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Abstract. The need for secure logging is well-understood by the security pro-
fessionals, including both researchers and practitioners. The abilitfic@efly
verify all (or some) log entries is important to any application employingisec
logging techniques. In this paper, we begin by examining state-of-tlHa-se-
cure logging and identify some problems inherent to systems basedstadru
third-party servers. We then propose a different approach toeséamyging based
upon recently developed Forward-Secure Sequential Aggregat&dgrauthen-
tication techniques. Our approach offers both space-efficiencyrandlge secu-
rity. We illustrate two concrete schemes — one private-verifiable and wep
verifiable — that offer practical secure logging without any reliance miree
trusted third parties or secure hardware. We also investigate the cafdept
mutability in the context of forward secure sequential aggregate authgotid¢o
provide finer grained verification. Finally, we report on some expedesmith a
prototype built upon a popular code version control system.
KEYWORDSsecure logging, MACs, signatures, forward secure stream integrity,
truncation attack

1 Introduction

System logs are an important part of any secure IT systeny fégword noteworthy
events happened in the past such as user activity, progracution status, system re-
source usage, data changes, etc. They provide a valuableofide past and current
states of almost any type of complex system. In conjunctidth appropriate tools
and procedures, audit logs can be used to enforce indivashwaluntability, reconstruct
events, detect intrusions and identify problems. Keepyisgesn audit trails and review-
ing them in a consistent manner is recommended by NIST asfdhe good principles
and practices for securing computer systems [1]. Most nrosigftware servers include
some sort of logging mechanisms.

Because of their forensic value, system logs are an obvargst for attackers. An
attacker who gains access to a system naturally wishes veetraces of her presence
in order to hide attack details or frame innocent users. t, fde first target of an
experienced attacker would often be the logging system][ZBmake the audit log
secure, we must prevent the attacker from modifying log.d&¢aure versions of audit
logs should be designed to defend against such tamperiagiditrg integrity checks,
the primary security requirement for any secure loggindesysis informally stated in
the Orange book [4] as:



Audit data must be protected from modification and unausati
destruction to permit detection and after-the-fact inigegton of
security violations.

In addition to the traditional meaning dhta integritywhich stipulates no insertion of
fake data and no modification or deletion of existing data, ititegrity of a log file
requires, in addition, no re-ordering of log entries. Tisatwe requirestream integrity
for securing audit logs.

In many real-world applications, a log file is generated aodesl on an untrusted
logging machine which is not physically secure enough tagutae that it cannot be
compromised [5]. Compromise of a logging machine can hapgdong as the Trusted
Computing Base (TCB) — the system component responsiblbd@ging — is not to-
tally bug-free, which is unfortunately always the case ylstems usingemote logging
(which send audit data to a remote trusted server), if theesés not available, the
log has to be buffered and stored temporarily at the localhinec Once an attacker
obtains the current secret key of the compromised logginghina, she can modify
post-compromisdata at will. In this case, one important issuéoisvard integrity. how
to ensure thapre-compromiselata cannot be manipulated. That is, even if the attacker
obtains the current secret key, she must be unable to madtifiy data generated before
compromise.

No security measure can protect log entries created aftettanker gains con-
trol of a logging machine, unless keys are periodically ugdavith the help of a re-
mote trusted server or a local trusted hardware componeant (esing key-insulated
and intrusion-resilient authentication schemes [6—8F. fdtus on the security of log
entries made before the compromise of a logging machines&prently, we require
forward-secure stream integrity.e., resistance against post-compromise insertion, al-
teration, deletion and re-ordering of pre-compromise laigies.

Traditional log integrity techniques include using speuidte-only hard disks or
remote logging where copies of log entries are sent to skgemgraphically differ-
ent remote machines. Recently a number of cryptographimoappes have been pro-
posed to address log integrity security that are generatgdtared on the local logging
server [2,3,5,9]. Bellare and Yee were the first to defindaheard-secure stream in-
tegrity property required in an audit log system and proposed to aiseafd-secure
MACs and index log entries [2, 3]. Schneier and Kelsey prepoa similar system
based on forward-secure MACs and one-way hash chain [5}]. é¢énded Schneier
and Yee's system to the public key setting [9]. Unfortunatall these schemes do
not defend againdruncation attack- a special kind of deletion attack whereby the
attacker deletes a contiguous subset of tail-end log entFierthermore, private key
based schemes like Schneier-Kelsey and Bellare-Yee affsystrom delayed detec-
tion attack® since they needs a trusted server to aid users in verifyiagntegrity of
the audit log; modifications can not be detected until the@efig data is uploaded to
the trusted server. Also all prior schemes are inefficierteims of both storage and

! For a precise definition, refer to Section 2.



communication costs which make them impractical to be usedeawices with com-
mensurately meager resources such as an implantable inéeligze [10]. We present
a detailed analysis of prior schemes in Section 2.

In order to mitigate aforementioned bad features of pritrestes, we propose a
new scheme which providdsrward-secure stream integritipr audit logs generated
and stored on untrusted logging machines. Our scheme id baseenew cryptographic
technique calledorward-secure aggregat@-ssAgg) authentication recently proposed
in [11, 12]. In a FssAgg authentication scheme, forwardisesignatures (or MACS)
generated by the same signer are combined sequentiallyaistngle aggregate sig-
nature. Successful verification of an aggregate signatuegjiivalent to that of each
component signature. (However, as discussed later, fadetication of an aggregate
signature only implies that at least one component sigeasunvalid.) Thus, a secure
FssAgg signature scheme is a good match for secure loggigcaions — it resists
truncation attacks due to its all-or-nothing (aggregaté famward-secure) signature
verification. In our scheme, users themselves can verifyape- without relying on a
trusted server —which obviates delayed detection att@nkisscheme offers storage and
bandwidth efficiency inherited from the underlying FssAghgeme. Also, depending on
the specific FssAgg scheme used, our scheme can be eithaepiav public-verifiable.

In a FssAgg scheme, individual signatures are erased ongeth folded into the
aggregate signature. Subsequent validity of individugldatries is implied by the va-
lidity of the aggregated signature computed over all logiest This indirect verifica-
tion process is costly if the verifier is only interested ie thalidity of one specific log
entry. The need to provide finer-grained verification in @@rtapplications motivates
us to keep individual log entry signatures in the log file. ld@er since the aggregation
function is public, revealing individual signatures eresbnyone to truncate log entries
and create new aggregate signature based on existing anegevient this truncation
attack (even when individual component signatures aratedgwe extend the FssAgg
authentication scheme to be immutable. (Informally, imaility means the difficulty
of computing new valid aggregated signatures from existiggatures.)

1.1 Contributions
Our contributions are as follows:

1. We identify some fundamental security issues and acthital limitations in prior
secure logging schemes.

2. We propose new secure logging schemes based on recenplysed FssAgg au-
thentication techniques. Our schemes provt@vard-secure stream integritipr
audit logs generated and stored on untrusted logging meshind avoid the unde-
sirable features of prior schemes. Our schemes inheritriheaple security of the
underlying FssAgg schemes.

3. We study immutability in the context of FssAgg autherttaraand extend existing
FssAgg MAC/signature schemes to support immutability anedide finer-grained
verification.

4. We evaluate proposed schemes by comparing them withomeschemes, in terms
of security as well as communication and computation effigye Our evaluation



shows that our schemes offer better security and incur @spuatation and com-
munication overhead.

5. We implement existing FssAgg signature schemes and aentipair performance
in the context of secure logging systems.

Organization: We begin with the analysis of the state-of-the-art in Sec#pfollowed
by introduction of forward-secure aggregate authenticaith Section 3. We then show
how to use FssAgg schemes in logging applications: we pepogrivate-verifiable
scheme in Section 4 and a public-verifiable scheme in Seé&tiddext, we present
immutable FssAgg schemes in 6. We evaluate our schemes tiois&cand report on
some experience with a prototype implementation in Sed@io8ection 9 overviews
related work and Section 10 concludes the paper.

2 Current Approach Analysis

In this section, we examine the state-of-the-art represkiony Schneier-Kelsey scheme
[5]. It has been used as a foundation by many subsequeniipged secure logging sys-
tems. Readers interested in further details of the Schit@ksey scheme are referred
to [5].

2.1 Overview of Schneier-Kelsey Scheme

In the Schneier-Kelsey scheme, a logging macliepening a new audit log first
establishes a shared secret kéy with a trusted remote servér. After each audit
entry is generated, the current secret kgyis evolved intoA;,; through a one-way
function. Log entries are linked using a hash chain. Eacheluigy L; contains three
parts:

1. log entry dataM;;
2. element; in the hash chain whete

Y, = H(MzHY;fl) and Yo = H(Mo)

3. forward-secure MAC denoted &5, computed ovel’; with the current secret key:
Zi = MACy,(Y3).

U closes the log file by writing a special final-record messdgeand erasingd ; as
well as other secrets, if any.

There is no constant high-bandwidth channel betwéamd7 . It is assumed that
U communicates log entries infrequentlyTa At times, a moderately-trusted person
or machine, calle@’, may need to verify or read the audit log, while it is still@nV

2 [5] also provides access control to audit log. Each log ehtrgontains a log entry typ&/;
andC; = Ek, (D;): the actual log dat@®; encrypted under an access control K€y As we
only focus on integrity of audit log, in this paper, we replace the two eleniéhtandC; as
M; to make our explanation clearer.

% In the Schneier-Kelsey schemié, is calculated a¥; = H(W;||Ci||Yi—1)



receives froni/ a copy of the auditlog,Lo, L1, - - - , L], wheref is the index value of
the last record, frorty. V goes through the hash chain in the log entries Ythealues),
verifying that each entry in the hash chain is corrétthen sendds andZy to 7. 7T
knows A, so he can calculatd; this allows him to verify thatZ; = M AC 4, (Yy).

T informsV about the verification result anddiscovers whether the received copy of
the log has any problems.

2.2 Analysis

We observe that the Schneier-Kelsey scheme has two seceldted drawbacks:

Truncation Attack: akind of deletion attack whereby the attacker erases agenti
ous subset of tail-end log messages. The truncation attqeksents a real danger and
is valuable to an attacker. After breaking in, a natural doahn attacker is to modify
the audit log by deleting the most recent log entries geadnagiht before the break-in.

The Schneier-Kelsey scheme uses a hash chain to link loggstrch that that un-
detectable log (link) deletion is impossible. This persaio log entries already farmed
out to 7. However, log entries still residing @i are vulnerable to the truncation at-
tack since there is no single authentication tag protedtingntegrity of the entire log
file. A hash chain elemer¥; only protects data records generated before tinTdus,
truncating log entries generated after tiieill not be detected by, unless there is a
synchronization betwedd and7 and the latter knows the current valuefofWithout
a continuous communication channel, synchronization éeitd/ and7 would require
U to generate log entries at a fixed rate. But, most loggingsystre event-driven and
events are unevenly spaced. Logging events at a fixed ratersithe logging machine’s
ability to fully utilize its computation and storage resoes.

Delayed Detection:Recall that, in the Schneier-Kelsey scheMés unable to ver-
ify a log file by itself and needs to ask for help from If this occurs beforeZ” has
received a copy of the most up-to-date log frifrand beforé/ has closed the log file,
an attacker can modify pre-compromise records withoutddigtected. Albeit, such
modification will eventually be detected later, affereceives the updated version of a
log file.

We illustrate the delayed detection attack in Figure 1. 8gpjthat, attime (> 0),

U has transmitted log entrid&g,--- ,L,] to 7. At time b (> a), an attacker breaks
into &/ and obtains the current secret kdy. Even though the attacker can not recover
secret keys used in time intervadst 1, b—1], she can modify the values 8f; and their
corresponding’; in this interval without touching the values &f. Attime f (> b), V
receives a copy of log entridsy, - - - , Ly. V sendsY; andZ; to 7. Since the attacker
knows A; at break-in, she can generate valid MACs from tim&he verification ofY;
with Z; at 7 will succeed. The modified log file will translate false infoation to)
and activities conducted within intervial + 1, f] will elude V's detection. In Figure 1,
values in the shaded are/(andY” values in time intervala+1, b—1], all values within
[b, f]) can be manipulated by an attacker. Since there is no cantnbigh-bandwidth
U — T communication channel arld only communicates witlf” infrequently, the
time intervalla + 1, f] can be potentially large.



Since the attacker is unable to fake any valdggfor i € [a + 1,b — 1]), any
manipulation in this period can be detected whenever theesponding log entries are
uploaded taI” and7 scan-verifies all individual MACS.

Lo Mo Yo | Zo
time

La Ma Ya | Za

Lp My Yo | Zp

L Mg Yi | Z

Fig. 1. Log file under delayed detection attack. Data in shaded area can belleahbip an at-
tacker.a: time at which log entries are uploadedZo b: break-in time;f: index value of last log
entry as well as time wheW receives a copy of log file fromx.

The two drawbacks of the Schneier-Kelsey scheme seem toiteefgudamental.
However, it is rather surprising that they have not beenesidrd by any later work. In
addition to the security issues discussed above, the SahKelsey scheme has some
architectural limitations:

Online Server. As mentioned earlier, the Schneier-Kelsey scheme emplegsver-
assisted verification process and a trusted séfvaust be present whenevgmwants to
pose an integrity query. In other words, the scheme reqai@tinuous channel (not
necessarily high-width in case of the integrity check) ew) and7. As with any
centralized solution, the Schneier-Kelsey scheme hasitiggespoint of failure. Fur-
thermore, the overall security of the Schneier-Kelsey seheelies on the frequency
of communication betweel and7 . Basically, the need for the on-line server can be
avoided by using a public key based approach as in [9].

Storage Inefficiency Each log entry contains a hash valleand a MACZ;. To
provide reasonable long-term security guarantees, a mmirsecurity overhead 512
bits per log entry would be incurred in order to accommodagbébit hash and a
256-bit MAC. We point out that storing two authenticatiogsgoer log entry in the
Schneier-Kelsey scheme leads to storage inefficiency wiigkes it improper to be
used on devices with commensurately meager resources siggnsors, implantable
medical devices which need a light-weight secure loggirgiesy [10]. Leaving mul-
tiple authentication tags on the log file and lacking a uniguthentication tag to pro-
vide integrity of the whole message body are also the causte &Gchneier-Kelsey
scheme being vulnerable to truncation attacks. This miethsas to explore the recently

4 Actually, the authors of the Schneier-Kelsey scheme do not mentiorcanyrification (ver-
ification of individual MACs) in the paper. They only claim that verificatidn4y equals to
verification of all the individual MACs.



proposed FssAgg authentication scheme to address botarfiisecure integrity and
storage efficiency.

The same set of vulnerabilities/limitations are also aglle to the Bellare-Yee
private key based scheme [2,3]. The Holt scheme [9] useslakaly based approach.
Therefor it avoids using a online server and also the deldggekction attack. However
it still suffers from truncation attack and storage ineéfiugy.

3 Forward Secure Sequential Aggregate Authentication

In this section, we briefly introduce the components of a lggsgcheme as they will
be used in our secure logging system. We refer to [11, 12] fooee formal definition
of a FssAgg scheme. We next show how a FssAgg scheme can @forigard-secure
stream integrity

An FssAgg scheme includes the following components:

[FssAgg.Ky— key generation algorithm used to generate public/peikaty-pairs.
It also takes as inpuf — the maximum number of time periods (key evolvements).
[FssAgg.Asip— sign-and-aggregate algorithm which takes as input af@ikey,
a message to be signed and a signature-so-far (an aggreggature computed
up to this point). It computes a new signature on the inputsags and combines
it with the signature-so-far to produce a new aggregateasiga. The final step in
FssAgg.Asigs a key update procedukssAgg.Upadvhich takes as input the signing
key for the current period and returns the new signing keyHfemext period (not
exceedingl'). We make key update part of the sign-and-aggregate diguorii
order to obtain stronger security guarantees (see below).

[FssAgg.Avar- verification algorithm, which, on input of a putative aggate sig-
nature, a set of presumably signed distinct messages, anblia gey, outputs a
binary value indicating whether the signature is valid.

A secure FssAgg scheme must satisfy the following proggertie

1. Correctness:Any aggregated signature produced withsAgg.Asignust be ac-
cepted byFssAgg.Aver

2. Forward secure aggregate unforgeabilitfo one, even knowing the current sign-
ing key, can make a valid FssAgg forgery.

The forward secure aggregate unforgeability implies tviogs. First, it is append-
only - no one can change any message generated before theoroisg, which further
implies a FssAgg signature can provide integrity protectay the whole message body.
An attacker who compromises a signer has two choices: ditliecludes the intact
aggregate-so-far signature in future aggregated sigestor it ignores the aggregate-
so-far signature completely and start a brand new aggrégagaature. What it cannot
do is selectively deleting components of an already-ge¢edr@ggregate signature. This
append-only property resembles the property of specidevamly disk used in tradi-
tional log systems. Second it is hard to remove a compongnéagire without knowing
it - so it is resistant to deletion (including truncationjaak. They are two very useful
properties and we will exploit them in our applications.

We claim that FssAgg authentication implies forward-se@iream integrity, i.e.:



Forward Securityin a FssAgg scheme, secret signing key is updated througé-a on
way function. An attacker is thus unable to recover previmys from the current
(compromised) key and therefore unable to forge signafues prior intervals®
Stream SecurityThe sequential aggregation process in an FssAgg scheme pre-
serves the order of messages so that it provides streamnitgetiwis, re-ordering

of messages is impossible.

Integrity. Any insertion of new messages as well as modification andidelef
existing messages will render the final aggregate unvelfiab

Armed with this implication, we can now construct a secugglag system from any
FssAgg authentication scheme.

4 Private-Verifiable Scheme

We now describe a private-verifiable scheme that providesard-secure stream in-
tegrity for audit logs. In a private-verifiable scheme, verifiers dr@vn from a small
“private” group. Our scheme is based on the FssAgg MAC schemogosed in [11].
Forward-secure stream integritg inherited from the FssAgg MAC scheme. To avoid
an online server, two FssAgg MACs are computed over the legvith different initial
signing keys. A semi-trusted verifier can only verify one loémn. The other MAC is
used by the trusted server to finally validate the log file. Me e including the semi-
trusted verifier — can alter the contents of the log file withzeing detected.

Below, we present the trust model and our system assumptaxt.we give details
of the system operations. On topfofward-secure stream integrityve add operations
to start/open and close a log file such that total deletionadombrmal stop attacks can
be detected. We then evaluate the proposed scheme.

4.1 Security and System Model
There are three types of players in our scheme:

1. U is anuntrustedlog generator. By “untrusted”, we mean it is not physicakly s
cure, bug-free, or sufficiently tamper-resistant to gug@that it can not be taken
over by an attacket/{ itself does not behave maliciously unless controlled by the
attacker. It generates log entries and replieg’soquery. It only interacts witly to
start a log file or after a log file is closed.

2. V is asemi-trustedrerifier that reads and verifies the log file & Usually, audit
logs can only be accessed by a small group of people, suctstsrsgadministra-
tors, security personnel and auditors. Thereforés drawn from a small group of
authorized entities; it can obtain and verify a copy of thdialog from ¢/, when
necessary. Howevey, is not trusted as far as the integrity of the log file.

3. 7 is atrustedmachine in a secure location. It has secure storage amplgkrio
hold audit logs froni/. It can authorize a legitimate verifigt to get access to the
audit log and gived’ the verification key. It also finally validates the log fil&.
does not interfere the verification process.

5 Assuming, of course, that the plain sighature scheme — upon whichshg§scheme is built
—is CPA-secure.



As in [5], we assume that there is no constantly availablabtd high-bandwidth chan-
nel betweeri/ and trusted storage dh. Consequentlyl/ and7 communicate infre-
quently.

The attacker’s goal is to tamper with the log file by deletimgpdifying, inserting
or re-ordering log entries. Clearly, the attacker who camgsed/ obtains the signing
key used at the time of compromise. We consider two typestatlrs: outsiders and
insiders. An outsider is an attacker that knows norig¢'sfecrets before compromising
U. A maliciousY is considered to be an insider attacker as it knows sorbésafecrets.
An insider is obviously more powerful as far as its abilitytéamnper with the integrity
of the log file. Our scheme is designed to detect both insidérmaitsider attacks.

4.2 Description of the Scheme
We use the following notation from here onwards:

— L;: i-th message, i.e., theth log entry. (We assume that log entries are time-
stamped and generally have a well-defined format).

— F: k-bit full-domain hash function with strong collision resince* : {0,1}* —
{0, 1}*.

— 'H: one-way hash function with strong collision resistance arbitrarily long in-
put:H : {0,1}* — {0, 1}*.

— mac: secure MAC functionmac : {0,1}* x {0,1}* — {0, 1}! that, on input of a
k-bit key x and an arbitrary message, outputs a&-bit mac,,(m).

— UPD: key update frequency (see below).

At any given time, an authenticated log file in this schemesixis of two parts: (1) log
entries{Ly,--- , L;] and (2) two authentication tags (forward-secure aggrdgaEs):
wr,; andpy ; that are defined below.

Log File Initialization Before the logging system starts, we requireo be ac-
cessible td/ and assume that is not compromised (yet}4 generates two random
symmetric keysA; and B;. Then, it commits these keys ® along with the other
information about the specific log file and the key updaterimieUPD. We are not
concerned with the details of the commitment process. S{uiffito say that, after the
commitment process/ can go off-line and/ can be deployed in an adversarial and
unattended environmefit.

Meanwhile,l{ creates the initial “dummy” log entry,; which commits to a fixed
message (e.g., set to "START") and computes two MACd.gnvith keys A; and By,
respectively:ur1 = macy, (L1) andpy,; = macp, (L1). Next, U evolves its keys
through a one-way functioft: A, = F(A;), andBy = F(By).

Through the initial interactiory” knows that/ has started a log file at timewith
initial secrets4; and B;. 7 stores these values in its database and thereafter knows
that a valid log must exist aif and that that log must contain at least one log ehtry
The purpose of this initial commitment step is to preventtaltdeletion attack, i.e.,

5 We also assume that the initial commitment as well as each subsequentripgentains a
time-stamp.



an attacker breaking in@ at a later time cannot delete the whole log file and simply
claim that no such log file has started yet.

Update FrequencyWe make no assumptions about key update frequency except
that it must be fixed at log initialization time & or &/ (or both). Moreover, it must be
encoded in the first message fréfmo 7. UPD can be based on time (e.g., every hour),
volume of activity (e.g., every 10 log entries) or some camakibn thereof. However,
to simplify our discussion below, we assume that keys araigutfor each log entry.

Generating Log Entries Before thei-th log entry is generated, the log file contains
Ly,---,L;—; and two FssAgg MACgr;—1, uyv,i—1. Current keys off are:A; andB;.
Now, a newi-th event occurs antf creates a corresponding log entiy. / update$
authentication tags as follows:

U first generates a MAC fov as:maca,(L;). It then computesiy; as:py,; =
H(uy,i—1||maca, (L;)). Here,H acts as the aggregation function. Note that;
can be represented (un-rolled) as:

pvi =HH( - H(pvallmaca, (L)) - - )|[maca, (Lq)) @

U updates the second FssAgg MAC (fb) in the same mannefir ; = H(ur,i—1||macg, (L;))
Finally, / evolves both keysA; 1 = F(A4;), andB; 1 = F(B;). Prior keysA;

andB; and MACsmacy, (L;) andmacp, (L;) are immediately and securely erased

(e.g., from disk and RAM).

Log File Closure U/ officially closes the log file by creating a special closingsme
sage as the final log entry.¢), updating the two authentication tags,{; and .z f)
and securely erasing the remaining kexs @nd5y).

The closing step is necessary in order to inform users treatay file is closed
properly and no longer accepts any new data. Consider tratagker might prevent the
logging system from functioning after gaining control oétlogging machine. Without
the explicit closing step, we can not determine whether digefile has been closed
normally or the logging process has been impeded by an atta®kce the log file has
been properly closed, an attacker who breaksihtmnnot modify the log file since no
keys are available.

Log File Validation An authorized verifiel) starts the log file validation process
by obtainingA; — one of the two initial signing keys — frorii. Next, V queriesu
and obtains a copy of log entrids, - - - , Ly as well asuy, ¢. V computesdy, - - -, Ay
through the key update function, compu};évs and checks that it matches: ;. Veri-
fier's computation costs amount fanvocanons ofF, H andmac.

When7 receives the complete and closed log file, it can indepehdealidate it
usingB; andur, r. The validation mimics that performed By Note that, a malicious
verifier V, knowing A,, has full control and can modify any log entries by geneatin
its own version ofuy, ;. However, it can not forggr ;.

7 We use the term “updates”, since, at all times, there are only two auth#oni¢ags in the
secure log.



4.3 Discussion

The private-verifiable scheme described above is simplearnccomputation-efficient,
since it involves fast hashing and symmetric key operatidhsan verify a log file
without consultingZ'; thus, no on-line trusted party is needed. Furthermors,\iery
storage-efficient: compared with previous schemes — wheduire eitherf or 2 * f
storage units to store authentication incurred values -sclueme only needs two stor-
age units for two FssAgg MACs. Considering that log files temthe very large and
often contain many thousands of log entries, the benefit tdrage-efficient scheme is
quite apparent.

Our scheme provideforward-secure stream integrityhrough the use of a single
FssAgg MAC that covers all log entries. An attacker can naydsuch a MAC without
knowing any pre-compromise MAC keys. Deletion and truraratttacks can be de-
tected by any verifier. Furthermore, our scheme can detextbdeletion attack since
we use an explicit commitment process when starting a logfilexplicitly closing the
log file, our scheme can detect certain DoS attacks that aincé&pacitate the logging
system.

However, a malicious verifiew can tamper with the log without being detected by
other verifiers. This tampering can only be detected witthtip of 7. It is thus possible
for a malicious insider to mount a delayed detection attabks is a definite drawback
which leads us to construct an alternative scheme basedudic gay techniques.

5 A Public-Verifiable Scheme

We now describe a public-verifiable scheme. It can be basediuer the BLSF'ssAgg
scheme proposed in [11] or the BMssAgg scheme we proposed in Section 3. A
public-verifiable scheme allows auditors outside the sgstemake sure no tampering
takes place within the system. Therefore, it can be usedy&iess which need to be
publicly audited, such as financial records for public conigs and voting systems
in democratic countries. A public-verifiable scheme alsoi@v the shortcoming of a
private-verifiable scheme which still suffers from delaykstection attacks whenever a
private verifier) behaves maliciously.

As in the last section, we begin with the trust model and systesumptions. Next,
we describe the scheme evaluating it. For the sake of brewityocus on the difference
between private- and public-verifiable schemes.

5.1 Trust Model

In this scheme we no longer require a trusted se¥vdnstead, we need a Certification
Authority (CA) that can certify/registdit’s public key. The scope of moves from a
small private group of semi-trusted entities to the pubbndin, i.e., anyone who has
a copy of the log file can verify it. We no longer need to diffétfate an inside attacker
and outside attackers. An attacker is thus anyone who bsmaakciously and does not
know the system’s initial secrets.



5.2 Scheme Description

An authenticated log file in the present scheme consistsmpaats: log entriefLq, - - - , L]
and a single FssAgg signatues, ;.

Log File Initialization To initiate a log filed usesF'ssAgg.K g to generate the
initial secret keysk; and the public kepk. Then it registergk with a public CA.U's
certificate for log file should contains at least these egdéntormation such as the log
creator, the log ID, starting time and the public key. Fomegke, CA's signature itd’'s
certificate for log filel D;,, may look like:

CERT(ID;og) = SIGNca(U, Doy, t, T, pk,timestamp- - -)

U keepssk;. Next, it creates the initial log entrfz; which it sets to the certificate
CERT(ID,,4). Then,U generates a signatueg ; on L, with F'ssAgg.Asig using
the initial private keysk;. Finally, &/ updates its key fromsk; to sko and securely
erases any and all copies ©f; .

Generating Log Entries Before thei-th entry occurs, the log file contains; , - - - , L;_1]
and a FssAgg signatueg ;1. U’s current secret key isk;. Now, a new event occurs
and triggerd/ to creates a new log entry;. U/ updates the FssAgg signature by in-
putting functionF'ssAgg.Asig with parametersL;, o1 ;1 and the current keyk;. Fi-
nally, i/ evolves its private key through the update functioss Agg.Upd and securely
erasesk;. (In our context, the key update is invoked immediatelyretive aggregate
signature is generated.)

As the log file grows — since the maximum number of key updateg@e1 is fixed
a priori — the number of updates might need to excé&edio address this issue we
can dynamically extend the scheme to support additionalugelate periods without
sacrificing security. One straightforward way is to geregapublic key for the next’
number of time periods and to use the last (initially cerifisecret keyk to, in turn,
certify a new set of public keys to be used subsequently.dij fae certification of the
next batch of public keys should be treated as a special oy ér-.

Log File Closure As in the private-verifiable scheni#,closes the log file by creat-
ing a special closing message as the final log ehtryupdating the FssAgg signature
accordingly, and securely erasing its secret key.

Validating Log File After receiving a copy of the log filey extracts public keys
from CERT(1D,,4) contained in the initial log entry,; and) verifies CAs signature
on CERT(ID,,,). Then,V validates the actual log file using the aggregate function
FssAgg.Aver.

5.3 Discussion

Compared with the private-verifiable scheme, the presdmrse provides better secu-
rity because of its resistance to delayed detection attdckfows anyone — not just

a group of semi-trusted verifiers — to validate a log file. Ithias suitable for appli-

cations where scalability is important and, more generallyere public verification

is required. Except for the log initialization time, no tted entity is needed for any
system operations.



6 Immutable Forward-Secure Aggregate Authentication

In Section 4 and 5, we proposed secure logging systems thatay efficient in term
of storage and communication - only ONE aggregate tag is iketite audit log and
individual tags are erased once they are folded into theeggdge. So they are very
suitable to be used on devices with meager resources, alpstorage, as such devices
require a light-weight audit log system. Verification of ividual log entry is implied
by the verification of the entire log file.

However, this indirect verification is very costly if only emparticular log entry is
interested. For example, users of a versioning file systeghtrbie only interested in one
particular version [13]. Verifying all versions is comptiteally expensive (especially,
in a public-verifiable scheme) and involves transferringvanted data (i.e., all other
versions) to the user. Furthermore aggregate verificaidaré does not tell the user
anything about the authenticity of this particular versiaimere might be something
wrong with other versions. It is also desirable to keep iitlial authentication tags
in some applications. For example, in outsourced audit pydieations [14, 15] where
audit logs from different log servers are submitted to adtpatrty repository, an auditor
may want to search log entries satisfying certain propgriech as destination address
or port number. Log entries in the query result set may cowr filifferent log servers.
In this scenario, we need individual signatures so that tlirugted repository can use
the techniques proposed in [16] to answer queries.

This motivates us to keep individual signatures in the lag-fih applications where
storage is not a problem - to provide finer grained verificatithe aggregate signature
is used to protect the integrity of the whole log file while iidual signatures are
used for individual log entry verification. However, the eggpation functions in all
aforementioned FssAgg schemes are public. Thus, reveialitigdual signatures or
MACs allows anyone to create new authentic aggregate sigggmbor MACs.

For example, suppose an attacker obtains a copy of log effifrie- - - , L], their
corresponding individual authentication tags as well & abgregate authentication
tag. In our private-verifiable scheme, the attacker carcatethe log file froni: + 1)-
st log entry and then compute a new valid aggregate gagsand uy; using Eq. 1
for log entries[Ly,--- , L;] (¢ < f). In our public-verifiable scheme, the attacker can
similarly generate a new aggregate signature by remdwing , - - - , o] fromoy_; by
computingioy ; = 01,7/ H;’C:iJrl 0j.

To prevent truncation attacks when individual componegmaiures are revealed,
we need immutable FssAgg authentication schemes. We natentitability is not a
flaw of the underlying FssAgg signature schemes but rathéssare with some spe-
cific audit log applications. The immutability of an immutati-ssAgg authentication
scheme in our specific log scenario means the difficulty ofmaimg new valid FssAgg
signatures from a set of other aggregate signatures (avidodi signatures; can be
regarded as an aggregate signaturg. We note the difference between a FssAgg sig-
nature and a normal aggregate signature: a FssAgg sigriatuadodg file is bound to
a unique initial public key and covers a set of continuousdntries starting froni,,
while an aggregate signature may cover isolated log enffimsexampleg; - o5 - 03
(where eaclw; is generated with a different secret key) is an FssAgg sigador a log



file containing three log entries, white, - o3 is just an aggregate signature of the last
two log entries.

Immutable aggregate signatures have been previouslyd=mesi in [17] to prevent
computation of a new aggregate signaityg when one “sees” both; ; ando; ,, where
i < j < k. However this is not a problem in our envisaged log applicetisince such a
signature, although it might be a valid aggregate signdturleg entries from’; to Ly,
is no longer a valid FssAgg signature for a log file bound to edibitial verification
key.

6.1 Immutable FssAgg MAC Scheme

The immutability extension for the private-verifiable FggMAC scheme is very sim-
ple:U generates a “phantom” MAC and places it as the first compdnenthe aggre-
gate when the system starts; this “phantom” MAC is then eraght after aggregation.
We modify the log file initialization (in Section 4) as folleaw

1. U computesu; = maca, (L) over a fixed (well-known) initialization message
Ly;

2. U evolvesA; into Ay;

3. When the first real log entr, occursi{ generategi, = maca,(L2) and aggre-
gatesyuy,2 = H(u1||p2);

4. U stores bothus andpy 2 in the log file, evolvesd, into As, securely erases;
and A,, and officially moves to next time period.

Note that we do not change anything involving the usépfand subsequent keys;
involved in the generation of MACs fdfF. In other words, only the computation of
V-verifiable values is altered.

The resulting format of the log file supporting both immutitpiand (efficient)
individual log entry verification is:

{[L()v (leul)a (L27H“2)7 Tty (Lfvﬂf)L ,U‘V,fhu’T,f}

If V is only interested in verifying a particular log ently, it usesy; directly without
involving the aggregatgy, . However, note that, to verify;, V still needs to recom-
pute A; which requires hash operations.

An attacker who obtains all log entries with thekposedACs: [u1, - - - , 1 s] and
the FssAgg MACuy, ¢ is unable to compute a new valid FssAgg MAC without the
knowledge ofu. The security of this extension relies on the pre-imagestasce of
the underlying hash function.

6.2 Immutable FssAgg Signature Scheme

The iBGLS scheme in [17] achieves immutability by combingsgignature of the
database server with the aggregate-so-far BGLS signafuteealata owner. Differ-
ent query result sets and different queriers lead to dissi@kver signatures. The server
signature is computed over all the messages in the querit setwand thus acts as an



“umbrella” signature. This “umbrella” signature is nevexealed to public. It is im-
possible to remove such a signature since it is hard to rem@a@mponent signature
without knowing it - a property of aggregate signature sckem

In our context, we still exploit this property and use the sddea by folding into
the aggregate an “umbrella” signature generated over aiotilog entries. However,
since our security model assumes eventual compromigé wé must fold umbrella
signatures into the aggregate before an attacker break¥erdefine the time period
at which an umbrella signature is generated and aggregatadaschor pointand the
corresponding log entry generated in this time period ikedads aranchor log entry

For each anchor log entdy;, &/ computes two signatures: a normal individual sig-
natures; over L;, and an umbrella signatuse overk +1log entries ofl.; ., - -+ , L;.
The umbrella signature; is aggregated with the aggregate-so-far signature. After t
aggregationg’ is securely erased; is kept in the log file for individual log entry
verification. For non-anchor-log entriég proceeds as usual except that now individual
signatures are stored in the log file (instead of being detlafeer aggregation). Lef
denote the set of normal log entries afitthe set of anchor log entries. An immutable
FssAgg signature can be represented as:

o1,f = H a; H U; (2)

L,eL LjecL~

So far, three FssAgg signature schemes, the BlsSAgg scheme [11], the BM-
FssAgg scheme and the ARss Agg scheme [12], have been proposed. Now we show
how to extend them to provide immutability.

It is easy to modify the BLS<ssAgg scheme to support immutability.; is now
computed as:

o; = Hi(index||L;)"
ando; is computed as:
o = Ha(index||Lj—||Lj—g4all - - [|L;)"

Constructing an immutable version of BMssAgg is a little more involved. First,
during the key generation stage, we select two random valyeg and generate two
common commitmentsy = (rO)QT+1 andy* = (rg)QT“. We user; to generate a

normal signatured;) andr; to generate an umbrella signatutg’) . o; is computed
as:

P | R

ando; is computed as:

1
o} :rjnsf_fj (1 - e —H(t,y,Lj—g, - ,Lj))
i=1

An authenticated log file supporting immutability and iridival log entry verification
has the following format:

{[(Ll?al)’ (L2702)7 (L350—3)7 Tt ’(Lf’a—f)LULf}



whereo; ; is computed as in Eq. 2. The security of the modified schemigsgled
by the property of aggregate signature scheme: it is cortipotdly hard to remove a
component signature without knowing it.

We can use the same idea to construct an immutable versioRdf £ Agg signa-
ture scheme. We omit the details because of page limitation.

7 Evaluation

We evaluate our secure logging scheme by comparing it witketisting schemes. We
compare our private verifiable scheme with two existing qtevkey-based schemes:
Schneier-Kelsey [5] and Bellare-Yee [3]. We also compareoblic-verifiable scheme
with Holt’s scheme [9]. Our comparison is based on four fexctt) resilience to trun-
cation attacks; 2) resilience to delayed detection att&8)kan-line server requirements;
4) storage efficiency. The comparison results are sumnthiiz€able 7.

Table 1. Comparisons of Various Schemes.

Private Key Public Key
Based Schemes ||Based Schemes

SK [5](|BY [3] |Ourg|Holt [9]| Ours
Resilience to truncation attack? No No |Yes|| No Yes
Resilience to delayed detection attagk™No No | No|| Yes | Yes
No on-line server? No No | Yes|| Yes Yes
Storage efficient? No No |Yes|| No Yes

Compared with Schneier-Kelsey and Bellare-Yee, our peiggheme is resilient to
truncation attacks, more storage-efficient and requiresmline server. However, it is
still vulnerable to delayed detection attacks. Compardt Wblt's scheme, our public
scheme is resilient to truncation attacks and more stoeffggent.

8 Implementation

We investigated the viability of our proposed schemes onta bual-core 1.73GHz
Laptop with 1GB RAM running Linux. We used the NTL library [[L&8nd the PBC
library [19] as the underlying cryptographic libraries.

We built our prototype based on the code from the OpenCM ptdD], a free
source version control software. OpenCM is a client/seayplication whereby indi-
vidual developers typically work on their own workstatiomith the repository hosted
on a server. As with other versioning systems, such as CV|S¢af system (see Figure
2) allows authorized developers (through access contraéck out a baseline version
of the software, make modifications, and commit the resulhasiew state of the sys-
tem. When a developer’s work is to be deposited into the régysihe server checks
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Fig. 2. Secure Version Control System.

any changes between the new and old versions and then ceeligsentry record-
ing the modification into a log file. Our schemes are incorfaatanto the server-side
component in order to provide accountable verification efahdit trail.

In the implementation of our private-verifiable schemerehie no separate physical
7 component to whicl{ transmits its closed log file. Instead, a logi@alperiodically
validates the audit trail directly a4. 7 does not hold a copy of the audit trail.

We prototyped all the three FssAgg signature schemes tdadardieuristics for
choosing among them in practice. For the BRdsAgg and AR+F'ssAgg schemes,
we selected security parametérs- 1024 and! = 160. For the BLS#'ssAgg scheme,
we used a singular cunE? = X3 + X defined on a field, for |¢| = 512 and the
group orderlp| = 160, wherep is a Solinas prime. Such a group has the fastest pair-
ing operations [19]. We measured signer’'s computation bpstignature generation
and key update on a per-log-entry basis. We measured visrif@nputation cost over
an aggregate signatueg ; whent = 100, 1,000 and10, 000 which corresponds to a
small, medium, and large log file, respectively. Experiraéresults shown in Table 8
show that the BMF'ssAgg scheme is the most efficient one in terms of computation
(for both signer and verifier). Its signature generationppraximately 2 times faster
than that of the ARF'ssAgg and5.5 times faster than that of the BLBssAgg. Its
signature verification is 4 times faster than that of the ER:Agg and16 times faster
than that of the BLS*ss Agg. However, it incurs the most storage overhead.

We also investigated storage overhead incurred by eaclnschest, denote the
amount of storage needed to to store the secret key and thegadyg signature - the
overhead incurred by authentication. L8t denote the size of a signature or a key. Let
I denote the number of log entries ailgd denote the average size of a log entry. We
measure storage efficiency Ié;g% BLS-F'ssAgg needs 1 unit of space each for both
secret key and signature. BMssAgg needs 162 units of space for secret key and 1
unit of space for the aggregate signature. BMsAgg needs 2 units of space for secret
key and 1 unit of space for the aggregate signature. To simylymeasurement, we
assume a log entry size is comparable to the size of a signatua secret key, e.g.
|S| & |L|. The comparison result is also shown in Table 8. BE&Agg performs best
in term of storage efficiency. Especially when there is adargmber of log entries and
each entry is large, storage overhead of BESAgg is negligible.



Table 2. Comparisons of FssAgg Signature Schemes. (Operation Timimgé&ts

BLS-FssAgg|BM-FssAgg|AR-FssAgg

Signer Computation Costisig 30 2.09 4.39
(per log entry) Upd 0.002 3.49 7.27

total 30.00 5.55 11.66

t =100 2% 162% 3%

Signer Storage Cost [t = 1000 0.2% 16.2% 0.3%

t = 10000 0.02% 1.62% 0.03%

t = 100 3.30 x 107 211.97 810.89

Verifier Cost t = 1000 29.3x10°|  2.13x10°| 8.16x10°

t = 10000]| 330.72x10°| 21.35<10°| 80.84x10°

9 Related Work

A number of cryptographic approaches to address securintphgve been proposed
to-date. Most prior work focused on three areas: (1) datgiitiy/authentication, (2)
data confidentiality and access control, and (3) searcleataig/ption. Since we are pri-
marily interested in integrity, only the first area directglates to this paper. Bellare
and Yee were the first to define tf@rward-secure stream integrifyroperty required in
an audit log system and proposed to use forward-secure MAG$. [They focused on
formal definition and construction of forward-secure MAGemes and applied them
to secure audit log applications. In their secure log schenudtiple log entries are in-
dexed and tagged independently within one time period. &gtid of each time period,
a special log entry containing the number of log entries andbrrent time period is
created to indicate the end of the current time period. T¢tiese has the same secu-
rity as well as the architectural limits as the SK schemen8igr and Kelsey proposed
a similar system (the SK scheme we analyzed in Section 2)Jdbasdorward-secure
MAC and one-way hash chains [5, 22, 23]. Unlike Bellare and'&scheme, in the SK
scheme, rekeying is performed after each log entry is makerefore they no longer
use per-stage sequence numbers in tagging logs. Insteddlogaentry now contains
a link in a hash chain and a forward-secure MAC computed dvsrlink to authen-
ticate the values of all pervious entries. Moreover, thegspnted a precise protocol
design for its implementation in a distributed system, dbsty how messages are sent
to external trusted machines upon log creation and clogiingng, et. al. discussed
the feasibility of using of tamper-resistent hardware injoaction with a system like
Schneier and Yee’s in [24]. Holt extended Schneier and Ygesgem to the public key
setting [9]. Waters, et. al. designed encrypted and sebiehadit log [25]. This showed
how identity-based encryption (IBE) can be used to maketdogk efficiently search-
able. Keywords which relate to each log entry are used to faublic keys in an IBE
system. Administrators allow searching and retrieval @fies matching a given set of
keywords by issuing clients the corresponding IBE privaggsk They recommended
the use of the Schneier and Yee’s technique as their authéioti scheme. The two
security attacks, truncation attack and delayed detedtitatk, which we outlined in
Section 2, seem to be very fundamental to all the secure lgdsichemes as far as we
know. It is surprising that they have not been addressed Yyader work so far.



10 Conclusion

In this paper, we identified some issues in current secuiginggechniques. We then
proposed two concrete schemes to provatevard-secure stream integrifgr logs gen-
erated on untrusted machines. Our approach supports fbsgaurity and compact ag-
gregation of authentication tags (MACs or signatures)hBitour proposed schemes
offer practical secure logging without reliance on trusteidd parties or secure hard-
ware. Our schemes are based on the recent proposed Fsshggta#tion schemes
where a unique authentication tag is used to protect thgritgeof underlying message
body. We then considered the notion of immutability thategded to facilitate faster
verification of individual log entries. We evaluated thefpenmance of our schemes and
report on experience with a prototype implementation withipublic domain version-
ing control system.

Although the security of proposed schemes rests entirelgrewiously proposed
techniques (i.e., [11,12] and [17]), we heed to constryaaeste security proofs for each
scheme. Furthermore, we have to conduct extensive expesmand perhaps trace-
driven simulations, to better understand the performarficeioschemes. Finally, we
intend to investigate alternative signature schemes tigtitrbe used for constructing
more efficient public-verifiable techniques.
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