
New construction of Boolean function with optimum algebraic

immunity ∗

Yongjuan Wang Shuqin Fan Wenbao Han

Information research department , Information engineering university, zhengzhou, 450002

Abstract: Because of the algebraic attacks, a high algebraic immunity is
now an important criteria for Boolean functions used in stream ciphers. In
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1 Introduction

Algebraic attack to LFSR-based stream cipher was proposed by Coutois and Meier[13] in
2003. Its main idea is to deduce the security of a stream cipher to solve an over-defined system
of multivariate nonlinear equations whose unknowns are the bits of the initialization of the
LFSR. By searching low degree annihilator, some LFSR-based stream ciphers such as Toyocrypt
,LILI-128[12, 15] and SFINKS etc were successfully attacked. This adds a new cryptographic
property for designing Boolean functions which is known as algebraic immunity. A high algebraic
immunity is now a necessary criteria for Boolean functions used in cryptosystems.

People are interested in constructing the Boolean functions with optimum algebraic im-
munity, which is dn/2e for n-variable Boolean function. In [8], an iterative construction of a
2k-variable Boolean function with algebraic immunity provable equal to k was given. The pro-
duced functions have very high algebraic degree and there exists an algorithm giving a very
fast way(whose complexity is linear in the number of variables) of computing the output to the
function. But the function is not balanced and its nonlinearity is weak. In [1, 9, 14, 2], examples
of symmetric functions achieving optimum algebraic immunity were given. Being symmetric,
they present a risk if attacks using this peculiarity can be found in the future. Moreover, they
do not have high nonlinearities either.
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Carlet in [6] introduce a general method to prove a given function has a prescribed algebraic
immunity. By constructing a sequence of very simple flats which are defined by xj = ε, ε ∈ {0, 1},
where j runs a subset of {0, 1 · · · , n− 1}, he give two algorithms to construct Boolean functions
with optimum algebraic immunity. In his paper, there are two problems needed to be solved.
One is the open problem Carlet gives that finding some flats inequivalent to the above flats to
construct boolean functions with given algebraic immunity. Another is that the existence of
some disjoint subset I, J of {1, 2, · · · ,

(
n
n
2

)} which satisfy some conditions is assumed without
proof when Carlet construct the boolean function with optimum algebraic immunity in even
number of variable.

In the present paper, we generalized the method proposed in [6], solved the open problem,
i.e., presented some new kind of flats, proved the existence of I, J with optimal possible choice,
and finally constructed some balanced boolean functions with maximum algebraic immunity in
both odd and even number of variables,which are not affinely equivalent to majority functions.

2 Preliminaries

A Boolean function on n variables is a mapping from Fn
2 onto F2, the finite field with two

elements. We denote by Bn the set of all n-variable Boolean functions. The basic representation
of a Boolean function f(x1, · · · , xn) is by the output column of its truth table,i.e, a binary string
of length 2n,

f = [f(0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, · · · , 1)].

The Hamming weight wt(f)of a Boolean function f on n variables is the size of the support
supp(f) = {x ∈ Fn

2 : f(x) = 1} of the function. We denote 1f = supp(f), and 0f = Fn
2 \

supp(f). The support and offset of a vector supp(a) is the situation number of value 1 and 0’s
(eg.supp(10101) = {1, 3, 5}, off(10101) = {2, 4}). We say that a Boolean function f is balanced
if its truth table contains an equal number of 1’s and 0’s, that is, if its Hamming weight equals
2n−1. But the truth table does not give an idea of the algebraic complexity of the function. Any
Boolean function has an unique representation as a multivariate polynomial over F2, called the
algebraic normal form(ANF):

f(x1, x2, · · · , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

aijxixj + · · ·+ a12···nx1x2 · · ·xn (1)

where the coefficients are in F2 (without explanation, the notation + denotes the addition in
F2,i.e. the XOR ). The algebraic degree deg(f), is the number of variables in the highest order
term with nonzero coefficient. A Boolean function is affine if it has degree at most 1 and the set
of all affine function is denoted by An.

To be cryptographically secure[7], any Boolean function should have high algebraic degree,
high nonlinearity, high order resilient, etc. Recently, it has been identified that any combining
or filtering function should not have a low degree multiple. More precisely, it is shown in [13]
that, given any n-variable Boolean function f , it is always possible to get a Boolean function g

with degree at most dn/2e such that f ∗ g has degree at most dn/2e . While choosing a function
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f ,the cryptosystem designer should avoid that the degree of f ∗ g falls much below dn/2e with
a nonzero function g whose degree is also much below dn/2e . Otherwise, resulting low degree
multivariate relations involving key bits and output bits of the combining or filter function f

allow a very efficient attack. As observed in [16], it is enough to check that f and f + 1 do not
admit nonzero annihilators of low degrees.

Definition 1 Given f ∈ Bn, define AN(f) = {g ∈ Bn|f ∗ g = 0}. Any function
g ∈ AN(f) is called an annihilator of f .

Definition 2 Given f ∈ Bn, the algebraic immunity of f is the minimum degree of all
nonzero annihilator of f or f + 1. We denote it by AI(f).

Note that AI(f) ≤ deg(f) since f ∗ (f + 1) = 0 and AI(f) ≤ dn/2e. If a function has
low nonlinearity, then it must have a low value of AI, this implies that a function with good
value of AI have good nonlinearity(see[22]). If a function has optimal algebraic immunity dn/2e
with n odd number of variable, then it is balanced. Hence, the AI property take care of three
fundamental properties of Boolean function: balancedness, algebraic degree and nonlinearity.

Definition 3 Let V be a linear subspace of Fn
2 with dimension k, s is a non-zero vector

of Fn
2 . We call the set {s + v, v ∈ V } a k dimension flat (affine subspace).

3 The main result

Theorem 1 Let f ∈ Bn and k be any positive integer such that k ≤ dn/2e. Suppose
that there exists a sequence of flats (Ai)1≤i≤r with dimensions k + di(di ≥ 0), such that:

1) ∀i ≤ r, | Ai\[1f ∪
⋃

i′<i Ai′ ] |≤ 2di ;

2) 0f ⊆
⋃

1≤i≤r Ai.

Then f have no non-zero annihilator of degree strictly less than k.

We can easily get the following Corollary which is Proposition 1 in [6].

Corollary 1 [6] Let f ∈ Bn and k be any positive integer such that k ≤ dn/2e. Suppose
that there exists a sequence of flats (Ai)1≤i≤r with dimensions at least k, such that:

1) ∀i ≤ r, | Ai\[1f ∪
⋃

i′<i Ai′ ] |≤ 1;

2) 0f ⊆
⋃

1≤i≤r Ai.

Then f have no non-zero annihilator of degree strictly less than k.

In order to prove the theorem, we need the following lemmas:

Lemma 1 [17] Let f ∈ Bn. Suppose that wt(f) ≥ 2n − 2n−d, any annihilator of f has
its algebraic degree at least d.

Lemma 2 Let f ∈ Bn and L be a flat of dimension t, such that |L\1f | ≤ 2t−d for some
integer 1 ≤ d ≤ t. Then for any non-zero annihilator g of f ,
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(1) Either g has its algebraic degree at least d.

(2) Or g|L = 0.

Proof. Let g be an annihilator of f , i.e gf = 0. We have (g|L)(f |L) = 0. As we know, f |L can
be viewed as a Boolean function of t variables. Since |L\1f | ≤ 2t−d, we have |1f |L| ≥ 2t − 2t−d.
Suppose g|L 6= 0, applying Lemma 1, we have deg(g|L) ≥ d,which means deg(g) ≥ d.

Now we turn to prove Theorem 1:

Proof of Theorem 1: We only need to prove that any annihilator g of f whose degree
is at most k − 1 satisfy that g|Ai = 0 for every 1 ≤ i ≤ r by induction. Suppose that g is a
nonzero annihilator of f whose degree is at most k − 1.

When i = 1, we have |A1\1f | ≤ 2d1 , which means |1f |A1 | ≥ 2k+d1 − 2d1 . From Lemma 2,
we have g|A1 = 0.

Next we prove g|Ai = 0 for i ≥ 2 by induction. Suppose that for i′ < i, we have g|Ai′ = 0,
i.e., g|⋃

i′<i Ai′ = 0. Then

| Ai\[1f ∪
⋃

i′<i

Ai′ ] |≤ 2di ⇔ |[Ai\1f ] ∩ [Ai\
⋃

i′<i

Ai′ ]| ⇔ [Ai ∩ 0f ] ∩ [Ai\
⋃

i′<i

Ai′ ]| ≤ 2di (2)

Since 1g ⊆ 0f , we have|[Ai ∩ 1g]∩ [Ai\
⋃

i′<i Ai′ ]| ≤ 2di . On the other hand, since g|⋃
i′<i Ai′ = 0,

the set
|[Ai ∩ 1g] ∩ [Ai\

⋃

i′<i

Ai′ ]| = |[Ai ∩ 1g]| ≤ 2di .

Which means |1g+1|Ai | ≥ 2k+di − 2di . From Lemma 2 again, we have g|Ai = 0. This means for
1 ≤ i ≤ r, g|Ai = 0. On the other hand, from condition 2), we have g = 0 over F2 and thus reach
a contradiction. So f have no non-zero annihilator of degree strictly less than k. This finishes
the proof. ¤

We obtain by applying Theorem 1 to f and to f +1 (exhibiting a sequence of flats (Ai)1≤i≤r

for f and a sequence of flats (A′i)1≤i≤r′ for f+1) a sub-class of the class of functions with algebraic
immunity at least k. First we give the example of the majority function,

f(x) =

{
0 ifwt(x1, · · · , xn) ≤ bn/2c;
1 ifwt(x1, · · · , xn) > bn/2c.

In [6], Carlet use Corollary 1 to explain why the majority function has optimum algebraic
immunity. We brief the example for our later convenience.

Example 1 [6] Let f be the majority function with n variables. Let Aj′ ’s be the vector
spaces {x ∈ Fn

2 |supp(x) ⊆ supp(a)} where a ranges over the set of vectors of weights at least
k = dn/2e, the order being by increasing weights (with any order for vectors of the same weight),
and let the Ai’s be the flats {x ∈ Fn

2 |supp(a) ⊆ supp(x)} where a ranges over the set of vectors
of weights at most n− k, the order being by decreasing weights. It is easy to see that for every
i, the set |Ai\[1f ∪ ∪i′<iAi′ ]| = 1 if Ai has dimension k and otherwise Ai\ ∪i′<i Ai′ equals the
singleton containing the vector of minimum weight in Ai. Similar results can be got for A′j ’s.
From Corollary 1, we have AI(f) = [n/2].
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Noticing that the constructed sequence of flats in Example 1 are all the simplest possible
ones that the flats A′i’s are the vector spaces of equations xj = 0 (where j ranges over a set
depending on i and of size at most bn/2c) and the flats Ai’s are their translates by the vector
(1, ..., 1). Carlet gave the following open problem in [6].

Open Problem [6] Find some flats inequivalent to the flats in Example 1, e.g., some flats
have some equations of the form xj + xk = ε or xj = ε, where ε = 0, 1 to construct boolean
functions with given algebraic immunity.

In the following example and examples in the next two sections, we will give some flats
having equations of the form xj + xk = ε, and thus solve the above open problem.

Example 2 Let f be the majority function with n (odd) variables, k = dn/2e and
d =

(
n
k

)
. For 1 ≤ i ≤ d, let Ai be the flat {x ∈ Fn

2 |supp(a) ⊆ supp(x)} of dimension k where a

ranges over the set of vectors of weight n− k(whatever the order is).The set Ai \ [1f ∪
⋃

i′<i Ai]
is a singleton containing the vector of minimum weight in Ai.

Now we give some other flats different from those flats in Example 1. Let N = {1, 2, · · · , n},
denote P (N) the power set of N . For {α1, α2, · · · , αn−k−2, β1, β2} ∈ P (N), define flat

A(α1,α2,··· ,αn−k−2,β1,β2) = {(x1, · · · , xn) ∈ Fn
2 : xαi = ε, xβ1 + xβ2 = 1, 1 ≤ i ≤ n− k − 2, ε ∈ F2}.

(3)
The flats of form Eq.(3) have dimension k + 1. It is easy to see that we can choose a sequence
of flats of form Eq.(3) Ad+1, · · · , Ad+r(following A1, · · · , Ad, with the order of Ai(i > d) being
by decreasing of minimum weight vectors in flats and with any order for the same minimum
weight) and Ad+r+1 = Fn

2 which satisfy that |Ai \ [1f ∪
⋃

i′<i Ai]| ≤ 2 for d + 1 ≤ i ≤ d + r + 1.
For example, we can choose all A(α1,α2,··· ,αn−k−2,β1,β2) with (α1, α2, · · · , αn−k−2, β1, β2) running
across all possible ones. From above, we constructed a sequence of flats which satisfy the two
conditions in Theorem 1, and thus f have no non-zero annihilator of degree strictly less than
bn/2c. For n odd, this means AI(f) = bn/2c. We can similarly deal with the case of even n.

Actually, we need not to choose across all A(α1,α2,··· ,αn−k−2,β1,β2) to construct the sequence
of flats we need. For example, we consider the majority function of 7 variables, whose 1f is the
set of vectors of weight at least 4. For ai(1 ≤ i ≤ (

7
4

)
= 35) ranging over vectors of weight 3,the

flats Ai = {x|supp(ai) ⊆ supp(x)} have dimension 4. Then we classify the 7 variables vectors of
weight 2 into 3 categories by the indices of circular transaction of vectors (see[23]). For a given
vector (a1, a2, · · · , an) ∈ Fn

2 , we define

ρk
n(a1, a2, · · · , an) = (ak+1(modn), ak+2(modn), · · · , ak(modn)), where k = 0, · · · , n− 1. (4)

And the set G(a1,a2,··· ,an) = {ρk
n(a1, a2, · · · , an), k = 0, · · · , n− 1.}. Then we have :

G(1010000) = {(1010000), (0101000)(0010100), (0001010), (0000101), (1000010), (0100001)}

G(1100000) = {(1100000), (0110000)(0011000), (0001100), (0000110), (0000011), (1000001)}
G(1001000) = {(1001000), (0100100)(0010010), (0001001), (1000100), (0100010), (0010001)}

Define
A35+i = {x ∈ F 7

2 |xi = 1, x(i+1)mod7 + x(i+2)mod7 = 1}, for i = 1, · · · , 7,
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A42+i = {x ∈ F 7
2 |xi = 1, x(i+3)mod7 + x(i+4)mod7 = 1}, for i = 1, 2, 3,

and
A46 = {x ∈ F 7

2 |x4 = 1, x6 + x7 = 1}.
For 35 < i < 46, the flats Ai has dimension 5 , the sets Ai \ [1f ∪

⋃
i′<i Ai′ ] have two elements

with weight 2, and all of them are disjoint. the set A46 \ [1f ∪
⋃

i′<46 Ai′ ] is singleton, the element
is (0001001). Next we choose

A46+i = {x ∈ F 7
2 |x2i−1 = 0, x2i + x2i+1 = 1}, i = 1, 2, 3. and A50 = Fn

2 .

For 1 ≤ i ≤ 50, denote
Bi = Ai \ [1f ∪

⋃

i′<i

Ai′ ].

Then Bi = {ai} for 1 ≤ i ≤ 35, and is a set with two vectors of weight 2 for 35 < i < 46. For
i = 46, Bi is a singleton because only one vector (0001001) of weight 2 is left. For 46 < i < 50,
the set Bi have two vectors of weight 1; To satisfy the relationship 0f ⊆ [

⋃
i≤50 Ai], we define

the last flat to be the full space and B50 = {(100000), (0000000)}.
Thus we show 7 variables majority function has maximum AI by constructing a sequence

of flats Ai(1 ≤ i ≤ 50) which satisfy the two conditions of Theorem 1.

By the result of Theorem 1, we give a method to construct Boolean functions with optimum
AI in the next two sections, which are not equivalent to majority functions.

4 Constructing functions with optimum algebraic immunity in

odd number of variables

In [3], Canteaut has observed that, if a balanced function f in an odd number n of variables
admits no non-zero annihilator of degree at most n−1

2 , then it has optimum algebraic immunity
n+1

2 (this means that we do not need to check also that f + 1 has no non-zero annihilator of
degree at most n−1

2 for showing that f has optimum algebraic immunity). If a function has
optimal algebraic immunity dn/2e, then it is balanced. We deduce the following corollary of
Theorem 1:

Corollary 2 Let n be odd and let Ai(i = 1, · · · , r) be a sequence of flats of Fn
2 with

dimension k + di, 0 ≤ di ≤ bn/2c, and such that, for every 1 ≤ i ≤ r, the set Ai \
⋃

j<i Aj is
non-empty. Then for any choice of Bi ⊆ Ai \

⋃
j<i Aj , such that |Bi| ≤ 2di and Σr

i=1|Bi| = 2n−1,
the balanced function with support B =

⋃
1≤i≤r Bi and the function with support Fn

2 \ {B}
both have optimum algebraic immunity dn/2e.

Proof. The proof is direct and thus omitted.

Let n be odd, and d =
(

n
n+1

2

)
. Let a1, · · · , ad be an ordering of the set of all vectors of

weight n+1
2 . For every ai, let

Ai = {x ∈ Fn
2 : supp(x) ⊆ supp(ai)},
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where the dimension of Ai is k = n+1
2 and the corresponding di = 0. It is easy to see that for

1 ≤ i ≤ d, Ai\
⋃

j<i Aj is nonempty. We choose bi ∈ Ai\
⋃

j<i Aj arbitrarily and let Bi = {bi}.
So we have 1 = |Bi| ≤ 20. On the other hand,

⋃
1≤i≤d Ai contains all vectors ≤ n+1

2 .

Next we will try to define some new kind of flats Ad+i with dimension greater than n+1
2 such

that Ad+i \
⋃

j<d+i Aj is non-empty. Based on the circular transaction of indices as in Example
2, we choose flats Ad+i of form Eq.(3) such that Ad+i \ [1f ∪

⋃
j<d+i Aj ] is non-empty, with the

order being by increasing of maximum weight vectors in flats and with any order for the same
maximum weight. The sequence of flats satisfies:

1) dim(Ad+i) = k + 1.

2) |Ad+i \
⋃

j<d+i Aj | ≤ 2.

Let Bi = Ad+i \
⋃

j<d+i Aj for i > d. Suppose we find enough flats such that B =
⋃

Bi has
cardinality 2n−1, since we have

Ai \ [
⋃

j<i

Aj ∪ (Fn
2 \B)] = B ∩ (Ai \

⋃

j<i

Aj) = Bi (5)

for every i, and B ⊆ ⋃
Ai. The balanced function with support Fn

2 \ B has no annihilator of
degree strictly less thandn/2e and has maximum algebraic immunity. Consequently, the function
with support B has maximum algebraic immunity too.

Example 3 Let n = 5 is odd, and let a1, · · · , a10 be all vectors with weight 3. Let

Ai = {x ∈ Fn
2 : supp(x) ⊆ supp(ai)}, 1 ≤ i ≤ 10

be flats of dimension 3, let Bi = {bi}, where bi ∈ Ai \ (
⋃

j<i Aj) . Let
⋃

i≤10

Bi = {(0, 0, 0, 0, 1), (0, 1, 0, 1, 0), (1, 1, 0, 0, 0), (1, 0, 0, 0, 1),

(1, 0, 0, 1, 0), (1, 0, 1, 0, 1), (0, 1, 0, 1, 1), (1, 0, 1, 1, 0), (0, 1, 1, 0, 1), (1, 1, 0, 1, 0)}
Next we list some flats of dimension larger than 3,

A11 = {x ∈ Fn
2 |x1 + x2 = 1},

A12 = {x ∈ Fn
2 |x3 + x4 = 1},

A13 = Fn
2 .

Take B11 = {(1, 0, 1, 1, 1), (0, 1, 1, 1, 1)}, B12 = {(1, 1, 0, 1, 1), (1, 1, 1, 0, 1)}, B13 = {(1, 1, 1,

1, 1), (1, 1, 1, 1, 0)}. It is trivial to prove a balanced function with support B =
⋃13

i=1 Bi has
optimum algebraic immunity 3.

We see that k = 3 in Example 3 and card(Ai \ [B ∪⋃
i′<i Ai′ ]) = 2 for flats with dimension

4. The bound of Condition 1) of Theorem 1 is tight, the needed number of flats 13 is less than
the number 25−1 = 16 in Example 1. Considering the open problem, we find a sequence of flats
having equations of form xj +xk = ε, (ε ∈ F2) or xj = ε to construct balanced Boolean functions
with maximum algebraic immunity in odd number of variables which are not affine equivalent
to majority function.
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5 Constructing balanced functions with maximum AI in even

number of variables

In this section, we want to construct even variables balanced Boolean functions with max-
imum AI. In Corollary 3 of [6], Carlet gave a method to construct Boolean function with max-
imum AI in even variables, where the existence of some disjoint subset I, J of {1, 2, · · · ,

(
n
n
2

)}
which satisfy some conditions is assumed without proof. In this section, we proved the existence
of I, J with optimal possible choice, improved the result and constructed some balanced Boolean
function with maximum AI in even number of variables.

Let n be even and let a1, · · · , a(n
n
2
) be an ordering of the set of all vectors with weight n/2

in Fn
2 . For every i ∈ S = {1, · · · ,

(
n
n
2

)}, denote Ai the flat {x ∈ Fn
2 : supp(x) ⊆ supp(ai)} and

A′i the flat {x ∈ Fn
2 : supp(x) ⊇ supp(ai)}.

Proposition 1 (see [6] corollary 3) The denotations are as above, let I, J,K be three
disjoint subsets of {1, · · · ,

(
n

n/2

)}. Assume that, for every i ∈ I, there exists a vector bi 6= ai

such that bi ∈ Ai \
⋃

i′∈I,i′<i Ai′ . Assume that, for every i ∈ J , there exists a vector ci 6= ai such
that ci ∈ A′i \

⋃
i′∈J,i′<i A

′
i′ . Then the function whose support equals:

{x ∈ Fn
2 |wt(x) > 2} ∪ {bi, i ∈ I} ∪ {ai, i ∈ J ∪K} \ {ci, i ∈ J}

has algebraic immunity n/2.

We examine the existence and choice of I, J,K, and find that there exist two disjoint
subsets I, J of S with same cardinality |S|

2 , such that for every i ∈ I, there exists a vector bi 6= ai

such that bi ∈ Ai \
⋃

i′∈I,i′<i Ai′ and for every i ∈ J , there exists a vector ci 6= ai such that
ci ∈ A′i \

⋃
i′∈J,i′<i A

′
i′ .

Proposition 2 Let the notations be defined as above. There exist two disjoint subsets
I, J of S with the same cardinality |S|/2, such that for every i ∈ I, |Ai \

⋃
i′∈I,i′<i Ai′ | ≥ 2 and

i ∈ J , |A′i \
⋃

i′∈J,i′<i A
′
i′ | ≥ 2.

Proof. Define Bi = Ai \ ∪i′<iAi′ . We have Bi ⊆ Ai , ai ∈ Bi, and

Bi = Ai \ ∪i′<iBi′ = (((Ai \Bi−1) \Bi−2) \ · · · ) \B1. (6)

From the definition, Bi ∩ Bj = Φ, for i 6= j, i, j ∈ S, the order of Bi′ in Eq.(6) is changeable.
Now we want to find a subset I (with |I| = 1

2 |S|) of S to make
⋃

i∈I Bi = {x ∈ Fn
2 |wt(x) <

n/2} ∪ {ai, i ∈ I}.
In fact, it is feasible to take Bi to be a flat with dimension n/2−k(0 ≤ k < n/2) by carefully

choosing Ai(where i ranges over half of S ) with the order being by increasing of k. So we have
|Bi| = 2n/2−k ≥ 2.

At first, we randomly choose a vector of weight n/2, which we denote by a1 again, B1 = A1 is
a flat of dimension n/2. We denote ln/2 = 1. Then we choose another vector of weight n/2 as a2,
such that |supp(a2)\supp(a1)| = 1. Denote L = {1, · · · , n}. Suppose {l2} = supp(a2)\supp(a1),
then B2 = A2 \A1 = {xl2 = 1, xj = 0, j ∈ L\supp(a2)} is a flat of dimension n/2− 1.
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We continue to find new vector with |supp(ai) \ ∪i′<isupp(ai′)| = 1 until
⋃

i supp(ai) = L.
It is easy to see that we can choose ln/2−1 = n/2 number of such ai. Suppose {li} = supp(ai) \
∪i′<isupp(ai′). Then every flat

Bi = Ai \ [
⋃

i′<i

Ai′ ] = {xli = 1, xj = 0, j ∈ L\supp(ai)}

has dimension n/2− 1. Next we continue to construct Bi of dimension n/2− 2.

Define

L2
ai

= {(i1, i2)|i1, i2 ∈ supp(ai), i1 < i2}, for 1 ≤ i ≤
(

n

n/2

)

and
L2 = {(i, j)|1 ≤ i < j ≤ n}.

Suppose that we can find a new vector ai satisfying |L2
ai
\ ⋃

i′<i L
2
ai′ | = 1, and (i1, i2) = L2

ai
\⋃

i′<i L
2
ai′ . We choose the above ai until

⋃
i′<i L

2
ai

= L2, and

Bi = {xi1 = 1, xi2 = 1, xj = 0, j ∈ L\supp(ai)}.

It is easy to see that we can choose ln/2−2 =
(
n
2

)− (
(
n/2
2

)
+

(
n/2−1

1

)
n/2) number of such Bi’s of

dimension n/2− 2.

Following the above idea, we can similarly define Lk
ai

and Lk respectively until k = n/2−1.
We choose the new vector ai satisfying |Lk

ai
\ ⋃

i′<i L
k
ai′ | = 1 until

⋃
i′<i L

k
ai′ = Lk and the

corresponding

Bi = {xi1 = · · · = xik = 1, xj = 0, j ∈ L \ supp(ai), where {i1, · · · , ik} = Lk
ai
\

⋃

i′<i

Lk
ai′}

is a flat of dimension n/2− k. By induction, we have

ln/2−k =
(

n

k

)
−

k−1∑

i=0

(
n/2− i

k − i

)
ln/2−i

number of flats with dimension n/2− k, (k = 0, 1, · · · , n/2− 1).

From the configuration of Bi, we can examine that
⋃

i∈I Bi = {x|wt(x) < n/2}∪{ai, i ∈ I}.
The number of flats equals

∑n/2−1
k=0 ln/2−k = 1

2

(
n

n/2

)
, which explains the existence of I .

For given subset I, we have J = S \ I. Let Ci = A′i \
⋃

i′∈J,i′<i A
′
i′ , we need to discuss

the size of set Ci. Because for arbitrary s ∈ {1, · · · , n}, s appears in the offset of ai, i ∈ J the
same times with the support of ai, i ∈ I. We can find a right order of A′i to make |Ci| ≥ 2,
and

⋃
i∈J Ci = {x|wt(x) > n/2} ∪ {ai, i ∈ J}. The process is similar to the choice the order of

Ai, i ∈ I, with the difference that we discuss the order of the flats by the offset of ai, i ∈ J instead
of by the support of ai, i ∈ I, where the offset of a vector a is {1, · · · , n} \ supp(a) (a ∈ Fn

2 ),
which we denote by off(a).

Next we give an example of Proposition 2.
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Example 4 Let n = 6, then |S| = 20. For simplicity, we use the support to express the
vector. Let supp(I) = {supp(ai), i ∈ I}, off(I) = {off(ai), i ∈ I}, we choose the subset I, J as
follow:

supp(I) = {(456), (345), (234), (123), (134), (145), (156), (125), (256), (356)},

supp(J) = {(246), (346), (136), (135), (356), (146), (126), (235), (245), (124)}.
The corresponding offset of ai(i ∈ J) is :

off(J) = {(135), (125), (245), (246), (124), (235), (345), (146), (136), (356)}.

We can examine that for given Ai, i ∈ I( A′i, i ∈ J), whose order is as above, satisfies that
|Bi| ≥ 2, i ∈ I(|Ci| ≥ 2, i ∈ J).

The existence of I, J with cardinality |S|
2 allows us to construct balanced Boolean function

with maximum AI in even variables. We get the following result:

Corollary 3 Let n is even, and the denotations are as above. The balanced function
whose support equals:

{x ∈ Fn
2 |wt(x) >

n

2
} ∪ {bi, i ∈ I} ∪ {ai, i ∈ J} \ {ci, i ∈ J} (7)

has algebraic immunity n/2.

Example 5 Let n = 6, I, J is as Example 4. So we choose

{bi, i ∈ I} = {(4), (3), (23), (13), (14), (15), (16), (25), (26), (36)}

{ai, i ∈ J} = {(246), (346), (136), (135), (356), (146), (126), (235), (245), (124)}
{ci, i ∈ J} = {(123456), (13456), (1236), (12345), (2356), (1456), (1256), (2345), (1245), (1234)}.

We can examine that the balance function with support as form (7) has optimum AI.

By Proposition 2 (the choice of I, J), we can get a lower bound of the balanced Boolean
function with optimum AI we constructed in Corollary 3.

Proposition 3 Let n be even and the notations are as above. By the construction of
Corollary 3, we can get at least

N = 2(
n/2∏

k=1

(2k − 1)lk)2

number of balanced boolean functions with maximum algebraic immunity.

Proof. From the Eq.(7), we know that the number of functions is decided by the size of selecting
sets of {bi, i ∈ I} and {ci, i ∈ J}, i.e., the size of Bi, Ci respectively.

In fact, given a flat Bi, i ∈ I of dimension k, 1 ≤ k ≤ n/2, Bi consists of 2k vectors. There
are 2k − 1 possible choices of bi satisfying bi 6= ai. On the other hand, we have lk number of
Bi with dimension k , so the set {bi, i ∈ I} have

∏n/2
k=1(2

k − 1)lk different choices. From the
proof of Proposition 2 we know that {ci, i ∈ J} has the same number of choices. So we have at
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least N = (
∏n/2

k=1(2
k − 1)lk)2 number of functions of form (7). Furthermore, if f is a function

with maximum algebraic immunity , then f + 1 has maximum algebraic immunity too. So we
finally have at least 2(

∏n/2
k=1(2

k − 1)lk)2 balanced Boolean functions with AI(f) = n/2 by the
construction of Corollary 3.

6 Conclusion

In this paper, we give a method (Theorem 1) to determine the algebraic immunity of a
Boolean function, which can be viewed as a generalization of the main result of [6](Corollary
1). As an application, we solved the open problem in [6] by presenting a sequence of new flats
having equation of form xj + xk = ε, and xi = ε(ε ∈ F2) which satisfy the two conditions of
Theorem 1. We construct two kinds of balanced Boolean functions with maximum AI which
are not affinely equivalent to majority function. For the even case, we proved the existence of
I, J with optimal possible choice, and give a lower bound of the number of balanced functions
with maximum AI we constructed. By introducing the new kind flats, we enlarge the size of
Ak+i\[supp(f)∪⋃

j<k+i Aj ], and naturally reduce the number of flats to contain 0f . Furthermore,
there are still some problems need to be studied such as constructing more functions by the
results in this paper, and whether these functions can achieve high nonlinearities and be robust
against fast algebraic attacks etc.
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