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Abstract. The need for secure logging is well-understood by the security pro-
fessionals, including both researchers and practitioners. The ability to efficiently
verify all (or some) log entries is important to any application employing secure
logging techniques. In this paper, we begin by examining state-of-the-art in se-
cure logging and identify some problems inherent to systems based on trusted
third-party servers. We then propose a different approach to secure logging based
upon recently developed Forward-Secure Sequential Aggregate (FssAgg) authen-
tication techniques. Our approach offers both space-efficiency and provable secu-
rity. We illustrate two concrete schemes – one private-verifiable and one public-
verifiable – that offer practical secure logging without any reliance on on-line
trusted third parties or secure hardware. We also investigate the conceptof im-
mutability in the context of forward secure sequential aggregate authentication to
provide finer grained verification. Finally, we report on some experience with a
prototype built upon a popular code version control system.
KEYWORDS:secure logging, MACs, signatures, forward secure stream integrity,
truncation attack

1 Introduction

System logs are an important part of any secure IT system. They record noteworthy
events happened in the past such as user activity, program execution status, system re-
source usage, data changes, etc. They provide a valuable view of the past and current
states of almost any type of complex system. In conjunction with appropriate tools
and procedures, audit logs can be used to enforce individualaccountability, reconstruct
events, detect intrusions and identify problems. Keeping system audit trails and review-
ing them in a consistent manner is recommended by NIST as one of the good principles
and practices for securing computer systems [1]. Most modern software servers include
some sort of logging mechanisms.

Because of their forensic value, system logs are an obvious target for attackers. An
attacker who gains access to a system naturally wishes to remove traces of her presence
in order to hide attack details or frame innocent users. In fact, the first target of an
experienced attacker would often be the logging system [2, 3]. To make the audit log
secure, we must prevent the attacker from modifying log data. Secure versions of audit
logs should be designed to defend against such tampering. Providing integrity checks,
the primary security requirement for any secure logging system, is informally stated in
the Orange book [4] as:



Audit data must be protected from modification and unauthorized
destruction to permit detection and after-the-fact investigation of
security violations.

In addition to the traditional meaning ofdata integritywhich stipulates no insertion of
fake data and no modification or deletion of existing data, the integrity of a log file
requires, in addition, no re-ordering of log entries. That is, we requirestream integrity
for securing audit logs.

In many real-world applications, a log file is generated and stored on an untrusted
logging machine which is not physically secure enough to guarantee that it cannot be
compromised [5]. Compromise of a logging machine can happenas long as the Trusted
Computing Base (TCB) – the system component responsible forlogging – is not to-
tally bug-free, which is unfortunately always the case. In systems usingremote logging
(which send audit data to a remote trusted server), if the server is not available, the
log has to be buffered and stored temporarily at the local machine. Once an attacker
obtains the current secret key of the compromised logging machine, she can modify
post-compromisedata at will. In this case, one important issue isforward integrity: how
to ensure thatpre-compromisedata cannot be manipulated. That is, even if the attacker
obtains the current secret key, she must be unable to modify audit data generated before
compromise.

No security measure can protect log entries created after anattacker gains con-
trol of a logging machine, unless keys are periodically updated with the help of a re-
mote trusted server or a local trusted hardware component (e.g., using key-insulated
and intrusion-resilient authentication schemes [6–8]). We focus on the security of log
entries made before the compromise of a logging machine. Consequently, we require
forward-secure stream integrity, i.e., resistance against post-compromise insertion, al-
teration, deletion and re-ordering of pre-compromise log entries.

Traditional log integrity techniques include using special write-only hard disks or
remote logging where copies of log entries are sent to several geographically differ-
ent remote machines. Recently a number of cryptographic approaches have been pro-
posed to address log integrity security that are generated and stored on the local logging
server [2,3,5,9]. Bellare and Yee were the first to define theforward-secure stream in-
tegrity property required in an audit log system and proposed to use forward-secure
MACs and index log entries [2, 3]. Schneier and Kelsey proposed a similar system
based on forward-secure MACs and one-way hash chain [5]. Holt extended Schneier
and Yee’s system to the public key setting [9]. Unfortunately, all these schemes do
not defend againsttruncation attack- a special kind of deletion attack whereby the
attacker deletes a contiguous subset of tail-end log entries. Furthermore, private key
based schemes like Schneier-Kelsey and Bellare-Yee also suffers fromdelayed detec-
tion attack1 since they needs a trusted server to aid users in verifying the integrity of
the audit log; modifications can not be detected until the entire log data is uploaded to
the trusted server. Also all prior schemes are inefficient interms of both storage and

1 For a precise definition, refer to Section 2.



communication costs which make them impractical to be used on devices with com-
mensurately meager resources such as an implantable medical device [10]. We present
a detailed analysis of prior schemes in Section 2.

In order to mitigate aforementioned bad features of prior schemes, we propose a
new scheme which providesforward-secure stream integrityfor audit logs generated
and stored on untrusted logging machines. Our scheme is based on a new cryptographic
technique calledforward-secure aggregate(FssAgg) authentication recently proposed
in [11, 12]. In a FssAgg authentication scheme, forward-secure signatures (or MACs)
generated by the same signer are combined sequentially intoa single aggregate sig-
nature. Successful verification of an aggregate signature is equivalent to that of each
component signature. (However, as discussed later, failedverification of an aggregate
signature only implies that at least one component signature is invalid.) Thus, a secure
FssAgg signature scheme is a good match for secure logging applications – it resists
truncation attacks due to its all-or-nothing (aggregate and forward-secure) signature
verification. In our scheme, users themselves can verify thelog – without relying on a
trusted server – which obviates delayed detection attacks.Our scheme offers storage and
bandwidth efficiency inherited from the underlying FssAgg scheme. Also, depending on
the specific FssAgg scheme used, our scheme can be either private- or public-verifiable.

In a FssAgg scheme, individual signatures are erased once they are folded into the
aggregate signature. Subsequent validity of individual log entries is implied by the va-
lidity of the aggregated signature computed over all log entries. This indirect verifica-
tion process is costly if the verifier is only interested in the validity of one specific log
entry. The need to provide finer-grained verification in certain applications motivates
us to keep individual log entry signatures in the log file. However since the aggregation
function is public, revealing individual signatures enables anyone to truncate log entries
and create new aggregate signature based on existing ones. To prevent this truncation
attack (even when individual component signatures are revealed) we extend the FssAgg
authentication scheme to be immutable. (Informally, immutability means the difficulty
of computing new valid aggregated signatures from existingsignatures.)

1.1 Contributions

Our contributions are as follows:

1. We identify some fundamental security issues and architectural limitations in prior
secure logging schemes.

2. We propose new secure logging schemes based on recently proposed FssAgg au-
thentication techniques. Our schemes provideforward-secure stream integrityfor
audit logs generated and stored on untrusted logging machines and avoid the unde-
sirable features of prior schemes. Our schemes inherit the provable security of the
underlying FssAgg schemes.

3. We study immutability in the context of FssAgg authentication and extend existing
FssAgg MAC/signature schemes to support immutability and provide finer-grained
verification.

4. We evaluate proposed schemes by comparing them with previous schemes, in terms
of security as well as communication and computation efficiency. Our evaluation



shows that our schemes offer better security and incur less computation and com-
munication overhead.

5. We implement existing FssAgg signature schemes and compare their performance
in the context of secure logging systems.

Organization: We begin with the analysis of the state-of-the-art in Section 2, followed
by introduction of forward-secure aggregate authentication in Section 3. We then show
how to use FssAgg schemes in logging applications: we propose a private-verifiable
scheme in Section 4 and a public-verifiable scheme in Section5. Next, we present
immutable FssAgg schemes in 6. We evaluate our schemes in Section 7 and report on
some experience with a prototype implementation in Section8. Section 9 overviews
related work and Section 10 concludes the paper.

2 Current Approach Analysis

In this section, we examine the state-of-the-art represented by Schneier-Kelsey scheme
[5]. It has been used as a foundation by many subsequently proposed secure logging sys-
tems. Readers interested in further details of the Schneier-Kelsey scheme are referred
to [5].

2.1 Overview of Schneier-Kelsey Scheme

In the Schneier-Kelsey scheme, a logging machineU opening a new audit log first
establishes a shared secret keyA0 with a trusted remote serverT . After each audit
entry is generated, the current secret keyAi is evolved intoAi+1 through a one-way
function. Log entries are linked using a hash chain. Each logentry Li contains three
parts:

1. log entry data2 Mi;
2. elementYi in the hash chain where3:

Yi = H(Mi||Yi−1) and Y0 = H(M0)

3. forward-secure MAC denoted asZi, computed overYi with the current secret key:
Zi = MACAi

(Yi).

U closes the log file by writing a special final-record message,Df and erasingAf as
well as other secrets, if any.

There is no constant high-bandwidth channel betweenU andT . It is assumed that
U communicates log entries infrequently toT . At times, a moderately-trusted person
or machine, calledV, may need to verify or read the audit log, while it is still onU . V

2 [5] also provides access control to audit log. Each log entryLi contains a log entry typeWi

andCi = EKi(Di): the actual log dataDi encrypted under an access control keyKi. As we
only focus on integrity of audit log, in this paper, we replace the two elementsWi andCi as
Mi to make our explanation clearer.

3 In the Schneier-Kelsey scheme,Yi is calculated asYi = H(Wi||Ci||Yi−1)



receives fromU a copy of the audit log,[L0, L1, · · · , Lf ], wheref is the index value of
the last record, fromU . V goes through the hash chain in the log entries (theYi values),
verifying that each entry in the hash chain is correct.V then sendsYf andZf to T . T
knowsA0 so he can calculateAf ; this allows him to verify thatZf = MACAf

(Yf ).
T informsV about the verification result andV discovers whether the received copy of
the log has any problems.

2.2 Analysis

We observe that the Schneier-Kelsey scheme has two security-related drawbacks:
Truncation Attack: a kind of deletion attack whereby the attacker erases a contigu-

ous subset of tail-end log messages. The truncation attack represents a real danger and
is valuable to an attacker. After breaking in, a natural goalfor an attacker is to modify
the audit log by deleting the most recent log entries generated right before the break-in.

The Schneier-Kelsey scheme uses a hash chain to link log entries such that that un-
detectable log (link) deletion is impossible. This pertains to log entries already farmed
out toT . However, log entries still residing onU are vulnerable to the truncation at-
tack since there is no single authentication tag protectingthe integrity of the entire log
file. A hash chain elementYi only protects data records generated before timei. Thus,
truncating log entries generated after timei will not be detected byT , unless there is a
synchronization betweenU andT and the latter knows the current value off . Without
a continuous communication channel, synchronization betweenU andT would require
U to generate log entries at a fixed rate. But, most logging systems are event-driven and
events are unevenly spaced. Logging events at a fixed rate hinders the logging machine’s
ability to fully utilize its computation and storage resources.

Delayed Detection:Recall that, in the Schneier-Kelsey scheme,V is unable to ver-
ify a log file by itself and needs to ask for help fromT . If this occurs beforeT has
received a copy of the most up-to-date log fromU , and beforeU has closed the log file,
an attacker can modify pre-compromise records without being detected. Albeit, such
modification will eventually be detected later, afterT receives the updated version of a
log file.

We illustrate the delayed detection attack in Figure 1. Suppose that, at timea (≥ 0),
U has transmitted log entries[L0, · · · , La] to T . At time b (> a), an attacker breaks
into U and obtains the current secret keyAb. Even though the attacker can not recover
secret keys used in time intervals[a+1, b−1], she can modify the values ofMi and their
correspondingYi in this interval without touching the values ofZi. At time f (≥ b), V
receives a copy of log entriesL0, · · · , Lf . V sendsYf andZf to T . Since the attacker
knowsAb at break-in, she can generate valid MACs from timeb. The verification ofYf

with Zf at T will succeed. The modified log file will translate false information toV
and activities conducted within interval[a + 1, f ] will eludeV ’s detection. In Figure 1,
values in the shaded area (M andY values in time interval[a+1, b−1], all values within
[b, f ]) can be manipulated by an attacker. Since there is no continuous high-bandwidth
U ↔ T communication channel andU only communicates withT infrequently, the
time interval[a + 1, f ] can be potentially large.



Since the attacker is unable to fake any valuesZi (for i ∈ [a + 1, b − 1]), any
manipulation in this period can be detected whenever the corresponding log entries are
uploaded toT andT scan-verifies all individual MACs.4
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Fig. 1. Log file under delayed detection attack. Data in shaded area can be controlled by an at-
tacker.a: time at which log entries are uploaded toT ; b: break-in time;f : index value of last log
entry as well as time whenV receives a copy of log file fromU .

The two drawbacks of the Schneier-Kelsey scheme seem to be quite fundamental.
However, it is rather surprising that they have not been addressed by any later work. In
addition to the security issues discussed above, the Schneier-Kelsey scheme has some
architectural limitations:

Online Server. As mentioned earlier, the Schneier-Kelsey scheme employsa server-
assisted verification process and a trusted serverT must be present wheneverV wants to
pose an integrity query. In other words, the scheme requiresa continuous channel (not
necessarily high-width in case of the integrity check) betweenV andT . As with any
centralized solution, the Schneier-Kelsey scheme has the single point of failure. Fur-
thermore, the overall security of the Schneier-Kelsey scheme relies on the frequency
of communication betweenU andT . Basically, the need for the on-line server can be
avoided by using a public key based approach as in [9].

Storage Inefficiency. Each log entry contains a hash valueYi and a MACZi. To
provide reasonable long-term security guarantees, a minimum security overhead 512
bits per log entry would be incurred in order to accommodate a256-bit hash and a
256-bit MAC. We point out that storing two authentication tags per log entry in the
Schneier-Kelsey scheme leads to storage inefficiency whichmakes it improper to be
used on devices with commensurately meager resources such as sensors, implantable
medical devices which need a light-weight secure logging system [10]. Leaving mul-
tiple authentication tags on the log file and lacking a uniqueauthentication tag to pro-
vide integrity of the whole message body are also the causes of the Schneier-Kelsey
scheme being vulnerable to truncation attacks. This motivates us to explore the recently

4 Actually, the authors of the Schneier-Kelsey scheme do not mention any scan-verification (ver-
ification of individual MACs) in the paper. They only claim that verification of Zf equals to
verification of all the individual MACs.



proposed FssAgg authentication scheme to address both forward-secure integrity and
storage efficiency.

The same set of vulnerabilities/limitations are also applicable to the Bellare-Yee
private key based scheme [2,3]. The Holt scheme [9] uses a public key based approach.
Therefor it avoids using a online server and also the delayeddetection attack. However
it still suffers from truncation attack and storage inefficiency.

3 Forward Secure Sequential Aggregate Authentication

In this section, we briefly introduce the components of a FssAgg scheme as they will
be used in our secure logging system. We refer to [11, 12] for amore formal definition
of a FssAgg scheme. We next show how a FssAgg scheme can provide forward-secure
stream integrity.

An FssAgg scheme includes the following components:

[FssAgg.Kg] – key generation algorithm used to generate public/private key-pairs.
It also takes as inputT – the maximum number of time periods (key evolvements).
[FssAgg.Asig] – sign-and-aggregate algorithm which takes as input a private key,
a message to be signed and a signature-so-far (an aggregatedsignature computed
up to this point). It computes a new signature on the input message and combines
it with the signature-so-far to produce a new aggregate signature. The final step in
FssAgg.Asigis a key update procedureFssAgg.Updwhich takes as input the signing
key for the current period and returns the new signing key forthe next period (not
exceedingT ). We make key update part of the sign-and-aggregate algorithm in
order to obtain stronger security guarantees (see below).
[FssAgg.Aver] – verification algorithm, which, on input of a putative aggregate sig-
nature, a set of presumably signed distinct messages, and a public key, outputs a
binary value indicating whether the signature is valid.

A secure FssAgg scheme must satisfy the following properties:

1. Correctness:Any aggregated signature produced withFssAgg.Asigmust be ac-
cepted byFssAgg.Aver.

2. Forward secure aggregate unforgeability:No one, even knowing the current sign-
ing key, can make a valid FssAgg forgery.

The forward secure aggregate unforgeability implies two things. First, it is append-
only - no one can change any message generated before the compromise, which further
implies a FssAgg signature can provide integrity protection for the whole message body.
An attacker who compromises a signer has two choices: eitherit includes the intact
aggregate-so-far signature in future aggregated signatures, or it ignores the aggregate-
so-far signature completely and start a brand new aggregated signature. What it cannot
do is selectively deleting components of an already-generated aggregate signature. This
append-only property resembles the property of special write-only disk used in tradi-
tional log systems. Second it is hard to remove a component signature without knowing
it - so it is resistant to deletion (including truncation) attack. They are two very useful
properties and we will exploit them in our applications.

We claim that FssAgg authentication implies forward-secure stream integrity, i.e.:



Forward Security:In a FssAgg scheme, secret signing key is updated through a one-
way function. An attacker is thus unable to recover previouskeys from the current
(compromised) key and therefore unable to forge signaturesfrom prior intervals.5

Stream Security.The sequential aggregation process in an FssAgg scheme pre-
serves the order of messages so that it provides stream security; thus, re-ordering
of messages is impossible.
Integrity. Any insertion of new messages as well as modification and deletion of
existing messages will render the final aggregate unverifiable.

Armed with this implication, we can now construct a secure logging system from any
FssAgg authentication scheme.

4 Private-Verifiable Scheme

We now describe a private-verifiable scheme that providesforward-secure stream in-
tegrity for audit logs. In a private-verifiable scheme, verifiers aredrawn from a small
“private” group. Our scheme is based on the FssAgg MAC schemeproposed in [11].
Forward-secure stream integrityis inherited from the FssAgg MAC scheme. To avoid
an online server, two FssAgg MACs are computed over the log file with different initial
signing keys. A semi-trusted verifier can only verify one of them. The other MAC is
used by the trusted server to finally validate the log file. No one – including the semi-
trusted verifier – can alter the contents of the log file without being detected.

Below, we present the trust model and our system assumption.Next we give details
of the system operations. On top offorward-secure stream integrity, we add operations
to start/open and close a log file such that total deletion andabnormal stop attacks can
be detected. We then evaluate the proposed scheme.

4.1 Security and System Model

There are three types of players in our scheme:

1. U is anuntrustedlog generator. By “untrusted”, we mean it is not physically se-
cure, bug-free, or sufficiently tamper-resistant to guarantee that it can not be taken
over by an attacker.U itself does not behave maliciously unless controlled by the
attacker. It generates log entries and replies toV ’s query. It only interacts withT to
start a log file or after a log file is closed.

2. V is asemi-trustedverifier that reads and verifies the log file onU . Usually, audit
logs can only be accessed by a small group of people, such as system administra-
tors, security personnel and auditors. Therefore,V is drawn from a small group of
authorized entities; it can obtain and verify a copy of the audit log from U , when
necessary. However,V is not trusted as far as the integrity of the log file.

3. T is a trustedmachine in a secure location. It has secure storage ample enough to
hold audit logs fromU . It can authorize a legitimate verifierV to get access to the
audit log and givesV the verification key. It also finally validates the log file.T
does not interfere the verification process.

5 Assuming, of course, that the plain signature scheme – upon which the FssAgg scheme is built
– is CPA-secure.



As in [5], we assume that there is no constantly available reliable high-bandwidth chan-
nel betweenU and trusted storage onT . Consequently,U andT communicate infre-
quently.

The attacker’s goal is to tamper with the log file by deleting,modifying, inserting
or re-ordering log entries. Clearly, the attacker who compromisesU obtains the signing
key used at the time of compromise. We consider two types of attackers: outsiders and
insiders. An outsider is an attacker that knows none ofU ’s secrets before compromising
U . A maliciousV is considered to be an insider attacker as it knows some ofU ’s secrets.
An insider is obviously more powerful as far as its ability totamper with the integrity
of the log file. Our scheme is designed to detect both insider and outsider attacks.

4.2 Description of the Scheme

We use the following notation from here onwards:

– Li: i-th message, i.e., thei-th log entry. (We assume that log entries are time-
stamped and generally have a well-defined format).

– F : k-bit full-domain hash function with strong collision resistanceF : {0, 1}k →
{0, 1}k.

– H: one-way hash function with strong collision resistance and arbitrarily long in-
put:H : {0, 1}∗ → {0, 1}k.

– mac: secure MAC functionmac : {0, 1}k × {0, 1}∗ → {0, 1}t that, on input of a
k-bit keyx and an arbitrary messagem, outputs at-bit macx(m).

– UPD: key update frequency (see below).

At any given time, an authenticated log file in this scheme consists of two parts: (1) log
entries:[L1, · · · , Li] and (2) two authentication tags (forward-secure aggregateMACs):
µT ,i andµV,i that are defined below.

Log File Initialization Before the logging system starts, we requireT to be ac-
cessible toU and assume thatU is not compromised (yet).U generates two random
symmetric keys,A1 andB1. Then, it commits these keys toT along with the other
information about the specific log file and the key update interval UPD. We are not
concerned with the details of the commitment process. Suffice it to say that, after the
commitment process,T can go off-line andU can be deployed in an adversarial and
unattended environment.6

Meanwhile,U creates the initial “dummy” log entryL1 which commits to a fixed
message (e.g., set to ”START”) and computes two MACs onL1 with keysA1 andB1,
respectively:µT,1 = macA1

(L1) andµV,1 = macB1
(L1). Next,U evolves its keys

through a one-way functionF : A2 = F(A1), andB2 = F(B1).
Through the initial interaction,T knows thatU has started a log file at timet with

initial secretsA1 andB1. T stores these values in its database and thereafter knows
that a valid log must exist onU and that that log must contain at least one log entryL1.
The purpose of this initial commitment step is to prevent a total deletion attack, i.e.,

6 We also assume that the initial commitment as well as each subsequent log entry contains a
time-stamp.



an attacker breaking intoU at a later time cannot delete the whole log file and simply
claim that no such log file has started yet.

Update FrequencyWe make no assumptions about key update frequency except
that it must be fixed at log initialization time byT or U (or both). Moreover, it must be
encoded in the first message fromU to T . UPD can be based on time (e.g., every hour),
volume of activity (e.g., every 10 log entries) or some combination thereof. However,
to simplify our discussion below, we assume that keys are updated for each log entry.

Generating Log EntriesBefore thei-th log entry is generated, the log file contains
L1, · · · , Li−1 and two FssAgg MACsµT,i−1, µV,i−1. Current keys ofU are:Ai andBi.
Now, a newi-th event occurs andU creates a corresponding log entryLi. U updates7

authentication tags as follows:

U first generates a MAC forV as:macAi
(Li). It then computesµV,i as:µV,i =

H(µV,i−1||macAi
(Li)). Here,H acts as the aggregation function. Note thatµV,i

can be represented (un-rolled) as:

µV,i = H(H(· · ·H(µV,1||macA1
(L1)) · · · )||macAi(Li)) (1)

U updates the second FssAgg MAC (forT ) in the same manner:µT,i = H(µT,i−1||macBi
(Li))

Finally, U evolves both keys:Ai+1 = F(Ai), andBi+1 = F(Bi). Prior keysAi

andBi and MACsmacAi
(Li) andmacBi

(Li) are immediately and securely erased
(e.g., from disk and RAM).

Log File ClosureU officially closes the log file by creating a special closing mes-
sage as the final log entry (Lf ), updating the two authentication tags (µV,f andµT,f )
and securely erasing the remaining keys (Af andBf ).

The closing step is necessary in order to inform users that the log file is closed
properly and no longer accepts any new data. Consider that anattacker might prevent the
logging system from functioning after gaining control of the logging machine. Without
the explicit closing step, we can not determine whether the log file has been closed
normally or the logging process has been impeded by an attacker. Once the log file has
been properly closed, an attacker who breaks intoU cannot modify the log file since no
keys are available.

Log File Validation An authorized verifierV starts the log file validation process
by obtainingA1 – one of the two initial signing keys – fromT . Next, V queriesU
and obtains a copy of log entriesL1, · · · , Lf as well asµV,f . V computesA2, · · · , Af

through the key update function, computesµ′
V,f and checks that it matchesµV,f . Veri-

fier’s computation costs amount tof invocations ofF ,H andmac.
WhenT receives the complete and closed log file, it can independently validate it

usingB1 andµT,f . The validation mimics that performed byV. Note that, a malicious
verifierV, knowingA1, has full control and can modify any log entries by generating
its own version ofµV,f . However, it can not forgeµT,f .

7 We use the term “updates”, since, at all times, there are only two authentication tags in the
secure log.



4.3 Discussion

The private-verifiable scheme described above is simple andvery computation-efficient,
since it involves fast hashing and symmetric key operations. V can verify a log file
without consultingT ; thus, no on-line trusted party is needed. Furthermore, it is very
storage-efficient: compared with previous schemes – which require eitherf or 2 ∗ f
storage units to store authentication incurred values – ourscheme only needs two stor-
age units for two FssAgg MACs. Considering that log files tendto be very large and
often contain many thousands of log entries, the benefit of a storage-efficient scheme is
quite apparent.

Our scheme providesforward-secure stream integritythrough the use of a single
FssAgg MAC that covers all log entries. An attacker can not forge such a MAC without
knowing any pre-compromise MAC keys. Deletion and truncation attacks can be de-
tected by any verifier. Furthermore, our scheme can detect a total deletion attack since
we use an explicit commitment process when starting a log file. By explicitly closing the
log file, our scheme can detect certain DoS attacks that aim toincapacitate the logging
system.

However, a malicious verifierV can tamper with the log without being detected by
other verifiers. This tampering can only be detected with thehelp ofT . It is thus possible
for a malicious insider to mount a delayed detection attack.This is a definite drawback
which leads us to construct an alternative scheme based on public key techniques.

5 A Public-Verifiable Scheme

We now describe a public-verifiable scheme. It can be based oneither the BLS-FssAgg
scheme proposed in [11] or the BM-FssAgg scheme we proposed in Section 3. A
public-verifiable scheme allows auditors outside the system to make sure no tampering
takes place within the system. Therefore, it can be used for systems which need to be
publicly audited, such as financial records for public companies and voting systems
in democratic countries. A public-verifiable scheme also avoids the shortcoming of a
private-verifiable scheme which still suffers from delayeddetection attacks whenever a
private verifierV behaves maliciously.

As in the last section, we begin with the trust model and system assumptions. Next,
we describe the scheme evaluating it. For the sake of brevity, we focus on the difference
between private- and public-verifiable schemes.

5.1 Trust Model

In this scheme we no longer require a trusted serverT . Instead, we need a Certification
Authority (CA) that can certify/registerU ’s public key. The scope ofV moves from a
small private group of semi-trusted entities to the public domain, i.e., anyone who has
a copy of the log file can verify it. We no longer need to differentiate an inside attacker
and outside attackers. An attacker is thus anyone who behaves maliciously and does not
know the system’s initial secrets.



5.2 Scheme Description

An authenticated log file in the present scheme consists of two parts: log entries[L1, · · · , Lf ]
and a single FssAgg signature,σ1,f .

Log File Initialization To initiate a log file,U usesFssAgg.Kg to generate the
initial secret keysk1 and the public keypk. Then it registerspk with a public CA.U ’s
certificate for log file should contains at least these essential information such as the log
creator, the log ID, starting time and the public key. For example, CA’s signature inU ’s
certificate for log fileIDlog may look like:

CERT (IDlog) = SIGNCA(U , IDlog, t, T, pk, timestamp, · · · )

U keepssk1. Next, it creates the initial log entryL1 which it sets to the certificate
CERT (IDlog). Then,U generates a signatureσ1,1 on L1 with FssAgg.Asig using
the initial private keysk1. Finally, U updates its key fromsk1 to sk2 and securely
erases any and all copies ofsk1.

Generating Log EntriesBefore thei-th entry occurs, the log file contains[L1, · · · , Li−1]
and a FssAgg signatureσ1,i−1. U ’s current secret key isski. Now, a new event occurs
and triggersU to creates a new log entryLi. U updates the FssAgg signature by in-
putting functionFssAgg.Asig with parameters:Li, σ1,i−1 and the current keyski. Fi-
nally,U evolves its private key through the update functionFssAgg.Upd and securely
erasesski. (In our context, the key update is invoked immediately after the aggregate
signature is generated.)

As the log file grows – since the maximum number of key update periodsT is fixed
a priori – the number of updates might need to exceedT . To address this issue we
can dynamically extend the scheme to support additional keyupdate periods without
sacrificing security. One straightforward way is to generate a public key for the nextT
number of time periods and to use the last (initially certified) secret keyskT to, in turn,
certify a new set of public keys to be used subsequently. In fact, the certification of the
next batch of public keys should be treated as a special log entry LT .

Log File ClosureAs in the private-verifiable scheme,U closes the log file by creat-
ing a special closing message as the final log entryLf , updating the FssAgg signature
accordingly, and securely erasing its secret key.

Validating Log File After receiving a copy of the log file,V extracts public keys
from CERT (IDlog) contained in the initial log entryL1 andV verifies CA’s signature
on CERT (IDlog). Then,V validates the actual log file using the aggregate function
FssAgg.Aver.

5.3 Discussion

Compared with the private-verifiable scheme, the present scheme provides better secu-
rity because of its resistance to delayed detection attacks. It allows anyone – not just
a group of semi-trusted verifiers – to validate a log file. It isthus suitable for appli-
cations where scalability is important and, more generally, where public verification
is required. Except for the log initialization time, no trusted entity is needed for any
system operations.



6 Immutable Forward-Secure Aggregate Authentication

In Section 4 and 5, we proposed secure logging systems that are very efficient in term
of storage and communication - only ONE aggregate tag is keptin the audit log and
individual tags are erased once they are folded into the aggregate. So they are very
suitable to be used on devices with meager resources, especially storage, as such devices
require a light-weight audit log system. Verification of individual log entry is implied
by the verification of the entire log file.

However, this indirect verification is very costly if only one particular log entry is
interested. For example, users of a versioning file system might be only interested in one
particular version [13]. Verifying all versions is computationally expensive (especially,
in a public-verifiable scheme) and involves transferring unwanted data (i.e., all other
versions) to the user. Furthermore aggregate verification failure does not tell the user
anything about the authenticity of this particular version- there might be something
wrong with other versions. It is also desirable to keep individual authentication tags
in some applications. For example, in outsourced audit log applications [14, 15] where
audit logs from different log servers are submitted to a third party repository, an auditor
may want to search log entries satisfying certain properties, such as destination address
or port number. Log entries in the query result set may come from different log servers.
In this scenario, we need individual signatures so that the untrusted repository can use
the techniques proposed in [16] to answer queries.

This motivates us to keep individual signatures in the log file - in applications where
storage is not a problem - to provide finer grained verification. The aggregate signature
is used to protect the integrity of the whole log file while individual signatures are
used for individual log entry verification. However, the aggregation functions in all
aforementioned FssAgg schemes are public. Thus, revealingindividual signatures or
MACs allows anyone to create new authentic aggregate signatures or MACs.

For example, suppose an attacker obtains a copy of log entries [L1, · · · , Lf ], their
corresponding individual authentication tags as well as the aggregate authentication
tag. In our private-verifiable scheme, the attacker can truncate the log file from(i + 1)-
st log entry and then compute a new valid aggregate tagsµT,i andµV,i using Eq. 1
for log entries[L1, · · · , Li] (i < f ). In our public-verifiable scheme, the attacker can
similarly generate a new aggregate signature by removing[σi+1, · · · , σf ] from σ1,f by
computing:σ1,i = σ1,f/

∏f

j=i+1
σj .

To prevent truncation attacks when individual component signatures are revealed,
we need immutable FssAgg authentication schemes. We note that mutability is not a
flaw of the underlying FssAgg signature schemes but rather anissue with some spe-
cific audit log applications. The immutability of an immutable FssAgg authentication
scheme in our specific log scenario means the difficulty of computing new valid FssAgg
signatures from a set of other aggregate signatures (an individual signatureσi can be
regarded as an aggregate signatureσi,i). We note the difference between a FssAgg sig-
nature and a normal aggregate signature: a FssAgg signaturefor a log file is bound to
a unique initial public key and covers a set of continuous logentries starting fromL1,
while an aggregate signature may cover isolated log entries. For example,σ1 · σ2 · σ3

(where eachσi is generated with a different secret key) is an FssAgg signature for a log



file containing three log entries, whileσ2 · σ3 is just an aggregate signature of the last
two log entries.

Immutable aggregate signatures have been previously considered in [17] to prevent
computation of a new aggregate signatureσj,k when one “sees” bothσi,j andσi,k where
i < j < k. However this is not a problem in our envisaged log applications since such a
signature, although it might be a valid aggregate signaturefor log entries fromLj to Lk,
is no longer a valid FssAgg signature for a log file bound to a fixed initial verification
key.

6.1 Immutable FssAgg MAC Scheme

The immutability extension for the private-verifiable FssAgg MAC scheme is very sim-
ple:U generates a “phantom” MAC and places it as the first componentinto the aggre-
gate when the system starts; this “phantom” MAC is then erased right after aggregation.
We modify the log file initialization (in Section 4) as follows:

1. U computesµ1 = macA1
(L1) over a fixed (well-known) initialization message

L1;
2. U evolvesA1 into A2;
3. When the first real log entryL2 occurs,U generatesµ2 = macA2

(L2) and aggre-
gates:µV,2 = H(µ1||µ2);

4. U stores bothµ2 andµV,2 in the log file, evolvesA2 into A3, securely erasesµ1

andA2, and officially moves to next time period.

Note that we do not change anything involving the use ofB1 and subsequent keysBi

involved in the generation of MACs forT . In other words, only the computation of
V-verifiable values is altered.

The resulting format of the log file supporting both immutability and (efficient)
individual log entry verification is:

{[L0, (L1, µ1), (L2, µ2), · · · , (Lf , µf )], µV,f , µT,f}

If V is only interested in verifying a particular log entryLi, it usesµi directly without
involving the aggregateµV,f . However, note that, to verifyLi, V still needs to recom-
puteAi which requiresi hash operations.

An attacker who obtains all log entries with theirexposedMACs: [µ1, · · · , µf ] and
the FssAgg MACµV,f is unable to compute a new valid FssAgg MAC without the
knowledge ofµ0. The security of this extension relies on the pre-image resistance of
the underlying hash function.

6.2 Immutable FssAgg Signature Scheme

The iBGLS scheme in [17] achieves immutability by combininga signature of the
database server with the aggregate-so-far BGLS signature of the data owner. Differ-
ent query result sets and different queriers lead to distinct server signatures. The server
signature is computed over all the messages in the query result set and thus acts as an



“umbrella” signature. This “umbrella” signature is never revealed to public. It is im-
possible to remove such a signature since it is hard to removea component signature
without knowing it - a property of aggregate signature schemes.

In our context, we still exploit this property and use the same idea by folding into
the aggregate an “umbrella” signature generated over all current log entries. However,
since our security model assumes eventual compromise ofU we must fold umbrella
signatures into the aggregate before an attacker breaks in.We define the time period
at which an umbrella signature is generated and aggregated as ananchor pointand the
corresponding log entry generated in this time period is called as ananchor log entry.

For each anchor log entryLj , U computes two signatures: a normal individual sig-
natureσj overLj , and an umbrella signatureσ∗

j overk+1 log entries ofLj−k, · · · , Lj .
The umbrella signatureσ∗

j is aggregated with the aggregate-so-far signature. After the
aggregation,σ∗

j is securely erased.σj is kept in the log file for individual log entry
verification. For non-anchor-log entries,U proceeds as usual except that now individual
signatures are stored in the log file (instead of being deleted after aggregation). LetL
denote the set of normal log entries andL∗ the set of anchor log entries. An immutable
FssAgg signature can be represented as:

σ1,f =
∏

Li∈L

σi

∏

Lj∈L∗

σ∗
j (2)

So far, three FssAgg signature schemes, the BLS-FssAgg scheme [11], the BM-
FssAgg scheme and the AR-FssAgg scheme [12], have been proposed. Now we show
how to extend them to provide immutability.

It is easy to modify the BLS-FssAgg scheme to support immutability.σj is now
computed as:

σj = H1(index||Lj)
xj

andσ∗
j is computed as:

σ∗
j = H1(index||Lj−k||Lj−k+1|| · · · ||Lj)

xj

Constructing an immutable version of BM-FssAgg is a little more involved. First,
during the key generation stage, we select two random valuesr0, r∗0 and generate two
common commitments:y = (r0)

2
T+1

andy∗ = (r∗0)2
T+1

. We userj to generate a
normal signature (σj) andr∗j to generate an umbrella signature (σ∗

j ) . σj is computed
as:

σj = rj

l∏

i=1

sci

i,j (c1 · · · cl ← H(t, y, Lj))

andσ∗
j is computed as:

σ∗
j = r∗j

l∏

i=1

sci

i,j (c1 · · · cl ← H(t, y, Lj−k, · · · , Lj))

An authenticated log file supporting immutability and individual log entry verification
has the following format:

{[(L1, σ1), (L2, σ2), (L3, σ3), · · · , (Lf , σf )], σ1,f}



whereσ1,f is computed as in Eq. 2. The security of the modified schemes isimplied
by the property of aggregate signature scheme: it is computationally hard to remove a
component signature without knowing it.

We can use the same idea to construct an immutable version of AR-FssAgg signa-
ture scheme. We omit the details because of page limitation.

7 Evaluation

We evaluate our secure logging scheme by comparing it with the existing schemes. We
compare our private verifiable scheme with two existing private-key-based schemes:
Schneier-Kelsey [5] and Bellare-Yee [3]. We also compare our public-verifiable scheme
with Holt’s scheme [9]. Our comparison is based on four factors: 1) resilience to trun-
cation attacks; 2) resilience to delayed detection attacks; 3) on-line server requirements;
4) storage efficiency. The comparison results are summarized in Table 7.

Table 1.Comparisons of Various Schemes.

Private Key Public Key
Based Schemes Based Schemes

SK [5] BY [3] Ours Holt [9] Ours
Resilience to truncation attack? No No Yes No Yes
Resilience to delayed detection attack?No No No Yes Yes
No on-line server? No No Yes Yes Yes
Storage efficient? No No Yes No Yes

Compared with Schneier-Kelsey and Bellare-Yee, our private scheme is resilient to
truncation attacks, more storage-efficient and requires noon-line server. However, it is
still vulnerable to delayed detection attacks. Compared with Holt’s scheme, our public
scheme is resilient to truncation attacks and more storage-efficient.

8 Implementation

We investigated the viability of our proposed schemes on a Intel dual-core 1.73GHz
Laptop with 1GB RAM running Linux. We used the NTL library [18] and the PBC
library [19] as the underlying cryptographic libraries.

We built our prototype based on the code from the OpenCM project [20], a free
source version control software. OpenCM is a client/serverapplication whereby indi-
vidual developers typically work on their own workstationswith the repository hosted
on a server. As with other versioning systems, such as CVS [21], our system (see Figure
2) allows authorized developers (through access control) to check out a baseline version
of the software, make modifications, and commit the result asthe new state of the sys-
tem. When a developer’s work is to be deposited into the repository, the server checks
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Fig. 2.Secure Version Control System.

any changes between the new and old versions and then createsa log entry record-
ing the modification into a log file. Our schemes are incorporated into the server-side
component in order to provide accountable verification of the audit trail.

In the implementation of our private-verifiable scheme, there is no separate physical
T component to whichU transmits its closed log file. Instead, a logicalT , periodically
validates the audit trail directly onU . T does not hold a copy of the audit trail.

We prototyped all the three FssAgg signature schemes to provide heuristics for
choosing among them in practice. For the BM-FssAgg and AR-FssAgg schemes,
we selected security parametersk = 1024 andl = 160. For the BLS-FssAgg scheme,
we used a singular curveY 2 = X3 + X defined on a fieldFq for |q| = 512 and the
group order|p| = 160, wherep is a Solinas prime. Such a group has the fastest pair-
ing operations [19]. We measured signer’s computation costby signature generation
and key update on a per-log-entry basis. We measured verifier’s computation cost over
an aggregate signatureσ1,t whent = 100, 1, 000 and10, 000 which corresponds to a
small, medium, and large log file, respectively. Experimental results shown in Table 8
show that the BM-FssAgg scheme is the most efficient one in terms of computation
(for both signer and verifier). Its signature generation is approximately 2 times faster
than that of the AR-FssAgg and5.5 times faster than that of the BLS-FssAgg. Its
signature verification is 4 times faster than that of the AR-FssAgg and16 times faster
than that of the BLS-FssAgg. However, it incurs the most storage overhead.

We also investigated storage overhead incurred by each scheme. LetIa denote the
amount of storage needed to to store the secret key and the aggregate signature - the
overhead incurred by authentication. Let|S| denote the size of a signature or a key. Let
I denote the number of log entries and|L| denote the average size of a log entry. We
measure storage efficiency byIa∗|S|

I∗|L| . BLS-FssAgg needs 1 unit of space each for both
secret key and signature. BM-FssAgg needs 162 units of space for secret key and 1
unit of space for the aggregate signature. BM-FssAgg needs 2 units of space for secret
key and 1 unit of space for the aggregate signature. To simplyour measurement, we
assume a log entry size is comparable to the size of a signature or a secret key, e.g.
|S| ≈ |L|. The comparison result is also shown in Table 8. BLS-FssAgg performs best
in term of storage efficiency. Especially when there is a large number of log entries and
each entry is large, storage overhead of BLS-FssAgg is negligible.



Table 2.Comparisons of FssAgg Signature Schemes. (Operation Timing inmsecs.)

BLS-FssAgg BM-FssAgg AR-FssAgg

Signer Computation CostAsig 30 2.09 4.39
(per log entry) Upd 0.002 3.46 7.27

total 30.00 5.55 11.66

Signer Storage Cost
t = 100 2% 162% 3%
t = 1000 0.2% 16.2% 0.3%
t = 10000 0.02% 1.62% 0.03%

Verifier Cost
t = 100 3.30 × 103 211.97 810.88
t = 1000 29.3×103 2.13×103 8.16×103

t = 10000 330.72×103 21.35×103 80.84×103

9 Related Work

A number of cryptographic approaches to address secure logging have been proposed
to-date. Most prior work focused on three areas: (1) data integrity/authentication, (2)
data confidentiality and access control, and (3) searchableencryption. Since we are pri-
marily interested in integrity, only the first area directlyrelates to this paper. Bellare
and Yee were the first to define theforward-secure stream integrityproperty required in
an audit log system and proposed to use forward-secure MACs [2,3]. They focused on
formal definition and construction of forward-secure MAC schemes and applied them
to secure audit log applications. In their secure log scheme, multiple log entries are in-
dexed and tagged independently within one time period. At the end of each time period,
a special log entry containing the number of log entries in the current time period is
created to indicate the end of the current time period. This scheme has the same secu-
rity as well as the architectural limits as the SK scheme. Schneier and Kelsey proposed
a similar system (the SK scheme we analyzed in Section 2) based on forward-secure
MAC and one-way hash chains [5,22,23]. Unlike Bellare and Yee’s scheme, in the SK
scheme, rekeying is performed after each log entry is made. Therefore they no longer
use per-stage sequence numbers in tagging logs. Instead, each log entry now contains
a link in a hash chain and a forward-secure MAC computed over this link to authen-
ticate the values of all pervious entries. Moreover, they presented a precise protocol
design for its implementation in a distributed system, describing how messages are sent
to external trusted machines upon log creation and closing.Chong, et. al. discussed
the feasibility of using of tamper-resistent hardware in conjunction with a system like
Schneier and Yee’s in [24]. Holt extended Schneier and Yee’ssystem to the public key
setting [9]. Waters, et. al. designed encrypted and searchable audit log [25]. This showed
how identity-based encryption (IBE) can be used to make audit logs efficiently search-
able. Keywords which relate to each log entry are used to formpublic keys in an IBE
system. Administrators allow searching and retrieval of entries matching a given set of
keywords by issuing clients the corresponding IBE private keys. They recommended
the use of the Schneier and Yee’s technique as their authentication scheme. The two
security attacks, truncation attack and delayed detectionattack, which we outlined in
Section 2, seem to be very fundamental to all the secure auditlog schemes as far as we
know. It is surprising that they have not been addressed by any later work so far.



10 Conclusion

In this paper, we identified some issues in current secure logging techniques. We then
proposed two concrete schemes to provideforward-secure stream integrityfor logs gen-
erated on untrusted machines. Our approach supports forward security and compact ag-
gregation of authentication tags (MACs or signatures). Both of our proposed schemes
offer practical secure logging without reliance on trustedthird parties or secure hard-
ware. Our schemes are based on the recent proposed FssAgg authentication schemes
where a unique authentication tag is used to protect the integrity of underlying message
body. We then considered the notion of immutability that is needed to facilitate faster
verification of individual log entries. We evaluated the performance of our schemes and
report on experience with a prototype implementation within a public domain version-
ing control system.

Although the security of proposed schemes rests entirely onpreviously proposed
techniques (i.e., [11,12] and [17]), we need to construct separate security proofs for each
scheme. Furthermore, we have to conduct extensive experiments, and perhaps trace-
driven simulations, to better understand the performance of our schemes. Finally, we
intend to investigate alternative signature schemes that might be used for constructing
more efficient public-verifiable techniques.
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