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Abstra
t

The sele
tive de
ommitment problem 
an be des
ribed as follows: assume an adversary re-


eives a number of 
ommitments and then may request openings of, say, half of them. Do the

unopened 
ommitments remain se
ure? Although this question arose more than twenty years

ago, no satisfa
tory answer 
ould be presented so far. We answer the question in several ways:

1. If simulation-based se
urity is desired (i.e., if we demand that the adversary's output 
an

be simulated by a ma
hine that does not see the unopened 
ommitments), then se
u-

rity is not a
hievable for non-intera
tive or perfe
tly binding 
ommitment s
hemes via

bla
k-box redu
tions to standard 
ryptographi
 assumptions. However, we show how to

a
hieve se
urity in this sense with intera
tion and a non-bla
k-box redu
tion to one-way

permutations.

2. If only indistinguishability of the unopened 
ommitments from random 
ommitments is

desired, then se
urity is not a
hievable for (intera
tive or non-intera
tive) perfe
tly binding


ommitment s
hemes, via bla
k-box redu
tions to standard 
ryptographi
 assumptions.

However, any statisti
ally hiding s
heme does a
hieve se
urity in this sense.

Our results give an almost 
omplete pi
ture when and how se
urity under sele
tive openings


an be a
hieved. Appli
ations of our results in
lude:

� Essentially, an en
ryption s
heme must be non-
ommitting in order to a
hieve provable

se
urity against an adaptive adversary.

� When implemented with our se
ure 
ommitment s
heme, the intera
tive proof for graph

3-
oloring due to Goldrei
h et al. be
omes zero-knowledge under parallel 
omposition.

On the te
hni
al side, we develop a te
hnique to show very general impossibility results for

bla
k-box proofs.

Keywords: 
ryptography, 
ommitments, zero-knowledge, bla
k-box separations.

1 Introdu
tion

Consider an adversary A that observes 
iphertexts sent among parties in a multi-party 
ryptographi


proto
ol. At some point, A may de
ide, based on the information he already observed, to 
orrupt,

say, half of the parties. By this, A learns the se
ret keys of these parties, whi
h allows him to open

some of the observed 
iphertexts. The question is: do the unopened 
iphertexts remain se
ure?

Sin
e most en
ryption s
hemes a
tually 
onstitute 
ommitments to the respe
tive messages, we 
an

rephrase the question as what is known as the sele
tive de
ommitment problem: assume A re
eives

a number of 
ommitments and then may request openings of half of them. Do the unopened


ommitments remain se
ure? A

ording to Dwork et al. [15℄, this question arose already more than

twenty years ago in the 
ontext of Byzantine agreement, but it is still relatively poorly understood.

In parti
ular, standard 
ryptographi
 te
hniques (e.g., guessing whi
h 
ommitments are opened,

or hybrid arguments) fail to show that �ordinary� 
ommitment se
urity against a stati
 adversary
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guarantees se
urity under sele
tive openings.

1

Even worse: no 
ommitment s
heme is known to be

se
ure under sele
tive openings.

Related work. The sele
tive de
ommitment problem arises in parti
ular in the en
ryption sit-

uation des
ribed above, and hen
e was re
ognized and mentioned in a number of works before

(e.g., [7, 4, 8, 12, 10℄). However, these works solved the problem by using (and, in fa
t, inventing)

non-
ommitting en
ryption, whi
h 
ir
umvents the underlying 
ommitment problem.

Dwork et al. [15℄ is, to the best of our knowledge, the only work that expli
itly studies the

sele
tive de
ommitment problem. They prove that a 
ommitment s
heme whi
h is se
ure under

sele
tive openings would have interesting appli
ations. In parti
ular, they show that the parallel


omposition of the graph 3-
oloring proto
ol G3C of Goldrei
h et al. [20℄, when implemented with

su
h a 
ommitment s
heme, satis�es a relaxed variant of zero-knowledge. They pro
eed to give

positive results for substantially relaxed sele
tive de
ommitment problems (essentially, they prove

se
urity when standard te
hniques 
an be applied, i.e., when the set of opened 
ommitments 
an be

guessed, or when the messages are independent). However, they leave open the question whether


ommitment s
hemes se
ure under (general) sele
tive openings exist.

Our work. We answer the sele
tive de
ommitment problem in several ways. First, we 
onsider

what happens if �se
urity of the unopened 
ommitments� means that we require the existen
e of

a simulator S, su
h that S essentially a
hieves what A does, only without seeing the unopened


ommitments in the �rst pla
e. We 
all a 
ommitment s
heme whi
h is se
ure in this sense simu-

latable under sele
tive openings. We show that no non-intera
tive or perfe
tly binding 
ommitment

s
heme 
an be proved simulatable under sele
tive openings using bla
k-box redu
tions to standard

assumptions. However, we also show how to 
onstru
t 
ommitment s
hemes whi
h are simulatable

under sele
tive openings, under the assumption that one-way permutations exist. Our 
onstru
tion

uses non-bla
k-box te
hniques (i.e., zero-knowledge proofs) as well as intera
tion to 
ir
umvent our

impossibility results. This solves an important open problem from Dwork et al. [15℄: our s
hemes

are the �rst 
ommitment s
hemes provably se
ure under sele
tive openings.

We pro
eed to 
onsider what happens if �se
urity� means that A 
annot distinguish the messages

inside the unopened 
ommitments from independent

2

messages. We 
all a 
ommitment s
heme

whi
h is se
ure in this sense indistinguishable under sele
tive openings. We show that no perfe
tly

binding 
ommitment s
heme (intera
tive or not) 
an be proved indistinguishable under sele
tive

openings, via bla
k-box redu
tions from standard assumptions. However, we also show that all

statisti
ally hiding 
ommitment s
hemes are indistinguishable under sele
tive openings.

Te
hni
ally, we derive bla
k-box impossibility results in the style of Impagliazzo and Rudi
h [22℄,

but we 
an derive stronger 
laims, similar to Dodis et al. [14℄. Con
retely, we prove impossibility via

89semi-bla
k-box proofs from any 
omputational assumption that 
an be formalized as an ora
le X

and a 
orresponding se
urity property P whi
h the ora
le satis�es. For instan
e, to model one-way

permutations, X 
ould be a truly random permutation and P 
ould be the one-way game in whi
h

a PPT adversary tries to invert a random image. We emphasize that, somewhat surprisingly, our

impossibility 
laim holds even if P models se
urity under sele
tive openings. In that 
ase, however,

a redu
tion will ne
essarily be non-bla
k-box, see Appendix A for a dis
ussion.

1

For instan
e, the probability to 
orre
tly guess an n=2-sized subset of n 
ommitments is too small, and a hybrid

argument would require some independen
e among the 
ommitments, whi
h we 
annot assume in general.

2

�independent� 
an of 
ourse only mean �independent, 
onditioned on the already opened messages�
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Appli
ations. We apply our results to the adaptively se
ure en
ryption example mentioned in the

beginning, and to a spe
ial 
lass of intera
tive proof systems. First, we 
omment that an adaptively

se
ure en
ryption s
heme must be non-
ommitting, or rely on non-standard te
hniques. Namely,

whenever a 
ommitting (i.e., 
iphertexts 
ommit to messages) en
ryption s
heme is adaptively

se
ure, then it also is, interpreted as a (non-intera
tive) 
ommitment s
heme, simulatable under

sele
tive openings. Our impossibility results show that hen
e, a 
ommitting en
ryption s
heme


annot be proved adaptively se
ure via bla
k-box redu
tions from standard assumptions.

Se
ond, we apply our results to �
ommit-
hoose-open� (CCO) style intera
tive proof systems

su
h as the graph 3-
oloring proto
ol G3C from Goldrei
h et al. [20℄. Re�ning the te
hniques of

Dwork et al. [15℄, we prove that any CCO proto
ol be
omes zero-knowledge under parallel 
omposi-

tion, when implemented with a 
ommitment s
heme whi
h is simulatable under sele
tive openings.

In parti
ular, our (intera
tive, but 
onstant-round) 
ommitment s
heme enables the parallel 
om-

posability of G3C. This is surprising, given the negative results of Goldrei
h and Kraw
zyk [19℄

and Canetti et al. [9℄ for the 
on
urrent 
omposability limitations of (bla
k-box) zero-knowledge

proof systems. We stress that our simulator is stri
t polynomial-time (as opposed to expe
ted

polynomial-time simulators used, e.g., by Goldrei
h and Kahan [18℄). We also show that a CCO

proto
ol be
omes witness-indistinguishable, even under parallel 
omposition, when implemented

with a 
ommitment s
heme whi
h is indistinguishable under sele
tive openings. Although some-

what less surprising, this shows the usefulness of our indistinguishability-based se
urity de�nition

as a reasonable fallba
k.

Organization. After �xing some notation in Se
tion 2, we present in Se
tion 3 our possibility

and impossibility results for the simulation-based se
urity de�nition of Dwork et al. [15℄. We give

an indistinguishability-based se
urity de�nition, along with possibility and impossibility results in

Se
tion 4. In Se
tion 5 and Se
tion 6, we 
onsider appli
ations of our results to en
ryption and

intera
tive proof systems. We dis
uss the role of the 
omputational assumption in our impossibility

results in Appendix A.

2 Preliminaries

Notation. Throughout the paper, k 2 N denotes a se
urity parameter. With growing k, atta
ks

should be be
ome harder, but we also allow s
hemes to be of 
omplexity whi
h is polynomial in

k. A PPT algorithm/ma
hine is a probabilisti
 algorithm/ma
hine whi
h runs in time polynomial

in k. While an algorithm is stateless, a ma
hine maintains a state a
ross a
tivations. A fun
tion

f = f(k) is 
alled negligible if it vanishes faster than the inverse of any polynomial. That is, f

is negligible i� 8
9k

0

8k > k

0

: jf(k)j < k

�


. If f is not negligible, we 
all f non-negligible. We

say that f is overwhelming i� 1 � f is negligible. We write [n℄ := f1; : : : ; ng. If M = (M

i

)

i

is an

indexed set, then we write M

I

:= (M

i

)

i2I

. We denote the empty (bit-)string by �.

Commitment s
hemes.

De�nition 2.1 (Commitment s
heme). A 
ommitment s
heme is a pair of PPT ma
hines Com =

(S;R) su
h that the following holds:

Syntax. For any M 2 f0; 1g

k

, S(
ommit;M) �rst intera
ts with R(re
eive). We 
all this the


ommit phase. After that, S(open) intera
ts again with R(open), and R �nally outputs a

value M

0

2 f0; 1g

k

[ f?g. We 
all this the opening phase.

Corre
tness. We have M

0

= M always and for all M .

Binding. For a ma
hine A, 
onsider the following experiment Exp

binding

Com;A

:
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1. Let A(
ommit) intera
t with R(re
eive),

2. let M

0

0

denote R's output after intera
ting (on input open) with A(open; 0),

3. rewind A and R ba
k to the point before step 2,

4. let M

0

1

denote R's output after intera
ting (on input open) with A(open; 1),

5. output 1 i� ? 6= M

0

0

6= M

0

1

6= ?.

We require that Adv

binding

Com;A

= Pr

h

Exp

binding

Com;A

= 1

i

is negligible for all PPT A.

Hiding. For a PPT ma
hine A, let Adv

hiding

Com;A

:= Pr

h

Exp

hiding-0

Com;A

= 1

i

� Pr

h

Exp

hiding-1

Com;A

= 1

i

: Here,

Exp

hiding-b

Com;A

pro
eeds as follows:

1. run (M

0

;M

1

) A(
hoose) to obtain two messages M

0

;M

1

2 f0; 1g

k

,

2. let S(
ommit;M

b

) intera
t with A(re
eive),

3. let b

0

be A's �nal output

4. output b

0

.

We demand that Adv

hiding

Com;A

is negligible for all PPT A.

Further, we say that Com is perfe
tly binding i� Adv

binding

Com;A

= 0 for all A. We say that statisti
ally

hiding i� Adv

hiding

Com;A

is negligible for all (not ne
essarily PPT) A.

De�nition 2.2 (Non-intera
tive 
ommitment s
heme). A non-intera
tive 
ommitment s
heme is

a 
ommitment s
heme Com = (S;R) in whi
h both 
ommit and opening phase 
onsist of only one

message sent from S to R. We 
an treat a non-intera
tive 
ommitment s
heme as a pair of algorithms

rather than ma
hines. Namely, we write (
om; de
) S(M) shorthand for the 
ommit message 
om

and opening message de
 sent by S on input M . We also denote by M

0

 R(
om; de
) the �nal

output of R upon re
eiving 
om in the 
ommit phase and de
 in the opening phase.

Note that perfe
tly binding implies that any 
ommitment 
an only be opened to at most one

value M . Perfe
tly binding (non-intera
tive) 
ommitment s
hemes 
an be a
hieved from any one-

way permutation (e.g., Blum [6℄). On the other hand, statisti
ally hiding implies that for any

M

0

;M

1

2 f0; 1g

k

, the statisti
al distan
e between the respe
tive views of the re
eiver in the 
ommit

phase is negligible. One-way fun
tions su�
e to implement statisti
ally hiding (intera
tive) 
om-

mitment s
hemes (Haitner and Reingold [21℄). If we assume the existen
e of (families of) 
ollision-

resistant hash fun
tions, then even 
onstant-round statisti
ally hiding 
ommitment s
hemes exist

(Damgård et al. [13℄, Naor and Yung [25℄).

Intera
tive argument systems. We re
all some basi
 de�nitions 
on
erning intera
tive argu-

ment systems, mostly following Goldrei
h [17℄.

De�nition 2.3 (Intera
tive proof/argument system). An intera
tive proof system for a language

L with witness relation R is a pair of PPT ma
hines IP = (P;V) su
h that the following holds:

Completeness. For every family (x

k

; w

k

)

k2N

su
h that R(x

k

; w

k

) for all k and jx

k

j is polynomial

in k, we have that the probability for V(x

k

) to output 1 after intera
ting with P(x

k

; w

k

) is at

least 2=3.

Soundness. For every ma
hine P

�

and every family (x

k

; z

k

)

k2N

su
h that jx

k

j = k and x

k

62 L

for all k, we have that the probability for V(x

k

) to output 1 after intera
ting with P

�

(x

k

; z

k

)

is at most 1=3.

If the soundness 
ondition holds for all PPT ma
hines P

�

(but not ne
essarily for all unbounded

P

�

), then IP is an intera
tive argument system. We say that IP enjoys perfe
t 
ompleteness if V

always outputs 1 in the 
ompleteness 
ondition. Furthermore, IP has negligible soundness error if

V outputs 1 only with negligible probability in the soundness 
ondition.
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We now state what it means for an intera
tive proof or argument system to be zero-knowledge:

De�nition 2.4 (Zero-knowledge). Let IP = (P;V) be an intera
tive proof or argument system for

language L with witness relation R. IP is zero-knowledge if for every PPT ma
hine V

�

, there exists

a PPT ma
hine S

�

su
h that for all sequen
es (x;w) = (x

k

; w

k

)

k2N

with R(x

k

; w

k

) for all k and

jx

k

j polynomial in k, for all PPT ma
hines D, and all auxiliary inputs z

V

�

= (z

V

�

k

)

k2N

2 (f0; 1g

�

)

N

and z

D

= (z

D

k

)

k2N

2 (f0; 1g

�

)

N

, we have that

Adv

ZK

V

�

;S

�

;(x;w);D;z

V

�

;z

D

:= Pr

h

D(x

k

; z

D

k

; hP(x

k

; w

k

); V

�

(x

k

; z

V

�

k

)i) = 1

i

� Pr

h

D(x

k

; z

D

k

; S

�

(x

k

; z

V

�

k

)) = 1

i

is negligible in k. Here hP(x

k

; w

k

); V

�

(x

k

; z

V

�

k

)i denotes the trans
ript of the intera
tion between the

prover P and V

�

.

Note that De�nition 2.5 involves two auxiliary inputs, one input z

V

�

for V

�

and S

�

, and one

input z

D

for D. This deviates from the standard zero-knowledge de�nition (e.g., Goldrei
h [17,

De�nition 4.3.10℄), in whi
h V

�

, S

�

, and D all get the same auxiliary input z. However, our 
hange

is without loss of generality (
f. [17, Dis
ussion after De�nition 4.3.10℄). Namely, sin
e in the

standard de�nition, D and z are 
hosen after V

�

and S

�

, and, by de�nition of PPT, the running

time of V

�

and S

�

is polynomial in k (but not in the length of z), we 
an pad z su
h that only D

will be able to a

ess a 
ertain portion z

D

of z.

Most known intera
tive proof system a
hieve perfe
t 
ompleteness. Conversely, most systems

do not enjoy a negligible soundness error �by nature�; their soundness has to be ampli�ed via

repetition, e.g., via sequential or 
on
urrent 
omposition. Thus, it is important to 
onsider the


on
urrent 
omposition of an intera
tive argument system:

De�nition 2.5 (Con
urrent zero-knowledge). Let IP = (P;V) be an intera
tive proof or argument

system for language L with witness relation R. IP is zero-knowledge under 
on
urrent 
omposition

i� for every polynomial n = n(k) and PPT ma
hine V

�

, there exists a PPT ma
hine S

�

su
h that

for all sequen
es (x;w) = (x

i;k

; w

i;k

)

k2N;i2[n℄

with R(x

i;k

; w

i;k

) for all i; k and jx

i;k

j polynomial in k,

for all PPT ma
hines D, and all auxiliary inputs z

V

�

= (z

V

�

k

)

k2N

2 (f0; 1g

�

)

N

and z

D

= (z

D

k

)

k2N

2

(f0; 1g

�

)

N

, we have that

Adv


ZK

V

�

;S

�

;(x;w);D;z

V

�

;z

D

:= Pr

h

D((x

i;k

)

i2[n℄

; z

D

k

; hP((x

i;k

; w

i;k

)

i2[n℄

); V

�

((x

i;k

)

i2[n℄

; z

V

�

k

)i) = 1

i

� Pr

h

D((x

i;k

)

i2[n℄

; z

D

k

; S

�

((x

i;k

)

i2[n℄

; z

V

�

k

)) = 1

i

is negligible in k. Here hP((x

i;k

; w

i;k

)

i2[n℄

); V

�

((x

i;k

)

i2[n℄

; z

V

�

k

)i denotes the trans
ript of the inter-

a
tion between n 
opies of the prover P (with the respe
tive inputs (x

i;k

; w

i;k

) for i = 1; : : : ; n) on

the one hand, and V

�

on the other hand.

There exist intera
tive proof systems (with perfe
t 
ompleteness and negligible soundness error)

that a
hieve De�nition 2.5 for arbitrary NP-languages if one-way permutations exist (e.g., Ri
hard-

son and Kilian [28℄; see also [23, 9, 1, 16, 3℄ for similar results in related settings). If we assume

the existen
e of (families of) 
ollision-resistant hash fun
tions, then there even exist 
onstant-round

intera
tive proof systems that a
hieve a bounded version of De�nition 2.5 in whi
h the number of


on
urrent instan
es is �xed in advan
e (Barak [1℄, Barak and Goldrei
h [2℄).

We also re
all the de�nition of witness indistinguishability (a relaxation of zero-knowledge) from

Goldrei
h [17℄, where we 
hose a slightly di�erent but equivalent formulation:
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De�nition 2.6 (Witness indistinguishability). Let IP = (P;V) be an intera
tive proof or argument

system for language L with witness relation R. IP is witness indistinguishable i� for every PPT

ma
hines V

�

and D, all sequen
es x = (x

k

)

k2N

, w

0

= (w

0

k

)

k2N

, and w

1

= (w

1

k

)

k2N

with R(x

k

; w

0

k

)

and R(x

k

; w

1

k

) for all k and jx

k

j polynomial in k, and all auxiliary inputs z = (z

k

)

k2N

2 (f0; 1g

�

)

N

,

we have that

Adv

WI

x;w

0

;w

1

;V

�

;D;z

:= Pr

�

D(x

k

; z

k

; hP(x

k

; w

0

k

); V

�

(x

k

; z

k

)i) = 1

�

� Pr

�

D(x

k

; z

k

; hP(x

k

; w

1

k

); V

�

(x

k

; z

k

)i) = 1

�

is negligible in k. Here, hP(x;w); V

�

(x)i denotes a trans
ript of the intera
tion between P and V

�

.

Bla
k-box redu
tions. Reingold et al. [27℄ give an ex
ellent overview and 
lassi�
ation of bla
k-

box redu
tions. We re
all some of their de�nitions whi
h are important for our 
ase. A primitive

P = (F

P

; R

P

) is a set F

P

of fun
tions f : f0; 1g

�

! f0; 1g

�

along with a relation R over pairs

(f;A), where f 2 F

P

, and A is a ma
hine. We say that f is an implementation of P i� f 2 F

P

.

Furthermore, f is an e�
ient implementation of P i� f 2 F

P

and f 
an be 
omputed by a PPT

ma
hine. A ma
hine A P-breaks f 2 F

P

i� R

P

(f;A). A primitive P exists if there is an e�
ient

implementation f 2 F

P

su
h that no PPT ma
hine P-breaks f . A primitive P exists relative to an

ora
le B i� there exists an implementation f 2 F

P

whi
h is 
omputable by a PPT ma
hine with

a

ess to B, su
h that no PPT ma
hine with a

ess to B P-breaks f .

De�nition 2.7 (Relativizing redu
tion). There exists a relativizing redu
tion from a primitive

P = (F

P

; R

P

) to a primitive Q = (F

Q

; R

Q

) i� for every ora
le B, the following holds: if Q exists

relative to B, then so does P.

De�nition 2.8 (89semi-bla
k-box redu
tion). There exists a 89semi-bla
k-box redu
tion from a

primitive P = (F

P

; R

P

) to a primitive Q = (F

Q

; R

Q

) i� for every implementation f 2 F

Q

, there

exists a PPT ma
hine G su
h that G

f

2 F

P

, and the following holds: if there exists a PPT ma
hine

A su
h that A

f

P-breaks G

f

, then there exists a PPT ma
hine S su
h that S

f

Q-breaks f .

It 
an be seen that if a relativizing redu
tion exists, then so does a 89semi-bla
k-box redu
tion.

The 
onverse is true when Q �allows embedding,� whi
h essentially means that additional ora
les


an be embedded into Q without destroying its fun
tionality (see Reingold et al. [27, De�nition 3.4

and Theorem 3.5℄ and Simon [29℄). Below we will prove impossibility of relativizing redu
tions

between 
ertain primitives, whi
h also proves impossibility of 89semi-bla
k-box redu
tions, sin
e

the 
orresponding primitives Q allow embedding.

3 A simulation-based de�nition

Consider the following real se
urity game: adversary A gets, say, n 
ommitments, and then may ask

for openings of some of them. The se
urity notion of Dwork et al. [15℄ requires that for any su
h

A, there exists a simulator S that 
an approximate A's output. More 
on
retely, for any relation

R, we require that R(M; out

A

) holds about as often as R(M; out

S

), where M = (M

i

)

i2[n℄

are the

messages in the 
ommitments, out

A

is A's output, and out

S

is S's output. Formally, we get the

following de�nition (where hen
eforth, I will denote the set of �allowed� opening sets):

De�nition 3.1 (Simulatable under sele
tive openings/SIM-SO-COM). Let n = n(k) > 0 be poly-

nomially bounded, and let I = (I

n

)

n

be a family of sets su
h that ea
h I

n

is a set of subsets of [n℄.

A 
ommitment s
heme Com = (S;R) is simulatable under sele
tive openings (short SIM-SO-COM

6



se
ure) i� for every PPT n-message distribution M, every PPT relation R, and every PPT ma-


hine A (the adversary), there is a PPT ma
hine S (the simulator), su
h that Adv

sim-so

Com;M;A;S;R

is

negligible. Here

Adv

sim-so

Com;M;A;S;R

:= Pr

h

Exp

sim-so-real

Com;M;A;R

= 1

i

� Pr

h

Exp

sim-so-ideal

M;S;R

= 1

i

;

where Exp

sim-so-real

Com;M;A;R

pro
eeds as follows:

1. sample messages M = (M

i

)

i2[n℄

 M,

2. let A(re
eive) intera
t 
on
urrently with n instan
es (S

i

(
ommit;M

i

))

i2[n℄

of S,

3. let I 2 I be A's output after intera
ting with the S

i

,

4. let A(open) intera
t 
on
urrently with the jIj instan
es (S

i

(open))

i2I

of S,

5. let out

A

denote A's �nal output,

6. output 1 i� R(M; out

A

).

On the other hand, Exp

sim-so-ideal

M;S;R

pro
eeds as follows:

1. sample messages M = (M

i

)

i2[n℄

 M,

2. invoke I  S(
hoose) to obtain a set I 2 I,

3. invoke out

S

 S((M

i

)

i2I

),

4. output 1 i� R(M; out

S

).

For simpli
ity, we opted not to give auxiliary input to the adversary (or to the relation R). Su
h

an auxiliary input is a 
ommon tool in 
ryptographi
 de�nitions to ensure some form of 
omposabil-

ity. Not giving the adversary auxiliary input only makes our negative results stronger. We stress,

however, that our positive results (Theorem 3.11 and Theorem 4.11) hold also for adversaries and

relations with auxiliary input.

3.1 Impossibility from bla
k-box redu
tions

Formalization of 
omputational assumptions. Our �rst result states that SIM-SO-COM

se
urity 
annot be a
hieved via bla
k-box redu
tions from standard assumptions. We want to


onsider su
h standard assumptions in a general way that allows to make statements even in the

presen
e of �relativizing� ora
les. Thus we make the following de�nition, whi
h is a spe
ial 
ase of

the de�nition of a primitive from Reingold et al. [27℄ (
f. also Se
tion 2).

De�nition 3.2 (Property of an ora
le). Let X be an ora
le. Then a property P of X is a (not

ne
essarily PPT) ma
hine that, after intera
ting with X and another ma
hine A, �nally outputs a

bit b. For an adversary A (that may intera
t with X and P), we de�ne A's advantage against P

as

Adv

prop

P;X ;A

:= Pr [P outputs b = 1 after intera
ting with A and X ℄� 1=2:

Now X is said to satisfy property P i� for all PPT adversaries A, we have that Adv

prop

P;X ;A

is negligible.

In terms of Reingold et al. [27℄, the 
orresponding primitive is P = (F

P

; R

P

), where F

P

= fXg,

and R

P

(X ; A) i� Adv

prop

P;X ;A

is non-negligible. Our de�nition is also similar in spirit to �hard games�

as used by Dodis et al. [14℄, but more general. We emphasize that P 
an only intera
t with X and

A, but not with possible additional ora
les. (See Appendix A for further dis
ussion of properties

of ora
les, in parti
ular their role in our proofs.) Intuitively, P a
ts as a 
hallenger in the sense of

a 
ryptographi
 se
urity experiment. That is, P tests whether adversary A 
an �break� X in the

intended way. We give an example, where �breaking� means �breaking X 's one-way property�.

7



Example. If X is a random permutation of f0; 1g

k

, then the following P models X 's one-way

property: P a
ts as a 
hallenger that 
hallenges A to invert a randomly 
hosen X -image. Con
retely,

P initially 
hooses a random Y 2 f0; 1g

k

and sends Y to A. Upon re
eiving a guess X 2 f0; 1g

k

from A, P 
he
ks if X (X) = Y . If yes, then P terminates with output b = 1. If X (X) 6= Y , then

P tosses an unbiased 
oin b

0

2 f0; 1g and terminates with output b = b

0

.

We stress that we only gain generality by demanding that Pr [P outputs 1℄ is 
lose to 1=2 (and

not, say, negligible). In fa
t, this way indistinguishability-based games (su
h as, e.g., the indistin-

guishability of 
iphertexts of an ideal en
ryption s
heme X ) 
an be formalized very 
onveniently.

On the other hand, 
ryptographi
 games like the one-way game above 
an be formulated in this

framework as well, by letting the 
hallenger output b = 1 with probability 1=2 when A fails.

On the role of property P. Our up
oming results state the impossibility of (bla
k-box) se
urity

redu
tions, from essentially any 
omputational assumption (i.e., property) P. The obvious ques-

tion is: what if the assumption already is an idealized 
ommitment s
heme se
ure under sele
tive

openings? The short answer is: �then the se
urity proof will not be bla
k-box.� We give a detailed

explanation of what is going on in Appendix A.

Stateless breaking ora
les. In our impossibility results, we will des
ribe a 
omputational world

with a number of ora
les. For instan
e, there will be a �breaking ora
le� B, su
h that B aids in

breaking the SIM-SO-COM se
urity of any given 
ommitment s
heme, and in nothing more. To this

end, B takes the role of the adversary in the SIM-SO-COM experiment. Namely, B expe
ts to re
eive

a number of 
ommitments, then 
hooses a subset of these 
ommitments, and then expe
ts openings

of the 
ommitments in this subset. This is an intera
tive pro
ess whi
h would usually require B

to hold a state a
ross invo
ations. However, stateful ora
les are not very useful for establishing

bla
k-box separations, so we will have to give a stateless formulation of B. Con
retely, suppose that

the investigated 
ommitment s
heme is non-intera
tive. Then B answers deterministi
ally upon

queries and expe
ts ea
h query to be pre�xed with the history of that query. For instan
e, B �nally

expe
ts to re
eive openings de
 = (de


i

)

i2I

along with the 
orresponding previous 
ommitments


om = (
om

i

)

i2[n℄

and previously sele
ted set I. If I is not the set that B would have sele
ted

when re
eiving 
om alone, then B ignores the query. This way, B is stateless (but randomized,

similarly to a random ora
le). Furthermore, for non-intera
tive 
ommitment s
hemes, this makes

sure that any ma
hine intera
ting with B 
an open 
ommitments to B only in one way. Hen
e this

formalization preserves the binding property of a 
ommitment s
heme, something whi
h we will

need in our proofs.

We stress, however, that this method does not ne
essarily work for intera
tive 
ommitment

s
hemes. Namely, any ma
hine intera
ting with su
h a stateless B 
an essentially �rewind� B

during an intera
tive 
ommitment phase, sin
e B formalizes a next-message fun
tion. Now if the


ommitment s
heme is still binding if the re
eiver of the 
ommitment 
an be rewound (e.g., this

holds trivially for non-intera
tive 
ommitment s
hemes, and also for perfe
tly binding 
ommitment

s
hemes), then our formalization of B preserves binding, and our up
oming proof works. If, however,

the 
ommitment s
heme loses its binding property if the re
eiver 
an be rewound, then the following

theorem 
annot be applied.

We are now ready to state our result.

Theorem 3.3 (Bla
k-box impossibility of non-intera
tive or perfe
tly binding SIM-SO-COM, most

general formulation). Let n = n(k) > 0 be arbitrary, and let I = (I

n

)

n

be arbitrary su
h that I

n

is

a set of subsets of [n℄ and jI

n

j is super-polynomial in k.

3

Let X be an ora
le that satis�es property

3

e.g., one 
ould think of n = 2k and I

n

= fI � [n℄ j jIj = n=2g here

8



P. Then there is a set of ora
les relative to whi
h X still satis�es property P, but there exists

no non-intera
tive or perfe
tly binding 
ommitment s
heme whi
h is simulatable under sele
tive

openings.

Proof. First, let RO be a random ora
le (i.e., a random fun
tion f0; 1g

�

! f0; 1g

k

). When writing

RO(x

1

; : : : ; x

`

), we assume that RO's input x

1

; : : : ; x

`

is en
oded in a pre�x-free way, su
h that all

individual x

i


an be e�
iently re
onstru
ted from RO's input. Furthermore, to derive our se
ond

ora
le B, �rst 
onsider the following ma
hine B:

1. Upon re
eiving Com as input, interpret Com as the des
ription of two ma
hines (S;R) as in

De�nition 2.1. Then, 
on
urrently re
eive n Com-
ommitments, indexed by i 2 [n℄.

2. When all 
ommitments are re
eived, output a uniformly 
hosen I 2 I.

3. Engage in jIj 
on
urrent opening phases for the Com-instan
es with i 2 I. If all openings

are valid (i.e., every re
eiver instan
e with i 2 I outputs some M

i

6= ?), return the set of all

X 2 f0; 1g

k=3

su
h that M

i

= RO(Com; i;X) for all i 2 I.

Unfortunately, we 
annot use B dire
tly in our proof, sin
e B is stateful, and bla
k-box separations

require stateless ora
les. So let B be the ora
le that evaluates B's next-message fun
tion. Formally,

B expe
ts queries of the form h = (h

i

)

i2[`℄

. Upon ea
h su
h query, B invokes a fresh 
opy of B,

and feeds it input messages h

1

up to h

`

su

essively, ignoring the respe
tive answers of B. Finally,

B outputs B's answer to the last input h

`

. The random 
oins used for B in a given a
tivation are

supplied by B as a random (but deterministi
) fun
tion of the previous message history of B. This

way, B itself is randomized but stateless, and 
an be used to emulate intera
tions with B. (In fa
t,

B models a B whi
h 
an be rewound.)

We now 
omment on the des
ription of Com that B re
eives. Com des
ribes two ma
hines S

and R, whi
h may make arbitrary ora
le 
alls (even re
ursive B-queries). We make no requirement

that Com des
ribes a hiding, binding, or 
orre
t 
ommitment s
heme. However, we do require that

S and R are PPT whenever the des
ription Com is generated by a PPT algorithm. We a
hieve

this with a suitable padding: We require all B-queries h are pre�xed with 1

`

, where ` bounds B's

running time on input h. Here, we 
ount any ora
le query with input x as jxj 
omputational steps,

and the �nal 
omputation of all X as one step. This way, not even re
ursive B-queries 
onsume

more than overall ` steps (not measuring the time needed to parse `), while any PPT 
ommitment

s
heme Com 
an still be en
oded e�
iently.

For a query h = (h

i

)

i2[`℄

, let I

h

2 I and M

h

I

h

= (M

h

i

)

i2I

h

denote the variables from the


orresponding intera
tion with B. For a 
ommitment s
heme Com and a ma
hine A, we say that

A breaks Com

�

in B i� A manages to output two queries h = (h

i

)

i2[`℄

and h

0

= (h

0

i

)

i2[`

0

℄

su
h that

the following holds.

� h

i

= h

0

i

for all i � i

I

, where i

I

is the (unique) index for whi
h B((h

i

)

i2[i

I

℄

) outputs I

h

2 I.

� There is an index j 2 [n℄ su
h that ? 6= M

h

j

6= M

h

0

j

6= ?.

In other words, this holds if A manages to produ
e intera
tions with B in whi
h the same 
ommit-

ment is opened in di�erent ways.

From here on, �x a (hiding and binding) 
ommitment s
heme Com

�

= (S

�

;R

�

), su
h that Com

�

is non-intera
tive or perfe
tly binding (or both). We �rst show that our modeling of B preserves

the binding property of Com

�

.

Lemma 3.4. No PPT adversary A breaks Com

�

in B with non-negligible probability.

Proof. If Com

�

is perfe
tly binding, there never exists a 
ommitment for whi
h two di�erent openings

are possible (as long as the re
eiver a
ts honestly). Hen
e there simply are no h and h

0

as required

to break the binding property of Com

�

in B. On the other hand, if Com

�

is non-intera
tive, then

A must �nd a non-intera
tive 
ommitment 
om along with two non-intera
tive openings de


1

and
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de


2

in order to break Com

�

in B. The (ordinary) binding property of Com

�

implies that this is not

e�
iently possible.

Now 
onsider the n-message distribution M

�

= f(RO(Com

�

; i;X

�

))

i2[n℄

g

X

�

2f0;1g

k=3

(i.e., M

�


hooses X

�

2 f0; 1g

k=3

uniformly and then sets M

�

i

= RO(Com

�

; i;X

�

) for all i).

Lemma 3.5. There is an adversary A that outputs out

A

= M

�

with overwhelming probability in

the real SIM-SO-COM experiment Exp

sim-so-real

Com

�

;M;A;R

. Here M

�

denotes the full message ve
tor sampled

fromM

�

by the experiment.

Proof. Let A be the SIM-SO-COM adversary on Com

�

that relays between its interfa
e to the SIM-

SO-COM experiment and B as follows. We silently assume that A pre�xes queries to B with the

respe
tive message history, and applies a padding as des
ribed above.

1. Initially, send Com

�

to B.

2. Relay the n 
ommitments from the SIM-SO-COM experiment to B.

3. Upon re
eiving I

�

2 I from B, send I

�

to the SIM-SO-COM experiment.

4. Upon re
eiving jI

�

j openings from the experiment, relay these openings to B.

5. Finally, upon re
eiving a singleton set fX

�

g from B, return out

A

= (RO(Com

�

; i;X

�

))

i2[n℄

.

If B returns a set of larger size, return out

A

= ?.

By 
onstru
tion of M

�

and B, it is 
lear that out

A

= M

�

unless B returns multiple X (whi
h

happens only with negligible probability by a 
ounting argument).

Lemma 3.6. Any given PPT simulator S will output out

S

= M

�

in the ideal SIM-SO-COM

experiment Exp

sim-so-ideal

M;S;R

only with negligible probability.

Proof. Fix a PPT S. We 
laim that in the ideal SIM-SO-COM experiment, S has a view that

is almost statisti
ally independent of X

�

, and hen
e will output out

S

= M

�

only with negligible

probability. To show the 
laim, denote by I

�

the subset that S submits to the SIM-SO-COM exper-

iment, and by M

�

I

�

the messages that S re
eives ba
k. Denote by Com

j

; I

j

;M

j

I

j

the 
orresponding

values used in S's j-th query h

j

= (h

j

i

)

i2[`

j

℄

to B. We �rst de�ne and bound a number of �bad�

events:

� bad


oll

o

urs i� S reveals a message M

j

i

to B for whi
h there are two distin
t X

1

;X

2

2

f0; 1g

k=3

with RO(Com

j

; i;X

1

) = M

j

i

= RO(Com

j

; i;X

2

):

� bad

img

o

urs i� S reveals a message M

j

i

to B for whi
h an X with M

j

i

= RO(Com

j

; i;X)

exists, but M

j

i

has not been obtained through an expli
it RO-query (by either S or the

SIM-SO-COM experiment).

� bad

bind

o

urs i� (Com

j

; I

j

;M

j

I

j

) = (Com

�

; I

�

;M

�

I

�

) for some j.

� bad := bad


oll

_ bad

img

_ bad

bind

:

These events o

ur only with negligible probability: informally, bad


oll

implies a 
ollision among

2

k=3

uniformly distributed k-bit values, whi
h is ruled out by a birthday bound. bad

img

means that

S guessed an element of a very sparse set. Finally, bad

bind

means that S broke Com

�

's binding

property (or, rather, S broke Com

�

in B). A detailed proof 
an be found in Lemma 3.7 below.

Now 
onsider the following ma
hine B

0

whi
h is almost identi
al to B (the di�eren
e to B is

emphasized):

1. Upon re
eiving Com as input, interpret Com as the des
ription of two ma
hines (S;R) as in

De�nition 2.1. Then, 
on
urrently re
eive n Com-
ommitments, indexed by i 2 [n℄.

2. When all 
ommitments are re
eived, output a uniformly 
hosen I 2 I.
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3. Engage in jIj 
on
urrent opening phases for the Com-instan
es with i 2 I. If all openings

are valid (i.e., every re
eiver instan
e with i 2 I outputs some M

i

6= ?), pro
eed as follows.

If every M

i

is the result of an RO(Com; i;X)-query of S (for the same X 2 f0; 1g

k=3

), then

output fXg. Otherwise, output ;.

Denote by B

0

the ora
le that evaluates B

0

's next-message fun
tion. We �rst remark that B

0


an

be e�
iently simulated inside S: B

0

running time is (roughly) the same as B's running time, if we


ount ora
le queries and the �nal 
omputation of the X as above. Furthermore, by de�nition, the

output of B and B

0


an di�er only if

� there are multiple X with M

i

= RO(Com; i;X) for some i 2 I, or

� for some i 2 I, M

i

is not the result of an expli
it RO-query of S, but there exists an X with

M

i

= RO(Com; i;X) for all i 2 I.

Suppose bad does not o

ur. Then :bad


oll

ensures that no multiple X with M

i

= RO(Com; i;X)

exist, and :bad

img

ensures that allM

i

have been expli
itly queried asM

i

= RO(Com; i;X) by either

S or the SIM-SO-COM experiment. Now sin
e the SIM-SO-COM experiment makes only queries

of the form M

�

i

= RO(Com

�

; i;X

�

), this means that B and B

0


an only di�er if Com = Com

�

, and

if M

I


ontains some M

i

from M

�

I

�

. On the other hand, :bad

bind

implies that then, M

I

must also


ontain some M

i

0

not 
ontained in M

�

I

�

. By :bad

img

, then M

i

0

must have been expli
itly queried by

S through M

i

0

= RO(Com

�

; i

0

;X

�

), for the same X

�

as 
hosen by the SIM-SO-COM experiment

to generate M

�

i

= RO(Com

�

; i;X

�

).

In other words, assuming :bad, in order to dete
t a di�eren
e between B and B

0

, S must already

have guessed the hidden X

�

used in the SIM-SO-COM experiment. In parti
ular, sin
e up to that

point, ora
les B and B

0

behave identi
ally, and S 
an simulate B

0

internally, S 
an either extra
t

the hidden X

�

from the SIM-SO-COM experiment with ora
les RO and X alone, or not at all.

However, sin
e we de�ned RO independently and after X , these ora
les are independent. Hen
e,

using RO and X alone, the view of S is independent of X

�

unless S expli
itly makes a RO-query

involving X

�

. Sin
e X

�

2 f0; 1g

k=3

is uniformly 
hosen from a suitably large domain, and bad

o

urs with negligible probability, we get that S's view is almost statisti
ally independent of X

�

.

Consequently, S's view is almost statisti
ally independent of all M

�

i

with i 62 I

�

. Hen
e, S 
an

produ
e out

S

= M

�

only with negligible probability.

It remains to prove that bad o

urs only negligibly often.

Lemma 3.7. Event bad o

urs only with negligible probability.

Proof. We show that any of the events bad


oll

, bad

img

, bad

bind

o

urs only with negligible proba-

bility for any �xed i; j. The full 
laim then 
an be derived by a union bound over i; j, and the

individual events. So �rst �x i; j, and note that the fun
tions RO(Com

j

; i; �) and RO(Com; i

0

; �) are

independent as soon as Com

j

6= Com or i 6= i

0

. Hen
e, for all of the events, we 
an ignore RO- and

B-queries with a di�erent Com or i, and assume that RO

0

(�) := RO(Com

j

; i; �) is a fresh random

ora
le.

bad


oll

: Using a birthday bound, we get

Pr

h

9X

1

;X

2

2 f0; 1g

k=3

;X

1

6= X

2

: RO

0

(X

1

) = RO

0

(X

2

)

i

�

(2

k=3

)

2

2

k

= 2

�k=3

;

whi
h implies that with large probability, there simply exists no M

j

i

whi
h 
ould raise bad


oll

.

bad

img

: We show that S's 
han
e to output M

i

with M

i

= RO

0

(s) for some s 2 f0; 1g

k=3

, and su
h

that X has not been queried to RO

0

-query, is negligible. Now S's a

ess to the B-ora
le 
an

be emulated using an ora
le B

0

that, upon input Y , outputs the set of all X 2 f0; 1g

k=3

with

RO

0

(X) = Y . Without loss of generality, we may further assume that S never queries B

0

11



with a Y whi
h has been obtained through an expli
it RO

0

(X)-query. (Namely, unless bad


oll

o

urs, whi
h happens only with negligible probability, B

0

's answer will then be fXg.)

Hen
e, whenever S re
eives an answer 6= ; from B

0

, it has already su

eeded in produ
ing

an M

i

with RO

0

(X) = M

i

for some X, and without querying RO

0

(X). So without loss of

generality, we 
an assume that S never queries B

0

, and hen
e only produ
es su
h an M

i

using

a

ess to RO and X alone. Clearly, X does not help S, sin
e X and RO are independent.

But sin
e the set of all Y for whi
h RO

0

(X) = Y for some X 2 f0; 1g

k=3

is sparse in the set

of all Y 2 f0; 1g

k

, and S 
an only make a polynomial number of RO-queries, S's su

ess in

produ
ing su
h an M

i

is negligible.

bad

bind

: Let i

I

be the (unique) index for whi
h B((h

j

i

)

i2[i

I

℄

) outputs I

j

. Without loss of generality,

assume that S sets I

�

after B �rst outputs I

j

= B((h

j

i

)

i2[i

I

℄

). (Otherwise, I

j

= I

�

o

urs

only with probability 1=jIj, sin
e I

j

is 
hosen uniformly and then independent of I

�

.) We 
an

also assume that Com

j

= Com

�

, sin
e otherwise bad

bind


annot happen by de�nition. Hen
e,

S �rst generates a 
ommit trans
ript (h

j

i

)

i2[i

I

℄

, then re
eives I

j

and sends I

�

= I

j

to the

SIM-SO-COM experiment, and only then re
eives messages M

�

I

�

. To a
hieve bad

bind

in this

situation, S must �nd a full trans
ript h

j

su
h that M

j

I

j

= M

�

I

�

. In parti
ular, there is an

i 2 I

j

su
h that S opens the i-th 
ommitment in h

j

to a value M

�

i

whi
h S only sees after

the trans
ript of the 
ommit phase is �xed.

Hen
e, if S a
hieves bad

bind

with non-negligible probability, we 
an 
onstru
t the following

PPT ma
hine A. A �rst simulates S to extra
t h = h

j

, and then rewinds S ba
k to the point

before it re
eived M

�

I

�

. Restarting S with di�erent messages M

�

I

�

then yields a trans
ript h

0

that opens the same 
ommitments as in h to di�erent messages. This 
ontradi
ts Lemma 3.4.

Taking things together, this shows that Adv

sim-so

Com

�

;M

�

;A;S;R

is overwhelming for the relation

R(x; y) :, x = y, the des
ribed A, and any PPT S. Hen
e Com

�

is not SIM-SO-COM se
ure.

It remains to argue that in the des
ribed 
omputational world, X still satis�es property P.

Lemma 3.8. X satis�es P.

Proof. Assume a PPT adversary A on X 's property P. Sin
e X and P do not query B or RO,

A 
an do without external ora
les RO and B, and use internal simulations of RO and B instead.

Using lazy sampling for RO, both simulations 
an even be made PPT. (This in
ludes B's inversion

of RO, sin
e we simulate B and RO at the same time. We omit the details.)

So without loss of generality, we 
an assume that A only uses X -queries when intera
ting with

P. Sin
e we assumed that P holds in the standard model (i.e., without any auxiliary ora
les), A's

advantage Adv

prop

P;X ;A

must be negligible.

This 
on
ludes the proof of Theorem 3.3.

The following 
orollary provides an instantiation of Theorem 3.3 for a number of standard 
ryp-

tographi
 primitives.

Corollary 3.9 (Bla
k-box impossibility of non-intera
tive or perfe
tly binding SIM-SO-COM).

Assume n and I as in Theorem 3.3. Then no non-intera
tive or perfe
tly binding 
ommitment

s
heme 
an be proven simulatable under sele
tive openings via a 89semi-bla
k-box redu
tion to one

or more of the following primitives: one-way fun
tions, one-way permutations, trapdoor one-way

permutations, IND-CCA se
ure publi
 key en
ryption.
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The 
orollary is a spe
ial 
ase of Theorem 3.3. For instan
e, to show Corollary 3.9 for one-

way permutations, one 
an use the example X and P from above: X is a random permutation

of f0; 1g

k

, and P models the one-way experiment with X . Clearly, X satis�es P, and so we 
an

apply Corollary 3.9. This yields impossibility of relativizing proofs for SIM-SO-COM se
urity from

one-way permutations. We get impossibility for 89semi-bla
k-box redu
tions sin
e one-way permu-

tations allow embedding, 
f. Simon [29℄, Reingold et al. [27℄. The other 
ases are similar. Note that

while it is generally not easy to even give a 
andidate for a 
ryptographi
 primitive in the standard

model, it is easy to 
onstru
t an idealized, say, en
ryption s
heme in ora
le form.

Generalizations. First, Corollary 3.9 
onstitutes merely an example instantiation of the mu
h

more general Theorem 3.3. The proof also holds for a relaxation of SIM-SO-COM se
urity 
onsid-

ered by Dwork et al. [15, De�nition 7.3℄, where adversary and simulator approximate a fun
tion of

the message ve
tor.

3.2 Possibility using non-bla
k-box te
hniques

Non-bla
k-box te
hniques vs. intera
tion. Theorem 3.3 shows that SIM-SO-COM se
urity


annot be a
hieved unless one uses non-bla
k-box te
hniques or intera
tion. In this se
tion, we will

investigate the power of non-bla
k-box te
hniques to a
hieve SIM-SO-COM se
urity. As it turns

out, for our purposes a 
on
urrently 
omposable zero-knowledge argument system is a suitable

non-bla
k-box tool.

4

We stress that the use of this zero-knowledge argument makes our s
heme

ne
essarily intera
tive, and so a
tually 
ir
umvents Theorem 3.3 in two ways: by non-bla
k-box

te
hniques and by intera
tion. However, from a 
on
eptual point of view, our s
heme is �non-

intera
tive up to the zero-knowledge argument.� In parti
ular, our proof does not use the fa
t that

the zero-knowledge argument is intera
tive. (That is, if we used a 
on
urrently 
omposable non-

intera
tive zero-knowledge argument in, say, the 
ommon referen
e string model, our proof would

still work.)

The s
heme. For our non-bla
k-box s
heme, we need an intera
tive argument system IP with

perfe
t 
ompleteness and negligible soundness error, su
h that IP is zero-knowledge under 
on
urrent


omposition. We also need a perfe
tly binding non-intera
tive 
ommitment s
heme Com

b

. Both

these ingredients 
an be 
onstru
ted from one-way permutations. To ease presentation, we only

des
ribe a bit 
ommitment s
heme, whi
h is easily extended (along with the proof) to the multi-bit


ase.

S
heme 3.10 (Non-bla
k-box 
ommitment s
heme ZKCom). Let Com

b

= (S

b

;R

b

) be a perfe
tly

binding non-intera
tive 
ommitment s
heme. Let IP = (P;V) be an intera
tive argument system for

NP whi
h enjoys perfe
t 
ompleteness, has negligible soundness error, and whi
h is zero-knowledge

under 
on
urrent 
omposition. De�ne ZKCom = (S

ZK

;R

ZK

) for the following ma
hines S

ZK

and

R

ZK

:

� Commitment to bit b:

1. S

ZK


omputes (
om

0

; de


0

)  S

b

(b) and (
om

1

; de


1

)  S

b

(b), and sends (
om

0

; 
om

1

)

to R

ZK

.

2. S

ZK

uses IP to prove to R

ZK

that 
om

0

and 
om

1


ommit to the same bit.

5

4

We require 
on
urrent 
omposability sin
e the SIM-SO-COM de�nition 
onsiders multiple, 
on
urrent sessions

of the 
ommitment s
heme.

5

Formally, the 
orresponding language L for IP 
onsiders statements x = (
om

0

; 
om

1

) and witnesses w =

(de


0

; de


1

) su
h that R(x;w) i� R

b

(
om

0

; de


0

) = R

b

(
om

1

; de


1

) 2 f0; 1g.
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� Opening:

1. S

ZK

uniformly 
hooses j 2 f0; 1g and sends (j; de


j

) to R

ZK

.

The se
urity of ZKCom. It is straightforward to prove that ZKCom is a hiding and binding


ommitment s
heme. (We stress, however, that Com

b

's perfe
t binding property is needed to prove

that ZKCom is binding; otherwise, the zero-knowledge argument may be
ome meaningless.) More

interestingly, we 
an also show that ZKCom is SIM-SO-COM se
ure:

Theorem 3.11 (non-bla
k-box possibility of SIM-SO-COM). Fix any n and I as in De�nition 3.1.

Then ZKCom is simulatable under sele
tive openings in the sense of De�nition 3.1.

Proof. Assume arbitrary n, I,M, R, and A as in De�nition 3.1. We pro
eed in games.

Game 0 is the real SIM-SO-COM experiment Exp

sim-so-real

ZKCom;M;A;R

for ZKCom. De�ne the random

variable out

0

as the output of the experiment, so that

Pr

h

Exp

sim-so-real

ZKCom;M;A;R

= 1

i

= Pr [out

0

= 1℄ :

In Game 1, we interpret the �rst stage of the experiment as a veri�er V

�

in the sense of

De�nition 2.5. To this end, we 
onstru
tively de�ne random variables x

i;k

; w

i;k

; z

D

k

; z

V

�

k

as follows:

1. sample M = (M

i

)

i2[n℄

2 f0; 1g

n

fromM,

2. uniformly and independently 
hoose n bits j

1

; : : : ; j

n

,

3. for all i 2 [n℄ and j 2 f0; 1g, 
ompute (
om

j

i

; de


j

i

) S

b

(M

i

),

4. de�ne x

i;k

= (
om

0

i

; 
om

1

i

), w

i;k

= (de


0

i

; de


1

i

), z

V

�

k

= � and z

D

k

= (M; (j

i

; de


j

i

i

)

i2[n℄

).

Using this notation, the 
ommitment stage of Exp

sim-so-real

ZKCom;M;A;R


an be expressed as an intera
-

tion of n 
on
urrent instan
es of prover P with a suitable veri�er V

�

as in De�nition 2.5.

6

Con-


retely, we de�ne a veri�er V

�

that, on input (x

i;k

)

i2[n℄

= (
om

0

i

; 
om

1

i

)

i2[n℄

, internally simulates

Exp

sim-so-real

ZKCom;M;A;R

up to the point where A outputs I. The intera
tive arguments whi
h show that


om

0

i

and 
om

1

i


ommit to the same bit are performed 
on
urrently with (n instan
es of) a prover

P that gets x

i;k

= (
om

0

i

; 
om

1

i

) and w

i;k

= (de


0

i

; de


1

i

) as input. Finally, V

�

outputs out

V

�

= I,

so that I will be part of the trans
ript T

P;V

�

= hP((x

i;k

; w

i;k

)

i2[n℄

); V

�

((x

i;k

)

i2[n℄

; z

V

�

k

)i.

We outsour
e the se
ond stage of the atta
k into a suitable distinguisher D. Con
retely, we

de�ne a ma
hine D whi
h, on input z

D

k

= (M; (j

i

; de


j

i

i

)

i2[n℄

) and a trans
ript T

P;V

�

(whi
h 
ontains

out

V

�

= I), simulates out

A

 A((j

i

; de


j

i

i

)

i2I

) and outputs out

1

= R(M; out

A

).

This setting is merely a reformulation of Exp

sim-so-real

ZKCom;M;A;R

as a 
on
urrent zero-knowledge argu-

ment, so we have that

Pr [out

1

= 1℄ = Pr [out

0

= 1℄ :

In Game 2, we use IP's 
on
urrent zero-knowledge property. That is, Game 1 already spe
i�es

a PPT veri�er V

�

and a PPT distinguisher D, as well as random variables (x;w), z

V

�

, and z

D

,

as in De�nition 2.5. Hen
e our assumption on IP guarantees that there exists a PPT simulator

S

�

su
h that Adv


ZK

V

�

;S

�

;(x;w);D;z

V

�

;z

D

is negligible. We substitute V

�

(along with all instan
es of P)

from Game 1 with that simulator S

�

in Game 2. Note that now, the exe
ution of Game 2 does not

require w

i;k

= (de


0

i

; de


1

i

) anymore, but instead only one opening de


j

i

i

for ea
h argument session.

If we let out

2

denote D's output (on input z

D

k

and out

S

�

) in this setting, we get that

Pr [out

1

= 1℄� Pr [out

2

= 1℄ = Adv


ZK

V

�

;S

�

;(x;w);D;z

V

�

;z

D

6

Note that De�nition 2.5 trivially implies se
urity for all distributions on (x;w), z

V

�

and z

D

. Also re
all that

De�nition 2.5 models two di�erent auxiliary inputs z

V

�

(for V

�

and S

�

) and z

D

(for D). We emphasize again that

this is without loss of generality, 
f. the dis
ussion after De�nition 2.4.
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is negligible.

In Game 3, we use Com

b

's hiding property. Namely, we now 
hange the generation of the

x

i;k

= (
om

0

i

; 
om

1

i

). While we still generate 
om

j

i

i

as a 
ommitment to M

i

, we now de�ne 
om

1�j

i

i

as a 
ommitment to 1�M

i

, so that 
om

0

i

and 
om

1

i

are 
ommitments to di�erent bits. Sin
e de


1�j

i

i

is never used in Game 2, this does not result in a dete
table 
hange in D's output. Con
retely, we

have that

Pr [out

3

= 1℄� Pr [out

2

= 1℄ = Adv

hiding

Com

b

;A

0

for a suitable adversary A

0

on Com

b

's hiding property, so that Pr [out

3

= 1℄�Pr [out

2

= 1℄ is negli-

gible.

To 
onstru
t Game 4, observe that in Game 3, distinguisher D only needs the openings de


j

i

i

for i 2 I from its input z

D

k

= (M; (de


j

i

i

)

i2[n℄

). We 
an exploit this fa
t as follows. We now

generate the 
ommitments x

i;k

= (
om

0

i

; 
om

1

i

) and openings de


j

i

i

, as well as the j

i

2 f0; 1g

slightly di�erently. Con
retely, for ea
h message bit M

i

, we �rst 
hoose a random bit b

i

and


ompute (
om

0

i

; de


0

i

)  S

b

(b

i

) and (
om

1

i

; de


1

i

)  S

b

(1� b

i

). This modi�
ation does not 
hange

S

�

's view. When D requires an opening de


j

i

i

(for i 2 I), we de�ne j

i

= b

i

�M

i

, so that de


j

i

i

opens

the �right� message M

i

. This does not 
hange the view of S

�

or D, so that we have

Pr [out

4

= 1℄ = Pr [out

3

= 1℄ :

The 
ru
ial 
on
eptual di�eren
e to Game 3 is that now the exe
ution of D requires only knowledge

about the message parts (M

i

)

i2I

sele
ted by S

�

and not the full message ve
tor M .

We 
an now reformulate Game 4 as an ideal SIM-SO-COM experiment. First, we de�ne a

simulator S as follows: �rst, S prepares bits b

i

and 
ommitments (
om

i

0

; 
om

i

1

) as in Game 4

and then runs an internal simulation of S

�

on these 
ommitments. Upon obtaining I from S

�

, S

outputs I. Then, upon input (M

i

)

i2I

, S runs an internal simulation of A on input (j

i

; de


j

i

i

)

i2I

for j

i

= b

i

� M

i

as in Game 4. Finally, S outputs out

S

= out

A

. By 
onstru
tion, the ideal

SIM-SO-COM experiment Exp

sim-so-ideal

M;S;R

with this S is only a reformulation of Game 4, so that

Pr

h

Exp

sim-so-ideal

M;S;R

= 1

i

= Pr [out

4

= 1℄ :

Putting things together, we get that

Adv

sim-so

ZKCom;M;A;S;R

= Pr

h

Exp

sim-so-real

ZKCom;M;A;R

= 1

i

� Pr

h

Exp

sim-so-ideal

M;S;R

= 1

i

is negligible, whi
h proves the theorem.

Where is the non-bla
k-box 
omponent? Interestingly, the used zero-knowledge argument

system IP itself 
an well be bla
k-box zero-knowledge (where bla
k-box zero-knowledge means that

the simulator S

�

from De�nition 2.5 has only bla
k-box a

ess to the next-message fun
tion of V

�

).

The essential fa
t that allows us to 
ir
umvent our negative result Theorem 3.3 is the way we employ

IP. Namely, ZKCom uses IP to prove a statement about two given 
ommitments (
om

0

; 
om

1

).

This proof (or, rather, argument) uses an expli
it and non-bla
k-box des
ription of the employed


ommitment s
heme Com

b

. It is this argument that 
annot even be expressed when Com

b

makes

use of, say, a one-way fun
tion given in ora
le form.

Generalizations. First, ZKCom 
an be straightforwardly extended to a multi-bit 
ommitment

s
heme, e.g., by running several sessions of ZKCom in parallel. Se
ond, ZKCom is SIM-SO-COM

se
ure also against adversaries with auxiliary input z: our proof holds literally, where of 
ourse we

also require se
urity of Com

b

against non-uniform adversaries.
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4 An indistinguishability-based de�nition

Motivated by the impossibility result from the previous se
tion, we relax De�nition 3.1 as follows:

De�nition 4.1 (Indistinguishable under sele
tive openings/IND-SO-COM). Let n = n(k) > 0 be

polynomially bounded, and let I = (I

n

)

n

be a family of sets su
h that ea
h I

n

is a set of subsets

of [n℄. A 
ommitment s
heme Com = (S;R) is indistinguishable under sele
tive openings (short

IND-SO-COM se
ure) i� for every PPT n-message distribution M, and every PPT adversary A,

we have that Adv

ind-so

Com;M;A

is negligible. Here

Adv

ind-so

Com;M;A

:= Pr

h

Exp

ind-so-real

Com;M;A

= 1

i

� Pr

h

Exp

ind-so-ideal

Com;M;A

= 1

i

;

where Exp

ind-so-real

Com;M;A

pro
eeds as follows:

1. sample messages M = (M

i

)

i2[n℄

 M,

2. let A(re
eive) intera
t 
on
urrently with n instan
es (S

i

(
ommit;M

i

))

i2[n℄

of S,

3. let I 2 I be A's output after intera
ting with the S

i

,

4. let A(open) intera
t 
on
urrently with the jIj instan
es (S

i

(open))

i2I

of S,

5. send the full message ve
tor M to A,

6. output A's �nal output b.

On the other hand, Exp

ind-so-ideal

Com;M;A

pro
eeds as follows:

1. sample messages M = (M

i

)

i2[n℄

 M,

2. let A(re
eive) intera
t 
on
urrently with n instan
es (S

i

(
ommit;M

i

))

i2[n℄

of S,

3. let I 2 I be A's output after intera
ting with the S

i

,

4. let A(open) intera
t 
on
urrently with the jIj instan
es (S

i

(open))

i2I

of S,

5. sample M

0

 M jM

I

, i.e., sample a fresh message ve
tor M

0

fromM with M

0

I

= M

I

,

6. send the full ve
tor M

0

to S,

7. output A's �nal output b.

On the 
onditioned distributionM jM

I

. We stress that, depending onM, it may be 
ompu-

tationally hard to sample M

0

 M jM

I

, even if (the un
onditioned) M is PPT. This might seem

strange at �rst and in
onvenient when applying the de�nition in some larger redu
tion proof. How-

ever, there simply seems to be no other way to 
apture indistinguishability, sin
e the set of opened


ommitments depends on the 
ommitments themselves. In parti
ular, in general we 
annot predi
t

whi
h 
ommitments the adversary wants opened, and then, say, substitute the not-to-be-opened


ommitments with random 
ommitments. What we 
hose to do instead is to give the adversary

either the full message ve
tor, or an independent message ve
tor whi
h �
ould be� the full message

ve
tor, given the opened 
ommitments. We believe that this is the 
anoni
al way to 
apture se-


re
y of the unopened 
ommitments under sele
tive openings. We should also stress that it is this

de�nition that turns out to be useful in the 
ontext of intera
tive argument systems, see Se
tion 6.

The relation between SIM-SO-COM and IND-SO-COM se
urity. Unfortunately, we (
ur-

rently) 
annot prove that SIM-SO-COM se
urity implies IND-SO-COM se
urity (although this

seems plausible, sin
e usually simulation-based de�nitions imply their indistinguishability-based


ounterparts). Te
hni
ally, the reason why we are unable to prove an impli
ation is the 
onditioned

distributionM jM

I

in the ideal IND-SO-COM experiment, whi
h 
annot be sampled from during

an (e�
ient) redu
tion.
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A relaxation. Alternatively, we 
ould let the adversary predi
t a predi
ate � of the whole message

ve
tor, and 
onsider him su

essful if Pr [b = �(M)℄ and Pr [b = �(M

0

)℄ for the alternative message

ve
tor M

0

 M jM

I

di�er non-negligibly. We stress that our up
oming negative result (as well as

the appli
ation in Se
tion 6) also applies to this relaxed notion.

4.1 Impossibility from bla
k-box redu
tions

Theorem 4.2 (Bla
k-box impossibility of perfe
tly binding IND-SO-COM, most general formula-

tion). Let n = n(k) = 2k, and let I = (I

n

)

n

with I

n

= fI � [n℄ : jIj = n=2g be the family of

all n=2-sized subsets of [n℄. Let X be an ora
le that satis�es property P even in presen
e of an

EXPSPACE-ora
le. We also demand that X is 
omputable in EXPSPACE.

7

Then, there exists a

set of ora
les relative to whi
h X still satis�es P, but no perfe
tly binding 
ommitment s
heme is

indistinguishable under sele
tive openings.

Proof. Let E = f0; 1g

k

and " := :01. Let EXPSPACE be an EXPSPACE-ora
le. We stress that

EXPSPACE 
an be used to perform ine�
ient 
omputations, but EXPSPACE itself never makes

ora
le queries (e.g., to X or the ora
les RO and B presented below). Let RO be a random fun
tion

from E

n=2+1

to E

n

. We write M 2 RO when M 2 E

n

lies in the range of RO. For M;M

0

2 E

n

and � > 0, we write M �

"

M

0

i� M and M

0


oin
ide in at least d(1 � ")ne 
omponents (i.e., i�

there exists R � [n℄, jRj � d(1 � ")ne, with M

R

= M

0

R

). To 
onstru
t our last ora
le B, let B be

the ma
hine that pro
eeds as follows.

1. Upon re
eiving Com as input, 
he
k that Com des
ribes a perfe
tly binding (but not ne
essarily

hiding) 
ommitment s
heme (see the dis
ussion after the des
ription of B). If not, reje
t with

output ?. If yes, 
on
urrently re
eive n Com-
ommitments, indexed by i 2 [n℄.

2. When all 
ommitments are re
eived, output a uniformly 
hosen I 2 I.

3. Engage in jIj 
on
urrent opening phases for the Com-instan
es with i 2 I. If all openings are

valid (i.e., every Com-re
eiver instan
e with i 2 I outputs some M

i

6= ?), then extra
t the

whole message ve
tor M = (M

i

)

i2[n℄

2 E

n

from the 
ommitments (this is possible uniquely

sin
e Com is perfe
tly binding). Output the set of allM

0

2 RO withM

0

I

= M

I

andM

0

�

"

M .

We should 
omment on B's 
he
k whether Com is perfe
tly binding. We want that, for all possible

values of RO and states of X , and for all synta
ti
ally allowed 
ommitments, there is at most one

message M

i

to whi
h a 
ommitment 
an be opened in the sense of Com. Note that by assumption

about X , this 
ondition 
an be 
he
ked using EXPSPACE. Con
retely, we let EXPSPACE iterate

internally over all possible internal states of X and B, and over all possible random tapes of an

honest veri�er. EXPSPACE then 
he
ks whether a synta
ti
ally possible 
ommitment along with

two openings to di�erent messages exists. Note that we 
ompletely ignore whether or not Com is

hiding.

Again, we 
annot use B dire
tly, sin
e B is stateful, and bla
k-box separations require stateless

ora
les. So let B be the ora
le that evaluates B's next-message fun
tion, suitably padded as in the

proof of Theorem 3.3. We note that, similarly to Lemma 3.4, we 
an derive that the perfe
t binding

property of a perfe
tly binding 
ommitment s
heme is preserved by the rewindable formalization

in B. In parti
ular, (the trans
ript of) a 
ommitment phase uniquely determines the only possible

opening message.

Lemma 4.3. Let Com

�

be a perfe
tly binding 
ommitment s
heme (that may use all of the des
ribed

ora
les in its algorithms). Then, Com

�

is not indistinguishable under sele
tive openings.

7

Examples of su
h X are random ora
les or ideal 
iphers. It will be
ome 
learer how we use the EXPSPACE

requirement in the proof.
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Proof. Consider the n-message distributionM

�

that samples random elements in the range of RO.

(I.e.,M

�

outputs RO(X) for a uniformly sampled X 2 E

n=2+1

.) Consider the following adversary

A that relays between the real or ideal IND-SO-COM experiment and ora
le B. (Again, we silently

assume that A pre�xes queries to B with the respe
tive message history.)

1. Initially, send Com

�

to B.

2. Relay the n 
ommitments from the IND-SO-COM experiment to B.

3. Upon re
eiving I

�

2 I from B, send I

�

to the IND-SO-COM experiment.

4. Upon re
eiving jI

�

j openings from the experiment, relay these openings to B.

5. Upon re
eiving a 
hallenge messageM from the experiment, and a set S � E

n

from B, output

out

A

= 1 i� S = fMg.

First, we 
laim that the probability for S = fM

�

g is overwhelming, where M

�

denotes the message

ve
tor sampled by the IND-SO-COM experiment. By 
onstru
tion of B, we have M

�

2 S. Fur-

thermore, for any M

0

2 S, it must hold that M

0

�

"

M

�

. But for any distin
t X

1

;X

2

2 E

n=2+1

,

we have that RO(X

1

) �

"

RO(X

2

) with probability

�

n

d(1�")ne

�

=jEj

d(1�")ne

. A union bound over all

M

0

2 RO shows that the probability that there exists an M

0

2 S, M

0

6= M

�

is negligible. Hen
e

S = fM

�

g with overwhelming probability.

Thus, A outputs 1 in the real IND-SO-COM experiment with overwhelming probability, sin
e

then M = M

�

. However, in the ideal IND-SO-COM experiment, M 6= M

�

with overwhelming

probability (sin
e for uniformly 
hosen M

�

2 RO, the expe
ted number ofM 2 RO withM

I

= M

�

I

is about jEj = 2

k

). Consequently, A outputs 1 in the ideal IND-SO-COM experiment only with

negligible probability. We get that Adv

ind-so

Com

�

;M

�

;A

is overwhelming, whi
h proves the lemma.

Lemma 4.4. X satis�es P.

Proof. Consider a PPT adversary A on X 's property P. Note that A may use RO, B, and

EXPSPACE freely. We pro
eed in games to show that Adv

prop

P;X ;A

is negligible.

Let Game 0 by the original se
urity experiment in whi
h A atta
ks X 's property P. We say

that a B-query is a 
ommit query (resp. open query) if it �nishes the 
ommitment (resp. opening)

phase in the 
orresponding intera
tion with B, su
h that B responds with an I 2 I (resp. a set of

M

0

2 RO). Without loss of generality, we may assume that A never makes 
ommit queries twi
e,

and always makes pre
isely p(k) open queries for a �xed polynomial p. We also assume that for any

of A's open queries, A made a 
orresponding 
ommit query �rst.

8

Let out

0

denote P's output in

Game 0. By de�nition, we have

Pr [out

0

= 1℄� 1=2 = Adv

prop

P;X ;A

:

In Game i (for 0 < i � p(k)), we use an ora
le B

i

instead of ora
le B. Here, B

i

behaves like B,

ex
ept that B

i

answers ea
h of A's �rst i opening queries as follows. Here, M

I

= (M

I

)

i2I

denotes

the opened messages, as before.

� If all openings are valid, then return the set of all M

0

2 RO whi
h have been expli
itly

obtained through RO-queries by A (or B

i

, in the role of a re
eiver), and for whi
h M

0

I

= M

I

.

We stress that ora
le B

i

does not break a 
ommitment or use internal a

ess to RO until the (i+1)-

th open query. Let out

i

denote P's output in Game i. To show that out

i

is not signi�
antly a�e
ted

by our 
hanges, �x an i. Let h denote A's i-th open query in Game i. Let S = B

i

(h) denote the

answer A gets in Game i, and let S

0

= B

i�1

(h) denote the answer that A would have re
eived in

8

In order to violate this assumption, A would have to guess an I 2 I as 
hosen by B upon the 
orresponding


ommit query. Sin
e jIj is large, we ignore this possibility.
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Game i � 1. We show in Lemma 4.5 below that S = S

0

ex
ept with probability asymptoti
ally

smaller than 2

�3"k

, so that

Pr [out

i

= 1℄� Pr [out

i�1

= 1℄ � 2

�("=2)k

for su�
iently large k and all i 2 [p(k)℄.

Observe that in Game p(k), B

p(k)

and RO 
an both be simulated e�
iently inside A. Indeed,

B

p(k)

only needs knowledge about A'sRO-queries, as well as a

ess to EXPSPACE to 
he
k whether

a given 
ommitment s
heme is perfe
tly binding. Hen
e,

Adv

prop

P;X ;A

0

= Pr

�

out

p(k)

= 1

�

� 1=2

for a suitable PPT adversary A

0

that internally simulates A, RO, and B

p(k)

, and only needs a

ess to

EXPSPACE. By assumption about X , Adv

prop

P;X ;A

0

is negligible, and hen
e so must be Adv

prop

P;X ;A

.

It remains to prove that, in the situation of Lemma 4.4, S = S

0

with high probability.

Lemma 4.5. In the situation of Lemma 4.4, Pr [S 6= S

0

℄ � 2

�("=2)k

for su�
iently large k.

Combining Lemma 4.6, 4.7, 4.8, and 4.9 below shows Lemma 4.5.

Lemma 4.6. In the situation of Lemma 4.4, jSj � 1 ex
ept with probability at most q(k)2

�k

for

some polynomial q.

Proof. We interpret the whole Game i (in
luding A, P, X , B

i

, and EXPSPACE) as a ma
hine

A

0

intera
ting with RO. Note that A

0

may be 
omputationally unbounded, but only makes a

polynomial number of RO-queries, at least until A's i-th open query. Let Q

RO

denote the set of

RO-queries of A

0

. Now jSj > 1 implies that there are X

1

;X

2

2 Q

RO

with X

1

6= X

2

, su
h that

RO(X

1

);RO(X

2

) 2 S, and so RO(X

1

)

I

= RO(X

2

)

I

. However, the statisti
al properties of RO

imply that for any X

1

;X

2

2 Q

RO

, RO(X

1

) and RO(X

2

) mat
h in at least one 
omponent with

probability at most n2

�k

. A union bound over all su
h pairs shows the 
laim.

Lemma 4.7. In the situation of Lemma 4.4, jS

0

j � 1 ex
ept with probability at most q(k)2

�k

for

some polynomial q.

Proof. As in Lemma 4.6, we interpret Game i as a ma
hine A

0

intera
ting with RO. Again, let

Q

RO

denote the set of RO-queries of A

0

. Now let X be the set of all X 2 E

n=2+1

n Q

RO

with

RO(X)

I

= M

I

. Using, e.g., Chebyshev's inequality, we get jXj < 2jEj, ex
ept with probability

at most 2

�k

. Furthermore, Q

RO


ontains at most one query X with RO(X)

I

= M

I

ex
ept with

probability at most q

1

(k)2

�k

for some polynomial q

1

(with similar reasoning as in Lemma 4.6). Let

X

0

:= X [ fXg for that X 2 Q

RO

, or X

0

:= X if no su
h X exists. By the pre
eding dis
ussion,

jX

0

j � 2E ex
ept with probability (q

1

(k) + 1)2

�k

.

Now jS

0

j > 1 implies that X

1

;X

2

2 X

0

exist, su
h that X

1

6= X

2

but RO(X

1

) �

"

M �

"

RO(X

2

), and so RO(X

1

) �

2"

RO(X

2

). Observe that the values RO(X) for X 2 X

0

are inde-

pendent, 
onditioned only on RO(X)

I

= M

I

. For any �xed X

1

;X

2

2 X

0

with X

1

6= X

2

, the

probability that RO(X

1

) �

2"

RO(X

2

) is

�

n=2

d(1=2�2")ne

�

=jEj

d(1=2�2")ne

, whi
h is less than 2

�3k�2

for

su�
iently large k. Assuming that jX

0

j � 2jEj = 2

k+1

, a union bound yields that no su
h X

1

;X

2

exist, and hen
e jS

0

j � 1, ex
ept with probability 2

�k

. Summing up shows the 
laim.

Lemma 4.8. In the situation of Lemma 4.4, S = ; but jS

0

j = 1 with probability at most q(k)2

�k=2

for some polynomial q.
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Proof. Let bad denote the event that S = ; but S

0

= fM

0

g for some M

0

, and let bad

j

denote the

event that bad o

urs and A's i-th open query refers to A's j-th 
ommit query. Sin
e A makes only

polynomially many B

i

-queries, there is a polynomial q

1

= q

1

(k) and a fun
tion j = j(k) su
h that

Pr [bad

j

℄ � Pr [bad℄ =q

1

(k).

Consider the ma
hine A

0

that simulates Game i and intera
ts externally only with ora
le RO.

Call I

1

2 I the answer of B

i

to A's j-th 
ommit query. After A submits its i-th open query, A

0

rewinds the simulation ba
k to A's j-th 
ommit query, and then restarts with a freshly sampled

I

2

2 I as B

i

's answer to A's j-th 
ommit query. By bad

j,1

, resp. bad

j,2

, we denote the events that

bad

j

o

urs before, resp. after the rewinding. It is 
lear that Pr [bad

j,1

℄ = Pr [bad

j,2

℄ = Pr [bad

j

℄,

but unfortunately, the events bad

j,1

and bad

j,2

may be dependent. We have to work to establish

that bad

j,1

and bad

j,2

o

ur simultaneously with su�
iently large probability. Consider a pre�x E

j

of A

0

's exe
ution until A's j-th 
ommit query. Given any su
h E

j

and a �xed ora
le RO, the events

bad

j,1

and bad

j,2

are independent and o

ur with the same probability, so that

Pr [bad

j,1

^ bad

j,2

℄ =

X

E

j

;RO

Pr [bad

j,1

^ bad

j,2

j E

j

;RO℄ � Pr [E

j

;RO℄

=

X

E

j

;RO

Pr [bad

j,1

j E

j

;RO℄

2

� Pr [E

j

;RO℄

(�)

�

0

�

X

E

j

;RO

Pr [bad

j,1

j E

j

;RO℄ � Pr [E

j

;RO℄

1

A

2

= Pr [bad

j,1

℄

2

= Pr [bad

j

℄

2

� Pr [bad℄

2

=q

1

(k)

2

;

where (�) uses that

P

i




i

x

2

i

� (

P

i




i

x

i

)

2

for 


i

; x

i

� 0 with

P

i




i

= 1 by Jensen's inequality.

Let Q

RO;1

denote the set of A

0

's RO-queries before the rewinding, and let Q

RO;2

denote the set

of A

0

's RO-queries after the rewinding and before A's j-th 
ommit query. The rationale here is that

Q

RO;1

are A's queries in the run related to I

1

, and Q

RO;2

are A's queries in the run related to I

2

.

Note that Q

RO;1

and Q

RO;2

share A's queries before the j-th 
ommitment. We write RO(Q

RO;i

)

for the set of all RO(X) for X 2 Q

RO;i

.

Now bad

j,1

^bad

j,2

implies that A opens two subsets M

I

1 and M

I

2 message ve
tor M inside the

j-th 
ommit query, su
h that there exist M

1

;M

2

2 RO with the following properties:

� M

1

I

1

= M

I

1

and M

2

I

2

= M

I

2

,

� M

1

�

"

M �

"

M

2

and hen
e M

1

�

2"

M

2

,

� M

1

62 RO(Q

RO;1

) and M

2

62 RO(Q

RO;2

).

We 
laim thatM

1

= M

2

with high probability. To see this, letM be set of allM

0

2 ROnRO(Q

RO;1

)

whi
h satisfy M

0

I

1

\I

2

= M

I

1

\I

2 . A simple 
al
ulation shows that m := jI

1

\ I

2

j � n=10 ex
ept

with probability at most 2

�k

for su�
iently large k. Now jMj's expe
ted value is, depending on

jQ

RO;1

j, at most jEj

n=2+1�m

. A Chebyshev bound as in Lemma 4.7 yields that jMj � jEj

n=2�m+2

ex
ept with probability at most q

2

(k)2

�k

for some polynomial q

2

. So assume jI

1

\ I

2

j � n=10

and jMj � jEj

n=2�m+2

. Then, for any two M

1

;M

2

2 M with M

1

6= M

2

, we have M

1

�

2"

M

2

with probability at most

�

n�m

b2"n


�

=jEj

n�m�b2"n


. A simple 
al
ulation and a union bound over all

M

1

;M

2

2 M yield that there do not exist M

1

;M

2

2 M with M

1

�

2"

M

2

yet M

1

6= M

2

, ex
ept

with probability at most q

3

(k)2

�k

for some polynomial q

3

. So for the M

1

;M

2

guaranteed by

bad

j,1

^ bad

j,2

, either M

1

= M

2

, or M

2

62M with high probability.

NowM

2

62M impliesM

2

= RO(X) for some X 2 Q

RO;1

, and bad

j,2

even di
tates X 2 Q

RO;1

n

Q

RO;2

. Put di�erently, M

2

62 M implies that in the exe
ution after the rewinding, M

I

2

= M

2

I

2


ontains a 
omponent of an RO-image M

2

obtained (independently, sin
e M

2

62 Q

RO;2

) before

the rewinding. By symmetry, the probability that this happens equals the probability that M

I

1


ontains a 
omponent of an RO-image M

1

queried after the rewinding. However, this essentially
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means that A

0

has guessed a 
omponent of the result of an up
oming RO-query, whi
h 
an happen

with probability at most q

4

(k)2

�k

for some polynomial q

4

by the statisti
al properties of RO. We


on
lude that hen
e, M

2

2 M and so M

1

= M

2

ex
ept with probability at most q

5

(k)2

�k

for a

polynomial q

5

.

Finally, a 
ounting argument shows that jI

1

[ I

2

j < n=2 + 2 happens with probability less

than 2

�k

for large enough k. Summarizing, bad

glue

:= bad

j,1

^ bad

j,2

^ (M

1

= M

2

) ^ (jI

1

[

I

2

j � n=2 + 2) happens with probability at least Pr [bad℄

2

� q

6

(k)2

�k

for some polynomial q

6

.

But bad

glue

implies that A

0

has found J := I

1

[ I

2

with jJ j � n=2 + 2, su
h that there exists an

M

0

:= M

1

= M

2

2 RO withM

0

J

= M

J

, and A

0

has not obtained M

0

through an expli
it RO-query.

Another Chebyshev bound shows that no su
h M

0

exists, ex
ept with probability (over the images

RO n RO(Q

RO;1

[Q

RO;2

) not queried by A

0

) at most 2

�k

. Hen
e, Pr

�

bad

glue

�

� 2

�k

, so that we

�nally have Pr [bad℄ � q(k)2

k=2

for some polynomial q.

Lemma 4.9. In the situation of Lemma 4.4, jSj = 1 but S

0

= ; with probability at most 2

�("=2)k

for large enough k.

Proof. Again, we interpret the whole Game i (ex
ept for RO) as a ma
hine A

0

intera
ting with RO.

As in Lemma 4.8, A

0

waits for A's i-th open query M

I

, and then rewinds the whole game ba
k to

A's j-th 
ommit query. Again, A

0

re-samples an I  I as a fresh answer to A's j-th 
ommit query,

in the hope that A opens M

I

in the i-th open query. However, this time A

0

repeats this pro
ess

p(k) times for a suitable number p(k) to be determined later. Let S

`

and I

`

denote the values of I

and S from the `-th rewinding.

Now �x random tapes for all ma
hines simulated inside A

0

, and �x an RO. This means that

the only randomness during the exe
ution of A

0


omes from the 
hoi
e of the I

`

. Let bad denote

the event that jSj = 1 but S

0

= ;, and let bad

j

denote the event that bad o

urs and A's i-th open

query refers to A's j-th 
ommit query. Sin
e A makes only polynomially many B

i

-queries, there

is a polynomial q = q(k) and a fun
tion j = j(k) su
h that Pr [bad

j

℄ � Pr [bad℄ =q(k), where the

probability is only over I 2 I.

Suppose that Pr [bad℄ > 2

�("=2)k

for 
ontradi
tion, so that Pr [bad

j

℄ > 2

�"k

for large enough k.

Let I

0

� I be the set of all I su
h that bad

j

o

urs when A re
eives I upon the j-th 
ommit query.

Note that I

0

is well-de�ned, sin
e we �xed all randomness ex
ept for I. Assume �rst that there

exists a subset B � [n℄ of size jBj > b"n
 with Pr [I 2 I

0

^ i 2 I℄ < 2

�2"k

for all i 2 B, where the

probability is over I 2 I. We have Pr [I \B = ;℄ =

�

d(1�")ne

n=2

�

=

�

n

n=2

�

� 2

�"n

= 2

�2"k

, so

2

�"k

� 2

�2"k

� Pr

�

I 2 I

0

�

� Pr [I \B = ;℄ � Pr

�

I 2 I

0

^ I \B 6= ;

�

�

X

i2B

Pr

�

I 2 I

0

^ i 2 I

�

< n � 2

�2"k


reates a 
ontradi
tion for su�
iently large k. Hen
e, no su
h B exists, and so there must be a

subset R � [n℄ of size jRj � d(1� ")ne su
h that Pr [I 2 I

0

^ i 2 I℄ � 2

�2"k

for all i 2 R.

Our goal is now to use A

0

to extra
t M

R

with high probability. To this end, we �rst �nish

our des
ription of A

0

. Let L denote the set of all ` 2 [p(k)℄ for whi
h bad

j

o

urs in the `-th

rewinding. After p(k) := 2

8"k

rewindings, A

0

outputs M

J

, where J =

S

`2L

I

`

is the union of all

su

essfully extra
ted partial message subsets. For ` 2 L, we have jS

`

j = 1 by de�nition of bad

j

, so

say S

`

= fM

`

g. By de�nition, M

`

has been obtained by A

0

through an expli
it RO-query, and we

have M

`

I

`

= M

I

`

for the message ve
tor M inside A's j-th 
ommit query. Similar to Lemma 4.6, all


omponents of all RO-images obtained by A

0

are pairwise distin
t, ex
ept with probability at most

2

�k=2

for large enough k. As in Lemma 4.8, we 
an show that all the RO-images M

`

are identi
al,
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ex
ept with probability 2

�k=2

for su�
iently large k. Thus, there exists one single M

0

2 RO with

M

0

J

= M

J

. Now note that the I

`

are independent. Hen
e, a Chebyshev bound shows that for

ea
h �xed i 2 R, there is an I

`

2 L � I

0

with i 2 I

`

, ex
ept with probability at most 2

�6"k

. A

union bound over all i 2 R yields R � J ex
ept with probability at most 2

�5"k

for large enough

k. So, ex
ept with probability 2

�6"k

+ 2

k=2

< Pr [bad℄, A

0

shows the existen
e of an M

0

2 RO

with M

0

J

= M

J

for jJ j � d(1 � ")ne, su
h that M

0

�

"

M . Sin
e M

0

I

`

= M

I

`

for any I

`

2 L, this


ontradi
ts bad

j

and thus bad. Hen
e, our assumption on Pr [bad℄ must have been in
orre
t, and

we have proved the lemma.

Combining Lemma 4.3 and Lemma 4.4 shows Theorem 4.2.

We stress that the requirement in Theorem 4.2 on X is a rather mild one. For instan
e, random

ora
les are one-way even against 
omputationally unbounded adversaries, as long as the adversary

makes only a polynomial number of ora
le queries. Hen
e, an EXPSPACE-ora
le (whi
h itself does

not perform ora
le queries) is not helpful in breaking a random ora
le. So similarly to Corollary 3.9,

we get for 
on
rete 
hoi
es of X and P:

Corollary 4.10 (Bla
k-box impossibility of perfe
tly binding IND-SO-COM). Let n and I as in

Theorem 4.2. Then no perfe
tly binding 
ommitment s
heme 
an be proved indistinguishable under

sele
tive openings via a 89semi-bla
k-box redu
tion to one or more of the following primitives: one-

way fun
tions, one-way permutations, trapdoor one-way permutations, IND-CCA se
ure publi
 key

en
ryption.

Generalizations. Again, Corollary 4.10 
onstitutes merely an example instantiation of the mu
h

more general Theorem 4.2. We stress, however, that the proof for Theorem 4.2 does not apply

to �almost-perfe
tly binding� 
ommitment s
hemes su
h as the one from Naor [24℄. (For instan
e,

for su
h s
hemes, B's 
he
k that the supplied 
ommitment s
heme is binding might tell something

about X .)

4.2 Statisti
ally hiding s
hemes are se
ure

Fortunately, things look di�erent for statisti
ally hiding 
ommitment s
hemes:

Theorem 4.11 (Statisti
ally hiding s
hemes are IND-SO-COM se
ure). Fix arbitrary n and I as

in De�nition 4.1, and let Com = (S;R) be a statisti
ally hiding 
ommitment s
heme. Then Com is

indistinguishable under sele
tive openings in the sense of De�nition 4.1.

Proof. Fix an n-message distributionM and a PPT adversary A on the SIM-SO-COM se
urity of

Com. We pro
eed in games.

Game �1 is the real IND-SO-COM experiment Exp

ind-so-real

Com;M;A

. Let out

�1

denote the output of

the experiment, so that we have

Pr

h

Exp

ind-so-real

Com;M;A

= 1

i

= Pr [out

�1

= 1℄ :

Game 0 
onstitutes our �rst modi�
ation of Exp

ind-so-real

Com;M;A

, and pro
eeds as follows (emphasized

steps are di�erent from Exp

ind-so-real

Com;M;A

):

1. sample messages M = (M

i

)

i2[n℄

 M,

2. let A(re
eive) intera
t 
on
urrently with n instan
es (S

i

(
ommit;M

i

))

i2[n℄

of S,

3. let I 2 I be A's output after intera
ting with the S

i

,
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4. for every i 2 I, set the i-th sender's state to the output of pro
edure AltDe
(H

i

;M

i

) (des
ribed

below), where H

i

denotes the ex
hanged messages during the 
ommit phase of the i-th Com

instan
e,

5. let A(open) intera
t 
on
urrently with the jIj instan
es (S

i

(open))

i2I

of S,

6. send the full message ve
tor M to A,

7. output A's �nal output b.

The (in general ine�
ient) pro
edure AltDe
 takes as input a history H

i

of ex
hanged messages

in the 
ommit phase and a message M

i

. We 
all a random tape t for S 
onsistent with H

i

and

M

i

i� S(
ommit;M

i

) (with random tape t) produ
es the sender's messages in H

i

when re
eiving

the respe
tive re
eiver's replies in H

i

. Let T

H

i

;M

i

denote the set of all random tapes t for S whi
h

are 
onsistent with H

i

and M

i

. Now AltDe
(H

i

;M

i

) samples uniformly a random tape t from

T

H

i

;M

i

and returns the state of S with random tape t and after an intera
tion a

ording to H

i

. If

T

H

i

;M

i

= ;, then AltDe
 returns ? (and Game 0 aborts with output 0). In other words, AltDe


returns the state of a sender S with initial input M

i

, 
onditioned on the trans
ript T

i

of the 
ommit

phase.

In Game 0, AltDe
 will never return ? (sin
e AltDe
 is invoked with a trans
ript H

i

that has

a
tually been produ
ed as a 
ommit phase toM

i

). Moreover, the view of the adversary is not altered

by re-sampling the internal state of the sender, 
onditioned on all previous a
tions, as AltDe
 does.

Hen
e, we have

Pr [out

0

= 1℄ = Pr [out

�1

= 1℄

for the output out

0

of the experiment in Game 0.

We des
ribe Game j (for j 2 [n℄). Game j is identi
al to Game 0, ex
ept for step 2:

2

�

. let A(re
eive) intera
t 
on
urrently with n instan
es (S

i

(
ommit;M

�

i

))

i2[n℄

of S, where we

set M

�

i

= 0

k

for i � j and M

�

i

= M

i

for j > i,

Obviously, for j = 0 we would get Game 0. Note that only di�eren
e between Game j�1 and Game

j is the 
ommitment to M

j

. In fa
t, we 
an now 
onstru
t an adversary A

0

on Com's statisti
al

hiding property. A

0

�rst uniformly 
hooses j 2 [n℄, then simulates Game j � 1, but pi
ks M

j

and

0

k

as 
hallenge messages for its own experiment Exp

hiding-b

Com;A

0

. The j-th 
ommitment (to either M

j

or

0

k

) is performed through the experiment. Exp

hiding-0

Com;A

0

is then a perfe
t simulation of Game j � 1,

and Exp

hiding-1

Com;A

0

perfe
tly simulates Game j. (However, we stress that A

0

is inherently unbounded:

A

0

must run pro
edure AltDe
.) We get that

Pr [out

n

= 1℄� Pr [out

0

= 1℄ = n � Adv

hiding

Com;A

0

must be negligible, whi
h proves that

Pr

h

Exp

ind-so-real

Com;M;A

= 1

i

� Pr [out

n

= 1℄

is negligible.

We 
an apply the same reasoning for the ideal IND-SO-COM experiment Exp

ind-so-real

Com;M;A

: we �rst


onstru
t the openings using the 
ommit trans
ripts H

i

and the target messages M

i

alone as in

Game 0 above. Then we 
hange the a
tual 
ommitments to 
ommitments to 0

k

, as in Game 1 up

to Game n above. At this point, the modi�ed ideal experiment �rst samples M  M and then

M

0

 M j M

I

, but never uses M . Hen
e we 
an sample M

0

 M in the �rst pla
e without


hanging A's view. But this is then exa
tly Game n from above, so that we get that

Pr

h

Exp

ind-so-ideal

Com;M;A

= 1

i

� Pr [out

n

= 1℄

is negligible. Hen
e Adv

ind-so

Com;M;A

is negligible as well, whi
h shows the theorem.
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We stress that the proof of Theorem 4.11 also holds (literally) in 
ase A and/or M gets an

additional auxiliary input z.

5 Appli
ation to adaptively se
ure en
ryption

Motivation and setting. Taking up the motivation of Damgård [11℄, we 
onsider the setting of

an adversary A that may 
orrupt, in an adaptive manner, a subset of a set of parties P

1

; : : : ; P

n

.

Assume that for all i, the publi
 en
ryption key pk

i

with whi
h party P

i

en
rypts outgoing messages,

is publi
ly known. Suppose further that A may 
orrupt parties based on all publi
 keys and all so

far re
eived 
iphertexts. When A 
orrupts P

i

, A learns P

i

's internal state and history, in parti
ular

A learns the randomness used for all of that party's en
ryptions, and its se
ret key sk

i

. We assume

the following:

1. The number of parties is n = 2k for the se
urity parameter k,

2. It is allowed for A to 
hoose at some point a subset I � [n℄ of size n=2 and to 
orrupt all these

P

i

(i 2 I).

3. We 
an interpret the used en
ryption s
heme as a (non-intera
tive, hiding and binding) 
om-

mitment s
heme Com = (S;R) in the following sense: S(M) generates a fresh publi
 key pk and

outputs a 
ommitment 
om = (pk ;En
(pk ;M ; r)) and an opening de
 = (M; r). Here En
 de-

notes the en
ryption algorithm of the en
ryption s
heme, and r denotes the randomness used

while en
ryptingM . Veri�
ation of (
om; de
) = (pk ;C ;M; r) 
he
ks that En
(pk ;M ; r) = C .

Note that the third assumption does not follow from the s
heme's 
orre
tness. Indeed, 
orre
tness

implies only that honestly generated (pk ;M) are 
ommitting. However, there are s
hemes for whi
h

it is easy to 
ome up with fake publi
 keys and 
iphertexts (i.e., fake 
ommitments) whi
h are


omputationally indistinguishable from honestly generated 
ommitments, but 
an be opened in

arbitrary ways. Prominent examples of su
h s
hemes are non-
ommitting en
ryption s
hemes [7,

4, 8, 12, 10℄, whi
h however generally 
ontain intera
tion from time to time and are 
omparatively

ine�
ient.

Appli
ation of our impossibility results. Atta
ks in this setting 
annot be easily simulated in

the sense of, e.g., Canetti et al. [7℄: su
h a simulator would in parti
ular be able to simulate openings

(in the sense of Com, i.e., openings of 
iphertexts). Hen
e, this would imply a simulator for Com

in the sense of SIM-SO-COM se
urity (De�nition 3.1). Now from Corollary 3.9 we know that the


onstru
tion and se
urity analysis of su
h a simulator requires either a very strong 
omputational

assumption, or fundamentally non-bla
k-box te
hniques. Even worse: if Com is perfe
tly binding

9

,

then Corollary 4.10 shows that not even se
re
y in the sense of De�nition 4.1

10


an be proved

in a bla
k-box way. On top of that, we 
annot hope to use our (non-bla
k-box) SIM-SO-COM

se
ure s
heme ZKCom to 
onstru
t an en
ryption s
heme in a non-bla
k-box way, sin
e ZKCom's


ommitment phase is inherently intera
tive.

We stress that these negative results only apply if en
ryption really 
onstitutes a (binding)


ommitment s
heme in the above sense. In fa
t, e.g., [7℄ 
onstru
t a sophisti
ated non-
ommitting

(i.e., non-binding) en
ryption s
heme and prove simulatability for their s
heme. Our results show

that su
h a non-
ommitting property is to a 
ertain extent ne
essary.

9

in the presen
e of non-uniform adversaries, this is already implied by the fa
t that the s
heme is non-intera
tive

and 
omputationally binding

10

in the 
ontext of en
ryption, De�nition 4.1 would translate to a variant of indistinguishability of 
iphertexts
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6 Appli
ation to zero-knowledge proof systems

6.1 Graph 3-
oloring is 
omposable in parallel

Outline. Dwork et al. [15℄ have 
onsidered the appli
ations of SIM-SO-COM se
ure 
ommitment

s
hemes to zero-knowledge proto
ols, in parti
ular to the graph 3-
oloring intera
tive proof system

G3C of Goldrei
h et al. [20℄. Con
retely, [15, Theorem 7.6℄ states that G3C, when instantiated

with a SIM-SO-COM se
ure 
ommitment s
heme, retains a relaxed zero-knowledge property 
alled

�S(V; T;D) zero-knowledge� under parallel 
omposition. S(V; T;D) zero-knowledge is a variant

of zero-knowledge in whi
h the simulator S may depend on the veri�er V , on the distinguisher T

between real and simulated trans
ript, and on the 
onsidered message distributionD. Unfortunately,

[15℄ 
ould not give a SIM-SO-COM se
ure 
ommitment s
heme to implement their theorem.

Using our s
heme ZKCom, we 
an instantiate and in fa
t generalize [15, Theorem 7.6℄. Con-


retely, using a re�ned analysis and the spe
i�
 stru
ture of ZKCom, we show that G3C, when

implemented with ZKCom, is zero-knowledge under parallel 
omposition. This is surprising in light

of the negative 
omposability results Goldrei
h and Kraw
zyk [19℄, Canetti et al. [9℄. Similar to

Barak [1℄, we use non-bla
k-box te
hniques to 
ir
umvent known impossibilities.

Commit-
hoose-open proto
ols. We 
an a
tually prove parallel 
omposability of a larger 
lass

of �
ommit-
hoose-open� style intera
tive argument systems:

De�nition 6.1 (Commit-
hoose-open (CCO) proto
ol). Let IP = (P;V) be an intera
tive argument

system for an NP-language L with witness relation R. Let n = n(k) > 0 be polynomially bounded,

and let I = (I

n

)

n

be a family of sets su
h that ea
h I

n

is a set of subsets of [n℄. We say that IP is

a 
ommit-
hoose-open (CCO) proto
ol (that uses 
ommitment s
heme Com) if the following holds.

First, we require that IP is of the following form:

1. P, upon input (x;w) with x 2 L and R(x;w), sele
ts n messages (M

i

)

i2[n℄

,

2. P engages in n instan
es of Com to 
ommit to the M

i

at R,

3. V, upon input x, 
hooses a subset I 2 I

n

and sends I to P,

4. P opens all Com-
ommitments to M

i

with i 2 I,

5. V a

epts if the openings are valid and if the opened values satisfy some �xed relation spe
i�ed

by the proto
ol.

Se
ond, we require that the messages (M

i

)

i2I

opened by P in the third step are uniform and indepen-

dent values over their respe
tive domain. (In parti
ular, (M

i

)

i2I


an be e�
iently sampled without

knowing a witness w.)

It is easy to verify that the mentioned graph 3-
oloring proto
ol G3C [20℄ is a CCO proto
ol. Also,

trivially, the parallel 
omposition of many instan
es of a CCO proto
ol is again a CCO proto
ol.

In parti
ular, in the following, we will for simpli
ity only talk about a single CCO proto
ol, while

one should a
tually have the parallel 
omposition of, e.g., G3C in mind.

Auxiliary-input SIM-SO-COM se
urity. We will prove that any CCO proto
ol, when using

a 
ommitment s
heme whi
h is simulatable under sele
tive openings, is bla
k-box zero-knowledge.

To this end, we need a re�nement of SIM-SO-COM se
urity, whi
h 
aptures auxiliary input and an

order of quanti�ers as in the zero-knowledge de�nition.

De�nition 6.2 (AI-SIM-SO-COM). In the situation of De�nition 3.1, we say that Com is AI-SIM-

SO-COM se
ure, i� for every PPT adversary A, there exists a PPT simulator S, su
h that for every

PPT relation R, every PPT n-message distribution M, and all auxiliary inputs z

M

= (z

M

k

)

k2N

2
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(f0; 1g

�

)

N

, z

A

= (z

A

k

)

k2N

2 (f0; 1g

�

)

N

, and z

R

= (z

R

k

)

k2N

2 (f0; 1g

�

)

N

, we have that the advantage

Adv

sim-so

Com;M;A;S;R;z

M

;z

A

;z

R

is negligible. Here, Adv

sim-so

Com;M;A;S;R;z

M

;z

A

;z

R

is de�ned as Adv

sim-so

Com;M;A;S;R

,

with the following di�eren
es:

� M gets additional input z

M

,

� A and S get additional input z

A

, and

� R gets additional input z

R

.

We 
laim that our s
heme ZKCom from Se
tion 3.2 satis�es De�nition 6.2. To see this, re
all

that the simulator S 
onstru
ted in the proof of Theorem 3.11 works also in the presen
e of auxiliary

input. Furthermore, S does not depend onM and R. However, sin
e M, S, A, and R all re
eive

an auxiliary input in the AI-SIM-SO-COM experiment, we must demand that the 
ommitment

s
hemes Com

b

and Com

h

against non-uniform adversaries. We get:

Theorem 6.3 (ZKCom is AI-SIM-SO-COM). Suppose that there exist one-way permutations se
ure

against non-uniform adversaries. Then our 
ommitment s
heme ZKCom from Se
tion 3.2 
an be

instantiated su
h that ZKCom a
hieves AI-SIM-SO-COM se
urity for arbitrary n, I.

The following theorem is a generalization of Dwork et al. [15, Theorem 7.6℄:

Theorem 6.4 (AI-SIM-SO-COM implies zero-knowledge). Let IP = (P;V) be a CCO proto
ol that

uses a 
ommitment s
heme Com. If Com is AI-SIM-SO-COM se
ure (for n and I as used in IP),

then IP is zero-knowledge in the sense of De�nition 2.4.

Proof. Assume V

�

, (x;w), D, z

V

�

, and z

D

as in De�nition 2.4. We will 
onstru
t a suitable PPT

simulator S

�

. Sin
e IP is a CCO proto
ol, we 
an immediately use the AI-SIM-SO-COM se
urity of

Com. To this end, we de�ne an adversary A, a message distributionM, a relation R, and auxiliary

inputs z

A

and z

R

as in De�nition 6.2.

Con
retely, de�ne z

M

= (x;w) and letM be the PPT n-message distribution that is indu
ed by

P on input (x;w). Furthermore, let z

A

= (x

k

; z

V

�

) and let A = V

�

, ex
ept that A �nally outputs a

trans
ript of its 
onversation. We hen
e have out

A

= hP(x

k

; w

k

); V

�

(x

k

; z

V

�

k

)i. Finally, set z

R

= z

D

and R(M; out ; z

R

) = D(out ; z

R

), su
h that R outputs exa
tly what D outputs on real trans
ripts

as in De�nition 2.4. Now De�nition 6.2 guarantees that there exists a PPT ma
hine S su
h that

Pr

�

R(M; out

A

; z

R

) = 1

�

� Pr

�

R(M; out

S

; z

R

) = 1

�

= Pr

h

D(hP(x

k

; w

k

); V

�

(x

k

; z

V

�

k

)i; z

D

) = 1

i

� Pr

�

D(out

S

; z

D

) = 1

�

is negligible, where out

S

denotes the �nal output of S in the ideal AI-SIM-SO-COM experiment.

Note that out

S

is still obtained through an intera
tive experiment that in parti
ular requires knowl-

edge about M and hen
e the witness w. However, the only information S a
tually re
eives about

the message ve
tor M is the subset M

I

= (M

i

)

i2I

. Sin
e IP is a CCO proto
ol in the sense of

De�nition 6.1, M

I

is statisti
ally independent of (x;w). Hen
e we 
an 
onstru
t the following ma-


hine S

�

whi
h has ora
le a

ess to A = V

�

. Namely, S

�

internally simulates S (and relays to S

�

its

own ora
le a

ess to A). As soon as S outputs a set I, S

�

answers with a uniformly and indepen-

dently sampled set (M

i

)

i2I

. Note that S

�

no longer takes part in a AI-SIM-SO-COM experiment,

but instead works with input z

A

= (x

k

; z

V

�

) and ora
le a

ess to V

�

alone. By the CCO property

of IP, we obtain

Pr

�

D(out

S

; z

D

) = 1

�

= Pr

h

D(S

�

(x

k

; z

V

�

; z

D

) = 1

i

;

and hen
e, putting things together shows that Adv

ZK

V

�

;S

�

;(x;w);D;z

V

�

;z

D

is indeed negligible.
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Observing that the mentioned graph 3-
oloring proto
ol G3C from Goldrei
h et al. [20℄ is a CCO

proto
ol, and that the set of CCO proto
ols are 
losed under parallel 
omposition we get:

Corollary 6.5 (G3C is 
omposable in parallel). The graph 3-
oloring proto
ol G3C, when imple-

mented with our 
ommitment s
heme ZKCom, is zero-knowledge, even under parallel 
omposition.

What our positive results do not imply (and what our negative results do imply).

We emphasize as well that our results do not imply that there are no, in the terminology of [15℄,

�magi
 fun
tions.� In order to prove non-existen
e of magi
 fun
tions with [15, Theorem 5.1℄, one

would have to �nd a non-intera
tive SIM-SO-COM se
ure 
ommitment s
heme. Our negative result

Theorem 3.3 states that this will not be possible with bla
k-box redu
tions to standard assumptions.

6.2 IND-SO-COM se
urity and witness indistinguishability

Outline. A natural question is whether IND-SO-COM se
urity, our relaxation of SIM-SO-COM

se
urity, provides a reasonable fallba
k for SIM-SO-COM se
urity. Now �rst, our results show that

even when using IND-SO-COM se
ure s
hemes, we 
annot rely on perfe
tly binding 
ommitment

s
hemes be
ause of Theorem 4.2. For many interesting intera
tive proofs (and in parti
ular the

mentioned graph 3-
oloring proto
ol G3C), this unfortunately means that the proof system degrades

to an argument system. But, assuming we are willing to pay this pri
e, what do we get from IND-

SO-COM se
urity?

The answer is �essentially witness indistinguishability,� as we will argue in a minute. Essentially,

any 
ommitment s
heme whi
h satis�es (a slight variation of) IND-SO-COM se
urity 
an be used to

implement 
ommit-
hoose-open style intera
tive argument systems. The resulting argument system

will be witness-indistinguishable, and the se
urity redu
tion is tight. (In parti
ular, the se
urity

redu
tion does not lose a fa
tor of jIj, where jIj is the number of possible 
hallenges sent by the

veri�er.)

We stress that, sin
e the set of 
ommit-
hoose-open proto
ols is 
losed under parallel 
ompo-

sition, we get 
omposability �for free.� Now witness indistinguishable argument systems already

enjoy a 
omposition theorem (see, e.g., Goldrei
h [17, Lemma 4.6.6℄), so the 
ompositionality 
laim

is not surprising. However, we believe that our results demonstrate that the se
urity notion of

IND-SO-COM se
ure 
ommitments itself is a reasonable fallba
k to SIM-SO-COM se
urity.

Auxiliary-input IND-SO-COM se
urity. Sin
e the standard de�nition of witness indistin-

guishability (see De�nition 2.6) involves an auxiliary input z given to the veri�er/adversary V

�

, we

also 
onsider a variation of De�nition 4.1 that involves auxiliary input. Namely,

De�nition 6.6 (AI-IND-SO-COM). In the situation of De�nition 4.1, we say that Com is AI-

IND-SO-COM se
ure i� Adv

ind-so

Com;M;A;z

is negligible for all PPT M and A and all auxiliary inputs

z = (z

k

)

k2N

2 (f0; 1g

�

)

N

, where bothM and A are invoked with additional auxiliary input z

k

.

We stress that the proof of Theorem 4.11 shows AI-IND-SO-COM se
urity, on
e the investigated


ommitment s
heme is statisti
ally hiding against non-uniform adversaries.

Now we are ready to prove the following 
onne
tion between witness indistinguishability and

AI-IND-SO-COM:

Theorem 6.7 (AI-IND-SO-COM implies witness indistinguishability). Assume a CCO proto
ol

IP with parameters n

0

and I

0

that uses 
ommitment s
heme Com as in De�nition 6.1. If Com is

AI-IND-SO-COM for parameters n = n

0

+ 1 and I = I

0

, then IP is witness indistinguishable. The

se
urity redu
tion loses only a fa
tor of 2.
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Proof. Assume arbitrary x;w

0

; w

1

; V

�

;D; z as in De�nition 2.6. We 
onstru
t a message distribution

M, an adversary A, and a z

0

su
h that

Adv

ind-so

Com;M;A;z

=

1

2

Adv

WI

x;w

0

;w

1

;V

�

;D;z

:

First, de�ne z

0

k

= (x

k

; w

0

k

; w

1

k

; z

k

), so that M and A are both invoked with both witnesses and z

k

.

Then, letM be the following PPT algorithm:

1. upon input z

0

k

= (x

k

; w

0

k

; w

1

k

; z

k

), toss a 
oin b 2 f0; 1g,

2. sample messages (M

i

)

i2[n

0

℄

by running P on input (x

k

; w

b

k

),

3. de�ne M

n

0

+1

:= b,

4. return the (n

0

+ 1)-message ve
tor (M

i

)

i2[n

0

+1℄

.

Now adversary A, running in the IND-SO-COM experiment, pro
eeds as follows:

1. upon input z

0

k

= (x

k

; w

0

k

; w

1

k

; z

k

), start an internal simulation of V

�

on input (x

k

; z

k

),

2. upon re
eiving n = n

0

+ 1 Com-
ommitments from the experiment, relay the �rst n

0

of these


ommitments to V

�

, and re
eive the (n

0

+ 1)-th 
ommitment,

3. when V

�


hooses a set I � [n

0

℄, relay this set (interpreted as a subset of [n℄ = [n

0

+ 1℄) to the

experiment,

4. upon re
eiving openings (for i 2 I) from the experiment, relay these openings to V

�

,

5. when the intera
tion between experiment and V

�

�nishes, run b

0

 D(x

k

; z

k

; T ) to obtain a

bit b

0

, where T denotes the trans
ript of the intera
tion between the experiment and V

�

,

6. upon re
eiving a message ve
tor M

�

= (M

�

i

)

i2[n℄

from the experiment, output b

0

�M

�

n

0

+1

.

Now in the real IND-SO-COM experiment Exp

ind-so-real

Com;M;A;z

, the following happens: if M 
hose

b = 0, then an intera
tion of P(x

k

; w

0

k

) and V

�

(x

k

; z

k

) is perfe
tly simulated. Sin
e M

�

n

0

+1

= b = 0,


onsequently A and also Exp

ind-so-real

Com;M;A;z

outputD(x

k

; z

k

; hP(x

k

; w

0

k

); V

�

(x

k

; z

k

)i). Conversely, if b = 1,

then Exp

ind-so-real

Com;M;A;z

outputs 1 �D(x

k

; z

k

; hP(x

k

; w

1

k

); V

�

(x

k

; z

k

)i) be
ause M

�

n

0

+1

= b = 1 then. We

get that

Pr

h

Exp

ind-so-real

Com;M;A;z

= 1

i

=

1

2

�

Pr

�

D(x

k

; z

k

; hP(x

k

; w

0

k

); V

�

(x

k

; z

k

)i) = 1

�

+ 1� Pr

�

D(x

k

; z

k

; hP(x

k

; w

0

k

); V

�

(x

k

; z

k

)i) = 1

�

�

=

1

2

Adv

WI

x;w

0

;w

1

;V

�

;D;z

+

1

2

:

On the other hand, in the ideal IND-SO-COM experiment, the message M

�

n

0

+1

that A re
eives from

the experiment results from a resampling of M, 
onditioned on M

�

I

= M

I

. Sin
e IP is a CCO

proto
ol, M

I

is independent of the used witness. Hen
e M

I

is also independent of b, and so M

�

n

0

+1

will be a freshly tossed 
oin. We get

Pr

h

Exp

ind-so-ideal

Com;M;A;z

= 1

i

=

1

2

:

Putting things together proves the theorem.

Tightness in the redu
tion and 
omposition. We stress that we only lose a fa
tor of 2 in

our se
urity redu
tion, whi
h 
ontrasts the loss of a fa
tor of about n

02

in the proof of Goldrei
h

et al. [20℄. Their proof works also for perfe
tly binding 
ommitment s
hemes (thus a
hieving an

intera
tive proof system), whi
h we (almost) 
annot hope to satisfy AI-IND-SO-COM se
urity,

a

ording to Theorem 4.2. However, sin
e we 
an instantiate AI-IND-SO-COM se
ure s
hemes for

arbitrary parameters n and I, we 
an hope to apply Theorem 6.7 even to proto
ols where jI

n

j
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is super-polynomial.

11

In parti
ular, we 
an apply our theorem to a parallel 
omposition of a

CCO proto
ol (whi
h is again a CCO proto
ol). This gives a 
omposition theorem for the witness

indistinguishability of CCO proto
ols (implemented with AI-IND-SO-COM se
ure 
ommitments)

at virtually no extra 
ost.

7 Con
lusion and open problems

While our results give an almost 
omplete 
hara
terization when and how se
urity under sele
tive

openings 
an be a
hieved, some interesting questions remain. Most importantly:

� Is there a non-intera
tive 
ommitment s
heme whi
h is simulatable under sele
tive openings?

The existen
e of su
h a s
heme would prove the existen
e of 3-round zero-knowledge proofs with

negligible soundness error. While Theorem 3.3 states that any su
h s
heme must employ non-

standard te
hniques, we 
annot rule out su
h s
hemes 
ompletely.

Another interesting question is the following:

� Are statisti
ally hiding 
ommitment s
hemes simulatable under sele
tive openings?

Theorem 4.11 states that su
h s
hemes are at least indistinguishable under sele
tive openings. How-

ever, our proof gives no indi
ation on how to 
onstru
t a simulator.
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A On the role of property P

The intuitive 
ontradi
tion. The formulations of Theorem 3.3 and Theorem 4.2 seem intu-

itively mu
h too general: essentially they 
laim impossibility of bla
k-box proofs from any 
om-

putational assumption whi
h is formulated as a property P of an ora
le X . Why 
an't we 
hoose

31



X to be an ideally se
ure 
ommitment s
heme, and P a property that models pre
isely what we

want to a
hieve, e.g., De�nition 4.1 (i.e., IND-SO-COM se
urity)? After all, De�nition 4.1 
an be

rephrased as a property P by letting A 
hoose a message distributionM and send this distribution

(as a des
ription of a PPT algorithm M) to P. Then, P 
ould perform the Exp

ind-so-real

Com;M;A

or the

Exp

ind-so-ideal

Com;M;A

experiment with A, depending on an internal 
oin toss (the output of P will then

depend on A's output and on that 
oin toss). This P models De�nition 4.1, in the sense that

Adv

ind-so

Com;M;A

= 2Adv

prop

P;X ;A

:

Also, using a truly random permutation as a basis, it is natural to assume that we 
an 
onstru
t

an ideal (i.e., as an ora
le) perfe
tly binding 
ommitment s
heme X that satis�es P. (Note that al-

though X is perfe
tly binding, A's view may still be almost statisti
ally independent of the unopened

messages, sin
e the s
heme X is given in ora
le form.)

Hen
e, if the assumption essentially is already IND-SO-COM se
urity, we 
an 
ertainly a
hieve

IND-SO-COM se
urity (using a trivial redu
tion), and this seems to 
ontradi
t Theorem 4.2. So

where is the problem?

Resolving the situation. The problem in the above argument is that P-se
urity (our assump-

tion) implies IND-SO-COM se
urity (our goal) in a fundamentally non-bla
k-box way. Namely, the

proof 
onverts an IND-SO-COM adversary A and a message distributionM into a P-adversary A

0

that sends a des
ription of M to P. This very step makes use of an expli
it representation of the

message distribution M, and this is what makes the whole proof non-bla
k-box. In other words,

this way of a
hieving IND-SO-COM se
urity 
annot be bla
k-box, and there is no 
ontradi
tion to

our results.

Viewed from a di�erent angle, the essen
e of our impossibility proofs is: build a very spe
i�


message distribution, based on ora
les (RO, resp. C), su
h that another �breaking ora
le� B �breaks�

this message distribution if and only if the adversary 
an prove that he 
an open 
ommitments. This

step relies on the fa
t that we 
an spe
ify message distributions whi
h depend on ora
les. Relative

to su
h ora
les, property P still holds (as we prove), but may not re�e
t IND-SO-COM se
urity

anymore. Namely, sin
e P itself 
annot a

ess additional ora
les

12

, P is also not able to sample a

message spa
e that depends on additional (i.e., on top of X ) ora
les. So in our redu
tion, although

A itself 
an, both in the IND-SO-COM experiment and when intera
ting with P, a

ess all ora
les,

it will not be able to 
ommuni
ate a message distribution M that depends on additional ora
les

(on top of X ) to P. On the other hand, any PPT algorithmM, as formalized in De�nition 4.1, 
an

a

ess all available ora
les.

So for the above modeling of IND-SO-COM se
urity as a property P in the sense of De�nition 3.2,

our impossibility results still hold, but be
ome meaningless (sin
e basi
ally using property P makes

the proof non-bla
k-box). In a 
ertain sense, this 
omes from the fa
t that the modeling of IND-

SO-COM as a property P is inherently non-bla
k-box.

What 
omputational assumptions 
an be formalized as properties in a �bla
k-box�

way? Fortunately, most standard 
omputational assumptions 
an be modeled in a bla
k-box way

as a property P. Besides the mentioned one-way property (and its variants), in parti
ular, e.g.,

the IND-CCA se
urity game for en
ryption s
hemes 
an be modeled. Observe that in this game,

we 
an let the IND-CCA adversary himself sample 
hallenge messages M

0

, M

1

for the IND-CCA

experiment from his favorite distribution; no PPT algorithm has to be transported to the se
urity

12

by de�nition, P must be spe
i�ed independently of additional ora
les, 
f. De�nition 3.2; if we did allow P to

a

ess additional ora
les, this would break our impossibility proofs
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game. In fa
t, the only properties whi
h do not allow for bla
k-box proofs are those that involve

an expli
it transmission of 
ode (i.e., a des
ription of a 
ir
uit or a Turing ma
hine). In that sense,

the formulation of Theorem 3.3 and Theorem 4.2 is very general and useful.

(Non-)programmable random ora
les. We stress that the bla
k-box requirement for random

ora
les (when used in the role of X ) 
orresponds to �non-programmable random ora
les� (as used

by, e.g., Bellare and Rogaway [5℄) as opposed to �programmable random ora
les� (as used by, e.g.,

Nielsen [26℄). Roughly, a proof in the programmable random ora
le model translates an atta
k on

a 
ryptographi
 s
heme into an atta
k on a simulated random ora
le (that is, an ora
le 
ompletely

under 
ontrol of simulator). Naturally, su
h a redu
tion is not bla
k-box. And indeed, with pro-

grammable random ora
les, even non-intera
tive SIM-SO-COM se
ure 
ommitment s
hemes 
an

be built relatively painless. As an example, [26℄ proves a simple en
ryption s
heme (whi
h 
an be

interpreted as a non-intera
tive 
ommitment s
heme) se
ure under sele
tive openings.
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