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Abstrat

The seletive deommitment problem an be desribed as follows: assume an adversary re-

eives a number of ommitments and then may request openings of, say, half of them. Do the

unopened ommitments remain seure? Although this question arose more than twenty years

ago, no satisfatory answer ould be presented so far. We answer the question in several ways:

1. If simulation-based seurity is desired (i.e., if we demand that the adversary's output an

be simulated by a mahine that does not see the unopened ommitments), then seu-

rity is not ahievable for non-interative or perfetly binding ommitment shemes via

blak-box redutions to standard ryptographi assumptions. However, we show how to

ahieve seurity in this sense with interation and a non-blak-box redution to one-way

permutations.

2. If only indistinguishability of the unopened ommitments from random ommitments is

desired, then seurity is not ahievable for (interative or non-interative) perfetly binding

ommitment shemes, via blak-box redutions to standard ryptographi assumptions.

However, any statistially hiding sheme does ahieve seurity in this sense.

Our results give an almost omplete piture when and how seurity under seletive openings

an be ahieved. Appliations of our results inlude:

� Essentially, an enryption sheme must be non-ommitting in order to ahieve provable

seurity against an adaptive adversary.

� When implemented with our seure ommitment sheme, the interative proof for graph

3-oloring due to Goldreih et al. beomes zero-knowledge under parallel omposition.

On the tehnial side, we develop a tehnique to show very general impossibility results for

blak-box proofs.

Keywords: ryptography, ommitments, zero-knowledge, blak-box separations.

1 Introdution

Consider an adversary A that observes iphertexts sent among parties in a multi-party ryptographi

protool. At some point, A may deide, based on the information he already observed, to orrupt,

say, half of the parties. By this, A learns the seret keys of these parties, whih allows him to open

some of the observed iphertexts. The question is: do the unopened iphertexts remain seure?

Sine most enryption shemes atually onstitute ommitments to the respetive messages, we an

rephrase the question as what is known as the seletive deommitment problem: assume A reeives

a number of ommitments and then may request openings of half of them. Do the unopened

ommitments remain seure? Aording to Dwork et al. [15℄, this question arose already more than

twenty years ago in the ontext of Byzantine agreement, but it is still relatively poorly understood.

In partiular, standard ryptographi tehniques (e.g., guessing whih ommitments are opened,

or hybrid arguments) fail to show that �ordinary� ommitment seurity against a stati adversary
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guarantees seurity under seletive openings.

1

Even worse: no ommitment sheme is known to be

seure under seletive openings.

Related work. The seletive deommitment problem arises in partiular in the enryption sit-

uation desribed above, and hene was reognized and mentioned in a number of works before

(e.g., [7, 4, 8, 12, 10℄). However, these works solved the problem by using (and, in fat, inventing)

non-ommitting enryption, whih irumvents the underlying ommitment problem.

Dwork et al. [15℄ is, to the best of our knowledge, the only work that expliitly studies the

seletive deommitment problem. They prove that a ommitment sheme whih is seure under

seletive openings would have interesting appliations. In partiular, they show that the parallel

omposition of the graph 3-oloring protool G3C of Goldreih et al. [20℄, when implemented with

suh a ommitment sheme, satis�es a relaxed variant of zero-knowledge. They proeed to give

positive results for substantially relaxed seletive deommitment problems (essentially, they prove

seurity when standard tehniques an be applied, i.e., when the set of opened ommitments an be

guessed, or when the messages are independent). However, they leave open the question whether

ommitment shemes seure under (general) seletive openings exist.

Our work. We answer the seletive deommitment problem in several ways. First, we onsider

what happens if �seurity of the unopened ommitments� means that we require the existene of

a simulator S, suh that S essentially ahieves what A does, only without seeing the unopened

ommitments in the �rst plae. We all a ommitment sheme whih is seure in this sense simu-

latable under seletive openings. We show that no non-interative or perfetly binding ommitment

sheme an be proved simulatable under seletive openings using blak-box redutions to standard

assumptions. However, we also show how to onstrut ommitment shemes whih are simulatable

under seletive openings, under the assumption that one-way permutations exist. Our onstrution

uses non-blak-box tehniques (i.e., zero-knowledge proofs) as well as interation to irumvent our

impossibility results. This solves an important open problem from Dwork et al. [15℄: our shemes

are the �rst ommitment shemes provably seure under seletive openings.

We proeed to onsider what happens if �seurity� means that A annot distinguish the messages

inside the unopened ommitments from independent

2

messages. We all a ommitment sheme

whih is seure in this sense indistinguishable under seletive openings. We show that no perfetly

binding ommitment sheme (interative or not) an be proved indistinguishable under seletive

openings, via blak-box redutions from standard assumptions. However, we also show that all

statistially hiding ommitment shemes are indistinguishable under seletive openings.

Tehnially, we derive blak-box impossibility results in the style of Impagliazzo and Rudih [22℄,

but we an derive stronger laims, similar to Dodis et al. [14℄. Conretely, we prove impossibility via

89semi-blak-box proofs from any omputational assumption that an be formalized as an orale X

and a orresponding seurity property P whih the orale satis�es. For instane, to model one-way

permutations, X ould be a truly random permutation and P ould be the one-way game in whih

a PPT adversary tries to invert a random image. We emphasize that, somewhat surprisingly, our

impossibility laim holds even if P models seurity under seletive openings. In that ase, however,

a redution will neessarily be non-blak-box, see Appendix A for a disussion.

1

For instane, the probability to orretly guess an n=2-sized subset of n ommitments is too small, and a hybrid

argument would require some independene among the ommitments, whih we annot assume in general.

2

�independent� an of ourse only mean �independent, onditioned on the already opened messages�
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Appliations. We apply our results to the adaptively seure enryption example mentioned in the

beginning, and to a speial lass of interative proof systems. First, we omment that an adaptively

seure enryption sheme must be non-ommitting, or rely on non-standard tehniques. Namely,

whenever a ommitting (i.e., iphertexts ommit to messages) enryption sheme is adaptively

seure, then it also is, interpreted as a (non-interative) ommitment sheme, simulatable under

seletive openings. Our impossibility results show that hene, a ommitting enryption sheme

annot be proved adaptively seure via blak-box redutions from standard assumptions.

Seond, we apply our results to �ommit-hoose-open� (CCO) style interative proof systems

suh as the graph 3-oloring protool G3C from Goldreih et al. [20℄. Re�ning the tehniques of

Dwork et al. [15℄, we prove that any CCO protool beomes zero-knowledge under parallel omposi-

tion, when implemented with a ommitment sheme whih is simulatable under seletive openings.

In partiular, our (interative, but onstant-round) ommitment sheme enables the parallel om-

posability of G3C. This is surprising, given the negative results of Goldreih and Krawzyk [19℄

and Canetti et al. [9℄ for the onurrent omposability limitations of (blak-box) zero-knowledge

proof systems. We stress that our simulator is strit polynomial-time (as opposed to expeted

polynomial-time simulators used, e.g., by Goldreih and Kahan [18℄). We also show that a CCO

protool beomes witness-indistinguishable, even under parallel omposition, when implemented

with a ommitment sheme whih is indistinguishable under seletive openings. Although some-

what less surprising, this shows the usefulness of our indistinguishability-based seurity de�nition

as a reasonable fallbak.

Organization. After �xing some notation in Setion 2, we present in Setion 3 our possibility

and impossibility results for the simulation-based seurity de�nition of Dwork et al. [15℄. We give

an indistinguishability-based seurity de�nition, along with possibility and impossibility results in

Setion 4. In Setion 5 and Setion 6, we onsider appliations of our results to enryption and

interative proof systems. We disuss the role of the omputational assumption in our impossibility

results in Appendix A.

2 Preliminaries

Notation. Throughout the paper, k 2 N denotes a seurity parameter. With growing k, attaks

should be beome harder, but we also allow shemes to be of omplexity whih is polynomial in

k. A PPT algorithm/mahine is a probabilisti algorithm/mahine whih runs in time polynomial

in k. While an algorithm is stateless, a mahine maintains a state aross ativations. A funtion

f = f(k) is alled negligible if it vanishes faster than the inverse of any polynomial. That is, f

is negligible i� 89k

0

8k > k

0

: jf(k)j < k

�

. If f is not negligible, we all f non-negligible. We

say that f is overwhelming i� 1 � f is negligible. We write [n℄ := f1; : : : ; ng. If M = (M

i

)

i

is an

indexed set, then we write M

I

:= (M

i

)

i2I

. We denote the empty (bit-)string by �.

Commitment shemes.

De�nition 2.1 (Commitment sheme). A ommitment sheme is a pair of PPT mahines Com =

(S;R) suh that the following holds:

Syntax. For any M 2 f0; 1g

k

, S(ommit;M) �rst interats with R(reeive). We all this the

ommit phase. After that, S(open) interats again with R(open), and R �nally outputs a

value M

0

2 f0; 1g

k

[ f?g. We all this the opening phase.

Corretness. We have M

0

= M always and for all M .

Binding. For a mahine A, onsider the following experiment Exp

binding

Com;A

:
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1. Let A(ommit) interat with R(reeive),

2. let M

0

0

denote R's output after interating (on input open) with A(open; 0),

3. rewind A and R bak to the point before step 2,

4. let M

0

1

denote R's output after interating (on input open) with A(open; 1),

5. output 1 i� ? 6= M

0

0

6= M

0

1

6= ?.

We require that Adv

binding

Com;A

= Pr

h

Exp

binding

Com;A

= 1

i

is negligible for all PPT A.

Hiding. For a PPT mahine A, let Adv

hiding

Com;A

:= Pr

h

Exp

hiding-0

Com;A

= 1

i

� Pr

h

Exp

hiding-1

Com;A

= 1

i

: Here,

Exp

hiding-b

Com;A

proeeds as follows:

1. run (M

0

;M

1

) A(hoose) to obtain two messages M

0

;M

1

2 f0; 1g

k

,

2. let S(ommit;M

b

) interat with A(reeive),

3. let b

0

be A's �nal output

4. output b

0

.

We demand that Adv

hiding

Com;A

is negligible for all PPT A.

Further, we say that Com is perfetly binding i� Adv

binding

Com;A

= 0 for all A. We say that statistially

hiding i� Adv

hiding

Com;A

is negligible for all (not neessarily PPT) A.

De�nition 2.2 (Non-interative ommitment sheme). A non-interative ommitment sheme is

a ommitment sheme Com = (S;R) in whih both ommit and opening phase onsist of only one

message sent from S to R. We an treat a non-interative ommitment sheme as a pair of algorithms

rather than mahines. Namely, we write (om; de) S(M) shorthand for the ommit message om

and opening message de sent by S on input M . We also denote by M

0

 R(om; de) the �nal

output of R upon reeiving om in the ommit phase and de in the opening phase.

Note that perfetly binding implies that any ommitment an only be opened to at most one

value M . Perfetly binding (non-interative) ommitment shemes an be ahieved from any one-

way permutation (e.g., Blum [6℄). On the other hand, statistially hiding implies that for any

M

0

;M

1

2 f0; 1g

k

, the statistial distane between the respetive views of the reeiver in the ommit

phase is negligible. One-way funtions su�e to implement statistially hiding (interative) om-

mitment shemes (Haitner and Reingold [21℄). If we assume the existene of (families of) ollision-

resistant hash funtions, then even onstant-round statistially hiding ommitment shemes exist

(Damgård et al. [13℄, Naor and Yung [25℄).

Interative argument systems. We reall some basi de�nitions onerning interative argu-

ment systems, mostly following Goldreih [17℄.

De�nition 2.3 (Interative proof/argument system). An interative proof system for a language

L with witness relation R is a pair of PPT mahines IP = (P;V) suh that the following holds:

Completeness. For every family (x

k

; w

k

)

k2N

suh that R(x

k

; w

k

) for all k and jx

k

j is polynomial

in k, we have that the probability for V(x

k

) to output 1 after interating with P(x

k

; w

k

) is at

least 2=3.

Soundness. For every mahine P

�

and every family (x

k

; z

k

)

k2N

suh that jx

k

j = k and x

k

62 L

for all k, we have that the probability for V(x

k

) to output 1 after interating with P

�

(x

k

; z

k

)

is at most 1=3.

If the soundness ondition holds for all PPT mahines P

�

(but not neessarily for all unbounded

P

�

), then IP is an interative argument system. We say that IP enjoys perfet ompleteness if V

always outputs 1 in the ompleteness ondition. Furthermore, IP has negligible soundness error if

V outputs 1 only with negligible probability in the soundness ondition.
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We now state what it means for an interative proof or argument system to be zero-knowledge:

De�nition 2.4 (Zero-knowledge). Let IP = (P;V) be an interative proof or argument system for

language L with witness relation R. IP is zero-knowledge if for every PPT mahine V

�

, there exists

a PPT mahine S

�

suh that for all sequenes (x;w) = (x

k

; w

k

)

k2N

with R(x

k

; w

k

) for all k and

jx

k

j polynomial in k, for all PPT mahines D, and all auxiliary inputs z

V

�

= (z

V

�

k

)

k2N

2 (f0; 1g

�

)

N

and z

D

= (z

D

k

)

k2N

2 (f0; 1g

�

)

N

, we have that

Adv

ZK

V

�

;S

�

;(x;w);D;z

V

�

;z

D

:= Pr

h

D(x

k

; z

D

k

; hP(x

k

; w

k

); V

�

(x

k

; z

V

�

k

)i) = 1

i

� Pr

h

D(x

k

; z

D

k

; S

�

(x

k

; z

V

�

k

)) = 1

i

is negligible in k. Here hP(x

k

; w

k

); V

�

(x

k

; z

V

�

k

)i denotes the transript of the interation between the

prover P and V

�

.

Note that De�nition 2.5 involves two auxiliary inputs, one input z

V

�

for V

�

and S

�

, and one

input z

D

for D. This deviates from the standard zero-knowledge de�nition (e.g., Goldreih [17,

De�nition 4.3.10℄), in whih V

�

, S

�

, and D all get the same auxiliary input z. However, our hange

is without loss of generality (f. [17, Disussion after De�nition 4.3.10℄). Namely, sine in the

standard de�nition, D and z are hosen after V

�

and S

�

, and, by de�nition of PPT, the running

time of V

�

and S

�

is polynomial in k (but not in the length of z), we an pad z suh that only D

will be able to aess a ertain portion z

D

of z.

Most known interative proof system ahieve perfet ompleteness. Conversely, most systems

do not enjoy a negligible soundness error �by nature�; their soundness has to be ampli�ed via

repetition, e.g., via sequential or onurrent omposition. Thus, it is important to onsider the

onurrent omposition of an interative argument system:

De�nition 2.5 (Conurrent zero-knowledge). Let IP = (P;V) be an interative proof or argument

system for language L with witness relation R. IP is zero-knowledge under onurrent omposition

i� for every polynomial n = n(k) and PPT mahine V

�

, there exists a PPT mahine S

�

suh that

for all sequenes (x;w) = (x

i;k

; w

i;k

)

k2N;i2[n℄

with R(x

i;k

; w

i;k

) for all i; k and jx

i;k

j polynomial in k,

for all PPT mahines D, and all auxiliary inputs z

V

�

= (z

V

�

k

)

k2N

2 (f0; 1g

�

)

N

and z

D

= (z

D

k

)

k2N

2

(f0; 1g

�

)

N

, we have that

Adv

ZK

V

�

;S

�

;(x;w);D;z

V

�

;z

D

:= Pr

h

D((x

i;k

)

i2[n℄

; z

D

k

; hP((x

i;k

; w

i;k

)

i2[n℄

); V

�

((x

i;k

)

i2[n℄

; z

V

�

k

)i) = 1

i

� Pr

h

D((x

i;k

)

i2[n℄

; z

D

k

; S

�

((x

i;k

)

i2[n℄

; z

V

�

k

)) = 1

i

is negligible in k. Here hP((x

i;k

; w

i;k

)

i2[n℄

); V

�

((x

i;k

)

i2[n℄

; z

V

�

k

)i denotes the transript of the inter-

ation between n opies of the prover P (with the respetive inputs (x

i;k

; w

i;k

) for i = 1; : : : ; n) on

the one hand, and V

�

on the other hand.

There exist interative proof systems (with perfet ompleteness and negligible soundness error)

that ahieve De�nition 2.5 for arbitrary NP-languages if one-way permutations exist (e.g., Rihard-

son and Kilian [28℄; see also [23, 9, 1, 16, 3℄ for similar results in related settings). If we assume

the existene of (families of) ollision-resistant hash funtions, then there even exist onstant-round

interative proof systems that ahieve a bounded version of De�nition 2.5 in whih the number of

onurrent instanes is �xed in advane (Barak [1℄, Barak and Goldreih [2℄).

We also reall the de�nition of witness indistinguishability (a relaxation of zero-knowledge) from

Goldreih [17℄, where we hose a slightly di�erent but equivalent formulation:
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De�nition 2.6 (Witness indistinguishability). Let IP = (P;V) be an interative proof or argument

system for language L with witness relation R. IP is witness indistinguishable i� for every PPT

mahines V

�

and D, all sequenes x = (x

k

)

k2N

, w

0

= (w

0

k

)

k2N

, and w

1

= (w

1

k

)

k2N

with R(x

k

; w

0

k

)

and R(x

k

; w

1

k

) for all k and jx

k

j polynomial in k, and all auxiliary inputs z = (z

k

)

k2N

2 (f0; 1g

�

)

N

,

we have that

Adv

WI

x;w

0

;w

1

;V

�

;D;z

:= Pr

�

D(x

k

; z

k

; hP(x

k

; w

0

k

); V

�

(x

k

; z

k

)i) = 1

�

� Pr

�

D(x

k

; z

k

; hP(x

k

; w

1

k

); V

�

(x

k

; z

k

)i) = 1

�

is negligible in k. Here, hP(x;w); V

�

(x)i denotes a transript of the interation between P and V

�

.

Blak-box redutions. Reingold et al. [27℄ give an exellent overview and lassi�ation of blak-

box redutions. We reall some of their de�nitions whih are important for our ase. A primitive

P = (F

P

; R

P

) is a set F

P

of funtions f : f0; 1g

�

! f0; 1g

�

along with a relation R over pairs

(f;A), where f 2 F

P

, and A is a mahine. We say that f is an implementation of P i� f 2 F

P

.

Furthermore, f is an e�ient implementation of P i� f 2 F

P

and f an be omputed by a PPT

mahine. A mahine A P-breaks f 2 F

P

i� R

P

(f;A). A primitive P exists if there is an e�ient

implementation f 2 F

P

suh that no PPT mahine P-breaks f . A primitive P exists relative to an

orale B i� there exists an implementation f 2 F

P

whih is omputable by a PPT mahine with

aess to B, suh that no PPT mahine with aess to B P-breaks f .

De�nition 2.7 (Relativizing redution). There exists a relativizing redution from a primitive

P = (F

P

; R

P

) to a primitive Q = (F

Q

; R

Q

) i� for every orale B, the following holds: if Q exists

relative to B, then so does P.

De�nition 2.8 (89semi-blak-box redution). There exists a 89semi-blak-box redution from a

primitive P = (F

P

; R

P

) to a primitive Q = (F

Q

; R

Q

) i� for every implementation f 2 F

Q

, there

exists a PPT mahine G suh that G

f

2 F

P

, and the following holds: if there exists a PPT mahine

A suh that A

f

P-breaks G

f

, then there exists a PPT mahine S suh that S

f

Q-breaks f .

It an be seen that if a relativizing redution exists, then so does a 89semi-blak-box redution.

The onverse is true when Q �allows embedding,� whih essentially means that additional orales

an be embedded into Q without destroying its funtionality (see Reingold et al. [27, De�nition 3.4

and Theorem 3.5℄ and Simon [29℄). Below we will prove impossibility of relativizing redutions

between ertain primitives, whih also proves impossibility of 89semi-blak-box redutions, sine

the orresponding primitives Q allow embedding.

3 A simulation-based de�nition

Consider the following real seurity game: adversary A gets, say, n ommitments, and then may ask

for openings of some of them. The seurity notion of Dwork et al. [15℄ requires that for any suh

A, there exists a simulator S that an approximate A's output. More onretely, for any relation

R, we require that R(M; out

A

) holds about as often as R(M; out

S

), where M = (M

i

)

i2[n℄

are the

messages in the ommitments, out

A

is A's output, and out

S

is S's output. Formally, we get the

following de�nition (where heneforth, I will denote the set of �allowed� opening sets):

De�nition 3.1 (Simulatable under seletive openings/SIM-SO-COM). Let n = n(k) > 0 be poly-

nomially bounded, and let I = (I

n

)

n

be a family of sets suh that eah I

n

is a set of subsets of [n℄.

A ommitment sheme Com = (S;R) is simulatable under seletive openings (short SIM-SO-COM
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seure) i� for every PPT n-message distribution M, every PPT relation R, and every PPT ma-

hine A (the adversary), there is a PPT mahine S (the simulator), suh that Adv

sim-so

Com;M;A;S;R

is

negligible. Here

Adv

sim-so

Com;M;A;S;R

:= Pr

h

Exp

sim-so-real

Com;M;A;R

= 1

i

� Pr

h

Exp

sim-so-ideal

M;S;R

= 1

i

;

where Exp

sim-so-real

Com;M;A;R

proeeds as follows:

1. sample messages M = (M

i

)

i2[n℄

 M,

2. let A(reeive) interat onurrently with n instanes (S

i

(ommit;M

i

))

i2[n℄

of S,

3. let I 2 I be A's output after interating with the S

i

,

4. let A(open) interat onurrently with the jIj instanes (S

i

(open))

i2I

of S,

5. let out

A

denote A's �nal output,

6. output 1 i� R(M; out

A

).

On the other hand, Exp

sim-so-ideal

M;S;R

proeeds as follows:

1. sample messages M = (M

i

)

i2[n℄

 M,

2. invoke I  S(hoose) to obtain a set I 2 I,

3. invoke out

S

 S((M

i

)

i2I

),

4. output 1 i� R(M; out

S

).

For simpliity, we opted not to give auxiliary input to the adversary (or to the relation R). Suh

an auxiliary input is a ommon tool in ryptographi de�nitions to ensure some form of omposabil-

ity. Not giving the adversary auxiliary input only makes our negative results stronger. We stress,

however, that our positive results (Theorem 3.11 and Theorem 4.11) hold also for adversaries and

relations with auxiliary input.

3.1 Impossibility from blak-box redutions

Formalization of omputational assumptions. Our �rst result states that SIM-SO-COM

seurity annot be ahieved via blak-box redutions from standard assumptions. We want to

onsider suh standard assumptions in a general way that allows to make statements even in the

presene of �relativizing� orales. Thus we make the following de�nition, whih is a speial ase of

the de�nition of a primitive from Reingold et al. [27℄ (f. also Setion 2).

De�nition 3.2 (Property of an orale). Let X be an orale. Then a property P of X is a (not

neessarily PPT) mahine that, after interating with X and another mahine A, �nally outputs a

bit b. For an adversary A (that may interat with X and P), we de�ne A's advantage against P

as

Adv

prop

P;X ;A

:= Pr [P outputs b = 1 after interating with A and X ℄� 1=2:

Now X is said to satisfy property P i� for all PPT adversaries A, we have that Adv

prop

P;X ;A

is negligible.

In terms of Reingold et al. [27℄, the orresponding primitive is P = (F

P

; R

P

), where F

P

= fXg,

and R

P

(X ; A) i� Adv

prop

P;X ;A

is non-negligible. Our de�nition is also similar in spirit to �hard games�

as used by Dodis et al. [14℄, but more general. We emphasize that P an only interat with X and

A, but not with possible additional orales. (See Appendix A for further disussion of properties

of orales, in partiular their role in our proofs.) Intuitively, P ats as a hallenger in the sense of

a ryptographi seurity experiment. That is, P tests whether adversary A an �break� X in the

intended way. We give an example, where �breaking� means �breaking X 's one-way property�.
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Example. If X is a random permutation of f0; 1g

k

, then the following P models X 's one-way

property: P ats as a hallenger that hallenges A to invert a randomly hosen X -image. Conretely,

P initially hooses a random Y 2 f0; 1g

k

and sends Y to A. Upon reeiving a guess X 2 f0; 1g

k

from A, P heks if X (X) = Y . If yes, then P terminates with output b = 1. If X (X) 6= Y , then

P tosses an unbiased oin b

0

2 f0; 1g and terminates with output b = b

0

.

We stress that we only gain generality by demanding that Pr [P outputs 1℄ is lose to 1=2 (and

not, say, negligible). In fat, this way indistinguishability-based games (suh as, e.g., the indistin-

guishability of iphertexts of an ideal enryption sheme X ) an be formalized very onveniently.

On the other hand, ryptographi games like the one-way game above an be formulated in this

framework as well, by letting the hallenger output b = 1 with probability 1=2 when A fails.

On the role of property P. Our upoming results state the impossibility of (blak-box) seurity

redutions, from essentially any omputational assumption (i.e., property) P. The obvious ques-

tion is: what if the assumption already is an idealized ommitment sheme seure under seletive

openings? The short answer is: �then the seurity proof will not be blak-box.� We give a detailed

explanation of what is going on in Appendix A.

Stateless breaking orales. In our impossibility results, we will desribe a omputational world

with a number of orales. For instane, there will be a �breaking orale� B, suh that B aids in

breaking the SIM-SO-COM seurity of any given ommitment sheme, and in nothing more. To this

end, B takes the role of the adversary in the SIM-SO-COM experiment. Namely, B expets to reeive

a number of ommitments, then hooses a subset of these ommitments, and then expets openings

of the ommitments in this subset. This is an interative proess whih would usually require B

to hold a state aross invoations. However, stateful orales are not very useful for establishing

blak-box separations, so we will have to give a stateless formulation of B. Conretely, suppose that

the investigated ommitment sheme is non-interative. Then B answers deterministially upon

queries and expets eah query to be pre�xed with the history of that query. For instane, B �nally

expets to reeive openings de = (de

i

)

i2I

along with the orresponding previous ommitments

om = (om

i

)

i2[n℄

and previously seleted set I. If I is not the set that B would have seleted

when reeiving om alone, then B ignores the query. This way, B is stateless (but randomized,

similarly to a random orale). Furthermore, for non-interative ommitment shemes, this makes

sure that any mahine interating with B an open ommitments to B only in one way. Hene this

formalization preserves the binding property of a ommitment sheme, something whih we will

need in our proofs.

We stress, however, that this method does not neessarily work for interative ommitment

shemes. Namely, any mahine interating with suh a stateless B an essentially �rewind� B

during an interative ommitment phase, sine B formalizes a next-message funtion. Now if the

ommitment sheme is still binding if the reeiver of the ommitment an be rewound (e.g., this

holds trivially for non-interative ommitment shemes, and also for perfetly binding ommitment

shemes), then our formalization of B preserves binding, and our upoming proof works. If, however,

the ommitment sheme loses its binding property if the reeiver an be rewound, then the following

theorem annot be applied.

We are now ready to state our result.

Theorem 3.3 (Blak-box impossibility of non-interative or perfetly binding SIM-SO-COM, most

general formulation). Let n = n(k) > 0 be arbitrary, and let I = (I

n

)

n

be arbitrary suh that I

n

is

a set of subsets of [n℄ and jI

n

j is super-polynomial in k.

3

Let X be an orale that satis�es property

3

e.g., one ould think of n = 2k and I

n

= fI � [n℄ j jIj = n=2g here
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P. Then there is a set of orales relative to whih X still satis�es property P, but there exists

no non-interative or perfetly binding ommitment sheme whih is simulatable under seletive

openings.

Proof. First, let RO be a random orale (i.e., a random funtion f0; 1g

�

! f0; 1g

k

). When writing

RO(x

1

; : : : ; x

`

), we assume that RO's input x

1

; : : : ; x

`

is enoded in a pre�x-free way, suh that all

individual x

i

an be e�iently reonstruted from RO's input. Furthermore, to derive our seond

orale B, �rst onsider the following mahine B:

1. Upon reeiving Com as input, interpret Com as the desription of two mahines (S;R) as in

De�nition 2.1. Then, onurrently reeive n Com-ommitments, indexed by i 2 [n℄.

2. When all ommitments are reeived, output a uniformly hosen I 2 I.

3. Engage in jIj onurrent opening phases for the Com-instanes with i 2 I. If all openings

are valid (i.e., every reeiver instane with i 2 I outputs some M

i

6= ?), return the set of all

X 2 f0; 1g

k=3

suh that M

i

= RO(Com; i;X) for all i 2 I.

Unfortunately, we annot use B diretly in our proof, sine B is stateful, and blak-box separations

require stateless orales. So let B be the orale that evaluates B's next-message funtion. Formally,

B expets queries of the form h = (h

i

)

i2[`℄

. Upon eah suh query, B invokes a fresh opy of B,

and feeds it input messages h

1

up to h

`

suessively, ignoring the respetive answers of B. Finally,

B outputs B's answer to the last input h

`

. The random oins used for B in a given ativation are

supplied by B as a random (but deterministi) funtion of the previous message history of B. This

way, B itself is randomized but stateless, and an be used to emulate interations with B. (In fat,

B models a B whih an be rewound.)

We now omment on the desription of Com that B reeives. Com desribes two mahines S

and R, whih may make arbitrary orale alls (even reursive B-queries). We make no requirement

that Com desribes a hiding, binding, or orret ommitment sheme. However, we do require that

S and R are PPT whenever the desription Com is generated by a PPT algorithm. We ahieve

this with a suitable padding: We require all B-queries h are pre�xed with 1

`

, where ` bounds B's

running time on input h. Here, we ount any orale query with input x as jxj omputational steps,

and the �nal omputation of all X as one step. This way, not even reursive B-queries onsume

more than overall ` steps (not measuring the time needed to parse `), while any PPT ommitment

sheme Com an still be enoded e�iently.

For a query h = (h

i

)

i2[`℄

, let I

h

2 I and M

h

I

h

= (M

h

i

)

i2I

h

denote the variables from the

orresponding interation with B. For a ommitment sheme Com and a mahine A, we say that

A breaks Com

�

in B i� A manages to output two queries h = (h

i

)

i2[`℄

and h

0

= (h

0

i

)

i2[`

0

℄

suh that

the following holds.

� h

i

= h

0

i

for all i � i

I

, where i

I

is the (unique) index for whih B((h

i

)

i2[i

I

℄

) outputs I

h

2 I.

� There is an index j 2 [n℄ suh that ? 6= M

h

j

6= M

h

0

j

6= ?.

In other words, this holds if A manages to produe interations with B in whih the same ommit-

ment is opened in di�erent ways.

From here on, �x a (hiding and binding) ommitment sheme Com

�

= (S

�

;R

�

), suh that Com

�

is non-interative or perfetly binding (or both). We �rst show that our modeling of B preserves

the binding property of Com

�

.

Lemma 3.4. No PPT adversary A breaks Com

�

in B with non-negligible probability.

Proof. If Com

�

is perfetly binding, there never exists a ommitment for whih two di�erent openings

are possible (as long as the reeiver ats honestly). Hene there simply are no h and h

0

as required

to break the binding property of Com

�

in B. On the other hand, if Com

�

is non-interative, then

A must �nd a non-interative ommitment om along with two non-interative openings de

1

and
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de

2

in order to break Com

�

in B. The (ordinary) binding property of Com

�

implies that this is not

e�iently possible.

Now onsider the n-message distribution M

�

= f(RO(Com

�

; i;X

�

))

i2[n℄

g

X

�

2f0;1g

k=3

(i.e., M

�

hooses X

�

2 f0; 1g

k=3

uniformly and then sets M

�

i

= RO(Com

�

; i;X

�

) for all i).

Lemma 3.5. There is an adversary A that outputs out

A

= M

�

with overwhelming probability in

the real SIM-SO-COM experiment Exp

sim-so-real

Com

�

;M;A;R

. Here M

�

denotes the full message vetor sampled

fromM

�

by the experiment.

Proof. Let A be the SIM-SO-COM adversary on Com

�

that relays between its interfae to the SIM-

SO-COM experiment and B as follows. We silently assume that A pre�xes queries to B with the

respetive message history, and applies a padding as desribed above.

1. Initially, send Com

�

to B.

2. Relay the n ommitments from the SIM-SO-COM experiment to B.

3. Upon reeiving I

�

2 I from B, send I

�

to the SIM-SO-COM experiment.

4. Upon reeiving jI

�

j openings from the experiment, relay these openings to B.

5. Finally, upon reeiving a singleton set fX

�

g from B, return out

A

= (RO(Com

�

; i;X

�

))

i2[n℄

.

If B returns a set of larger size, return out

A

= ?.

By onstrution of M

�

and B, it is lear that out

A

= M

�

unless B returns multiple X (whih

happens only with negligible probability by a ounting argument).

Lemma 3.6. Any given PPT simulator S will output out

S

= M

�

in the ideal SIM-SO-COM

experiment Exp

sim-so-ideal

M;S;R

only with negligible probability.

Proof. Fix a PPT S. We laim that in the ideal SIM-SO-COM experiment, S has a view that

is almost statistially independent of X

�

, and hene will output out

S

= M

�

only with negligible

probability. To show the laim, denote by I

�

the subset that S submits to the SIM-SO-COM exper-

iment, and by M

�

I

�

the messages that S reeives bak. Denote by Com

j

; I

j

;M

j

I

j

the orresponding

values used in S's j-th query h

j

= (h

j

i

)

i2[`

j

℄

to B. We �rst de�ne and bound a number of �bad�

events:

� bad

oll

ours i� S reveals a message M

j

i

to B for whih there are two distint X

1

;X

2

2

f0; 1g

k=3

with RO(Com

j

; i;X

1

) = M

j

i

= RO(Com

j

; i;X

2

):

� bad

img

ours i� S reveals a message M

j

i

to B for whih an X with M

j

i

= RO(Com

j

; i;X)

exists, but M

j

i

has not been obtained through an expliit RO-query (by either S or the

SIM-SO-COM experiment).

� bad

bind

ours i� (Com

j

; I

j

;M

j

I

j

) = (Com

�

; I

�

;M

�

I

�

) for some j.

� bad := bad

oll

_ bad

img

_ bad

bind

:

These events our only with negligible probability: informally, bad

oll

implies a ollision among

2

k=3

uniformly distributed k-bit values, whih is ruled out by a birthday bound. bad

img

means that

S guessed an element of a very sparse set. Finally, bad

bind

means that S broke Com

�

's binding

property (or, rather, S broke Com

�

in B). A detailed proof an be found in Lemma 3.7 below.

Now onsider the following mahine B

0

whih is almost idential to B (the di�erene to B is

emphasized):

1. Upon reeiving Com as input, interpret Com as the desription of two mahines (S;R) as in

De�nition 2.1. Then, onurrently reeive n Com-ommitments, indexed by i 2 [n℄.

2. When all ommitments are reeived, output a uniformly hosen I 2 I.
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3. Engage in jIj onurrent opening phases for the Com-instanes with i 2 I. If all openings

are valid (i.e., every reeiver instane with i 2 I outputs some M

i

6= ?), proeed as follows.

If every M

i

is the result of an RO(Com; i;X)-query of S (for the same X 2 f0; 1g

k=3

), then

output fXg. Otherwise, output ;.

Denote by B

0

the orale that evaluates B

0

's next-message funtion. We �rst remark that B

0

an

be e�iently simulated inside S: B

0

running time is (roughly) the same as B's running time, if we

ount orale queries and the �nal omputation of the X as above. Furthermore, by de�nition, the

output of B and B

0

an di�er only if

� there are multiple X with M

i

= RO(Com; i;X) for some i 2 I, or

� for some i 2 I, M

i

is not the result of an expliit RO-query of S, but there exists an X with

M

i

= RO(Com; i;X) for all i 2 I.

Suppose bad does not our. Then :bad

oll

ensures that no multiple X with M

i

= RO(Com; i;X)

exist, and :bad

img

ensures that allM

i

have been expliitly queried asM

i

= RO(Com; i;X) by either

S or the SIM-SO-COM experiment. Now sine the SIM-SO-COM experiment makes only queries

of the form M

�

i

= RO(Com

�

; i;X

�

), this means that B and B

0

an only di�er if Com = Com

�

, and

if M

I

ontains some M

i

from M

�

I

�

. On the other hand, :bad

bind

implies that then, M

I

must also

ontain some M

i

0

not ontained in M

�

I

�

. By :bad

img

, then M

i

0

must have been expliitly queried by

S through M

i

0

= RO(Com

�

; i

0

;X

�

), for the same X

�

as hosen by the SIM-SO-COM experiment

to generate M

�

i

= RO(Com

�

; i;X

�

).

In other words, assuming :bad, in order to detet a di�erene between B and B

0

, S must already

have guessed the hidden X

�

used in the SIM-SO-COM experiment. In partiular, sine up to that

point, orales B and B

0

behave identially, and S an simulate B

0

internally, S an either extrat

the hidden X

�

from the SIM-SO-COM experiment with orales RO and X alone, or not at all.

However, sine we de�ned RO independently and after X , these orales are independent. Hene,

using RO and X alone, the view of S is independent of X

�

unless S expliitly makes a RO-query

involving X

�

. Sine X

�

2 f0; 1g

k=3

is uniformly hosen from a suitably large domain, and bad

ours with negligible probability, we get that S's view is almost statistially independent of X

�

.

Consequently, S's view is almost statistially independent of all M

�

i

with i 62 I

�

. Hene, S an

produe out

S

= M

�

only with negligible probability.

It remains to prove that bad ours only negligibly often.

Lemma 3.7. Event bad ours only with negligible probability.

Proof. We show that any of the events bad

oll

, bad

img

, bad

bind

ours only with negligible proba-

bility for any �xed i; j. The full laim then an be derived by a union bound over i; j, and the

individual events. So �rst �x i; j, and note that the funtions RO(Com

j

; i; �) and RO(Com; i

0

; �) are

independent as soon as Com

j

6= Com or i 6= i

0

. Hene, for all of the events, we an ignore RO- and

B-queries with a di�erent Com or i, and assume that RO

0

(�) := RO(Com

j

; i; �) is a fresh random

orale.

bad

oll

: Using a birthday bound, we get

Pr

h

9X

1

;X

2

2 f0; 1g

k=3

;X

1

6= X

2

: RO

0

(X

1

) = RO

0

(X

2

)

i

�

(2

k=3

)

2

2

k

= 2

�k=3

;

whih implies that with large probability, there simply exists no M

j

i

whih ould raise bad

oll

.

bad

img

: We show that S's hane to output M

i

with M

i

= RO

0

(s) for some s 2 f0; 1g

k=3

, and suh

that X has not been queried to RO

0

-query, is negligible. Now S's aess to the B-orale an

be emulated using an orale B

0

that, upon input Y , outputs the set of all X 2 f0; 1g

k=3

with

RO

0

(X) = Y . Without loss of generality, we may further assume that S never queries B

0
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with a Y whih has been obtained through an expliit RO

0

(X)-query. (Namely, unless bad

oll

ours, whih happens only with negligible probability, B

0

's answer will then be fXg.)

Hene, whenever S reeives an answer 6= ; from B

0

, it has already sueeded in produing

an M

i

with RO

0

(X) = M

i

for some X, and without querying RO

0

(X). So without loss of

generality, we an assume that S never queries B

0

, and hene only produes suh an M

i

using

aess to RO and X alone. Clearly, X does not help S, sine X and RO are independent.

But sine the set of all Y for whih RO

0

(X) = Y for some X 2 f0; 1g

k=3

is sparse in the set

of all Y 2 f0; 1g

k

, and S an only make a polynomial number of RO-queries, S's suess in

produing suh an M

i

is negligible.

bad

bind

: Let i

I

be the (unique) index for whih B((h

j

i

)

i2[i

I

℄

) outputs I

j

. Without loss of generality,

assume that S sets I

�

after B �rst outputs I

j

= B((h

j

i

)

i2[i

I

℄

). (Otherwise, I

j

= I

�

ours

only with probability 1=jIj, sine I

j

is hosen uniformly and then independent of I

�

.) We an

also assume that Com

j

= Com

�

, sine otherwise bad

bind

annot happen by de�nition. Hene,

S �rst generates a ommit transript (h

j

i

)

i2[i

I

℄

, then reeives I

j

and sends I

�

= I

j

to the

SIM-SO-COM experiment, and only then reeives messages M

�

I

�

. To ahieve bad

bind

in this

situation, S must �nd a full transript h

j

suh that M

j

I

j

= M

�

I

�

. In partiular, there is an

i 2 I

j

suh that S opens the i-th ommitment in h

j

to a value M

�

i

whih S only sees after

the transript of the ommit phase is �xed.

Hene, if S ahieves bad

bind

with non-negligible probability, we an onstrut the following

PPT mahine A. A �rst simulates S to extrat h = h

j

, and then rewinds S bak to the point

before it reeived M

�

I

�

. Restarting S with di�erent messages M

�

I

�

then yields a transript h

0

that opens the same ommitments as in h to di�erent messages. This ontradits Lemma 3.4.

Taking things together, this shows that Adv

sim-so

Com

�

;M

�

;A;S;R

is overwhelming for the relation

R(x; y) :, x = y, the desribed A, and any PPT S. Hene Com

�

is not SIM-SO-COM seure.

It remains to argue that in the desribed omputational world, X still satis�es property P.

Lemma 3.8. X satis�es P.

Proof. Assume a PPT adversary A on X 's property P. Sine X and P do not query B or RO,

A an do without external orales RO and B, and use internal simulations of RO and B instead.

Using lazy sampling for RO, both simulations an even be made PPT. (This inludes B's inversion

of RO, sine we simulate B and RO at the same time. We omit the details.)

So without loss of generality, we an assume that A only uses X -queries when interating with

P. Sine we assumed that P holds in the standard model (i.e., without any auxiliary orales), A's

advantage Adv

prop

P;X ;A

must be negligible.

This onludes the proof of Theorem 3.3.

The following orollary provides an instantiation of Theorem 3.3 for a number of standard ryp-

tographi primitives.

Corollary 3.9 (Blak-box impossibility of non-interative or perfetly binding SIM-SO-COM).

Assume n and I as in Theorem 3.3. Then no non-interative or perfetly binding ommitment

sheme an be proven simulatable under seletive openings via a 89semi-blak-box redution to one

or more of the following primitives: one-way funtions, one-way permutations, trapdoor one-way

permutations, IND-CCA seure publi key enryption.
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The orollary is a speial ase of Theorem 3.3. For instane, to show Corollary 3.9 for one-

way permutations, one an use the example X and P from above: X is a random permutation

of f0; 1g

k

, and P models the one-way experiment with X . Clearly, X satis�es P, and so we an

apply Corollary 3.9. This yields impossibility of relativizing proofs for SIM-SO-COM seurity from

one-way permutations. We get impossibility for 89semi-blak-box redutions sine one-way permu-

tations allow embedding, f. Simon [29℄, Reingold et al. [27℄. The other ases are similar. Note that

while it is generally not easy to even give a andidate for a ryptographi primitive in the standard

model, it is easy to onstrut an idealized, say, enryption sheme in orale form.

Generalizations. First, Corollary 3.9 onstitutes merely an example instantiation of the muh

more general Theorem 3.3. The proof also holds for a relaxation of SIM-SO-COM seurity onsid-

ered by Dwork et al. [15, De�nition 7.3℄, where adversary and simulator approximate a funtion of

the message vetor.

3.2 Possibility using non-blak-box tehniques

Non-blak-box tehniques vs. interation. Theorem 3.3 shows that SIM-SO-COM seurity

annot be ahieved unless one uses non-blak-box tehniques or interation. In this setion, we will

investigate the power of non-blak-box tehniques to ahieve SIM-SO-COM seurity. As it turns

out, for our purposes a onurrently omposable zero-knowledge argument system is a suitable

non-blak-box tool.

4

We stress that the use of this zero-knowledge argument makes our sheme

neessarily interative, and so atually irumvents Theorem 3.3 in two ways: by non-blak-box

tehniques and by interation. However, from a oneptual point of view, our sheme is �non-

interative up to the zero-knowledge argument.� In partiular, our proof does not use the fat that

the zero-knowledge argument is interative. (That is, if we used a onurrently omposable non-

interative zero-knowledge argument in, say, the ommon referene string model, our proof would

still work.)

The sheme. For our non-blak-box sheme, we need an interative argument system IP with

perfet ompleteness and negligible soundness error, suh that IP is zero-knowledge under onurrent

omposition. We also need a perfetly binding non-interative ommitment sheme Com

b

. Both

these ingredients an be onstruted from one-way permutations. To ease presentation, we only

desribe a bit ommitment sheme, whih is easily extended (along with the proof) to the multi-bit

ase.

Sheme 3.10 (Non-blak-box ommitment sheme ZKCom). Let Com

b

= (S

b

;R

b

) be a perfetly

binding non-interative ommitment sheme. Let IP = (P;V) be an interative argument system for

NP whih enjoys perfet ompleteness, has negligible soundness error, and whih is zero-knowledge

under onurrent omposition. De�ne ZKCom = (S

ZK

;R

ZK

) for the following mahines S

ZK

and

R

ZK

:

� Commitment to bit b:

1. S

ZK

omputes (om

0

; de

0

)  S

b

(b) and (om

1

; de

1

)  S

b

(b), and sends (om

0

; om

1

)

to R

ZK

.

2. S

ZK

uses IP to prove to R

ZK

that om

0

and om

1

ommit to the same bit.

5

4

We require onurrent omposability sine the SIM-SO-COM de�nition onsiders multiple, onurrent sessions

of the ommitment sheme.

5

Formally, the orresponding language L for IP onsiders statements x = (om

0

; om

1

) and witnesses w =

(de

0

; de

1

) suh that R(x;w) i� R

b

(om

0

; de

0

) = R

b

(om

1

; de

1

) 2 f0; 1g.
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� Opening:

1. S

ZK

uniformly hooses j 2 f0; 1g and sends (j; de

j

) to R

ZK

.

The seurity of ZKCom. It is straightforward to prove that ZKCom is a hiding and binding

ommitment sheme. (We stress, however, that Com

b

's perfet binding property is needed to prove

that ZKCom is binding; otherwise, the zero-knowledge argument may beome meaningless.) More

interestingly, we an also show that ZKCom is SIM-SO-COM seure:

Theorem 3.11 (non-blak-box possibility of SIM-SO-COM). Fix any n and I as in De�nition 3.1.

Then ZKCom is simulatable under seletive openings in the sense of De�nition 3.1.

Proof. Assume arbitrary n, I,M, R, and A as in De�nition 3.1. We proeed in games.

Game 0 is the real SIM-SO-COM experiment Exp

sim-so-real

ZKCom;M;A;R

for ZKCom. De�ne the random

variable out

0

as the output of the experiment, so that

Pr

h

Exp

sim-so-real

ZKCom;M;A;R

= 1

i

= Pr [out

0

= 1℄ :

In Game 1, we interpret the �rst stage of the experiment as a veri�er V

�

in the sense of

De�nition 2.5. To this end, we onstrutively de�ne random variables x

i;k

; w

i;k

; z

D

k

; z

V

�

k

as follows:

1. sample M = (M

i

)

i2[n℄

2 f0; 1g

n

fromM,

2. uniformly and independently hoose n bits j

1

; : : : ; j

n

,

3. for all i 2 [n℄ and j 2 f0; 1g, ompute (om

j

i

; de

j

i

) S

b

(M

i

),

4. de�ne x

i;k

= (om

0

i

; om

1

i

), w

i;k

= (de

0

i

; de

1

i

), z

V

�

k

= � and z

D

k

= (M; (j

i

; de

j

i

i

)

i2[n℄

).

Using this notation, the ommitment stage of Exp

sim-so-real

ZKCom;M;A;R

an be expressed as an intera-

tion of n onurrent instanes of prover P with a suitable veri�er V

�

as in De�nition 2.5.

6

Con-

retely, we de�ne a veri�er V

�

that, on input (x

i;k

)

i2[n℄

= (om

0

i

; om

1

i

)

i2[n℄

, internally simulates

Exp

sim-so-real

ZKCom;M;A;R

up to the point where A outputs I. The interative arguments whih show that

om

0

i

and om

1

i

ommit to the same bit are performed onurrently with (n instanes of) a prover

P that gets x

i;k

= (om

0

i

; om

1

i

) and w

i;k

= (de

0

i

; de

1

i

) as input. Finally, V

�

outputs out

V

�

= I,

so that I will be part of the transript T

P;V

�

= hP((x

i;k

; w

i;k

)

i2[n℄

); V

�

((x

i;k

)

i2[n℄

; z

V

�

k

)i.

We outsoure the seond stage of the attak into a suitable distinguisher D. Conretely, we

de�ne a mahine D whih, on input z

D

k

= (M; (j

i

; de

j

i

i

)

i2[n℄

) and a transript T

P;V

�

(whih ontains

out

V

�

= I), simulates out

A

 A((j

i

; de

j

i

i

)

i2I

) and outputs out

1

= R(M; out

A

).

This setting is merely a reformulation of Exp

sim-so-real

ZKCom;M;A;R

as a onurrent zero-knowledge argu-

ment, so we have that

Pr [out

1

= 1℄ = Pr [out

0

= 1℄ :

In Game 2, we use IP's onurrent zero-knowledge property. That is, Game 1 already spei�es

a PPT veri�er V

�

and a PPT distinguisher D, as well as random variables (x;w), z

V

�

, and z

D

,

as in De�nition 2.5. Hene our assumption on IP guarantees that there exists a PPT simulator

S

�

suh that Adv

ZK

V

�

;S

�

;(x;w);D;z

V

�

;z

D

is negligible. We substitute V

�

(along with all instanes of P)

from Game 1 with that simulator S

�

in Game 2. Note that now, the exeution of Game 2 does not

require w

i;k

= (de

0

i

; de

1

i

) anymore, but instead only one opening de

j

i

i

for eah argument session.

If we let out

2

denote D's output (on input z

D

k

and out

S

�

) in this setting, we get that

Pr [out

1

= 1℄� Pr [out

2

= 1℄ = Adv

ZK

V

�

;S

�

;(x;w);D;z

V

�

;z

D

6

Note that De�nition 2.5 trivially implies seurity for all distributions on (x;w), z

V

�

and z

D

. Also reall that

De�nition 2.5 models two di�erent auxiliary inputs z

V

�

(for V

�

and S

�

) and z

D

(for D). We emphasize again that

this is without loss of generality, f. the disussion after De�nition 2.4.
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is negligible.

In Game 3, we use Com

b

's hiding property. Namely, we now hange the generation of the

x

i;k

= (om

0

i

; om

1

i

). While we still generate om

j

i

i

as a ommitment to M

i

, we now de�ne om

1�j

i

i

as a ommitment to 1�M

i

, so that om

0

i

and om

1

i

are ommitments to di�erent bits. Sine de

1�j

i

i

is never used in Game 2, this does not result in a detetable hange in D's output. Conretely, we

have that

Pr [out

3

= 1℄� Pr [out

2

= 1℄ = Adv

hiding

Com

b

;A

0

for a suitable adversary A

0

on Com

b

's hiding property, so that Pr [out

3

= 1℄�Pr [out

2

= 1℄ is negli-

gible.

To onstrut Game 4, observe that in Game 3, distinguisher D only needs the openings de

j

i

i

for i 2 I from its input z

D

k

= (M; (de

j

i

i

)

i2[n℄

). We an exploit this fat as follows. We now

generate the ommitments x

i;k

= (om

0

i

; om

1

i

) and openings de

j

i

i

, as well as the j

i

2 f0; 1g

slightly di�erently. Conretely, for eah message bit M

i

, we �rst hoose a random bit b

i

and

ompute (om

0

i

; de

0

i

)  S

b

(b

i

) and (om

1

i

; de

1

i

)  S

b

(1� b

i

). This modi�ation does not hange

S

�

's view. When D requires an opening de

j

i

i

(for i 2 I), we de�ne j

i

= b

i

�M

i

, so that de

j

i

i

opens

the �right� message M

i

. This does not hange the view of S

�

or D, so that we have

Pr [out

4

= 1℄ = Pr [out

3

= 1℄ :

The ruial oneptual di�erene to Game 3 is that now the exeution of D requires only knowledge

about the message parts (M

i

)

i2I

seleted by S

�

and not the full message vetor M .

We an now reformulate Game 4 as an ideal SIM-SO-COM experiment. First, we de�ne a

simulator S as follows: �rst, S prepares bits b

i

and ommitments (om

i

0

; om

i

1

) as in Game 4

and then runs an internal simulation of S

�

on these ommitments. Upon obtaining I from S

�

, S

outputs I. Then, upon input (M

i

)

i2I

, S runs an internal simulation of A on input (j

i

; de

j

i

i

)

i2I

for j

i

= b

i

� M

i

as in Game 4. Finally, S outputs out

S

= out

A

. By onstrution, the ideal

SIM-SO-COM experiment Exp

sim-so-ideal

M;S;R

with this S is only a reformulation of Game 4, so that

Pr

h

Exp

sim-so-ideal

M;S;R

= 1

i

= Pr [out

4

= 1℄ :

Putting things together, we get that

Adv

sim-so

ZKCom;M;A;S;R

= Pr

h

Exp

sim-so-real

ZKCom;M;A;R

= 1

i

� Pr

h

Exp

sim-so-ideal

M;S;R

= 1

i

is negligible, whih proves the theorem.

Where is the non-blak-box omponent? Interestingly, the used zero-knowledge argument

system IP itself an well be blak-box zero-knowledge (where blak-box zero-knowledge means that

the simulator S

�

from De�nition 2.5 has only blak-box aess to the next-message funtion of V

�

).

The essential fat that allows us to irumvent our negative result Theorem 3.3 is the way we employ

IP. Namely, ZKCom uses IP to prove a statement about two given ommitments (om

0

; om

1

).

This proof (or, rather, argument) uses an expliit and non-blak-box desription of the employed

ommitment sheme Com

b

. It is this argument that annot even be expressed when Com

b

makes

use of, say, a one-way funtion given in orale form.

Generalizations. First, ZKCom an be straightforwardly extended to a multi-bit ommitment

sheme, e.g., by running several sessions of ZKCom in parallel. Seond, ZKCom is SIM-SO-COM

seure also against adversaries with auxiliary input z: our proof holds literally, where of ourse we

also require seurity of Com

b

against non-uniform adversaries.
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4 An indistinguishability-based de�nition

Motivated by the impossibility result from the previous setion, we relax De�nition 3.1 as follows:

De�nition 4.1 (Indistinguishable under seletive openings/IND-SO-COM). Let n = n(k) > 0 be

polynomially bounded, and let I = (I

n

)

n

be a family of sets suh that eah I

n

is a set of subsets

of [n℄. A ommitment sheme Com = (S;R) is indistinguishable under seletive openings (short

IND-SO-COM seure) i� for every PPT n-message distribution M, and every PPT adversary A,

we have that Adv

ind-so

Com;M;A

is negligible. Here

Adv

ind-so

Com;M;A

:= Pr

h

Exp

ind-so-real

Com;M;A

= 1

i

� Pr

h

Exp

ind-so-ideal

Com;M;A

= 1

i

;

where Exp

ind-so-real

Com;M;A

proeeds as follows:

1. sample messages M = (M

i

)

i2[n℄

 M,

2. let A(reeive) interat onurrently with n instanes (S

i

(ommit;M

i

))

i2[n℄

of S,

3. let I 2 I be A's output after interating with the S

i

,

4. let A(open) interat onurrently with the jIj instanes (S

i

(open))

i2I

of S,

5. send the full message vetor M to A,

6. output A's �nal output b.

On the other hand, Exp

ind-so-ideal

Com;M;A

proeeds as follows:

1. sample messages M = (M

i

)

i2[n℄

 M,

2. let A(reeive) interat onurrently with n instanes (S

i

(ommit;M

i

))

i2[n℄

of S,

3. let I 2 I be A's output after interating with the S

i

,

4. let A(open) interat onurrently with the jIj instanes (S

i

(open))

i2I

of S,

5. sample M

0

 M jM

I

, i.e., sample a fresh message vetor M

0

fromM with M

0

I

= M

I

,

6. send the full vetor M

0

to S,

7. output A's �nal output b.

On the onditioned distributionM jM

I

. We stress that, depending onM, it may be ompu-

tationally hard to sample M

0

 M jM

I

, even if (the unonditioned) M is PPT. This might seem

strange at �rst and inonvenient when applying the de�nition in some larger redution proof. How-

ever, there simply seems to be no other way to apture indistinguishability, sine the set of opened

ommitments depends on the ommitments themselves. In partiular, in general we annot predit

whih ommitments the adversary wants opened, and then, say, substitute the not-to-be-opened

ommitments with random ommitments. What we hose to do instead is to give the adversary

either the full message vetor, or an independent message vetor whih �ould be� the full message

vetor, given the opened ommitments. We believe that this is the anonial way to apture se-

rey of the unopened ommitments under seletive openings. We should also stress that it is this

de�nition that turns out to be useful in the ontext of interative argument systems, see Setion 6.

The relation between SIM-SO-COM and IND-SO-COM seurity. Unfortunately, we (ur-

rently) annot prove that SIM-SO-COM seurity implies IND-SO-COM seurity (although this

seems plausible, sine usually simulation-based de�nitions imply their indistinguishability-based

ounterparts). Tehnially, the reason why we are unable to prove an impliation is the onditioned

distributionM jM

I

in the ideal IND-SO-COM experiment, whih annot be sampled from during

an (e�ient) redution.
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A relaxation. Alternatively, we ould let the adversary predit a prediate � of the whole message

vetor, and onsider him suessful if Pr [b = �(M)℄ and Pr [b = �(M

0

)℄ for the alternative message

vetor M

0

 M jM

I

di�er non-negligibly. We stress that our upoming negative result (as well as

the appliation in Setion 6) also applies to this relaxed notion.

4.1 Impossibility from blak-box redutions

Theorem 4.2 (Blak-box impossibility of perfetly binding IND-SO-COM, most general formula-

tion). Let n = n(k) = 2k, and let I = (I

n

)

n

with I

n

= fI � [n℄ : jIj = n=2g be the family of

all n=2-sized subsets of [n℄. Let X be an orale that satis�es property P even in presene of an

EXPSPACE-orale. We also demand that X is omputable in EXPSPACE.

7

Then, there exists a

set of orales relative to whih X still satis�es P, but no perfetly binding ommitment sheme is

indistinguishable under seletive openings.

Proof. Let E = f0; 1g

k

and " := :01. Let EXPSPACE be an EXPSPACE-orale. We stress that

EXPSPACE an be used to perform ine�ient omputations, but EXPSPACE itself never makes

orale queries (e.g., to X or the orales RO and B presented below). Let RO be a random funtion

from E

n=2+1

to E

n

. We write M 2 RO when M 2 E

n

lies in the range of RO. For M;M

0

2 E

n

and � > 0, we write M �

"

M

0

i� M and M

0

oinide in at least d(1 � ")ne omponents (i.e., i�

there exists R � [n℄, jRj � d(1 � ")ne, with M

R

= M

0

R

). To onstrut our last orale B, let B be

the mahine that proeeds as follows.

1. Upon reeiving Com as input, hek that Com desribes a perfetly binding (but not neessarily

hiding) ommitment sheme (see the disussion after the desription of B). If not, rejet with

output ?. If yes, onurrently reeive n Com-ommitments, indexed by i 2 [n℄.

2. When all ommitments are reeived, output a uniformly hosen I 2 I.

3. Engage in jIj onurrent opening phases for the Com-instanes with i 2 I. If all openings are

valid (i.e., every Com-reeiver instane with i 2 I outputs some M

i

6= ?), then extrat the

whole message vetor M = (M

i

)

i2[n℄

2 E

n

from the ommitments (this is possible uniquely

sine Com is perfetly binding). Output the set of allM

0

2 RO withM

0

I

= M

I

andM

0

�

"

M .

We should omment on B's hek whether Com is perfetly binding. We want that, for all possible

values of RO and states of X , and for all syntatially allowed ommitments, there is at most one

message M

i

to whih a ommitment an be opened in the sense of Com. Note that by assumption

about X , this ondition an be heked using EXPSPACE. Conretely, we let EXPSPACE iterate

internally over all possible internal states of X and B, and over all possible random tapes of an

honest veri�er. EXPSPACE then heks whether a syntatially possible ommitment along with

two openings to di�erent messages exists. Note that we ompletely ignore whether or not Com is

hiding.

Again, we annot use B diretly, sine B is stateful, and blak-box separations require stateless

orales. So let B be the orale that evaluates B's next-message funtion, suitably padded as in the

proof of Theorem 3.3. We note that, similarly to Lemma 3.4, we an derive that the perfet binding

property of a perfetly binding ommitment sheme is preserved by the rewindable formalization

in B. In partiular, (the transript of) a ommitment phase uniquely determines the only possible

opening message.

Lemma 4.3. Let Com

�

be a perfetly binding ommitment sheme (that may use all of the desribed

orales in its algorithms). Then, Com

�

is not indistinguishable under seletive openings.

7

Examples of suh X are random orales or ideal iphers. It will beome learer how we use the EXPSPACE

requirement in the proof.
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Proof. Consider the n-message distributionM

�

that samples random elements in the range of RO.

(I.e.,M

�

outputs RO(X) for a uniformly sampled X 2 E

n=2+1

.) Consider the following adversary

A that relays between the real or ideal IND-SO-COM experiment and orale B. (Again, we silently

assume that A pre�xes queries to B with the respetive message history.)

1. Initially, send Com

�

to B.

2. Relay the n ommitments from the IND-SO-COM experiment to B.

3. Upon reeiving I

�

2 I from B, send I

�

to the IND-SO-COM experiment.

4. Upon reeiving jI

�

j openings from the experiment, relay these openings to B.

5. Upon reeiving a hallenge messageM from the experiment, and a set S � E

n

from B, output

out

A

= 1 i� S = fMg.

First, we laim that the probability for S = fM

�

g is overwhelming, where M

�

denotes the message

vetor sampled by the IND-SO-COM experiment. By onstrution of B, we have M

�

2 S. Fur-

thermore, for any M

0

2 S, it must hold that M

0

�

"

M

�

. But for any distint X

1

;X

2

2 E

n=2+1

,

we have that RO(X

1

) �

"

RO(X

2

) with probability

�

n

d(1�")ne

�

=jEj

d(1�")ne

. A union bound over all

M

0

2 RO shows that the probability that there exists an M

0

2 S, M

0

6= M

�

is negligible. Hene

S = fM

�

g with overwhelming probability.

Thus, A outputs 1 in the real IND-SO-COM experiment with overwhelming probability, sine

then M = M

�

. However, in the ideal IND-SO-COM experiment, M 6= M

�

with overwhelming

probability (sine for uniformly hosen M

�

2 RO, the expeted number ofM 2 RO withM

I

= M

�

I

is about jEj = 2

k

). Consequently, A outputs 1 in the ideal IND-SO-COM experiment only with

negligible probability. We get that Adv

ind-so

Com

�

;M

�

;A

is overwhelming, whih proves the lemma.

Lemma 4.4. X satis�es P.

Proof. Consider a PPT adversary A on X 's property P. Note that A may use RO, B, and

EXPSPACE freely. We proeed in games to show that Adv

prop

P;X ;A

is negligible.

Let Game 0 by the original seurity experiment in whih A attaks X 's property P. We say

that a B-query is a ommit query (resp. open query) if it �nishes the ommitment (resp. opening)

phase in the orresponding interation with B, suh that B responds with an I 2 I (resp. a set of

M

0

2 RO). Without loss of generality, we may assume that A never makes ommit queries twie,

and always makes preisely p(k) open queries for a �xed polynomial p. We also assume that for any

of A's open queries, A made a orresponding ommit query �rst.

8

Let out

0

denote P's output in

Game 0. By de�nition, we have

Pr [out

0

= 1℄� 1=2 = Adv

prop

P;X ;A

:

In Game i (for 0 < i � p(k)), we use an orale B

i

instead of orale B. Here, B

i

behaves like B,

exept that B

i

answers eah of A's �rst i opening queries as follows. Here, M

I

= (M

I

)

i2I

denotes

the opened messages, as before.

� If all openings are valid, then return the set of all M

0

2 RO whih have been expliitly

obtained through RO-queries by A (or B

i

, in the role of a reeiver), and for whih M

0

I

= M

I

.

We stress that orale B

i

does not break a ommitment or use internal aess to RO until the (i+1)-

th open query. Let out

i

denote P's output in Game i. To show that out

i

is not signi�antly a�eted

by our hanges, �x an i. Let h denote A's i-th open query in Game i. Let S = B

i

(h) denote the

answer A gets in Game i, and let S

0

= B

i�1

(h) denote the answer that A would have reeived in

8

In order to violate this assumption, A would have to guess an I 2 I as hosen by B upon the orresponding

ommit query. Sine jIj is large, we ignore this possibility.
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Game i � 1. We show in Lemma 4.5 below that S = S

0

exept with probability asymptotially

smaller than 2

�3"k

, so that

Pr [out

i

= 1℄� Pr [out

i�1

= 1℄ � 2

�("=2)k

for su�iently large k and all i 2 [p(k)℄.

Observe that in Game p(k), B

p(k)

and RO an both be simulated e�iently inside A. Indeed,

B

p(k)

only needs knowledge about A'sRO-queries, as well as aess to EXPSPACE to hek whether

a given ommitment sheme is perfetly binding. Hene,

Adv

prop

P;X ;A

0

= Pr

�

out

p(k)

= 1

�

� 1=2

for a suitable PPT adversary A

0

that internally simulates A, RO, and B

p(k)

, and only needs aess to

EXPSPACE. By assumption about X , Adv

prop

P;X ;A

0

is negligible, and hene so must be Adv

prop

P;X ;A

.

It remains to prove that, in the situation of Lemma 4.4, S = S

0

with high probability.

Lemma 4.5. In the situation of Lemma 4.4, Pr [S 6= S

0

℄ � 2

�("=2)k

for su�iently large k.

Combining Lemma 4.6, 4.7, 4.8, and 4.9 below shows Lemma 4.5.

Lemma 4.6. In the situation of Lemma 4.4, jSj � 1 exept with probability at most q(k)2

�k

for

some polynomial q.

Proof. We interpret the whole Game i (inluding A, P, X , B

i

, and EXPSPACE) as a mahine

A

0

interating with RO. Note that A

0

may be omputationally unbounded, but only makes a

polynomial number of RO-queries, at least until A's i-th open query. Let Q

RO

denote the set of

RO-queries of A

0

. Now jSj > 1 implies that there are X

1

;X

2

2 Q

RO

with X

1

6= X

2

, suh that

RO(X

1

);RO(X

2

) 2 S, and so RO(X

1

)

I

= RO(X

2

)

I

. However, the statistial properties of RO

imply that for any X

1

;X

2

2 Q

RO

, RO(X

1

) and RO(X

2

) math in at least one omponent with

probability at most n2

�k

. A union bound over all suh pairs shows the laim.

Lemma 4.7. In the situation of Lemma 4.4, jS

0

j � 1 exept with probability at most q(k)2

�k

for

some polynomial q.

Proof. As in Lemma 4.6, we interpret Game i as a mahine A

0

interating with RO. Again, let

Q

RO

denote the set of RO-queries of A

0

. Now let X be the set of all X 2 E

n=2+1

n Q

RO

with

RO(X)

I

= M

I

. Using, e.g., Chebyshev's inequality, we get jXj < 2jEj, exept with probability

at most 2

�k

. Furthermore, Q

RO

ontains at most one query X with RO(X)

I

= M

I

exept with

probability at most q

1

(k)2

�k

for some polynomial q

1

(with similar reasoning as in Lemma 4.6). Let

X

0

:= X [ fXg for that X 2 Q

RO

, or X

0

:= X if no suh X exists. By the preeding disussion,

jX

0

j � 2E exept with probability (q

1

(k) + 1)2

�k

.

Now jS

0

j > 1 implies that X

1

;X

2

2 X

0

exist, suh that X

1

6= X

2

but RO(X

1

) �

"

M �

"

RO(X

2

), and so RO(X

1

) �

2"

RO(X

2

). Observe that the values RO(X) for X 2 X

0

are inde-

pendent, onditioned only on RO(X)

I

= M

I

. For any �xed X

1

;X

2

2 X

0

with X

1

6= X

2

, the

probability that RO(X

1

) �

2"

RO(X

2

) is

�

n=2

d(1=2�2")ne

�

=jEj

d(1=2�2")ne

, whih is less than 2

�3k�2

for

su�iently large k. Assuming that jX

0

j � 2jEj = 2

k+1

, a union bound yields that no suh X

1

;X

2

exist, and hene jS

0

j � 1, exept with probability 2

�k

. Summing up shows the laim.

Lemma 4.8. In the situation of Lemma 4.4, S = ; but jS

0

j = 1 with probability at most q(k)2

�k=2

for some polynomial q.
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Proof. Let bad denote the event that S = ; but S

0

= fM

0

g for some M

0

, and let bad

j

denote the

event that bad ours and A's i-th open query refers to A's j-th ommit query. Sine A makes only

polynomially many B

i

-queries, there is a polynomial q

1

= q

1

(k) and a funtion j = j(k) suh that

Pr [bad

j

℄ � Pr [bad℄ =q

1

(k).

Consider the mahine A

0

that simulates Game i and interats externally only with orale RO.

Call I

1

2 I the answer of B

i

to A's j-th ommit query. After A submits its i-th open query, A

0

rewinds the simulation bak to A's j-th ommit query, and then restarts with a freshly sampled

I

2

2 I as B

i

's answer to A's j-th ommit query. By bad

j,1

, resp. bad

j,2

, we denote the events that

bad

j

ours before, resp. after the rewinding. It is lear that Pr [bad

j,1

℄ = Pr [bad

j,2

℄ = Pr [bad

j

℄,

but unfortunately, the events bad

j,1

and bad

j,2

may be dependent. We have to work to establish

that bad

j,1

and bad

j,2

our simultaneously with su�iently large probability. Consider a pre�x E

j

of A

0

's exeution until A's j-th ommit query. Given any suh E

j

and a �xed orale RO, the events

bad

j,1

and bad

j,2

are independent and our with the same probability, so that

Pr [bad

j,1

^ bad

j,2

℄ =

X

E

j

;RO

Pr [bad

j,1

^ bad

j,2

j E

j

;RO℄ � Pr [E

j

;RO℄

=

X

E

j

;RO

Pr [bad

j,1

j E

j

;RO℄

2

� Pr [E

j

;RO℄

(�)

�

0

�

X

E

j

;RO

Pr [bad

j,1

j E

j

;RO℄ � Pr [E

j

;RO℄

1

A

2

= Pr [bad

j,1

℄

2

= Pr [bad

j

℄

2

� Pr [bad℄

2

=q

1

(k)

2

;

where (�) uses that

P

i



i

x

2

i

� (

P

i



i

x

i

)

2

for 

i

; x

i

� 0 with

P

i



i

= 1 by Jensen's inequality.

Let Q

RO;1

denote the set of A

0

's RO-queries before the rewinding, and let Q

RO;2

denote the set

of A

0

's RO-queries after the rewinding and before A's j-th ommit query. The rationale here is that

Q

RO;1

are A's queries in the run related to I

1

, and Q

RO;2

are A's queries in the run related to I

2

.

Note that Q

RO;1

and Q

RO;2

share A's queries before the j-th ommitment. We write RO(Q

RO;i

)

for the set of all RO(X) for X 2 Q

RO;i

.

Now bad

j,1

^bad

j,2

implies that A opens two subsets M

I

1 and M

I

2 message vetor M inside the

j-th ommit query, suh that there exist M

1

;M

2

2 RO with the following properties:

� M

1

I

1

= M

I

1

and M

2

I

2

= M

I

2

,

� M

1

�

"

M �

"

M

2

and hene M

1

�

2"

M

2

,

� M

1

62 RO(Q

RO;1

) and M

2

62 RO(Q

RO;2

).

We laim thatM

1

= M

2

with high probability. To see this, letM be set of allM

0

2 ROnRO(Q

RO;1

)

whih satisfy M

0

I

1

\I

2

= M

I

1

\I

2 . A simple alulation shows that m := jI

1

\ I

2

j � n=10 exept

with probability at most 2

�k

for su�iently large k. Now jMj's expeted value is, depending on

jQ

RO;1

j, at most jEj

n=2+1�m

. A Chebyshev bound as in Lemma 4.7 yields that jMj � jEj

n=2�m+2

exept with probability at most q

2

(k)2

�k

for some polynomial q

2

. So assume jI

1

\ I

2

j � n=10

and jMj � jEj

n=2�m+2

. Then, for any two M

1

;M

2

2 M with M

1

6= M

2

, we have M

1

�

2"

M

2

with probability at most

�

n�m

b2"n

�

=jEj

n�m�b2"n

. A simple alulation and a union bound over all

M

1

;M

2

2 M yield that there do not exist M

1

;M

2

2 M with M

1

�

2"

M

2

yet M

1

6= M

2

, exept

with probability at most q

3

(k)2

�k

for some polynomial q

3

. So for the M

1

;M

2

guaranteed by

bad

j,1

^ bad

j,2

, either M

1

= M

2

, or M

2

62M with high probability.

NowM

2

62M impliesM

2

= RO(X) for some X 2 Q

RO;1

, and bad

j,2

even ditates X 2 Q

RO;1

n

Q

RO;2

. Put di�erently, M

2

62 M implies that in the exeution after the rewinding, M

I

2

= M

2

I

2

ontains a omponent of an RO-image M

2

obtained (independently, sine M

2

62 Q

RO;2

) before

the rewinding. By symmetry, the probability that this happens equals the probability that M

I

1

ontains a omponent of an RO-image M

1

queried after the rewinding. However, this essentially
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means that A

0

has guessed a omponent of the result of an upoming RO-query, whih an happen

with probability at most q

4

(k)2

�k

for some polynomial q

4

by the statistial properties of RO. We

onlude that hene, M

2

2 M and so M

1

= M

2

exept with probability at most q

5

(k)2

�k

for a

polynomial q

5

.

Finally, a ounting argument shows that jI

1

[ I

2

j < n=2 + 2 happens with probability less

than 2

�k

for large enough k. Summarizing, bad

glue

:= bad

j,1

^ bad

j,2

^ (M

1

= M

2

) ^ (jI

1

[

I

2

j � n=2 + 2) happens with probability at least Pr [bad℄

2

� q

6

(k)2

�k

for some polynomial q

6

.

But bad

glue

implies that A

0

has found J := I

1

[ I

2

with jJ j � n=2 + 2, suh that there exists an

M

0

:= M

1

= M

2

2 RO withM

0

J

= M

J

, and A

0

has not obtained M

0

through an expliit RO-query.

Another Chebyshev bound shows that no suh M

0

exists, exept with probability (over the images

RO n RO(Q

RO;1

[Q

RO;2

) not queried by A

0

) at most 2

�k

. Hene, Pr

�

bad

glue

�

� 2

�k

, so that we

�nally have Pr [bad℄ � q(k)2

k=2

for some polynomial q.

Lemma 4.9. In the situation of Lemma 4.4, jSj = 1 but S

0

= ; with probability at most 2

�("=2)k

for large enough k.

Proof. Again, we interpret the whole Game i (exept for RO) as a mahine A

0

interating with RO.

As in Lemma 4.8, A

0

waits for A's i-th open query M

I

, and then rewinds the whole game bak to

A's j-th ommit query. Again, A

0

re-samples an I  I as a fresh answer to A's j-th ommit query,

in the hope that A opens M

I

in the i-th open query. However, this time A

0

repeats this proess

p(k) times for a suitable number p(k) to be determined later. Let S

`

and I

`

denote the values of I

and S from the `-th rewinding.

Now �x random tapes for all mahines simulated inside A

0

, and �x an RO. This means that

the only randomness during the exeution of A

0

omes from the hoie of the I

`

. Let bad denote

the event that jSj = 1 but S

0

= ;, and let bad

j

denote the event that bad ours and A's i-th open

query refers to A's j-th ommit query. Sine A makes only polynomially many B

i

-queries, there

is a polynomial q = q(k) and a funtion j = j(k) suh that Pr [bad

j

℄ � Pr [bad℄ =q(k), where the

probability is only over I 2 I.

Suppose that Pr [bad℄ > 2

�("=2)k

for ontradition, so that Pr [bad

j

℄ > 2

�"k

for large enough k.

Let I

0

� I be the set of all I suh that bad

j

ours when A reeives I upon the j-th ommit query.

Note that I

0

is well-de�ned, sine we �xed all randomness exept for I. Assume �rst that there

exists a subset B � [n℄ of size jBj > b"n with Pr [I 2 I

0

^ i 2 I℄ < 2

�2"k

for all i 2 B, where the

probability is over I 2 I. We have Pr [I \B = ;℄ =

�

d(1�")ne

n=2

�

=

�

n

n=2

�

� 2

�"n

= 2

�2"k

, so

2

�"k

� 2

�2"k

� Pr

�

I 2 I

0

�

� Pr [I \B = ;℄ � Pr

�

I 2 I

0

^ I \B 6= ;

�

�

X

i2B

Pr

�

I 2 I

0

^ i 2 I

�

< n � 2

�2"k

reates a ontradition for su�iently large k. Hene, no suh B exists, and so there must be a

subset R � [n℄ of size jRj � d(1� ")ne suh that Pr [I 2 I

0

^ i 2 I℄ � 2

�2"k

for all i 2 R.

Our goal is now to use A

0

to extrat M

R

with high probability. To this end, we �rst �nish

our desription of A

0

. Let L denote the set of all ` 2 [p(k)℄ for whih bad

j

ours in the `-th

rewinding. After p(k) := 2

8"k

rewindings, A

0

outputs M

J

, where J =

S

`2L

I

`

is the union of all

suessfully extrated partial message subsets. For ` 2 L, we have jS

`

j = 1 by de�nition of bad

j

, so

say S

`

= fM

`

g. By de�nition, M

`

has been obtained by A

0

through an expliit RO-query, and we

have M

`

I

`

= M

I

`

for the message vetor M inside A's j-th ommit query. Similar to Lemma 4.6, all

omponents of all RO-images obtained by A

0

are pairwise distint, exept with probability at most

2

�k=2

for large enough k. As in Lemma 4.8, we an show that all the RO-images M

`

are idential,
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exept with probability 2

�k=2

for su�iently large k. Thus, there exists one single M

0

2 RO with

M

0

J

= M

J

. Now note that the I

`

are independent. Hene, a Chebyshev bound shows that for

eah �xed i 2 R, there is an I

`

2 L � I

0

with i 2 I

`

, exept with probability at most 2

�6"k

. A

union bound over all i 2 R yields R � J exept with probability at most 2

�5"k

for large enough

k. So, exept with probability 2

�6"k

+ 2

k=2

< Pr [bad℄, A

0

shows the existene of an M

0

2 RO

with M

0

J

= M

J

for jJ j � d(1 � ")ne, suh that M

0

�

"

M . Sine M

0

I

`

= M

I

`

for any I

`

2 L, this

ontradits bad

j

and thus bad. Hene, our assumption on Pr [bad℄ must have been inorret, and

we have proved the lemma.

Combining Lemma 4.3 and Lemma 4.4 shows Theorem 4.2.

We stress that the requirement in Theorem 4.2 on X is a rather mild one. For instane, random

orales are one-way even against omputationally unbounded adversaries, as long as the adversary

makes only a polynomial number of orale queries. Hene, an EXPSPACE-orale (whih itself does

not perform orale queries) is not helpful in breaking a random orale. So similarly to Corollary 3.9,

we get for onrete hoies of X and P:

Corollary 4.10 (Blak-box impossibility of perfetly binding IND-SO-COM). Let n and I as in

Theorem 4.2. Then no perfetly binding ommitment sheme an be proved indistinguishable under

seletive openings via a 89semi-blak-box redution to one or more of the following primitives: one-

way funtions, one-way permutations, trapdoor one-way permutations, IND-CCA seure publi key

enryption.

Generalizations. Again, Corollary 4.10 onstitutes merely an example instantiation of the muh

more general Theorem 4.2. We stress, however, that the proof for Theorem 4.2 does not apply

to �almost-perfetly binding� ommitment shemes suh as the one from Naor [24℄. (For instane,

for suh shemes, B's hek that the supplied ommitment sheme is binding might tell something

about X .)

4.2 Statistially hiding shemes are seure

Fortunately, things look di�erent for statistially hiding ommitment shemes:

Theorem 4.11 (Statistially hiding shemes are IND-SO-COM seure). Fix arbitrary n and I as

in De�nition 4.1, and let Com = (S;R) be a statistially hiding ommitment sheme. Then Com is

indistinguishable under seletive openings in the sense of De�nition 4.1.

Proof. Fix an n-message distributionM and a PPT adversary A on the SIM-SO-COM seurity of

Com. We proeed in games.

Game �1 is the real IND-SO-COM experiment Exp

ind-so-real

Com;M;A

. Let out

�1

denote the output of

the experiment, so that we have

Pr

h

Exp

ind-so-real

Com;M;A

= 1

i

= Pr [out

�1

= 1℄ :

Game 0 onstitutes our �rst modi�ation of Exp

ind-so-real

Com;M;A

, and proeeds as follows (emphasized

steps are di�erent from Exp

ind-so-real

Com;M;A

):

1. sample messages M = (M

i

)

i2[n℄

 M,

2. let A(reeive) interat onurrently with n instanes (S

i

(ommit;M

i

))

i2[n℄

of S,

3. let I 2 I be A's output after interating with the S

i

,
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4. for every i 2 I, set the i-th sender's state to the output of proedure AltDe(H

i

;M

i

) (desribed

below), where H

i

denotes the exhanged messages during the ommit phase of the i-th Com

instane,

5. let A(open) interat onurrently with the jIj instanes (S

i

(open))

i2I

of S,

6. send the full message vetor M to A,

7. output A's �nal output b.

The (in general ine�ient) proedure AltDe takes as input a history H

i

of exhanged messages

in the ommit phase and a message M

i

. We all a random tape t for S onsistent with H

i

and

M

i

i� S(ommit;M

i

) (with random tape t) produes the sender's messages in H

i

when reeiving

the respetive reeiver's replies in H

i

. Let T

H

i

;M

i

denote the set of all random tapes t for S whih

are onsistent with H

i

and M

i

. Now AltDe(H

i

;M

i

) samples uniformly a random tape t from

T

H

i

;M

i

and returns the state of S with random tape t and after an interation aording to H

i

. If

T

H

i

;M

i

= ;, then AltDe returns ? (and Game 0 aborts with output 0). In other words, AltDe

returns the state of a sender S with initial input M

i

, onditioned on the transript T

i

of the ommit

phase.

In Game 0, AltDe will never return ? (sine AltDe is invoked with a transript H

i

that has

atually been produed as a ommit phase toM

i

). Moreover, the view of the adversary is not altered

by re-sampling the internal state of the sender, onditioned on all previous ations, as AltDe does.

Hene, we have

Pr [out

0

= 1℄ = Pr [out

�1

= 1℄

for the output out

0

of the experiment in Game 0.

We desribe Game j (for j 2 [n℄). Game j is idential to Game 0, exept for step 2:

2

�

. let A(reeive) interat onurrently with n instanes (S

i

(ommit;M

�

i

))

i2[n℄

of S, where we

set M

�

i

= 0

k

for i � j and M

�

i

= M

i

for j > i,

Obviously, for j = 0 we would get Game 0. Note that only di�erene between Game j�1 and Game

j is the ommitment to M

j

. In fat, we an now onstrut an adversary A

0

on Com's statistial

hiding property. A

0

�rst uniformly hooses j 2 [n℄, then simulates Game j � 1, but piks M

j

and

0

k

as hallenge messages for its own experiment Exp

hiding-b

Com;A

0

. The j-th ommitment (to either M

j

or

0

k

) is performed through the experiment. Exp

hiding-0

Com;A

0

is then a perfet simulation of Game j � 1,

and Exp

hiding-1

Com;A

0

perfetly simulates Game j. (However, we stress that A

0

is inherently unbounded:

A

0

must run proedure AltDe.) We get that

Pr [out

n

= 1℄� Pr [out

0

= 1℄ = n � Adv

hiding

Com;A

0

must be negligible, whih proves that

Pr

h

Exp

ind-so-real

Com;M;A

= 1

i

� Pr [out

n

= 1℄

is negligible.

We an apply the same reasoning for the ideal IND-SO-COM experiment Exp

ind-so-real

Com;M;A

: we �rst

onstrut the openings using the ommit transripts H

i

and the target messages M

i

alone as in

Game 0 above. Then we hange the atual ommitments to ommitments to 0

k

, as in Game 1 up

to Game n above. At this point, the modi�ed ideal experiment �rst samples M  M and then

M

0

 M j M

I

, but never uses M . Hene we an sample M

0

 M in the �rst plae without

hanging A's view. But this is then exatly Game n from above, so that we get that

Pr

h

Exp

ind-so-ideal

Com;M;A

= 1

i

� Pr [out

n

= 1℄

is negligible. Hene Adv

ind-so

Com;M;A

is negligible as well, whih shows the theorem.
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We stress that the proof of Theorem 4.11 also holds (literally) in ase A and/or M gets an

additional auxiliary input z.

5 Appliation to adaptively seure enryption

Motivation and setting. Taking up the motivation of Damgård [11℄, we onsider the setting of

an adversary A that may orrupt, in an adaptive manner, a subset of a set of parties P

1

; : : : ; P

n

.

Assume that for all i, the publi enryption key pk

i

with whih party P

i

enrypts outgoing messages,

is publily known. Suppose further that A may orrupt parties based on all publi keys and all so

far reeived iphertexts. When A orrupts P

i

, A learns P

i

's internal state and history, in partiular

A learns the randomness used for all of that party's enryptions, and its seret key sk

i

. We assume

the following:

1. The number of parties is n = 2k for the seurity parameter k,

2. It is allowed for A to hoose at some point a subset I � [n℄ of size n=2 and to orrupt all these

P

i

(i 2 I).

3. We an interpret the used enryption sheme as a (non-interative, hiding and binding) om-

mitment sheme Com = (S;R) in the following sense: S(M) generates a fresh publi key pk and

outputs a ommitment om = (pk ;En(pk ;M ; r)) and an opening de = (M; r). Here En de-

notes the enryption algorithm of the enryption sheme, and r denotes the randomness used

while enryptingM . Veri�ation of (om; de) = (pk ;C ;M; r) heks that En(pk ;M ; r) = C .

Note that the third assumption does not follow from the sheme's orretness. Indeed, orretness

implies only that honestly generated (pk ;M) are ommitting. However, there are shemes for whih

it is easy to ome up with fake publi keys and iphertexts (i.e., fake ommitments) whih are

omputationally indistinguishable from honestly generated ommitments, but an be opened in

arbitrary ways. Prominent examples of suh shemes are non-ommitting enryption shemes [7,

4, 8, 12, 10℄, whih however generally ontain interation from time to time and are omparatively

ine�ient.

Appliation of our impossibility results. Attaks in this setting annot be easily simulated in

the sense of, e.g., Canetti et al. [7℄: suh a simulator would in partiular be able to simulate openings

(in the sense of Com, i.e., openings of iphertexts). Hene, this would imply a simulator for Com

in the sense of SIM-SO-COM seurity (De�nition 3.1). Now from Corollary 3.9 we know that the

onstrution and seurity analysis of suh a simulator requires either a very strong omputational

assumption, or fundamentally non-blak-box tehniques. Even worse: if Com is perfetly binding

9

,

then Corollary 4.10 shows that not even serey in the sense of De�nition 4.1

10

an be proved

in a blak-box way. On top of that, we annot hope to use our (non-blak-box) SIM-SO-COM

seure sheme ZKCom to onstrut an enryption sheme in a non-blak-box way, sine ZKCom's

ommitment phase is inherently interative.

We stress that these negative results only apply if enryption really onstitutes a (binding)

ommitment sheme in the above sense. In fat, e.g., [7℄ onstrut a sophistiated non-ommitting

(i.e., non-binding) enryption sheme and prove simulatability for their sheme. Our results show

that suh a non-ommitting property is to a ertain extent neessary.

9

in the presene of non-uniform adversaries, this is already implied by the fat that the sheme is non-interative

and omputationally binding

10

in the ontext of enryption, De�nition 4.1 would translate to a variant of indistinguishability of iphertexts
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6 Appliation to zero-knowledge proof systems

6.1 Graph 3-oloring is omposable in parallel

Outline. Dwork et al. [15℄ have onsidered the appliations of SIM-SO-COM seure ommitment

shemes to zero-knowledge protools, in partiular to the graph 3-oloring interative proof system

G3C of Goldreih et al. [20℄. Conretely, [15, Theorem 7.6℄ states that G3C, when instantiated

with a SIM-SO-COM seure ommitment sheme, retains a relaxed zero-knowledge property alled

�S(V; T;D) zero-knowledge� under parallel omposition. S(V; T;D) zero-knowledge is a variant

of zero-knowledge in whih the simulator S may depend on the veri�er V , on the distinguisher T

between real and simulated transript, and on the onsidered message distributionD. Unfortunately,

[15℄ ould not give a SIM-SO-COM seure ommitment sheme to implement their theorem.

Using our sheme ZKCom, we an instantiate and in fat generalize [15, Theorem 7.6℄. Con-

retely, using a re�ned analysis and the spei� struture of ZKCom, we show that G3C, when

implemented with ZKCom, is zero-knowledge under parallel omposition. This is surprising in light

of the negative omposability results Goldreih and Krawzyk [19℄, Canetti et al. [9℄. Similar to

Barak [1℄, we use non-blak-box tehniques to irumvent known impossibilities.

Commit-hoose-open protools. We an atually prove parallel omposability of a larger lass

of �ommit-hoose-open� style interative argument systems:

De�nition 6.1 (Commit-hoose-open (CCO) protool). Let IP = (P;V) be an interative argument

system for an NP-language L with witness relation R. Let n = n(k) > 0 be polynomially bounded,

and let I = (I

n

)

n

be a family of sets suh that eah I

n

is a set of subsets of [n℄. We say that IP is

a ommit-hoose-open (CCO) protool (that uses ommitment sheme Com) if the following holds.

First, we require that IP is of the following form:

1. P, upon input (x;w) with x 2 L and R(x;w), selets n messages (M

i

)

i2[n℄

,

2. P engages in n instanes of Com to ommit to the M

i

at R,

3. V, upon input x, hooses a subset I 2 I

n

and sends I to P,

4. P opens all Com-ommitments to M

i

with i 2 I,

5. V aepts if the openings are valid and if the opened values satisfy some �xed relation spei�ed

by the protool.

Seond, we require that the messages (M

i

)

i2I

opened by P in the third step are uniform and indepen-

dent values over their respetive domain. (In partiular, (M

i

)

i2I

an be e�iently sampled without

knowing a witness w.)

It is easy to verify that the mentioned graph 3-oloring protool G3C [20℄ is a CCO protool. Also,

trivially, the parallel omposition of many instanes of a CCO protool is again a CCO protool.

In partiular, in the following, we will for simpliity only talk about a single CCO protool, while

one should atually have the parallel omposition of, e.g., G3C in mind.

Auxiliary-input SIM-SO-COM seurity. We will prove that any CCO protool, when using

a ommitment sheme whih is simulatable under seletive openings, is blak-box zero-knowledge.

To this end, we need a re�nement of SIM-SO-COM seurity, whih aptures auxiliary input and an

order of quanti�ers as in the zero-knowledge de�nition.

De�nition 6.2 (AI-SIM-SO-COM). In the situation of De�nition 3.1, we say that Com is AI-SIM-

SO-COM seure, i� for every PPT adversary A, there exists a PPT simulator S, suh that for every

PPT relation R, every PPT n-message distribution M, and all auxiliary inputs z

M

= (z

M

k

)

k2N

2
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(f0; 1g

�

)

N

, z

A

= (z

A

k

)

k2N

2 (f0; 1g

�

)

N

, and z

R

= (z

R

k

)

k2N

2 (f0; 1g

�

)

N

, we have that the advantage

Adv

sim-so

Com;M;A;S;R;z

M

;z

A

;z

R

is negligible. Here, Adv

sim-so

Com;M;A;S;R;z

M

;z

A

;z

R

is de�ned as Adv

sim-so

Com;M;A;S;R

,

with the following di�erenes:

� M gets additional input z

M

,

� A and S get additional input z

A

, and

� R gets additional input z

R

.

We laim that our sheme ZKCom from Setion 3.2 satis�es De�nition 6.2. To see this, reall

that the simulator S onstruted in the proof of Theorem 3.11 works also in the presene of auxiliary

input. Furthermore, S does not depend onM and R. However, sine M, S, A, and R all reeive

an auxiliary input in the AI-SIM-SO-COM experiment, we must demand that the ommitment

shemes Com

b

and Com

h

against non-uniform adversaries. We get:

Theorem 6.3 (ZKCom is AI-SIM-SO-COM). Suppose that there exist one-way permutations seure

against non-uniform adversaries. Then our ommitment sheme ZKCom from Setion 3.2 an be

instantiated suh that ZKCom ahieves AI-SIM-SO-COM seurity for arbitrary n, I.

The following theorem is a generalization of Dwork et al. [15, Theorem 7.6℄:

Theorem 6.4 (AI-SIM-SO-COM implies zero-knowledge). Let IP = (P;V) be a CCO protool that

uses a ommitment sheme Com. If Com is AI-SIM-SO-COM seure (for n and I as used in IP),

then IP is zero-knowledge in the sense of De�nition 2.4.

Proof. Assume V

�

, (x;w), D, z

V

�

, and z

D

as in De�nition 2.4. We will onstrut a suitable PPT

simulator S

�

. Sine IP is a CCO protool, we an immediately use the AI-SIM-SO-COM seurity of

Com. To this end, we de�ne an adversary A, a message distributionM, a relation R, and auxiliary

inputs z

A

and z

R

as in De�nition 6.2.

Conretely, de�ne z

M

= (x;w) and letM be the PPT n-message distribution that is indued by

P on input (x;w). Furthermore, let z

A

= (x

k

; z

V

�

) and let A = V

�

, exept that A �nally outputs a

transript of its onversation. We hene have out

A

= hP(x

k

; w

k

); V

�

(x

k

; z

V

�

k

)i. Finally, set z

R

= z

D

and R(M; out ; z

R

) = D(out ; z

R

), suh that R outputs exatly what D outputs on real transripts

as in De�nition 2.4. Now De�nition 6.2 guarantees that there exists a PPT mahine S suh that

Pr

�

R(M; out

A

; z

R

) = 1

�

� Pr

�

R(M; out

S

; z

R

) = 1

�

= Pr

h

D(hP(x

k

; w

k

); V

�

(x

k

; z

V

�

k

)i; z

D

) = 1

i

� Pr

�

D(out

S

; z

D

) = 1

�

is negligible, where out

S

denotes the �nal output of S in the ideal AI-SIM-SO-COM experiment.

Note that out

S

is still obtained through an interative experiment that in partiular requires knowl-

edge about M and hene the witness w. However, the only information S atually reeives about

the message vetor M is the subset M

I

= (M

i

)

i2I

. Sine IP is a CCO protool in the sense of

De�nition 6.1, M

I

is statistially independent of (x;w). Hene we an onstrut the following ma-

hine S

�

whih has orale aess to A = V

�

. Namely, S

�

internally simulates S (and relays to S

�

its

own orale aess to A). As soon as S outputs a set I, S

�

answers with a uniformly and indepen-

dently sampled set (M

i

)

i2I

. Note that S

�

no longer takes part in a AI-SIM-SO-COM experiment,

but instead works with input z

A

= (x

k

; z

V

�

) and orale aess to V

�

alone. By the CCO property

of IP, we obtain

Pr

�

D(out

S

; z

D

) = 1

�

= Pr

h

D(S

�

(x

k

; z

V

�

; z

D

) = 1

i

;

and hene, putting things together shows that Adv

ZK

V

�

;S

�

;(x;w);D;z

V

�

;z

D

is indeed negligible.
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Observing that the mentioned graph 3-oloring protool G3C from Goldreih et al. [20℄ is a CCO

protool, and that the set of CCO protools are losed under parallel omposition we get:

Corollary 6.5 (G3C is omposable in parallel). The graph 3-oloring protool G3C, when imple-

mented with our ommitment sheme ZKCom, is zero-knowledge, even under parallel omposition.

What our positive results do not imply (and what our negative results do imply).

We emphasize as well that our results do not imply that there are no, in the terminology of [15℄,

�magi funtions.� In order to prove non-existene of magi funtions with [15, Theorem 5.1℄, one

would have to �nd a non-interative SIM-SO-COM seure ommitment sheme. Our negative result

Theorem 3.3 states that this will not be possible with blak-box redutions to standard assumptions.

6.2 IND-SO-COM seurity and witness indistinguishability

Outline. A natural question is whether IND-SO-COM seurity, our relaxation of SIM-SO-COM

seurity, provides a reasonable fallbak for SIM-SO-COM seurity. Now �rst, our results show that

even when using IND-SO-COM seure shemes, we annot rely on perfetly binding ommitment

shemes beause of Theorem 4.2. For many interesting interative proofs (and in partiular the

mentioned graph 3-oloring protool G3C), this unfortunately means that the proof system degrades

to an argument system. But, assuming we are willing to pay this prie, what do we get from IND-

SO-COM seurity?

The answer is �essentially witness indistinguishability,� as we will argue in a minute. Essentially,

any ommitment sheme whih satis�es (a slight variation of) IND-SO-COM seurity an be used to

implement ommit-hoose-open style interative argument systems. The resulting argument system

will be witness-indistinguishable, and the seurity redution is tight. (In partiular, the seurity

redution does not lose a fator of jIj, where jIj is the number of possible hallenges sent by the

veri�er.)

We stress that, sine the set of ommit-hoose-open protools is losed under parallel ompo-

sition, we get omposability �for free.� Now witness indistinguishable argument systems already

enjoy a omposition theorem (see, e.g., Goldreih [17, Lemma 4.6.6℄), so the ompositionality laim

is not surprising. However, we believe that our results demonstrate that the seurity notion of

IND-SO-COM seure ommitments itself is a reasonable fallbak to SIM-SO-COM seurity.

Auxiliary-input IND-SO-COM seurity. Sine the standard de�nition of witness indistin-

guishability (see De�nition 2.6) involves an auxiliary input z given to the veri�er/adversary V

�

, we

also onsider a variation of De�nition 4.1 that involves auxiliary input. Namely,

De�nition 6.6 (AI-IND-SO-COM). In the situation of De�nition 4.1, we say that Com is AI-

IND-SO-COM seure i� Adv

ind-so

Com;M;A;z

is negligible for all PPT M and A and all auxiliary inputs

z = (z

k

)

k2N

2 (f0; 1g

�

)

N

, where bothM and A are invoked with additional auxiliary input z

k

.

We stress that the proof of Theorem 4.11 shows AI-IND-SO-COM seurity, one the investigated

ommitment sheme is statistially hiding against non-uniform adversaries.

Now we are ready to prove the following onnetion between witness indistinguishability and

AI-IND-SO-COM:

Theorem 6.7 (AI-IND-SO-COM implies witness indistinguishability). Assume a CCO protool

IP with parameters n

0

and I

0

that uses ommitment sheme Com as in De�nition 6.1. If Com is

AI-IND-SO-COM for parameters n = n

0

+ 1 and I = I

0

, then IP is witness indistinguishable. The

seurity redution loses only a fator of 2.
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Proof. Assume arbitrary x;w

0

; w

1

; V

�

;D; z as in De�nition 2.6. We onstrut a message distribution

M, an adversary A, and a z

0

suh that

Adv

ind-so

Com;M;A;z

=

1

2

Adv

WI

x;w

0

;w

1

;V

�

;D;z

:

First, de�ne z

0

k

= (x

k

; w

0

k

; w

1

k

; z

k

), so that M and A are both invoked with both witnesses and z

k

.

Then, letM be the following PPT algorithm:

1. upon input z

0

k

= (x

k

; w

0

k

; w

1

k

; z

k

), toss a oin b 2 f0; 1g,

2. sample messages (M

i

)

i2[n

0

℄

by running P on input (x

k

; w

b

k

),

3. de�ne M

n

0

+1

:= b,

4. return the (n

0

+ 1)-message vetor (M

i

)

i2[n

0

+1℄

.

Now adversary A, running in the IND-SO-COM experiment, proeeds as follows:

1. upon input z

0

k

= (x

k

; w

0

k

; w

1

k

; z

k

), start an internal simulation of V

�

on input (x

k

; z

k

),

2. upon reeiving n = n

0

+ 1 Com-ommitments from the experiment, relay the �rst n

0

of these

ommitments to V

�

, and reeive the (n

0

+ 1)-th ommitment,

3. when V

�

hooses a set I � [n

0

℄, relay this set (interpreted as a subset of [n℄ = [n

0

+ 1℄) to the

experiment,

4. upon reeiving openings (for i 2 I) from the experiment, relay these openings to V

�

,

5. when the interation between experiment and V

�

�nishes, run b

0

 D(x

k

; z

k

; T ) to obtain a

bit b

0

, where T denotes the transript of the interation between the experiment and V

�

,

6. upon reeiving a message vetor M

�

= (M

�

i

)

i2[n℄

from the experiment, output b

0

�M

�

n

0

+1

.

Now in the real IND-SO-COM experiment Exp

ind-so-real

Com;M;A;z

, the following happens: if M hose

b = 0, then an interation of P(x

k

; w

0

k

) and V

�

(x

k

; z

k

) is perfetly simulated. Sine M

�

n

0

+1

= b = 0,

onsequently A and also Exp

ind-so-real

Com;M;A;z

outputD(x

k

; z

k

; hP(x

k

; w

0

k

); V

�

(x

k

; z

k

)i). Conversely, if b = 1,

then Exp

ind-so-real

Com;M;A;z

outputs 1 �D(x

k

; z

k

; hP(x

k

; w

1

k

); V

�

(x

k

; z

k

)i) beause M

�

n

0

+1

= b = 1 then. We

get that

Pr

h

Exp

ind-so-real

Com;M;A;z

= 1

i

=

1

2

�

Pr

�

D(x

k

; z

k

; hP(x

k

; w

0

k

); V

�

(x

k

; z

k

)i) = 1

�

+ 1� Pr

�

D(x

k

; z

k

; hP(x

k

; w

0

k

); V

�

(x

k

; z

k

)i) = 1

�

�

=

1

2

Adv

WI

x;w

0

;w

1

;V

�

;D;z

+

1

2

:

On the other hand, in the ideal IND-SO-COM experiment, the message M

�

n

0

+1

that A reeives from

the experiment results from a resampling of M, onditioned on M

�

I

= M

I

. Sine IP is a CCO

protool, M

I

is independent of the used witness. Hene M

I

is also independent of b, and so M

�

n

0

+1

will be a freshly tossed oin. We get

Pr

h

Exp

ind-so-ideal

Com;M;A;z

= 1

i

=

1

2

:

Putting things together proves the theorem.

Tightness in the redution and omposition. We stress that we only lose a fator of 2 in

our seurity redution, whih ontrasts the loss of a fator of about n

02

in the proof of Goldreih

et al. [20℄. Their proof works also for perfetly binding ommitment shemes (thus ahieving an

interative proof system), whih we (almost) annot hope to satisfy AI-IND-SO-COM seurity,

aording to Theorem 4.2. However, sine we an instantiate AI-IND-SO-COM seure shemes for

arbitrary parameters n and I, we an hope to apply Theorem 6.7 even to protools where jI

n

j

28



is super-polynomial.

11

In partiular, we an apply our theorem to a parallel omposition of a

CCO protool (whih is again a CCO protool). This gives a omposition theorem for the witness

indistinguishability of CCO protools (implemented with AI-IND-SO-COM seure ommitments)

at virtually no extra ost.

7 Conlusion and open problems

While our results give an almost omplete haraterization when and how seurity under seletive

openings an be ahieved, some interesting questions remain. Most importantly:

� Is there a non-interative ommitment sheme whih is simulatable under seletive openings?

The existene of suh a sheme would prove the existene of 3-round zero-knowledge proofs with

negligible soundness error. While Theorem 3.3 states that any suh sheme must employ non-

standard tehniques, we annot rule out suh shemes ompletely.

Another interesting question is the following:

� Are statistially hiding ommitment shemes simulatable under seletive openings?

Theorem 4.11 states that suh shemes are at least indistinguishable under seletive openings. How-

ever, our proof gives no indiation on how to onstrut a simulator.
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A On the role of property P

The intuitive ontradition. The formulations of Theorem 3.3 and Theorem 4.2 seem intu-

itively muh too general: essentially they laim impossibility of blak-box proofs from any om-

putational assumption whih is formulated as a property P of an orale X . Why an't we hoose
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X to be an ideally seure ommitment sheme, and P a property that models preisely what we

want to ahieve, e.g., De�nition 4.1 (i.e., IND-SO-COM seurity)? After all, De�nition 4.1 an be

rephrased as a property P by letting A hoose a message distributionM and send this distribution

(as a desription of a PPT algorithm M) to P. Then, P ould perform the Exp

ind-so-real

Com;M;A

or the

Exp

ind-so-ideal

Com;M;A

experiment with A, depending on an internal oin toss (the output of P will then

depend on A's output and on that oin toss). This P models De�nition 4.1, in the sense that

Adv

ind-so

Com;M;A

= 2Adv

prop

P;X ;A

:

Also, using a truly random permutation as a basis, it is natural to assume that we an onstrut

an ideal (i.e., as an orale) perfetly binding ommitment sheme X that satis�es P. (Note that al-

though X is perfetly binding, A's view may still be almost statistially independent of the unopened

messages, sine the sheme X is given in orale form.)

Hene, if the assumption essentially is already IND-SO-COM seurity, we an ertainly ahieve

IND-SO-COM seurity (using a trivial redution), and this seems to ontradit Theorem 4.2. So

where is the problem?

Resolving the situation. The problem in the above argument is that P-seurity (our assump-

tion) implies IND-SO-COM seurity (our goal) in a fundamentally non-blak-box way. Namely, the

proof onverts an IND-SO-COM adversary A and a message distributionM into a P-adversary A

0

that sends a desription of M to P. This very step makes use of an expliit representation of the

message distribution M, and this is what makes the whole proof non-blak-box. In other words,

this way of ahieving IND-SO-COM seurity annot be blak-box, and there is no ontradition to

our results.

Viewed from a di�erent angle, the essene of our impossibility proofs is: build a very spei�

message distribution, based on orales (RO, resp. C), suh that another �breaking orale� B �breaks�

this message distribution if and only if the adversary an prove that he an open ommitments. This

step relies on the fat that we an speify message distributions whih depend on orales. Relative

to suh orales, property P still holds (as we prove), but may not re�et IND-SO-COM seurity

anymore. Namely, sine P itself annot aess additional orales

12

, P is also not able to sample a

message spae that depends on additional (i.e., on top of X ) orales. So in our redution, although

A itself an, both in the IND-SO-COM experiment and when interating with P, aess all orales,

it will not be able to ommuniate a message distribution M that depends on additional orales

(on top of X ) to P. On the other hand, any PPT algorithmM, as formalized in De�nition 4.1, an

aess all available orales.

So for the above modeling of IND-SO-COM seurity as a property P in the sense of De�nition 3.2,

our impossibility results still hold, but beome meaningless (sine basially using property P makes

the proof non-blak-box). In a ertain sense, this omes from the fat that the modeling of IND-

SO-COM as a property P is inherently non-blak-box.

What omputational assumptions an be formalized as properties in a �blak-box�

way? Fortunately, most standard omputational assumptions an be modeled in a blak-box way

as a property P. Besides the mentioned one-way property (and its variants), in partiular, e.g.,

the IND-CCA seurity game for enryption shemes an be modeled. Observe that in this game,

we an let the IND-CCA adversary himself sample hallenge messages M

0

, M

1

for the IND-CCA

experiment from his favorite distribution; no PPT algorithm has to be transported to the seurity

12

by de�nition, P must be spei�ed independently of additional orales, f. De�nition 3.2; if we did allow P to

aess additional orales, this would break our impossibility proofs
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game. In fat, the only properties whih do not allow for blak-box proofs are those that involve

an expliit transmission of ode (i.e., a desription of a iruit or a Turing mahine). In that sense,

the formulation of Theorem 3.3 and Theorem 4.2 is very general and useful.

(Non-)programmable random orales. We stress that the blak-box requirement for random

orales (when used in the role of X ) orresponds to �non-programmable random orales� (as used

by, e.g., Bellare and Rogaway [5℄) as opposed to �programmable random orales� (as used by, e.g.,

Nielsen [26℄). Roughly, a proof in the programmable random orale model translates an attak on

a ryptographi sheme into an attak on a simulated random orale (that is, an orale ompletely

under ontrol of simulator). Naturally, suh a redution is not blak-box. And indeed, with pro-

grammable random orales, even non-interative SIM-SO-COM seure ommitment shemes an

be built relatively painless. As an example, [26℄ proves a simple enryption sheme (whih an be

interpreted as a non-interative ommitment sheme) seure under seletive openings.
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