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Abstract. We give an algorithm that produces families of Weil numbers
for ordinary abelian varieties over finite fields with prescribed embed-
ding degree. The algorithm uses the ideas of Freeman, Stevenhagen, and
Streng to generalize the Brezing-Weng construction of pairing-friendly el-
liptic curves. We discuss how CM methods can be used to construct these
varieties, and we use our algorithm to give examples of pairing-friendly
ordinary abelian varieties of dimension 2 and 3 that are absolutely sim-
ple and have smaller ρ-values than any previous such example.
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1 Introduction

In recent years, many new and useful cryptographic protocols have been proposed
that make use of a bilinear map, or pairing [18]. For secure implementation, these
protocols require an easily computable, nondegenerate pairing between finite
groups in which the discrete logarithm problem is computationally infeasible.
At present, the only known pairings with these properties are the Weil and Tate
pairings on abelian varieties over finite fields. These pairings take as input points
on an abelian variety defined over the field Fq and produce as output elements
of an extension field Fqk . The degree of this extension is known as the embedding
degree.

For a pairing-based cryptosystem on an abelian variety A/Fq to be secure
and practical, the group of rational points A(Fq) should have a subgroup of large
prime order r, and the embedding degree k should be large enough so that the
discrete logarithm problems in A[r] and F×

qk are of roughly equal difficulty and
small enough so that the pairing can be computed efficiently. As the embedding
degree of a randomly chosen abelian variety over a field of cryptographic size is
expected to be very large (see e.g., [1]), trying varieties at random has a very low
chance of finding a variety with small embedding degree. It is in fact a difficult
problem to construct “pairing-friendly” abelian varieties: those that have small
embedding degree with respect to a large prime-order subgroup.



The problem of constructing pairing-friendly elliptic curves (i.e., pairing-
friendly one-dimensional abelian varieties) has been studied extensively; Free-
man, Scott, and Teske [8] have provided an exhaustive summary of the known
constructions. In higher dimensions much less is known. Galbraith [10] and Rubin
and Silverberg [19] have classified supersingular abelian varieties of dimension
g ≥ 2, and the latter have shown that for g ≤ 6 the ratio of embedding degree k to
dimension g always satisfies k/g ≤ 7.5. Since this ratio roughly measures the se-
curity level of pairings on the abelian variety, for high and/or long-term security
we require larger k/g ratios, and thus must turn to non-supersingular abelian
varieties. The only explicit constructions of pairing-friendly non-supersingular
abelian varieties of dimension g ≥ 2 are those of Freeman [7]; Kawazoe and
Takahashi [13]; and Freeman, Stevenhagen, and Streng [9]. The first two con-
structions produce abelian surfaces (g = 2), while the last generalizes to arbitrary
dimension the method of Cocks and Pinch [5] for constructing pairing-friendly
elliptic curves.

The algorithm of Freeman, Stevenhagen, and Streng produces q-Weil num-
bers that correspond (in the sense of Honda-Tate theory [21]) to ordinary, abso-
lutely simple abelian varieties having arbitrary embedding degree with respect
to a subgroup of (nearly) arbitrary order r. The method works by fixing a CM
field K of degree 2g and using a primitive CM type Φ on K to construct a
q-Weil number π ∈ K that is the Frobenius element of a pairing-friendly ordi-
nary abelian variety A of dimension g. If the CM field K is suitably small, CM
methods can then be used to produce A explicitly (see Section 4). If K is Galois,
the size q = ππ of the field over which this variety is defined is expected to be
roughly r2g, and thus #A(Fq) will be roughly qg ≈ r2g2 . The ratio of the size (in
bits) of this group order to the size (in bits) of the subgroup order r is measured
by the parameter

ρ =
g log q
log r

(1.1)

and can be interpreted as the ratio of the abelian variety’s required bandwidth
to its security level.

All of the constructions of pairing-friendly elliptic curves can produce curves
with ρ ≤ 2, and in many cases we can come very close to or even achieve the
“ideal” of a pairing-friendly curve with a prime number of points (see [8, Table
8.2]). In dimension g = 2 the constructions of Freeman and Freeman, Stevenha-
gen, and Streng both lead to ordinary, absolutely simple abelian varieties with
ρ ≈ 8. The construction of Kawazoe and Takahashi produces ordinary abelian
varieties with ρ-values between 3 and 4; however, these varieties are not abso-
lutely simple, and thus the construction can be interpreted as producing pairing-
friendly elliptic curves over some extension field of Fq. In dimension g = 3 the
best ρ-values for ordinary abelian varieties that we can construct efficiently are
ρ ≈ 18, and in general we expect to find ρ ≈ 2gĝ, where 2ĝ is the degree of the
reflex field K̂ of (K,Φ). (If K is Galois then ĝ = g, but in general we expect ĝ
to be much larger than g.)
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In this paper, we demonstrate the first constructions of pairing-friendly or-
dinary abelian varieties of dimension g ≥ 2 that are absolutely simple and have
ρ-values significantly less than 2g2.

In Section 2 we give the technical conditions necessary for an abelian vari-
ety to be pairing-friendly and describe the approach of Brezing and Weng [4]
to satisfying these conditions for elliptic curves. We then show how the ideas
of Freeman, Stevenhagen, and Streng can be used to view the Brezing-Weng
construction from a new perspective that admits a generalization to higher di-
mensions.

We give the details of this generalization in Section 3. The key idea is to
parametrize the subgroup order r and the Frobenius element π as polynomials of
a single variable r(x) ∈ Q[x] and π(x) ∈ K[x]. Adapting the method of Freeman,
Stevenhagen, and Streng, we construct the polynomial π(x) as the type norm of
an element ξ ∈ K̂[x] that is chosen to have specified residues modulo factors of
r(x) in K̂[x].

Section 4 discusses how we use the polynomial π(x) to construct explicit
pairing-friendly abelian varieties. As in the Brezing-Weng method we compute
parameters for these varieties by finding an x0 for which q(x0) = π(x0)π(x0) is
prime and r(x0) has a large prime factor. Once such an x0 is found, we can use
CM methods to construct the abelian variety whose Frobenius element is given
by π(x0).

In Section 5 we discuss how to select the parameters in our algorithm to
produce the optimal output, and provide a number of examples of families of
ordinary abelian varieties produced by our method. These include several families
of abelian surfaces (g = 2) with ρ ≤ 7 and one with embedding degree 5 and
ρ ≈ 4, which could be a practical choice for certain security levels and which also
answers (in one case) an open problem of Freeman, Stevenhagen, and Streng [9,
Open Problem 3.5]. We also demonstrate a family of three-dimensional abelian
varieties with ρ ≈ 12. We conclude by discussing avenues for further research in
this area.
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2 Pairing-Friendly Abelian Varieties and the Brezing-
Weng Method

Let A be a g-dimensional abelian variety defined over the finite field Fq of q
elements. If the group of Fq-rational points of A, denoted A(Fq), has a cyclic
subgroup of order r, then the embedding degree of A with respect to r is the
smallest integer k such that the field Fqk contains all rth roots of unity. Equiva-
lently, the embedding degree is the order of q in (Z/rZ)×. The embedding degree
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derives its name from the fact that Fqk is the smallest field over which the Weil
and Tate pairings take nontrivial values, and thus these pairings can be used to
embed a cyclic, order-r subgroup of A(Fq) into F×

qk . (Note that if q is not prime
then the image of these embeddings may be contained in a proper subfield of
Fqk [11].)

The embedding degree of an abelian variety A/Fq is determined by its Frobe-
nius endomorphism. If A is simple then the Frobenius endomorphism, which is
denoted by π and which acts by raising the coordinates of points on A to the qth
power, satisfies a monic, irreducible polynomial with integer coefficients. We can
thus view π as an element of a number field K = Q(π). The field K is either a
CM field, which is an imaginary quadratic extension of a totally real field, or the
field Q(

√
q) [21]; we will consider only the first case as the second corresponds

to supersingular abelian varieties. By a theorem of Weil, all embeddings K ↪→ C
have ππ = q, where · denotes complex conjugation. An algebraic integer π with
this property is called a q-Weil number.

We will henceforth assume that A is simple, as the case of non-simple A can
be reduced to the case of simple abelian varieties of lower dimension. We will
further assume that K = Q(π) is the full endomorphism algebra End(A) ⊗ Q;
in particular, this is the case when A is ordinary. Under these assumptions, we
have degK = 2dimA, and the number of Fq-rational points of A is given by

#A(Fq) = NK/Q(π − 1).

We can thus express the conditions for A being pairing-friendly as follows.

Proposition 2.1 ([9]). Let A/Fq be a simple abelian variety with Frobenius
endomorphism π, and assume K = Q(π) equals End(A) ⊗ Q. Let k be a posi-
tive integer, Φk the kth cyclotomic polynomial, and r a square-free integer not
dividing kq. If

NK/Q(π − 1) ≡ 0 (mod r),
Φk(ππ) ≡ 0 (mod r),

then A has embedding degree k with respect to r.

Proof. Since r is prime, the first condition tells us that A(Fq) has a cyclic
subgroup of order r, the second that ππ = q has order k in (Z/rZ)×. ut

The Brezing-Weng Method

If A is an ordinary elliptic curve over Fq with Frobenius endomorphism π, then
K = Q(π) = End(A) ⊗ Q is a quadratic imaginary field. In this case π can be
described by its norm q = ππ and its trace t = π + π. The two conditions of
Proposition 2.1 then become

r | q + 1− t, (2.1)
r | Φk(q). (2.2)
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Furthermore, the condition π ∈ K means that there is some integer y such that

t2 − 4q = −Dy2, (2.3)

where D is the unique square-free positive integer such that K = Q(
√
−D).

Nearly all of the existing methods for constructing pairing-friendly ordinary
elliptic curves involve fixing k and D and determining primes r and q and an
integer t that satisfy (2.1)–(2.3) for some y.

Many of the methods for constructing pairing-friendly ordinary elliptic curves
parametrize t, r, and q as polynomials t(x), r(x), q(x) that produce valid curve
parameters for many different inputs x. The advantage of such “families” is
that the ρ-values (1.1) produced are often smaller than those produced by more
general methods such as that of Cocks and Pinch [5]. One of the most successful
approaches to constructing families of pairing-friendly elliptic curves with small
ρ-values is the method of Brezing and Weng [4]. Their approach is as follows:

Algorithm 2.2 ([4]).
Input: a positive integer k and a positive square-free integer D.
Output: polynomials r(x), and q(x) such that for any x0 for which q(x0) is

prime, there is an ordinary elliptic curve E over Fq(x0) such that End(E)⊗Q ∼=
Q(
√
−D) and E has embedding degree k with respect to r(x0).

1. Find an irreducible polynomial r(x) ∈ Z[x] such that L ∼= Q[x]/(r(x)) is a
number field containing

√
−D and the cyclotomic field Q(ζk).

2. Choose a primitive kth root of unity ζ ∈ L.
3. Let t(x) ∈ Q[x] be a polynomial mapping to ζ + 1 in L.
4. Let y(x) ∈ Q[x] be a polynomial mapping to (ζ − 1)/

√
−D in L.

5. Set q(x)← (t(x)2 +Dy(x)2)/4. Return r(x) and q(x). ut

The key idea of the Brezing-Weng algorithm is that since elements of L are
represented by polynomials modulo r(x), we can always choose t(x) and y(x) to
have degree strictly less than deg r(x). Thus we can always obtain deg q(x) ≤
deg r(x)− 2, and in some cases we can do much better (see [8, §6]). As x grows,
the values of q and r are dominated by their leading terms, so deg q/ deg r is
a good approximation of the ρ-value log q(x0)/ log r(x0). If we call deg q/ deg r
the ρ-value of the family (t(x), r(x), q(x)), then we see that families generated
by the Brezing-Weng method have ρ-values less than 2.

The Brezing-Weng algorithm is itself a generalization of an algorithm of
Cocks and Pinch [5], which has the same form but works modulo a prime r
instead of a polynomial r(x). Freeman, Stevenhagen, and Streng [9] generalized
the Cocks-Pinch algorithm to arbitrary CM fields K by demonstrating how
the algorithm constructs a Frobenius element π with specified residues modulo
certain primes over r in OK . We can use the same perspective to view the
Brezing-Weng method in a new light.

Our new perspective starts with the fact that since L = Q[x]/(r(x)) contains
K = Q(

√
−D), the polynomial r(x) splits into two irreducible factors when

viewed as an element of K[x]. We thus have r(x) = r1(x)r1(x) in K[x], and
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L ∼= K[x]/(r1(x)) ∼= K[x]/(r1(x)). Without loss of generality, we may assume
that map implied in Steps (3) and (4) of Algorithm 2.2 sends x to a root of
r1(x).

If we compute t(x) and y(x) as in Algorithm 2.2 and let π(x) = 1
2 (t(x) +

y(x)
√
−D), then π(x) ≡ ζ mod r1(x). In addition, we see that π(x) = 1

2 (t(x)−
y(x)
√
−D) ≡ 1 mod r1(x), or equivalently, π(x) ≡ 1 mod r1(x). We thus see

that π(x) satisfies conditions analogous to those of Proposition 2.1:

(π(x)− 1)(π(x)− 1) ≡ 0 mod r(x),
Φk(π(x)π(x)) ≡ 0 mod r(x).

The expression π(x)π(x) gives the q(x) of the algorithm, so we conclude that
for any x0 ∈ Q for which q(x0) is a prime integer, π(x0) ∈ K is the Frobenius
endomorphism of the elliptic curve E specified in the algorithm’s description.

3 Generalizing the Brezing-Weng Method

Before we can use our new perspective to generalize the Brezing-Weng method to
arbitrary CM fields K, we must first describe some more complex multiplication
theory. If K is a CM field of degree 2g, a CM type Φ of K is a set of g embeddings
Φ = {φ1, . . . , φg} of K into its normal closure, one from each complex conjugate
pair. A CM type is primitive if it is not induced from a CM type on a proper
CM subfield of K.

The reflex type of (K,Φ) consists of the reflex field K̂, which is a certain
CM subfield of the normal closure of K, and a CM type Ψ of K̂. (For precise
definitions of the reflex field and the reflex type, see [20, Section 8] or [9].) If Φ
is primitive then the reflex of the reflex (K̂, Ψ) is the original CM type (K,Φ).
If K is Galois then K̂ = K and Ψ = {φ−1 : φ ∈ Φ}; however for generic K the
degree of K̂ will be much larger than the degree of K [9, Lemma 2.8].

The main algorithm of Freeman, Stevenhagen, and Streng [9, Algorithm 2.12]
fixes a prime subgroup size r and uses the type norm from K̂ to construct a
Frobenius element π ∈ K that has specified residues modulo certain primes over
r in OK . The type norm for a CM type (K,Φ) is the map

NΦ : ξ 7→
∏
φ∈Φ φ(ξ).

The image of the type norm NΦ is contained in the reflex field K̂ [9, Lemma
2.7], so the image of the reflex type norm NΨ is contained in K. If the CM type
Φ is primitive, then for generic ξ ∈ K we have K̂ = Q(NΦ(ξ)) (cf. [9, Theorem
3.1]).

To apply the ideas of Freeman, Stevenhagen, and Streng to the Brezing-
Weng construction, we extend the type norm to a multiplicative map Nφ on
polynomials in K[x].
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Lemma 3.1. Let ξ ∈ K[x], and let Φ be a CM type of K. Define NΦ(ξ) =∏
φ∈Φ φ(ξ), where φ(ξ) is obtained by applying φ to the coefficients of ξ. Then
NΦ(ξ) ∈ K̂[x].

Proof. Let L be the normal closure of K, and let σ ∈ Gal(L/K̂). Then by
definition of the reflex type, σ permutes the elements of Φ, so σ(

∏
φ∈Φ φ(ξ)) =∏

φ∈Φ φ(ξ). (Cf. [9, Lemma 2.7].) ut

Remark 3.2. In a similar manner, for any extension of number fields L/K we
can extend the norm NL/K to polynomials f ∈ L[x] by setting NL/K(f) =∏
φ φ(f), where φ ranges over the set of embeddings of L in its normal closure

that fix K. An argument analogous to the proof of Lemma 3.1 then shows that
the image of NL/K is contained in K[x].

To generalize the Brezing-Weng construction, we let K be a CM field of de-
gree 2g with primitive CM type Φ. Let (K̂, Ψ) be the reflex CM type, and let
deg K̂ = 2ĝ. Let L = Q[x]/(r(x)) be a number field containing K̂ and Q(ζk). In
the case where K = K̂ is a quadratic imaginary field, the Brezing-Weng method
constructs directly a polynomial π(x) parametrizing Frobenius elements by pre-
scribing the residues of π(x) modulo each factor of r(x) in K[x]. To generalize
this construction along the lines of Freeman, Stevenhagen and Streng, we con-
struct π(x) as the type norm NΨ of an element ξ ∈ K̂[x] with prescribed residues
modulo factors of r(x) in K̂[x]. The following proposition allows us to index the
factors of r(x) in K̂[x] in a way that will be useful for our construction.

Proposition 3.3. Let K̂ be a CM field and Ψ be a CM type on K̂. Let r(x) ∈
Q[x] be irreducible, and assume that L ∼= Q[x]/(r(x)) is Galois and contains
K̂. Let G = Gal(L/Q) and H = Gal(L/K̂). For each ψ ∈ Ψ let ψ′ ∈ G be a
representative of the left coset of H that induces the embedding ψ on K̂.

Fix a root γ ∈ L of r(x). For each ψ ∈ Ψ , define

rψ(x) = NL/ bK(x− ψ′−1(γ)), rψ(x) = NL/ bK(x− ψ′−1
(γ)).

Then for each ψ ∈ Ψ , rψ and rψ are irreducible elements of K̂[x], and the
complete factorization of r(x) in K̂[x] is given by

r(x) =
∏
ψ∈Ψ rψ(x)rψ(x). (3.1)

Proof. The fact that rψ and rψ are in K̂[x] follows from Remark 3.2. Since L is
Galois, any root δ ∈ L of rψ(x) is also a root of r(x), and thus L = Q(δ) = K̂(δ).
It follows that the minimal polynomial of δ over K̂ has degree [L : K̂], which by
construction is the degree of rψ(x). Therefore rψ(x) is the minimal polynomial
of δ over K̂ and is thus irreducible. The proof for ψ is analogous.

Since the elements of H induce the complete set of embeddings of K̂ in L,
we have

rψ(x) =
∏
σ∈H(x− σψ′−1(γ)), rψ(x) =

∏
σ∈H(x− σψ′−1

(γ)).
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If we let Ψ ′ = {ψ′ : ψ ∈ Ψ}, then the set of roots of the right hand side of
(3.1) is exactly {τ(γ) : τ ∈ H(Ψ ′ ∪ Ψ ′)−1}. Since Ψ ′ ∪ Ψ ′ is a complete set
of left coset representatives of H in G, its inverse is a complete set of right
coset representatives of H in G, and thus H(Ψ ′ ∪ Ψ ′)−1 = G. We conclude that
{τ(γ) : τ ∈ H(Ψ ′ ∪ Ψ ′)−1} consists of precisely the roots of r(x) in L. ut

We now obtain an analogue of the main theorem of Freeman, Stevenhagen,
and Streng [9, Theorem 2.10]:

Theorem 3.4. Let (K,Φ) be a CM type and (K̂, Ψ) its reflex. Let r(x) ∈ Q[x]
be an irreducible (not necessarily monic) polynomial such that L = Q[x]/(r(x))
is a Galois extension of Q containing K̂ and the cyclotomic field Q(ζk).

Let γ ∈ L be a root of r(x), and write the factorization of r(x) in K̂[x] as in
Proposition 3.3. Given ξ ∈ K̂[x], for each ψ ∈ Ψ suppose αψ, βψ ∈ Q[x] satisfy

ξ ≡ αψ mod rψ(x) and ξ ≡ βψ mod rψ(x). (3.2)

Suppose that ∏
ψ∈Ψ αψ(γ) = 1 and

∏
ψ∈Ψ βψ(γ) = ζ, (3.3)

where ζ ∈ L is a primitive kth root of unity. Then π(x) = NΨ (ξ) ∈ K[x] satisfies

1. π(x)π(x) ∈ Q[x],
2. NK/Q(π(x)− 1) ≡ 0 mod r(x), and
3. Φk(π(x)π(x)) ≡ 0 mod r(x).

Proof. Statement (1) follows from Remark 3.2 and the fact that π(x)π(x) =
N bK/Qξ. Next, (3.2) implies that ξ−αψ = frψ for some f ∈ K̂[x], so ψ′−1(γ) ∈ L
is a root of ξ − αψ ∈ K̂[x]. Applying ψ′ to this expression and using the fact
that αψ ∈ Q[x], we see that γ is a root of ψ(ξ) − αψ ∈ L[x]. It follows that
(ψ(ξ))(γ) = αψ(γ), and by the same reasoning, (ψ(ξ))(γ) = βψ(γ). Now since
π(γ) =

∏
ψ∈Ψ (ψ(ξ))(γ) by definition of the type norm, we conclude from (3.3)

that π(γ) = 1 and π(γ) = ζ, from which statements (2) and (3) follow. ut

If π(x) and r(x) are as in Theorem 3.4, then by Proposition 2.1 for any x0 ∈ Q
for which q = π(x0)π(x0) is a prime, π(x0) ∈ OK is the Frobenius element of
an abelian variety over Fq that has embedding degree k with respect to r(x0).
We can thus view π(x) as defining a one-parameter “family” of pairing-friendly
Frobenius elements. The following definitions formalize this concept, generalizing
the “families” of Freeman, Scott, and Teske [8, Definition 2.6].

Definition 3.5. Let f(x) ∈ Q[x] be a non-constant, irreducible polynomial with
positive leading coefficient. We say f represents primes if (1) f(x) ∈ Z for some
x ∈ Z, and (2) gcd({f(x) : x, f(x) ∈ Z}) = 1.

Definition 3.5 is motivated by the conjecture of Bateman and Horn [3], which
gives a heuristic asymptotic formula for the number of prime values taken by a
set of polynomials with integer coefficients.
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Definition 3.6. Let K be a CM field of degree 2g, let π(x) ∈ K[x], and let
r(x) ∈ Z[x]. We say that (π, r) represents a family of g-dimensional abelian
varieties with embedding degree k if:

1. q(x) = π(x)π(x) is in Q[x].
2. q(x) represents primes (in the sense of Definition 3.5).
3. r(x) is non-constant and irreducible and has positive leading coefficient.
4. NK/Q(π(x)− 1) ≡ 0 mod r(x).
5. Φk(q(x)) ≡ 0 mod r(x), where Φk is the kth cyclotomic polynomial.

With our setup, we can now adapt [9, Algorithm 2.12] to our new context.

Algorithm 3.7.
Input: a primitive CM type (K,Φ), its reflex type (K̂, Ψ), a positive integer k,

an irreducible polynomial r(x) ∈ Z[x] such that Q[x]/(r(x)) is a Galois number
field containingK and the cyclotomic field Q(ζk), and a non-empty set Σ ⊂ Q[x].

Output: a polynomial π(x) ∈ K[x] such that if q(x) = π(x)π(x) represents
primes (in the sense of Definition 3.5), then (π, r) represents a family of abelian
varieties with embedding degree k.

1. Set ĝ ← 1
2 deg K̂ and write Ψ = {ψ1, ψ2, . . . , ψbg}. Set L← Q[x]/(r(x)).

2. Let γ ∈ L be a root of r(x). Compute the factorization of r(x) in K̂[x] as in
Proposition 3.3.

3. Choose a primitive kth root of unity ζ ∈ L.
4. Choose polynomials α1, . . . , αbg−1, β1, . . . , βbg−1 ∈ Q[x] from Σ.
5. Compute αbg ∈ Q[x] such that

∏bg
i=1 αi(γ) = 1, and compute βbg ∈ Q[x] such

that
∏bg
i=1 βi(γ) = ζ.

6. Use the Chinese remainder theorem to compute ξ ∈ K̂[x] such that ξ ≡
αi mod rψi

(x) and ξ ≡ βi mod rψi(x) for i = 1, 2, . . . , ĝ.
7. Set π(x)← NΨ (ξ), and return π(x). ut

For any given CM type (K,Φ) and embedding degree k, there are many
possible choices for the inputs r(x) (the polynomial that defines L) and Σ (the
set of possible choices for the residues of ξ modulo all but two of the factors
of r(x) in K̂[x]), as well as the root of unity ζ in Step (3). We will defer our
discussion of these choices to Section 5.

We note that if K is a quadratic imaginary field, then Step (4) is empty
and setting q(x) = π(x)π(x) and t(x) = π(x) + π(x) recovers the Brezing-Weng
algorithm.

4 From Families to Explicit Abelian Varieties

We now consider the problem of constructing the varieties represented by a
family (π, r). If K has degree 2g, to obtain q-Weil numbers corresponding (in
the sense of Honda-Tate theory [21]) to ordinary, simple abelian varieties of
dimension g, we need to find x0 such that π(x0) generates K over Q and q(x0)
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is a prime that is unramified in K. (See [9, Lemma 2.2].) In general, we find
that if q(x0) is prime then the other two conditions are satisfied with very high
probability. For cryptographic applications, we also need r(x0) to be prime or
very nearly prime. We use the following algorithm to search for an x0 with the
desired properties.

Algorithm 4.1.
Input: a CM field K, a pair of polynomials (π, r) that represents a family of

abelian varieties with embedding degree k (in the sense of Definition 3.6), and
a positive integer y0.

Output: integers x0 and h such that q(x0) is prime (where q(x) = π(x)π(x))
and r(x0) is h times a prime.

1. Compute integers a, b such that q(ax + b) is integer-valued and represents
primes.

2. Compute h ∈ Z and r̃(x) ∈ Q[x] such that r(x) = hr̃(x) and there is no
prime p dividing q(ax+ b)r̃(ax+ b) for all x.

3. Set x1 ← y0.
4. Repeat x1 ← x1 + 1 until

(a) q(ax1 + b) and r̃(ax1 + b) are prime, and
(b) K = Q(π(x0)) and q(x0) is unramified in K.

5. Set x0 ← ax1 + b. Return h and x0.

The input y0 is the starting point for the search, and should be chosen so that
r(y0)/h is at least the minimum size desired for security. The fact that integers
a, b as in Step (1) always exist is a consequence of the following lemma.

Lemma 4.2. Suppose q(x) ∈ Q[x] represents primes in the sense of Defini-
tion 3.6. Then there exist integers a, b such that q(ax+ b) is integer-valued and
represents primes.

Proof. Write q(x) = 1
d q̃(x) for some integer d and q̃(x) ∈ Z[x]. For every prime

p, let ep be the integer such that d =
∏
p p

ep . Since q(x) represents primes, for
each p there exists a bp such that q(bp) is an integer not divisible by p, and thus
pep divides q̃(bp) exactly. Let a =

∏
p|d p

ep+1, and let b be an integer congruent
to bp mod pep+1 for every p dividing d. Then q(ax + b) is integer-valued and is
nonzero mod p for every p dividing d. For every p not dividing d, ax+ b ranges
through all residue classes mod p, so there is some residue class of x mod p for
which p does not divide q̃(ax + b). Thus there is no prime p dividing q(ax + b)
for all x, which is equivalent to q(ax+ b) representing primes. ut

Now suppose q(x) and r(x) have degrees d1 and d2 respectively. By the
Bateman-Horn conjecture [3] we expect to test roughly d1d2(log ay0)2 values of
x1 before we find one for which q(ax1 + b) is prime and r(ax1 + b) is h times
a prime. Thus we see that heuristically, the expected number of executions of
Step (4) is linear in the degrees of π(x) and r(x), and quadratic in the number
of bits in y0. We also note (and find in practice) that the a computed in Step
(1) can be smaller than the a produced in the proof of Lemma 4.2.
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Once we have found an x0 such that q(x0) is prime and r(x0) is nearly prime,
the problem remains to construct an abelian variety over F = Fq(x0) whose
Frobenius element is π(x0). This is achieved using CM methods, which construct
varieties in characteristic zero whose endomorphism rings are isomorphic to a
specified order O in a CM field K; for our purposes we can take O to be the
ring of integers OK . Since any ordinary abelian variety over a finite field arises
as the reduction modulo a prime of a variety in characteristic zero with the
same endomorphism ring, we can use a CM method to produce a set of abelian
varieties over the field F that includes representatives of all of the F-isomorphism
classes of varieties A with End(A) ∼= OK . We test these candidates A, as well
as all of their twists (varieties over F that are F-isomorphic to A), to see which
is in the correct F-isogeny class; this can be determined by seeing if the number
of F-rational points is equal to NK/Q(π(x0) − 1). Even though counting the
number of rational points on a g-dimensional abelian variety A over a field F of
cryptographic size is in general infeasible for g ≥ 2, we can quickly determine
whether the number of points is equal to n by choosing a few random points
Pi ∈ A(F) and seeing if [n]Pi is the identity on A for all i.

Finally, a word is in order about the CM methods. Over an algebraically
closed field, all principally polarized abelian varieties of dimension g ≤ 3 are
Jacobians of genus g curves. It thus suffices to produce all curves whose Jacobians
have endomorphism ring isomorphic to OK ; we say that these Jacobians have
CM by OK . In dimension g = 1 we compute the Hilbert class polynomial, a
polynomial in Z[x] whose roots are equal to the j-invariants of elliptic curves over
Q with CM by OK . In dimension g = 2 we compute the Igusa class polynomials,
which are three polynomials in Q[x] whose roots are the Igusa invariants of
genus 2 curves over Q whose Jacobians have CM by OK . Methods for g = 3 are
analogous but have only been developed for fields K containing i or ζ3 [23, 15].
Methods for g ≥ 4 are completely undeveloped.

The class polynomials produced by the CM methods are very large: both the
degree and the size of the coefficients grow very quickly with the class number
of K, and in general the computation is only feasible for very small CM fields
K. For g = 1 the upper limit is roughly class number 105 [6], while for g = 2
we can only achieve class numbers around 100 [14], and for g = 3 the methods
are even more limited. Thus we must be careful to choose a field K as input to
Algorithm 3.7 for which we know that the CM method is feasible.

5 Parameter Selection and Examples

The primary advantage of Algorithm 3.7 is that it leads to pairing-friendly or-
dinary, absolutely simple abelian varieties with smaller ρ-values than any pre-
vious construction. Recall that the ρ-value of a g-dimensional abelian variety
over Fq with respect to a subgroup of order r is ρ = g log q/ log r. If q = q(x)
and r = r(x) are parametrized as polynomials, then for large x the ρ-value ap-
proaches g deg q/ deg r. This motivates the definition of a ρ-value for a family of
pairing-friendly abelian varieties.
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Definition 5.1. Suppose (π, r) represents a family of g-dimensional abelian va-
rieties with embedding degree k, and let q(x) = π(x)π(x). The ρ-value of the
family represented by (π, r), denoted ρ(π, r), is

ρ(π, r) = lim
x→∞

g log q(x)
log r(x)

=
g deg q(x)
deg r(x)

.

The key feature of Algorithm 3.7 is that the polynomial ξ constructed by
the Chinese remainder theorem in Step (6) can always be chosen to have degree
strictly less than deg r, and thus deg π ≤ ĝ(deg r − 1). We thus obtain

ρ(π, r) = 2gĝ
deg ξ
deg r

≤ 2gĝ
deg r − 1

deg r
.

This asymptotic ρ-value is an improvement over the ρ-values produced by the
algorithm of Freeman, Stevenhagen, and Streng, which gives ρ ≈ 2gĝ [9, Theorem
3.4].

To improve the ρ-values further one would try to choose the inputs to Algo-
rithm 3.7 in some clever manner so that the π produced has degree significantly
less than ĝ deg r. These choices include the ζ of Step (3), the αi and βi of Step
(4) (which are chosen from the input Σ), and the input polynomial r(x).

The problem of computing an optimal π has been studied extensively in the
case of elliptic curves, where there are only ζ and r(x) to consider. Brezing and
Weng [4] and Baretto, Lynn, and Scott [2] both take r(x) to be a cyclotomic
polynomial Φ`(x), where k | ` and Q(ζ`) contains the quadratic imaginary field
K = K̂, and search through the primitive kth roots of unity ζ ∈ L ∼= Q(ζ`).
Other constructions have kept this choice of L but used a different polynomial
r(x). In particular, Kachisa, Schaefer, and Scott [12] have systematically searched
through the space of r(x) that generate Q(ζ`) and found improved ρ-values in
several cases.

In higher dimensions we search for a π(x) of low degree by following the
model of Brezing and Weng. We let r(x) be a cyclotomic polynomial Φ` such
that k | ` and L ∼= Q(ζ`) contains the specified CM field K. Since L is abelian,
in this case the CM field K must also be abelian, and thus equal to the reflex
field K̂. We choose the αi, βi all to be polynomials that reduce to roots of unity
(of any order) in L. Since r(x) is the `th cyclotomic polynomial, x is a primitive
`th root of unity in Q[x]/(rψ(x)) for all ψ ∈ Ψ . Thus if we choose αi, βi as

(α1, . . . , αg) ∈ {(xa1 , . . . , xag ) : 0 ≤ ai < `,
∑g
i=1 ai = 0} , (5.1)

(β1, . . . , βg) ∈
{
(xb1 , . . . , xbg ) : 0 ≤ bi < `, gcd(`,

∑g
i=1 bi) = `/k

}
, (5.2)

then
∏
αi = x

P
ai ≡ 1 mod r(x), and

∏
βi = x

P
bi is a primitive kth root of

unity mod r(x).
For given CM type (K,Φ), embedding degree k, and cyclotomic polynomial

r(x) = Φ`(x), our implementation of Algorithm 3.7 searches through all αi, βi
satisfying (5.1) and (5.2) and returns the ξ of smallest degree. We illustrate with
a detailed example for g = 2 that produces ρ-values around 4, thus answering
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(in one case) an open problem of Freeman, Stevenhagen, and Streng [9, Open
Problem 3.5].

Example 5.2 (g = 2, k = 5, ρ = 4). Let K = Q(ζ5), k = 5, and

r(x) = Φ5(x) = x4 + x3 + x2 + x+ 1.

We choose the CM type Φ = {φ1, φ2} where φ1 is the identity and φ2 : ζ5 7→ ζ3
5 .

Then Ψ = {ψ1, ψ2}, where ψ1 is the identity and ψ2 : ζ5 7→ ζ2
5 . If we use the root

γ = ζ5 to factor r(x) in K[x] as in Proposition 3.3, we obtain

r(x) = r1(x)r2(x)r1(x)r2(x) = (x− ζ5)(x− ζ3
5 )(x− ζ4

5 )(x− ζ2
5 ).

We choose
α1 = x, α2 = x3, β1 = x, β2 = x4

and use the Chinese remainder theorem to compute

ξ(x) = 1
5 (−2ζ3

5 − 4ζ2
5 − ζ5 − 3)x2 + 1

5 (−ζ3
5 − 2ζ2

5 + 2ζ5 + 1)x

+ 1
5 (−2ζ3

5 − 4ζ2
5 − ζ5 − 3).

Taking the type norm NΦ(ξ) gives

π(x) = 1
5 (−ζ3

5 + ζ2
5 + ζ5 − 1)x4 + 1

5 (ζ3
5 + 2ζ5 − 3)x3 + 1

5 (3ζ2
5 + 4ζ5 − 2)x2

+ 1
5 (ζ3

5 + 2ζ5 − 3)x+ 1
5 (−ζ3

5 + ζ2
5 + ζ5 − 1), (5.3)

and we compute

q(x) = π(x)π(x) = 1
5

(
x8 + 2x7 + 8x6 + 9x5 + 15x4 + 9x3 + 8x2 + 2x+ 1

)
.

Since q(x) is irreducible and q(1) = 11 and q(−4) = 11941 are distinct primes,
q(x) represents primes as in Definition 3.5, and thus (π, r) represents a family
of abelian surfaces with embedding degree 5.

Let us try to construct an example abelian surface in this family with a
prime-order subgrup of at least 224 bits. Since deg r = 4, we input y0 = 256 to
Algorithm 4.1. Using a = 5 and b = 1 in Step (1), the algorithm outputs h = 5
and x0 = 360287970189653536. We then compute

r(x0) = 5 · 3369993333394348398194170933667553562436004186139310642457460566055021
q(x0) = 5678427533561175917371340615501195161203621012467727427545687191555754731178061 \

2000811104985873882951493859564911113133142369866704852261901 (465 bits).

Then r(x0) is 5 times a 231-bit prime r0. The Frobenius element π(x0) ∈ Q(ζ5)
can be computed from (5.3), and the number of points n is

NK/Q(π(x0)− 1) = 182497631597067310044724655183982827340514982783823273505974232371 \
199356204693993385911772749363583074379038864307843152029282095458 \
608651159860846080744456911871773588057764354381444936144205.
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Over any field F there is a single F-isomorphism class of abelian surfaces
whose ring of F-endomorphisms is isomorphic to Z[ζ5]. If char F is prime to 10,
then this abelian surface is isomorphic (over F) to the Jacobian of C : y2 = x5+1.
Over F we must find the twist of C that is in the correct F-isogeny class; i.e., has
a Jacobian with the correct number of F-rational points. By choosing a random
point P on each twist and seeing whether [n]P = O, we find that the correct
curve over F = Fq(x0) is

C : y2 = x5 + 5.

The ρ-value of Jac(C) with respect to the subgroup of order r0 is 4.02. ut

Remark 5.3. The abelian surface A = Jac(C) computed in Example 5.2 has
the property that the bit size of the field Fqk in which pairings on A take their
values is roughly ρk/g = 10 times the bit size of the prime-order subgroup A[r].
It follows that A is suitable for applications with security level equivalent to
a 112-bit symmetric-key system [8, §1.1]. In addition, since the curve C has a
degree-10 twist, we expect that twisting methods such as those developed for
elliptic curves [17] can be used to increase the speed of pairing computation on
the Jacobian and reduce the size of the input.

We ran Algorithm 3.7 for all degree-4 CM fields K that are primitive (i.e., do
not contain a quadratic imaginary subfield) and are contained in a cyclotomic
field Q(ζ`) with ϕ(`) ≤ 16. We let the inputs to the algorithm range over all such
K and ` and embedding degrees k dividing `. Given an η such that K = Q(η),
we let Φ be the CM type that consists of embeddings φi such that φi(η) all have
positive imaginary part. We tested all choices of αi, βi satisfying (5.1) and (5.2),
and computed the ξ of smallest degree that produces a q(x) that represents
primes in the sense of Definition 3.5. Some examples appear below.

Example 5.4 (g = 2, k = 10, ρ = 6). Let K = Q(ζ5), k = 10, r(x) = Φ10(x) =
x4 − x3 + x2 − x+ 1. Algorithm 3.7 outputs

π(x) = 1
25 (ζ35 − ζ25 − ζ5 + 1)x6 + 1

25 (−6ζ35 + 5ζ25 + 3ζ5 − 2)x5 + 1
5 (2ζ35 − ζ25 − 2)x4 + 1

5 (−2ζ35

− ζ5 + 4)x3 + 1
5 (3ζ35 − 2ζ25 − 2)x2 + 1

25 (−4ζ35 − ζ25 − ζ5 + 11)x+ 1
25 (4ζ35 − 5ζ25 − 2ζ5 − 2).

The ρ-value of this family is 6. On input y0 = 240, Algorithm 4.1 outputs h = 5
and x0 = 5497558154509. We find that A is the Jacobian of the genus 2 curve

C : y2 = x5 + 15.

Then r(x0) is 5 times a 168-bit prime r0. The ρ-value of A with respect to r0 is
within 10−10 of 6. ut

Example 5.5 (g = 2, k = 16, ρ = 7). Let K = Q(η), where η =
√
−2 +

√
2.

Let k = 16 and r(x) = Φ16(x) = x8 + 1. Algorithm 3.7 outputs

π(x) = 1
64 (−η2 − 2)x14 + 1

32 (−η2 − 3η − 2)x13 + 1
64 (η2 − 4η − 16)x12 + 1

16 (−2η3 + η2 − 6η

+ 5)x11 + 1
64 (−8η3 + η2 − 28η)x10 + 1

32 (4η3 − η2 + 7η − 2)x9 + 1
64 (8η3 − η2 + 16η

− 34)x8 + 1
8 (−η3 − 2η + 4)x7 + 1

64 (−8η3 − η2 − 16η − 2)x6 + 1
32 (4η3 − η2 + 13η − 2)x5

+ 1
64 (8η3 + η2 + 28η − 16)x4 + 1

16 (η2 + 2η + 5)x3 + 1
64 (η2 + 4η)x2 + 1

32 (−η2 − η − 2)x

+ 1
64 (−η2 − 2).

14



The ρ-value of this family is 7. The single Q-isomorphism class of genus 2
curves whose Jacobians have CM by OK is given by van Wamelen [22]. On
input y0 = 218, Algorithm 4.1 outputs h = 2 and x0 = 1083939. We find A to
be the Jacobian of the genus 2 curve

C : y2 = −x5 + 3x4 + 2x3 − 6x2 − 3x+ 1.

Then r(x0) is 2 times a 160-bit prime r0. The ρ-value of A with respect to r0 is
6.91. ut

Example 5.6 (g = 2, k = 13, ρ = 20/3). LetK = Q(η), where η =
√
−13 + 2

√
13.

Let k = 13 and let r(x) = Φ13(x). Algorithm 3.7 outputs

π(x) = 1
4056 (−19η3 + 183η2 − 377η + 2301)x20 + 1

338 (−2η3 + 7η2 − 39η + 78)x19 + 1
4056 (23η3

+ 177η2 + 481η + 2535)x18 + 1
1352 (7η3 + 49η2 + 65η + 767)x17 + 1

2028 (19η3 + 141η2

+ 221η + 1755)x16 + 1
1352 (η3 + 97η2 − 65η + 1183)x15 + 1

2028 (31η3 + 192η2 + 377η

+ 2496)x14 + 1
1352 (13η3 + 173η2 + 195η + 2587)x13 + 1

26 (3η2 − 2η + 39)x12 + 1
52 (η3 + 8η2

+ 11η + 104)x11 + 1
312 (5η3 + 33η2 + 55η + 507)x10 + 1

78 (2η3 + 9η2 + 28η + 117)x9

+ 1
312 (5η3 + 33η2 + 55η + 507)x8 + 1

4056 (97η3 + 441η2 + 1235η + 5811)x7 + 1
338 (2η3

+ 32η2 + 13η + 429)x6 + 1
2028 (8η3 + 165η2 + 52η + 2535)x5 + 1

1352 (19η3 + 81η2 + 273η

+ 923)x4 + 1
338 (−η3 + 9η2 − 26η + 130)x3 + 1

4056 (23η3 + 99η2 + 325η + 1521)x2

+ 1
2028 (8η3 + 3η2 + 130η + 39)x+ 1

338 (−η2 − 13).

The ρ-value of this family is 20/3. The single Q-isomorphism class of genus 2
curves whose Jacobians have CM by OK is given by van Wamelen [22]. On input
y0 = 7 · 215, Algorithm 4.1 outputs h = 13 and x0 = 3127658. We find A to be
the Jacobian of the genus 2 curve

C : y2 = x5 + 104x4 + 5408x3 + 140608x2 + 1687296x+ 7311616.

Then r(x0) is 13 times a 256-bit prime r0. The ρ-value of A with respect to r0
is 6.74. ut

Some additional families we obtained for g = 2 are summarized in Table
1. The π(x) produced by Algorithm 3.7 and example varieties of cryptographic
size can be found online at http://math.berkeley.edu/∼dfreeman/papers/
gen-bw-examples.pdf.

Table 1. Best ρ-values for families of abelian surfaces.

k CM field K r(x) ρ-value k CM field K r(x) ρ-value

6 Q(
p
−6 + 3

√
2) Φ48(x) 7.5 30 Q(ζ5) Φ60(x) 7

8 Q(
p
−5 +

√
5) Φ40(x) 7.5 32 Q(

p
−2 +

√
2) Φ32(x) 7.5

15 Q(ζ5) Φ15(x) 7 40 Q(ζ5) Φ40(x) 6.5
20 Q(ζ5) Φ20(x) 6 60 Q(ζ5) Φ60(x) 7

We restrict to r(x) of degree at most 16 because as the degree of r(x) grows it
becomes increasingly unlikely that we will find families with ρ-values significantly
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less than 8. For the same reason, we expect that non-Galois quartic CM fields
K will not provide greatly improved ρ-values, as we must work in a field L that
contains the compositum of the Galois closure of K and the cyclotomic field
Q(ζk). In addition, as deg r(x) and deg q(x) grow, we expect to find fewer values
of x for which both polynomials are primes of a specified size, and eventually
we expect not to find any such values of x. (See [8, Proposition 8.1] for a more
precise formulation of this idea.)

In dimension g = 3, we used the same procedure for the degree-6 Galois
CM field Q(ζ7). The family we discovered produces three-dimensional ordinary
abelian varieties with ρ-values better than the best previously known examples,
which have ρ ≈ 18 [9].

Example 5.7 (g = 3, k = 7, ρ = 12). Let K = Q(ζ7), k = 7, and r(x) = Φ7(x).
Algorithm 3.7 outputs

π(x) = 1
49 (−2ζ57 − 2ζ37 − 2ζ27 + 6ζ7)x

12 + 1
49 (−7ζ57 + 4ζ47 − 4ζ37 + 2ζ27 + 13ζ7 − 1)x11 + 1

49 (−9ζ57

+ 10ζ47 − 2ζ37 + ζ27 + 23ζ7 + 5)x10 + 1
49 (−16ζ57 + 9ζ47 − 13ζ37 − 2ζ27 + 45ζ7 − 2)x9

+ 1
49 (−22ζ57 + 6ζ47 − 19ζ37 + 3ζ27 + 39ζ7 − 7)x8 + 1

49 (−7ζ57 + 13ζ47 − 2ζ37 − 2ζ27 + 28ζ7

+ 12)x7 + 1
7 (−2ζ57 + ζ47 − 2ζ37 + ζ27 + 3ζ7 − 1)x6 + 1

49 (−12ζ57 − 7ζ47 − 26ζ37 − 12ζ27 + 8ζ7)x
5

+ 1
49 (−7ζ57 + 3ζ47 − 10ζ37 + 5ζ27 + 8ζ7 − 6)x4 + 1

49 (2ζ57 + 4ζ47 + 2ζ37 − ζ27 + 5ζ7 + 9)x3

+ 1
49 (−5ζ57 − 2ζ47 − 8ζ37 + 2ζ27 − 3ζ7 − 5)x2 + 1

49 (ζ57 + ζ47 − 2ζ37 − 3ζ27 + 3ζ7)x+ 1
49 (ζ47

+ 2ζ37 + 2ζ27 + 2)

The ρ-value of this family is 12. The single Q-isomorphism class of genus 3
curves whose Jacobians have CM by OK is given by y2 = x7 + 1. On input
y0 = 228, Algorithm 4.1 outputs h = 7 and x0 = 1879056152. We find A to be
the Jacobian of the genus 3 curve

C : y2 = x7 + 16.

Then r(x0) is 7 times a 183-bit prime r0. The ρ-value of A with respect to r0 is
12.10. ut

We also ran our algorithm for the degree-6 CM field Q(ζ9) and found families
with ρ-values of 15 for k = 9 and k = 18. The π(x) output by the algorithm and
example varieties of cryptographic size can be found online at http://math.
berkeley.edu/∼dfreeman/papers/gen-bw-examples.pdf.

Abelian varieties with CM by Q(ζ9) are Jacobians of Picard curves of the
form y3 = x4 + ax [15]. We note that since these curves are not hyperelliptic,
for any q-Weil number π ∈ Z[ζ9] there is a curve C/Fq whose Jacobian has
Frobenius element either π or −π. In the second case the abelian variety over Fq
with Frobenius element π is the quadratic twist of Jac(C), and is not isomorphic
over Fq to a Jacobian. (See the Appendix of [16] for more details.)

Future Directions

Our construction improves on the best known ρ-values of pairing-friendly or-
dinary abelian varieties of dimension g ≥ 2 for many different choices of CM
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field K and embedding degree k. However, to make ordinary abelian varieties
of dimension g ≥ 2 competitive with elliptic curves in terms of performance, we
must construct varieties with ρ ≤ 2, with the ultimate goal of producing ρ-values
close to 1. Achieving this goal is the most important problem for further work.

Our construction leaves a great deal of room for searching for better pa-
rameters. One direction would be to choose various Galois CM fields K and let
L = K(ζk). Another approach would be to use the approach of Kachisa, Schae-
fer, and Scott [12] to search systematically through polynomials r(x) such that
L ∼= Q[x]/(r(x)). In the case where g ≥ 2, one could also increase the size of the
input Σ, which is the set from which we choose the residues αi, βi of ξ modulo
factors of r(x) in K̂[x]. In practice we find that when we use elements of Σ with
large coefficients, the q(x) computed have coefficients with large denominators
and are thus unlikely to take integer values. However, even restricting Σ to con-
tain only polynomials with small coefficients leaves many possible choices for αi
and βi, and a program that searches systematically through these choices would
have a very good chance of finding improved ρ-values.
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