P) holds:

Pt,l(a) = Uuk(ovm(c, a, t, l))

In the subsequent subsections we present the security speci�cations of WBRPE.

Discussion

� The bound on the number of execution steps may be of commercial value in many practical
scenarios, where the remote host charges the local host per execution cycles. In this case the
local would want an assurance that the remote could not have faked the result, or the number
of execution steps.

� The hardening key hk can be either public or private. We present a general de�nition, and robust
combiners capturing both options. When hk is secret, there is a unique ovm for every local host,
and only the possessor of the corresponding unhardening key uk can recover the result of the
computation. Alternately, when the hardening key hk is public, everyone can harden programs
and send to ovm for execution. The obvious advantage of the public key WBRPE is in its
�exibility, i.e. new hosts can join the system without any e�ort, e.g. a marketplace scenario
where everyone can work with one central remote host and the same ovm.

� In the security speci�cations we use a �ag ϕ to di�erentiate between public and private key
schemes, s.t. when ϕ = PK, the adversary receives a public hardening key hk, whereas when
ϕ = SK the adversary only receives an access to a hardening oracle.

17

A.1 Con�dentiality (Indistinguishability) of the Local Inputs

The program supplied by the local host, may contain secret information, e.g. secret encryption or
signature key, therefore it is necessary to hide the contents of the input programs from the remote
host. To ensure local inputs privacy, a variation of the indistinguishability experiment for encryption
schemes is employed.

More speci�cally, the experiment generates the hardening key hk and the obfuscated virtual
machine ovm, and invokes the adversary with an ovm in an input, and with oracle access to
hardening procedureHhk. The adversary selects two programs of equal size, and speci�es the number
of steps to execute them, and the required output length. One of the programs is selected and
hardened by the experiment and the adversary obtains the hardened program (but does not obtain
the unhardening key required to recover the result of the computation). The adversary can execute
the program on any input of its choice polynomially many times, and eventually it returns a bit b′,
specifying which of the two programs it selected was hardened. If the adversary guessed correctly,
i.e., b = b′, then the experiment returns 1, in which case the adversary won, otherwise the experiment
returns 0, i.e. the adversary lost. The scheme is secure if any adversary cannot distinguish (but with
a negligible probability) between executions of two di�erent programs, that are limited to the same
number of execution steps, and producing outputs of same length (the result can be padded or
truncated to reach same length). Formal de�nition is in full version of the paper.

A.2 Unforgeability of the Result Speci�cation

When a program leaves the local host it is subject to tampering by the remote host, which may
attempt to change the result of the computation. In some scenarios, e.g. shopping mobile agent,
a remote host may try to change the result of the programs sent by the originator, e.g. such that
instead of looking for the best o�er the agent purchases the most expensive item. Our goal is to
circumvent adversarial attempts to forge the result output by the scheme. This is captured by the
unforgeability speci�cation, based on unforgeability experiment for e.g., signature scheme Goldreich
[12].

The unforgeability experiment applies the generation procedure and obtains hardening key hk,
and ovm. It then invokes the adversary A = (A1, A2) with an oracle access to hardening procedure,
and with the ovm in an input. The adversary returns a challenge program for which it has to
produce a forgery. The experiment applies the hardening procedure on the program producing two
outputs, i.e. the hardened program (which the adversary A2 obtains) and the unhardening key which
is used to recover the �nal result of the computation. The adversary is invoked with a hardened
program and the state from a previous invocation. Eventually, the adversary outputs a forgery ω.
The experiment applies the unhardening procedure U along with the unhardening key uk in order
to recover the result of the computation y. If y is valid, then the experiment checks if it is a forgery
for a given P for any t and a, and if yes, returns 1, i.e. the adversary successfully generated a forgery,
otherwise returns 0, the adversary failed.

In private WBRPE the adversary is given an oracle access to hardening functionality for its
queries, therefore it is possible to keep track of the programs the adversary hardened. In contrast, in
public WBRPE the hardening key hk is public and the ovm has the corresponding secret unhard-
ening key, i.e. everyone can harden programs for execution. The implication is that after recovering
the result by applying the unhardening procedure, it cannot be known what input program was
hardened to produce the result. As a result, it is impossible to impose any assumption on the input

18

program, and it can only be guaranteed that the output is a result of the computation of the input
program on some remote input. A possible solution is to supply the program to the local host as
part of the unhardening key uk and then to compare the program returned by the adversary to the
program supplied as part of uk. However in case there are other legitimate recipients in addition to
the originator, it may be desirable to keep the input program secret and to allow others to obtain
the result of the execution only. Therefore, we prefer a more general security speci�cation.

We require, that given some input program P , the result that the local host obtains is for the
program P that it supplied. We model this requirement by ensuring that the adversary can produce
an output ω which is not the result of the computation of P on some remote input a, with only
a negligible probability. Forgery means that the output is not a result of the computation of the
input program on any remote input. Speci�cally, the adversary successfully generated an output ω,
s.t. the result y ← Uuk(ω) is valid but could not have been generated by the hardened program P ,
i.e. ∀a y 6= Pt,|y|(a). Formal de�nition in full version of the paper.

B Cascade is Robust for WBRPE

B.1 Cascade is Robust for WBRPE w.r.t. Indistinguishability Speci�cation

In this subsection we show that cascade is (1,2)-robust combiner for indistinguishability speci�cation
of the WBRPE, i.e. the equations 7,8 in Lemmas 7,8, respectively.

Lemma 7 Given a PPT adversary A = (A1, A2), there exists a PPT algorithm A′ = (A′1, A
′
2), s.t.

for in�nitely many k's equation 7 holds for ϕ ∈ {PK, SK}.

Proof. Let A = (A1, A2) be a PPT algorithm against the combined WBRPE scheme W . The al-
gorithm A has an in�nite length random tape, r, such that during the execution A reads random
bits of the random tape. We construct a PPT algorithm A′ = (A′1, A

′
2), in Algorithm 7, against a

candidate WBRPE scheme W ′, that uses A and W ′ as black boxes. A′ simulates the indistinguisha-
bility experiment, described in Section A.1, of the combined WBRPE scheme for A, by generating
the corresponding parameters, and supplying responses to its hardening oracle queries. A′ supplies
A with the random coins for its execution. Eventually A′ returns A's answer.
In order to simplify the reasoning behind the random tapes and their usage, we re-write both ex-
periments, i.e. the indistinguishability experiment of the candidate WBRPE scheme W ′ against A′,
and the indistinguishability experiment of the combined WBRPE scheme W against A, using the
vectors of random tapes r′ and r respectively, see Experiments 5, refwbrpe:cascade:expt:ind:a'.

The indistinguishability experiment against W , Experiment 5, is supplied with �ve in�nite
random tapes, r, rH′1

, rH′′1
, rH′2

and rH′′2
, where rH′1

and rH′′1
are supplied to the hardening oracle

during the �rst stage of the experiment and rH′′2
and rH′′2

during the second stage. During each
execution step it reads the corresponding bits o� the random tapes. The random tape rH′ and
rH′′ are provided to the hardening oracle HO directly, which requires the random bits in order to
respond to the hardening queries performed by the algorithm A. As speci�ed in the construction,
the HO applies HO′ and then HO′′ supplying them with the corresponding random tapes rH′ and
rH′′ respectively. The random tape r is used for the other tasks performed by the experiment.

We present A′ in Algorithm 7. In Algorithm 8, we present the implementation of the hardening
procedure HP accessed by A.

19

Experiment 5 Exp
WB−IND−CPA−ϕ
W,A (k; r).

(r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7], r[8], r[9], r[10]) ←
r

(hk,OVM)← G(1k; r[0], r[1])

〈P0, P1, s〉 ← A
HO〈hk′,hk′′,OVM′〉(·,ϕ;r[2],r[3])

1 (1k,OVM; r[4])

b← r[5]
(c, uk)← Hhk(Pb; r[6], r[7])

b′ ← A
HO〈hk′,hk′′,OVM′〉(·,ϕ;r[8],r[9])

2 (c, s; r[10])
return b′

Experiment 6 Exp
WB−IND−CPA−ϕ
W ′,A′ (k; r′).

(r[0], r[1], r[2], r[3], r[4], r[5], r[6])← r′

r[2] =
〈
rG′′ , rH′′1

, rA1

〉
r[6] =

〈
rH′′

b
, rH′′2

, rA2

〉
(hk,OVM)← G′(1k; rG′)

〈P0, P1, s〉 ← A′
HO′〈hk′,hk′′,OVM′〉(·,ϕ;rH′1

)

1 (1k,OVM; rA′1
)

b← rb

(c, uk)← H′hk′(Pb; rH′
b
)

b′ ← A′
HO′〈hk′,hk′′,OVM′〉(·,ϕ;rH′2

)

2 (c, s; rA′2
)

return b′

Algorithm 7 Algorithm A′ = (A′1, A
′
2), that reduces WB − IND − CPA− ϕ of W = W ′ ◦W ′′ to that of W ′.

A′1
HO′hk′ (·,ϕ;rH′1

)
(1k,OVM′′, k; rA′1

)〈
rG′′ , rH′′1

, rA1

〉
← rA′1

〈hk′′,OVM′′〉 ← G′′(1k; rG′′)
OVM← createOV M{OVM′′, k}

〈P0, P1, s〉 ← A
HPhk′′ (·,OVM

′,ϕ;rH′′1
)

1 (1k,OVM; rA1)

s′ ← 〈hk′′,OVM′,OVM〉
return (P0, P1, 〈s′, s〉)

A′2
HO′hk′ (·,ϕ;rH′2

)
(c′b, 〈s′, s〉 ; rA′2

)〈
rH′′

b
, rH′′2

, rA2

〉
← rA′2

〈hk′′,OVM′,OVM〉 ← s′

P ′b ← createP ′{c′b,OVM′}
(cb, uk′′b)← H′′hk′′(P

′
b; rH′′

b
)

b′ ← A
HPhk′′ (·,OVM

′,ϕ;rH′′2
)

2 (cb, s; rA2)
return b′

Algorithm 8 Procedures HPhk′′ and HPhk′ , given as oracles to A and A′′ by A′ respectively.

HPhk′′(P,OVM′, ϕ; rH′′)
if (ϕ = PK) then
return (HO′hk′(P, ϕ; rH′), hk′′,OVM′)

else

(c′, uk′)← HO′hk′(P, ϕ; rH′)
P ′ ← createP ′{c′,OVM′}
(c, uk′′)← H′′hk′′(P

′; rH′′)
uk = 〈uk′, uk′′, P, P ′〉
return (c, uk)

HPhk′(P,OVM′, ϕ; rH′)
if (ϕ = PK) then
return (hk′,HO′′hk′′(P, ϕ; rH′′),OVM′)

else

(c′, uk′)← H′hk′(P ; rH′)
P ′ ← createP ′{c′,OVM′}
(c, uk′′)← HO′′hk′′(P

′, ϕ; rH′′)
uk = 〈uk′, uk′′, P, P ′〉
return (c, uk)

20

Clearly, if A is e�cient, i.e. a PPT algorithm, then A′ is also e�cient, since in addition to
invoking A, it applies G′′, H′′ that are e�cient, and performs constant operations on strings.
We next show that for any string r:

ExpWB−IND−CPA−ϕ
W ′,A′ (k; r′(r)) = ExpWB−IND−CPA−ϕ

W,A (k; r) (11)

Where r′(r).
Then if r′ is constructed as above, the view of the algorithm A when invoked by A′, in the

experiment against WBRPE scheme W ′, in Algorithm 6, is distributed identically to its view in the
indistinguishability experiment against the WBRPE scheme W , in Algorithm 5.

This holds for any r. Since if r is uniformly distributed, then so is r′. Hence the advantage of A′

is equivalent to the advantage of A, i.e. equation 7 holds. ut

Lemma 8 Given a PPT adversary A = (A1, A2), there exists a PPT algorithm A′′ = (A′′1, A
′′
2), s.t.

for in�nitely many k's equation 8 holds for ϕ ∈ {PK, SK}.

Proof. Let A = (A1, A2) be a PPT algorithm against the combined WBRPE scheme W , we present
a construction of a PPT algorithm A′′ = (A′′1, A

′′
2) against the candidate WBRPE scheme W ′′,

in Algorithm 9, against W ′′, that uses A and W ′′ as black boxes. Speci�cally A′′ simulates the
indistinguishability experiment, in Section A.1, of the combined WBRPE scheme W for A, by
generating the corresponding parameters, and supplying responses to its hardening oracle queries.
Eventually A′′ returns A's answer.

Algorithm 9 Algorithm A′′ = (A′′1 , A′′2) that reduces WB − IND − CPA− ϕ of W = W ′ ◦W ′′ to that of W .

A′′1
HO′′hk′′ (·,ϕ;rH′′1

)
(1k,OVM′′; rA′′1

)
(rG′ , rH′1

, rH′
b
, rA1)← rA′′1

〈hk′,OVM′〉 ← G′(1k; rG′)
OVM← createOV M{OVM′′, k}

〈P0, P1, s〉 ← A
HPhk′ (·,OVM

′,ϕ;rH′1
)

1 (1k,OVM′′; rA1)

(c′0, uk′0)← H′hk′(P0; rH′
b
)

(c′1, uk′1)← H′hk′(P1; rH′
b
)

P ′0 ← createP ′(c′0,OVM′)
P ′1 ← createP ′(c′1,OVM′)
s′ ← 〈hk′,OVM′〉

return (P ′0, P
′
1, 〈s′, s〉)

A′′2
HO′′hk′′ (·,ϕ;rH′′2

)
(cb, 〈s′, s〉 ; rA′′2

)
(rH′2

, rA2)← rA′′2
〈hk′,OVM′〉 ← s′

return A
HPhk′ (·,OVM

′,ϕ;rH′2
)

2 (cb, s; rA2)

In Algorithm 8, we present the implementation of the hardening procedureHP accessed by A us-
ing the oracleHO′′ that is available to A′ during the indistinguishability experiment ExpWB−IND−CPA−ϕ

W ′′,A′′ (k).
If A is e�cient, i.e. a PPT algorithm, then A′′ is also e�cient.
If A′′ simulates the execution environment for A according to the steps speci�ed in the indistin-
guishabbility experiment, in Section A.1, and implements the hardening procedure in Algorithm 8,
for A identically to design of the hardening procedure in the construction of the combined scheme,
in 3, then for any random string r, it holds that

ExpWB−IND−CPA−ϕ
W ′′,A′′ (k; r′′) = ExpWB−IND−CPA−ϕ

W,A (k; r)

21

Where r = (rG′ , rG′′ , rH′1
, rH′′1

, rA1 , rb, rH′b
, rH′′b

, rH′2
, rH′′2

, rA2) and r� is constructed as follows: r� =

(rG′′ , rH′′1
, rA′′1

=
〈
rG′ , rH′1

, rA1

〉
, rb, rH′′b

, rH′′2
, rA′′2

=
〈
rH′b

, rH′2
, rA2

〉
) If r� is constructed as above,

the view of the algorithm A when invoked by A′′, in the experiment against WBRPE scheme W ′′ is
distributed identically to its view in the indistinguishability experiment against theWBRPE scheme
W , in Algorithm 5.

ut

B.2 Cascade is Robust for WBRPE w.r.t. Unforgeability Speci�cation

Lemma 9 Given a PPT algorithm A against the combined WBRPE scheme W = W ′◦W ′′, there ex-
ists a PPT algorithm A′ against W ′, s.t. for in�nitely many k's, equation 9 holds, for ϕ ∈ {SK,PK}.

Proof. Given A, we construct a PPT algorithm A′, in Algorithm 10. Algorithm A′ simulates the un-
forgeability experiment, of the combined WBRPE scheme W for A, by generating the corresponding
parameters, and supplying responses to its hardening queries. Eventually A returns a forgery tuple
(ω, P, t, uk). Next A′ constructs a forgery for the experiment against W ′. Namely, it has to return
a tuple (ω′, P, t, uk′), where y ← U ′uk′(ω′, P, t) and y could not have been generated by program
P on any remote input a. A′ parses the unhardening key uk, extracts the uk′′ key, and applies the
unhardening procedure U ′′ with the keys uk′′, on ω and obtains an ω′. Speci�cally, A′ operates as
de�ned in Algorithm 10.
If the parameters (OVM) and the implementation of the hardening procedure HP, that A′ gener-

Algorithm 10 Algorithms A′ and A′′, that reduce WB − UNF − ϕ of W = W ′ ◦W ′′ to that of W ′ and W ′′,
respectively. See Lemmas 9,10.

A′
HO′hk′ (·,ϕ)

(1k,OVM′)
〈hk′′,OVM′′〉 ← G′′(1k)
OVM← createOV M{OVM′′, k}
(ω, P, t, uk)← AHPhk′′ (·,OVM

′,ϕ)(1k,OVM)
〈uk′, uk′′, P, P ′〉 ← uk
ω′ ← U ′′uk′′(ω)

return (ω′, P, t, uk′)

A′′
HO′′hk′′ (·,ϕ)

(1k,OVM′′)
〈hk′,OVM′〉 ← G′(1k)
OVM← createOV M{OVM′′, k}
(ω, P, t, uk)← AHPhk′ (·,OVM

′,ϕ)(1k,OVM)
〈uk′, uk′′, P, P ′〉 ← uk
t′ = T ′(t) + 2

return (ω, P ′, t′, uk′′)

ates for A are identical to the parameters generates by the unforgeability experiment of the combined
scheme, then for every r, the advantage of A against the combined WBRPE is identical to the ad-
vantage of A′ against the candidate WBRPE. Namely, the forgery generated of W by A can be
reduced to the forgery of W ′ generated by A′. In particular, given a forgery (ω, P, t, uk) of the
combined WBRPE scheme W generated by A, the tuple (ω′, P, t, uk′) output by A′ constitutes a
forgery of the WBRPE scheme W ′. The unforgeability experiment upon input a tuple (ω′, P, t, uk′)
from A′, unhardens the result y ← U ′uk′(ω′, P, t) and then performs the following test

∀a, y 6= Pt,|y|(a)

This is the same requirement as was de�ned in the output unforgeability security speci�cation,
therefore the result computed by A′ constitutes a successful forgery according to the de�nition of
UNF −OUT requirement. This holds due to an observation, that A′ essentially returns the result
output by A after applying an external unhardening procedure U ′′ to it. In other words, if ω is a
forgery for input program P , then ω′ ← U ′′uk′′(ω) is also a forgery for P . ut

22

Lemma 10 Given a PPT algorithm A = (A1, A2) there exists a PPT algorithm A′′ = (A′′1, A
′′
2) s.t.

for in�nitely many k's equation 10 holds for any value of ϕ.

Proof. Let A be a PPT algorithm against the combined WBRPE scheme W , we construct a PPT
algorithm A′′ against W ′′ that uses A and W ′′ as black boxes. Speci�cally, A′′ operates as de�ned
in Algorithm 10. In Algorithm 8, we present the implementation of the hardening procedure HP
accessed by A using the oracle HO′′(·) that is available to A′′ during the unforgeability experiment
Exp

UNF−OUT−ϕ
W ′′,A′′ (k), Section A.2.

A′′ obtains from A a tuple (ω, P, t, uk), parses uk to extract uk′′, P and P ′. Next A′′ computes
the number of steps t′ = T ′(t, l, k) + 2 for P ′ and returns a tuple (ω, P ′, t′, uk′′). Given an output
forgery (ω, P, t, uk) for the combined WBRPE scheme W generated by A, the tuple (ω, P ′, t′, uk′′)
output by A′′ constitutes a forgery for the WBRPE scheme W ′′. The unforgeability experiment
upon input a tuple (ω, P ′, t′, uk′′) from A′′, unhardens the result, obtains ω′ ← U ′′uk′′(ω, P ′, t′) and
then performs the following test

∀a′, ω′ 6= P ′t′,|ω′|(a
′)

Let ω be a forgery for W returned by A. To reduce the forgery for W to the forgery for W ′′, we assume
by contradiction that ∃a, s.t. U ′′uk′′(ω) = OVM′(H′hk′(P), a, t, l). Namely, ω′ is a valid result and is
not a forgery for W ′. We then show that ω′ is also a valid result and not a forgery for W . Observe that
U ′uk′(U ′′uk′′(ω)) = Uuk(ω) = Pt,l(a), this simply follows from U ′uk′(ω′) = OVM′(H′hk′(P), a, t, l)).
Then ω is not a forgery, but this contradicts the assumption.
Consequently, if A succeeds in the Exp

WB−UNF−ϕ
W,A (·) with non-negligible advantage, it succeeds

in the simulation run by A′′ with non-negligible advantage, and since A′'s success probability is
related to that of A, A′′ gains the same advantage as A in the unforgeability experiment with W ′′,
contradicting the assumption of W ′′ being a WB − UNF − ϕ secure scheme, therefore the lemma
follows. ut

23

	Robust Combiners for Software Hardening
	Amir Herzberg 1em and 1em Haya Shulman Bar Ilan University Department of Computer Science Ramat Gan, 52900, Israel

