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Abstract

Recent collision-finding attacks against hash functions such as MD5 and SHA-1 motivate the
use of provably collision-resistant (CR) functions in their place. Finding a collision in a provably
CR function implies the ability to solve some hard problem (e.g., factoring). Unfortunately,
existing provably CR functions make poor replacements for hash functions as they fail to deliver
behaviors demanded by practical use. In particular, they are easily distinguished from a random
oracle. We initiate an investigation into building hash functions from provably CR functions.
As a method for achieving this, we present the Mix-Compress-Mix (MCM) construction; it
envelopes any provably CR function H (with suitable regularity properties) between two injective
“mixing” stages. The MCM construction simultaneously enjoys (1) provable collision-resistance
in the standard model, and (2) indifferentiability from a monolithic random oracle when the
mixing stages themselves are indifferentiable from a random oracle that observes injectivity.
We instantiate our new design approach by specifying a blockcipher-based construction that
appropriately realizes the mixing stages.
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1 Introduction

Background. SHA-1, a Merkle-Damg̊ard style [23, 14] iterated function, is provably collision
resistant under the assumption that its underlying compression function is collision resistant. But
the recent collision-finding attacks against SHA-1 (and related hash functions) [37, 38] have made
clear the point that assumptions of collision resistance are often unfounded in practice.

Rather than assuming collision resistance outright, several works [11, 21, 26, 33, 13] build
functions for which the guarantee of collision resistance rests, in a provable way, on the hardness of
some well-studied computational problem. As a simple example, consider the function H(m) = xm

mod n where x is some fixed base and n is a (supposedly) hard-to-factor composite [26, 33]. This
function is (what we shall call) provably CR since there exists a formal reduction showing that the
ability to find collisions in H implies the ability to efficiently factor n.

But such a collision-resistant function is not a hash function, at least not when one attempts to
define a hash function by its myriad uses in practice1. For example, hash functions are frequently
used as a way to compress and ‘mix-up’ strings of bits in an ‘unpredictable’ way; here it seems
clear that the intent is for the hash function to mimic a random oracle, a publicly available random
function with a large domain. Unfortunately, the provably CR function H is a poor real-world
instantiation of a random oracle. Note, for example, that H(2m) ≡ H(m)2 (mod n), which would
be true with exceedingly small probability if H were instead a random oracle. The very structure
that gives H and other provably CR functions their collision-resistance thus renders them useless
for many practical applications of hash functions [11, 36].

On the other hand, recent results [12, 2, 10] offer constructions that ‘behave’ as random oracles
(and are called pseudorandom oracles, or PROs) when the underlying primitives are themselves
idealized objects, like fixed-input length random oracles or ideal ciphers. In theory then, a PRO
is a secure hash functions in a very broad sense. But the security guarantees offered by a PRO
only hold in an idealized model. When one steps outside of the ideal model in which the security
proofs take place, the actual security guarantees are much less clear. As an example, Bellare and
Ristenpart [2] have pointed out that the PRO constructions from [12] fail to be collision resistant
when the underlying compression function is only assumed to be CR (rather than being a fixed-
input-length random oracle).

This paper. We begin an investigation into methods for building functions that are both provably
CR in the standard model and provably pseudorandom oracles in idealized models. In particular,
we offer a generic construction that we call Mix-Compress-Mix, or MCM; See Figure 1. Essentially
MCM is a way to encapsulate a provably CR function in such a way that the resulting object is a
PRO when the encapsulation steps behave ideally, and yet remains provably collision resistant in
the standard model (i.e., when the encapsulation steps are only complexity theoretic objects).

The construction is simple: first apply an injective “mixing” step E1 to the input message, then
compress the result using a provably CR function H, and finally apply a second injective “mixing”
step E2 to produce the output. Here H and E1 can accept variable-input-lengths. Note that since
MCM is building a hash function, the mixing steps E1 and E2 are necessarily deterministic and pub-
lically computable functions. By demanding that they also be injective, we have immediately that
collisions against MCM imply collisions against H. We stress that no cryptographic assumptions
about the mixing steps are needed to prove collision resistance of MCM.

At the same time, MCM behaves like a random oracle when E1, E2 are PROs, and the CR hash
function is close to regular (i.e., the preimage set of any particular output isn’t too large). In

1This viewpoint is not ours alone. One of the designers of VSH [11], Arjen Lenstra, once publicly stated “VSH is
not a hash function.”
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Figure 1: The MCM construction: H is a collision resistant hash function, and E1, E2 are mixing functions.
All three components of MCM must be deterministic and publically computable.

fact, we will actually construct E1, E2 to be pseudorandom injective oracles, or PRIOs; we’ll say
more about these in a moment. To make precise our use of the word “behaves” above, we use the
indifferentiability framework of Maurer et al. [22]. We’ll prove that MCM is indifferentiable from a
monolithic random oracle when the mixing steps E1 and E2 are indifferentiable from random oracles
(that observe injectivity). While the formal results are quite technical, the practical intuition behind
the security of MCM is straightforward: the mixing steps obfuscate input-output relationships
of the underlying compressing step. Recall our provably CR example H(m) = xm mod n and
the associated attack that distinguished it from a random oracle. Adapting that attack for use
against H(M) = E2(H(E1(M))) requires that the adversary determine non-trivial input-output
relationships across both E1 and E2, too.

One might be tempted to think a construction even simpler than MCM meets our goals. In
Section 4 we discuss natural simplifications of MCM (e.g., dropping E1 or lifting our stringent
injectivity requirements), showing that these fall short in one way or another. Moreover, we review
in more detail why existing approaches for building hash functions also fail.

Although we have just described MCM in the variable-input-length setting, we note that it also
works for building a dual-property compression function (i.e., a fixed-input-length function) from
any CR compression function. The result could be then be used inside a multi-property-preserving
domain extension transform such as EMD [2].

A new approach to hash function design. By generically composing appropriate mixing
and compressing stages, MCM allows the following separation of design tasks. First, design a
function with strong guarantees of collision-resistance, inducing whatever structure is necessary.
Second, design an injective function that destroys any structure present in its input. This approach
is a significant departure from traditional hash function designs, in which one typically constructs
a compression function that must necessarily (and simultaneously) be secure in various ways. With
MCM, we instead build a hash function by designing components to achieve specific security goals.
The benefits of such specialized components are immediate: MCM allows building a single hash
function that has very strong CR guarantees while simultaneously being suitable for instantiating
a random oracle.

Secure mixing steps. Remaining is the question of how to build mixing steps sufficient for the
goals of MCM. As we’ve said, we require the mixing steps to be both injective and indifferentiable
from a random oracle that observes injectivity. At first glance these requirements might seem
overly burdensome. Can’t the requirement simply be for the mixing steps to realize pseudorandom
oracles, which we already know (via [12, 10, 2]) how to build? No: while a PRO would satisfy the
second constraint, albeit with some additive birthday-bound loss in concrete security, it would not
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at the same time suffice for MCM’s crucial standard-model CR guarantee. This is because a PRO
provides no guarantees of collision-resistance outside of an idealized model. In fact, simultaneously
satisfying both requirements, injectivity and indifferentiability, is technically challenging.

To our knowledge, building a PRIO has never been considered before. Dodis and Puniya [16, 15]
consider a similar goal, that of building random permutations from random functions, but these
are invertible by construction, whereas PRIOs are not. Moreover, their proofs of security only hold
for honest-but-curious adversaries. We therefore present the Tag-and-Encipher (TE) construction
for realizing a PRIO (see Section 6). It is a blockcipher mode of operation (which also employs
a single trapdoor one-way permutation call) that is injective by construction. In the ideal cipher
model and under the assumption of trusted setup of the trapdoor permutation, the TE construction
is indifferentiable from an injective random oracle. While not particularly efficient, we view the TE

construction as a proof-of-concept, and hope it fosters future efforts to build these novel primitives.

Notes on indifferentiability and composability. In order to accomplish our task of
building a hash function with both strong standard model and ideal model guarantees, we exercise
the indifferentiability framework in novel ways. First, both MCM and TE are a combination of
complexity-theoretic objects (the CR function H and the trapdoor permutation) and information-
theoretic objects (the idealized components). Previous indifferentiability results have been solely
information-theoretic. Second, our model allows the simulator to choose the trapdoor permutation
utilized in TE. These two facts imply limitations on the generic composability of our schemes.
Composability refers to the guarantee that any cryptographic scheme proven secure using an ideal
object remains secure when this object is replaced by a construction that is indifferentiable from it.
In practice the limited composability of our constructions means that they might not be suitable
for all applications of random (injective) oracles. We discuss this matter in more detail, and pose
some interesting open questions raised by it, in Section 8.

2 Preliminaries

Notation. Let X, Y ∈ {0, 1}∗. We denote the concatenation of X and Y by X || Y or simply XY .
The ith bit of X is X[i] and so X = X[1]X[2] · · ·X[|X|]. When x is an integer we write 〈x〉n to
represent some canonical encoding of the integer as a bit string of n bits (necessarily n ≥ ⌈log x⌉).
Overloading our notation, when X is a bit string we write 〈X〉n to represent the integer x encoded
by X. When clear from context we will omit the subscript n. We write X|n (resp. X|n) to represent
the substring consisting of the last (resp. first) n bits of X for any n ≤ |X|. For a set S we often

write S ∪← x, which means S ← S ∪ {x}. For sets of bit strings S and S′ we write S || S′ to denote
the set of strings s || s′ such that s ∈ S and s ∈ S′. For an algorithm f , we define Timef (µ) as the
worst-case time to compute f on a message of length at most µ.

For bit string M , we write M1 · · ·Mm
n←M for the following procedure. Let m = ⌈|M |/n⌉.

Then assign to Mi the ith n-bit string of M for each 1 ≤ i < m. If |M | mod n = 0 then assign Mm

the last n bits of M . Otherwise assign to Mm the last |M | mod n bits of M . Similarly for string

Y such that |Y | > k, we write Y0 · · ·Ym
k,n
←− Y for the following procedure. Let m = ⌈(|Y | − k)/n⌉.

Then assign to Y0 the first k bits of Y . Let Y ′ be the remaining |Y | − k bits. Then compute
Y1 · · ·Ym

n← Y ′.

Cryptographic functions. A (keyed) cryptographic function F = (K, F,Dom,Rng , τ) is a
pair of algorithms, two (non-empty) sets of bit strings, and an optional parameter (the function’s
stretch). The key generation algorithm K outputs a key. We abuse notation slightly and write k ∈ K
if k is output by K for some set of random coins. Each k ∈ K specifies a function Fk: Dom → Rng .
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We interchangeably write Fk(·) or F (k, ·). If τ ≥ 0 is specified, this is the constant stretch and it
specifies that |Fk(M)| = |M | + τ for all k ∈ K and all M ∈ Dom. If the construction is keyless
then K is omitted and F only takes input a message. We will write (K, F,Dom, r) if Rng = {0, 1}r

and (K, F, d, r) if additionally Dom = {0, 1}d. A function might utilize primitives f1, . . . , fl as
black-boxes for some number l ≥ 0. In this case we write F f1,...,fl(k, M) to mean computing F
on key K and message M ∈ Dom using oracle access to f1, . . . , fl. A cryptographic function is
injective if F (k, M) = F (k, M ′) implies that M = M ′ for all k ∈ K.

Collision resistance. Let F = (K, F,Dom,Rng) be a cryptographic function. Then we define
the collision-finding advantage of an adversary A against F as

Advcr
f (A) = Pr

[

Fk(X) = Fk(X
′) ∧X 6= X ′ : k

$
← K; (X, X ′)

$
← A(k)

]

where the probability is over the random coins used by K and A.

Regularity. A function is regular if each image has an equal number of preimages. A cryp-
tographic function F = (K, F,Dom,Rng) is regular if, for all k ∈ K, the map Fk: Dom→Rng is
regular. Associated to F is the set PreIm(k, ℓ, Y ) = {X : X ∈ Dom ∧ |X| = ℓ ∧ Fk(X) = Y }. That
is, PreIm(k, ℓ, Y ) contains the length ℓ preimages of Y under key k. We also define the following
function related to any F with Rng = {0, 1}η for η > 0:

δ(k, ℓ, Y ) =

∣

∣

∣

∣

|PreIm(k, ℓ, Y )| − 2ℓ−η

2ℓ

∣

∣

∣

∣

.

The δ function measures how far a particular preimage set deviates from the case in which Fk is
regular (that is, 0 ≤ δ(k, ℓ, Y ) ≤ 1 − 2−η). We define ∆k = max{δ(k, ℓ, Y )}, where the maximum
is taken over all choices of ℓ and Y , and we say a function family F is ∆-regular if

∑

k∈K

pk∆k ≤ ∆

where pk = Pr[k = k′ : k′ $
← K]. Intuitively, this measures the average (over keys) maximum

deviation from regularity that F exhibits.

Trapdoor one-way permutations. Let F be a trapdoor permutation generator : on input 1k it
outputs a trapdoor permutation pair (f, f−1) where f : {0, 1}k→{0, 1}k and f−1(f(X)) = X. We
write Timef (k) or Timef−1(k) for the the worst case time to compute f or f−1 for any (f, f−1) ∈
F(1k). The one-way advantage of an adversary A against F for security parameter k is defined by

Advowf
F,k (A) = Pr

[

f(X) = f(X ′) :
(f, f−1)

$
← F(1k); X

$
← {0, 1}k;

Y ← f(X); X ′ $
← A(f, Y )

]

.

The RSA and Rabin function families are conjectured to allow generation of secure trapdoor per-
mutations [32, 28, 29]. We also define a generalization of the owf security, which will be useful
later in our proof of the TE construction (Section 7). It captures a game in which an adversary
adaptively receives multiple images, learns some of their preimages via an inversion oracle, and
then attempts to invert one of the (remaining) images. Formally, we define the some-point one-way
advantage of an adversary A against F for security parameter k by

Advspowf
F,k (B) = Pr

[

B wins : (f, f−1)
$
← F; X

$
← BPI,Inv(f)

]

.

The image oracle PI, when invoked (on no input), chooses a novel random point X ′ ∈ Dom, records
it, and returns f(X ′). (By novel, we mean that the oracle samples from Dom without replacement.)
The inverse oracle Inv, on input Y , returns f−1(Y ) if Y was previously returned by PI and otherwise
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it returns ⊥ (i.e., B only gets to invert points already returned by PI). The adversary wins if it can
find a preimage X such that Y was returned from PI and Y was not queried to Inv. The following
lemma establishes that a function is secure in the spowf sense as long as it is secure in the owf
sense. Its proof, by a straightforward hybrid argument, is given in Appendix A.

Lemma 2.1 Let k be a security parameter and F a trapdoor permutation generator. Let A be a
spowf adversary against F that runs in time t and makes at most (qp, qi) queries to its two oracles
(necessarily qp ≥ qi). Then there exists a owf adversary B such that

Advspowf
F,k (A) = qp ·Advowf

F,k (B) .

Moreover, B runs in time t′ ≤ t + cqpTimef (1k) + cqi log qp for a small, absolute constant c. �

Code-based games. We utilize code-based games [4] to formalize our indifferentiability security
definitions and within our proofs. A game consists of an Initialize procedure, zero or more oracle
procedures, and zero or more subroutines. All of a game’s variables are global, implicitly typed,
and initialized to zero for integers, everywhere ⊥ for associative arrays, the empty string for bit
strings, and false for bad flags. A game is executed with an adversary A as follows. The Initialize
procedure is executed, followed by running A on input the value(s) returned by Initialize. The
adversary, which has its own local variables, can make calls to the game’s oracle procedures, passing
values from some finite domains associated with the procedures. (Subroutine procedures cannot be
called by the adversary.) Eventually A halts with some output. For a game G we write AG ⇒ y
to represent the event that A run with game G outputs the value y. The probability of this event
occurring is over the coins used by both A and G. Let

Adv(AG,AH) = Pr
[

AG⇒1
]

− Pr
[

AH⇒1
]

for any adversary A and games G, H.

Ideal ciphers. For integers k, n > 0, a blockcipher E: {0, 1}k ×{0, 1}n→{0, 1}n is a function for
which E(K, ·) = EK(·) is a permutation for every K ∈ {0, 1}k. The inverse of E is D and is defined
such that D(K, Y ) = M iff E(K, M) = Y . An ideal cipher is a blockcipher uniformly selected
from BC(k, n), the space of all blockciphers with k-bit keys and n-bit blocksize. In the ideal cipher
model, both an ideal cipher E and its inverse are given to all parties as oracles.

Random functions and random injections. Let Dom,Rng ⊆ {0, 1}∗ . Recall that a function
f : Dom → Rng is injective if f(X) = f(X ′) implies that X = X ′. (Necessarily for an injection
|Dom| ≤ |Rng |.) For simplicity, we only consider injections with constant stretch τ ≥ 0: if X ∈ Dom
then |f(X)| = |X|+τ . The following subroutines implement a random function, a random function
with constant stretch, and a random injection with constant stretch.

subroutine RFDom,Rng(i, X)

If F[i, X] = ⊥ then

F[i, X]
$
← Rng

Ret F[i, X]

subroutine RF
∗
Dom,τ (i, X)

If F[i, X] = ⊥ then

F[i, X]
$
← {0, 1}|X|+τ

Ret F[i, X]

subroutine RI
∗
Dom,τ (i, X)

ℓ← |X|+ τ

If I[i, X] = ⊥ then

I[i, X]
$
← {0, 1}ℓ\R[i, ℓ]

R[i, ℓ] ∪← I[i, X]

Ret I[i, X]

The tables F and I are initially everywhere set to ⊥ and the table R is initially everywhere ∅. The
argument i will be used to distinguish between different instances of random functions (resp. in-
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procedure Initialize

Ret K
$
← K

procedure O(M)

Ret F f1,...,fl(M)

procedure Pi(X)

Ret fi(X)

Game CONSF

procedure Initialize

K
$
← K; SI(K)

Ret K

procedure O(M)

Ret RFDom,Rng(0, M)

procedure Pi(X)

Ret Si(X)

Game PROF,S

procedure Initialize

K
$
← SI

Ret K

procedure O(M)

Ret RI
∗
Dom,Rng(0, M)

procedure Pi(X)

Ret Si(X)

Game PRIOF,S

Figure 2: Games CONS, PRO, and PRIO used to define indifferentiability for cryptographic func-
tions. Here Pi is defined for all i ∈ [1 .. l] where l is the number of (idealizable) primitives used by
the cryptographic function C.

jections). We will write fi = RFDom,Rng(i, ·) or fi = RF
∗
Dom,τ (i, ·) or Ii = RI

∗
Dom,τ (i, ·) to identify

a subroutine that works as specified above, sometimes omitting (i, ·) when only discussing a single
instance. We will write RFDom,r if Rng = {0, 1}r and RI

∗
d,τ if Dom = {0, 1}d. A random oracle is a

random function that is publically accessible by all parties. Similarly a random injection oracle is
a random injection that is publically accessible by all parties.

PROs and PRIOs. The notion of indifferentiability [22] is a generalization of conventional in-
distinguishability [17]. It facilitates reasoning about the ability of constructions to emulate some
idealized functionality (e.g., a random oracle) in settings where the construction itself utilizes public,
idealized components (e.g., an ideal cipher or fixed-input-length (FIL) random oracle). We adapt
the formalization of indifferentiability from [12, 2] (to a code-based games setting) to formalize
definitions of security for pseudorandom oracles and pseudorandom injective oracles.

A simulator S = (SI,S1, . . . ,Sl) is a tuple of game subroutines. The (optional) routine SI will
be used for initialization (whenever omitted, it is implicitly instantiated with a no-op). Routines
S1, . . . ,Sl implement various oracle functionalities. Note that a simulator S will be used within a
game, and thus maintains state across oracle calls. Moreover, each subroutine’s variables (being
global) are accessible by the other subroutines. Note however, that we require that S be defined
independently of any particular game it is used within, meaning that it cannot directly access the
rest of the enclosing game’s variables.

Let F = (K, F,Dom,Rng , τ) be a cryptographic function and S = (SI,S1, . . . ,Sl) be a simu-
lator. We assume that the number of (black-box) primitives used by F and the number of oracles
implemented by S are equal (to l). Figure 2 shows the games CONS and PRO. These games
expose l + 1 oracles. We define the pro advantage of an adversary A against F by

Advpro
F ,S(A) = Adv(ACONSF ,APROF,S ) = Pr

[

ACONSF ⇒ 1
]

− Pr
[

APROF,S ⇒ 1
]

.

Similarly we define the prio advantage of an adversary A against F by

Advprio
F ,S(A) = Adv(ACONSF ,APRIOF,S ) = Pr

[

ACONSF ⇒ 1
]

− Pr
[

APRIOF,S ⇒ 1
]

where game PRIO is defined in Figure 2. Note that here the simulator is allowed to choose the key
for the cryptographic function. This weakening of the security model (as compared to having the
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initialization choose it) is necessary for our proof of the TE construction in Section 7.

3 The MCM Construction

Fix numbers η > 0 and τ ≥ 0 and L > 0. Let H = (KH , H,MH , η) be a cryptographic func-
tion for MH = {0, 1}≤L (e.g. L might be 264). Let M = {0, 1}≤L′

for L′ = L − τ . Let E1 =
(K1, E1,M,MH , τ) be an injective cryptographic function mapping, with stretch τ , points inM to
points in MH . Let E2 = (K2, E2, η, η + τ, τ) be an injective cryptographic function mapping, with
stretch τ , points in {0, 1}η to points in {0, 1}η+τ . Then MCM[E1, H, E2] = (K,H,M, η+τ) is the con-

struction that works as follows. The key generation algorithm K runs k1
$
← K1 ; k

$
← KH ; k2

$
← K2

and returns (k1, k, k2). Hashing for key K = (k1, k, k2) and message M ∈M is computed by

HK(M) = E2(k2, H(k, E1(k1, M))) .

Overloading our notation, if I1 = RI
∗
M,τ (1, ·) and I2 = RI

∗
η,τ (2, ·) then MCM[I1, H, I2] = (KH ,H,M,

η + τ) is the cryptographic function with key generation algorithm equivalent to that of H and
hashing defined by

H(k, M) = I2(H(k, I1(M)))

where computation is done using oracle access to I1 and I2. Notice that τ is also the number of bits
beyond η needed to hold an MCM hash value. Ideally τ = 0, in which case E2 would necessarily be
a permutation. We have the following theorem, which states that H inherits the collision-resistance
of H.

Theorem 3.1 Fix η > 0, τ ≥ 0, L > 0, and let M = {0, 1}≤L−τ and MH = {0, 1}≤L. Let
H = (KH , H,MH , η) be a cryptographic function and let E1 = (K1, E1,M,MH , τ) and E2 =
(K2, E2, η, η + τ, τ) be injective cryptographic functions. Let MCM[E1, H, E2] = (K,H,M, η + τ).
Let A be an adversary that runs in time t and outputs messages each of length at most µ. Then
there exists an adversary B such that

Advcr
H(A) = Advcr

H(B)

where B runs in time t′ ≤ t + 2(cµ + TimeE1(µ)) for an absolute constant c. �

Proof: Let B be the adversary that behaves as follows. On input key k it runs k1
$
← K1 and

k2
$
← K2, sets K ← (k1, k, k2), and runs A(K). Adversary A outputs two messages (X, X ′).

Then B outputs (E1(k1, X), E1(k1, X
′)). We have that if H(K, X) = H(K, X ′) then because E1

and E2 are injections, necessarily H(k, E1(k1, X)) = H(k, E1(k1, X
′)). Adversary B runs in time

t′ ≤ t + 2(cµ + TimeE1(µ)) where c is an absolute constant.

We point out that similar theorems can be given for several other hash function properties, including
target collision-resistance (TCR, or eSec), preimage resistance, and always preimage resistance
(aPre) [34]2. The next theorem captures that MCM is a PRO if both E1 and E2 are modeled as
random injections.

Theorem 3.2 Fix η > 0, τ ≥ 0, L > 0, and let M = {0, 1}≤L−τ and MH = {0, 1}≤L. Let
H = (KH , H,MH , η) be a ∆-regular cryptographic function, I1 = RI

∗
M,τ (1, ·), and I2 = RI

∗
η,τ (2, ·).

2Although it is unclear how one would prove that MCM preserves the other notions from [34], specifically every-
where preimage resistance (ePre), second-preimage resistance (Sec) and always second-preimage resistance (aSec).
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Let MCM[I1, H, I2] = (KH ,H,M, η + τ). Let ν be the minimal message length in M. Let A be
an adversary that runs in time t and makes at most (q0, q1, q2) queries to its three oracles with the
maximal query length being µ bits. Let q = q0 + q1 + q2. Then there exists an adversary B such that

Advpro
H,S(A) ≤ Advcr

H(B) + q2

(

1

2η
+

1

2ν+τ
+ ∆

)

(1)

where the simulator S is specified in Figure 3. Let c be an absolute constant. Then, S runs in time
tS ≤ cµ(q1TimeH(µ) + (q1 + q2) log q1) and makes at most min{q1, q2} oracle queries. Adversary B
runs in time at most tB ≤ t + c′µ(qTimeH(µ) + q log q). �

As long as E1 and E2 are PRIOs we can securely replace them by actual random injections (as per
the composition theorem of [22], though see Section 8). Then, Theorem 3.2 states that no adversary
can differentiate between a random oracle and the construction unless it is given sufficient time to
break the collision-resistance of H, allowed to make approximately 2(min{η,ν+τ})/2 queries, or H is
not sufficiently close to regular for all but a negligible fraction of the keys. Here ν could in fact
be small, since this is the minimal message length in the domain of our hash function (and we’d
certainly want to include short messages). However, in practice, H will have some minimal message
length νH (e.g., the blocksize of an underlying compression function) to which short messages would
necessarily be padded anyway. Thus, H can ‘aggressively’ pad short strings to a minimal length
ν = νH − τ , recovering our security guarantee. The proof of Theorem 3.2 is given in Section 5.

4 Insecurity of Other Approaches

Here we give just a brief investigation of several alternative approaches to MCM. In all cases, either
the resulting object is not provably collision-resistant in the standard model or not provably a PRO
in an ideal model.

Using existing blockcipher-based hash functions. Let E: {0, 1}n ×{0, 1}n → {0, 1}n be a
blockcipher, modeled as ideal. Let f be a 2n-bit to n-bit compression function. Fix some suitable
domain extension transform, for example Merkle-Damg̊ard with a prefix-free encoding. That is
H(M) = f+(g(M)), where f+(M1 · · ·Mm) is equal to Ym defined recursively by Y0 = IV (some
constant) and Yi = f(Yi−1, Mi), and g: {0, 1}∗→({0, 1}n)+ is a prefix-free padding function. For
simplicity let g(M) simply split M into blocks of n−1 bits (M having been appropriately padded),
and then appending a zero to each block except the last and appending a one to the last block. If
f is one of the twenty group-1/2 schemes from [5], then H is collision-resistant in the ideal cipher
model. Moreover, a recent paper by Chang et al. [10] shows that sixteen of these twenty yield a
PRO H.

However as soon as one leaves the ideal cipher model, H is not provably CR. For example let
E′ be the blockcipher defined as follows:

E′(K, M) =

{

M if K = 0k

E(K, M) otherwise
.

where, now, E is no longer ideal. Let f(Yi−1, Mi) = E′(Mi, Yi−1)⊕Yi−1. We can see that an
adversary can trivially find collisions against H built using E′. This is true even though E′ is
a good pseudorandom permutation (the usual standard model security property of blockciphers)
whenever E is also.3

3Hopwood and Wagner noted (in postings on sci.crypt) that one could exhibit good PRPs that would make finding
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Removing injectivity requirements. If either E1 or E2 are not injective, then the MCM

construction loses its provable collision-resistance. Assuming they are built using blockciphers (as
we suggest), then one can, in spirit similar to the counter-example above, construct a collision
resistant function H ′ and a good PRP E′ that, when utilized in MCM, would lead to a trivial
collision.

Note that one might imagine replacing E1 and E2 with objects that are not injective, yet have
some other standard model guarantees to ensure provable collision-resistance in MCM. Short of
establishing their collision-resistance, its not clear what properties could achieve this goal. Addi-
tionally, this approach would seem to violate the separation of design tasks intrinsic to the MCM

approach.

Omitting E1 from MCM. If one omits the first “mixing” step E1 of MCM, then the construction
no longer results in a PRO. This result is essentially equivalent to the Coron et al. insecurity
result regarding the composition of a CR and one-way function H with a random oracle [12], but
we state a version of it here for completeness. Let H = CM[H, I2] be this modified construction
for I2 = RI

∗
η,η+τ , i.e. H(M) = I2(H(M)). Now we show that H is easily differentiable from a

true random oracle R = RFMH ,η+τ . Let A be an adversary that queries it’s first oracle on a
uniformly selected message M ∈ MH of some length ℓ. Let the returned value be C. Now the
adversary queries its second oracle (being either I2 or a simulator) on HK(M). Let the returned
value be C ′. If C = C ′ then A returns one, guessing that it’s interacting with the construction.
Otherwise it returns zero, guessing that it’s interacting with the true random oracle. We have that
Pr

[

AH,I2⇒1
]

= 1. On the other hand, Pr
[

AR,S⇒1
]

is bounded by the advantage of another
adversary (related to the simulator) in breaking the one-wayness of H; essentially, the simulator is
unable to query R on M without inverting HK(M).

Allowing E1, E2 to be invertible. Our formalization of PRIOs ensure that constructions meet-
ing the goal are not invertible. Thus, objects that are invertible do not meet the goal. It remains
an open question whether MCM is, in fact, secure under easy-to-invert mixing steps.

5 Proof of Theorem 3.2

The simulator. Let R = RFM,η+τ (0, ·) be a random oracle. Figure 3 depicts a simulator S =
(SI,S1,S2). The initialization subroutine SI just records the key for H. The subroutine S1

implements a random injection for bit strings in M. The subroutine S2, when queried on bit
string Y ∈ {0, 1}η, checks if S1 already maps a string M to a preimage of Y under Hk. If such
an M exists, then the simulator queries R on M and the output of S2(Y ) is programmed to match
the value returned by R. Otherwise, a random string of length η + τ is returned.

We have that S makes at most min{q1, q2} queries to its oracle when run in conjunction with
any pro adversary making at most (q0, q1, q2) queries to its oracles. (We take the minimum because
the simulator will query its oracle only when two queries by the adversary to its second and third
oracles are associated appropriately.) The simulator’s S1 subroutine requires time proportional to
TimeH(µ) + log q1. (This is the time needed to compute Hk, to implement the random injection,
and the time to build the YtoM table.) The simulator’s S2 subroutine requires time proportional to
log q1 (this is the time needed to do lookups in YtoM). Thus, tS ≤ cµ(TimeH(µ) ·q1 +(q1 +q2) log q1)
for c a small, absolute constant.

The proof. The proof is captured by two main lemmas. The first lets us simplify the simulator by
showing that we can focus on a certain class of adversaries without loss of generality. The second

collisions in the twenty functions [5] trivial.
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subroutine SI(k′):

k ← k′

subroutine S1(M)

X ← RI
∗
M,τ (1, M)

YtoM[Hk(X)]←M

Ret X

subroutine S2(Y )

If YtoM[Y ] 6= ⊥ then

Ret R(YtoM[Y ])

Ret Z
$
← {0, 1}η+τ

subroutine SSI(k′)

k ← k′

subroutine SS1(M)

Ret X ← RI
∗
M,τ (1, M)

subroutine SS2(Y )

Ret Z
$
← {0, 1}η+τ

Figure 3: (Top) Simulator S = (SI,S1,S2) used in the proof of Theorem 3.2. The simulator
expects access to a subroutine R = RFM,η+τ , which implements a random oracle. (Bottom) The
simplified simulator SS = (SSI,SS1,SS2).

lemma bounds the probability of success of any pro-adversary in this class against the simplified
simulator.

Let the simplified simulator SS = (SSI,SS1,SS2) be defined as shown in Figure 3. Here
SS1 implements a random injection and SS2 always returns a string of random bits. (Recall that
pointless queries are disallowed, so SS2 need not perform consistency checks.) Note that the key
received by the simulator in SSI is never actually used, so we could technically dispense with SSI
completely.

Let A be any pro adversary against H that makes at most q queries. Consider the query
transcript (ty1, Q1, R1)A, . . . , (tyt, Qt, Rt)A that results from running A within game CONSH or
PROH,S . For 1 ≤ i ≤ t, tyi ∈ {0, 1, 2} specifies to which oracle (numbered left to right) the ith
query was made, the query being Qi ∈ M ∪ {0, 1}ν , with response Ri ∈ MH ∪ {0, 1}ν+τ . We
show that it is sufficient to consider an adversary A which is restricted in the types of oracle
queries it makes. Let a construction-respecting adversary be such that the transcript resulting in
its interaction with any triple of oracles does not have entries (1, Qi, Ri) and (2, Qj , Rj) with i < j
and Qj = Hk(Ri). In particular, this means that such an adversary never queries the second oracle
on a value, gets the response, hashes it with Hk, and then queries the third oracle on the resulting
value. Such a pair of queries will be called construction disrespecting.

Lemma 5.1 Let A be a pro adversary against H running in time at most t and making at most q
queries to all of its oracles with the combined length of all queries at most µ. Then there exists a
construction-respecting adversary B such that

Advpro
H,S(A) = Advpro

H,SS(B)

where B runs in time at most tB ≤ t + cµ(q · TimeH(µ) + q log q) and makes at most q queries.

Proof: We construct an adversary B that runs A and incorporates the checks done by simulator
S for various oracle queries. Namely let B, given oracles O′

0,P
′
1,P

′
2 and run on input k, work as

follows. It runs A(k) and answer A’s oracle queries as follows.

query O0(M):

Ret O′
0(M)

query P1(M):

X ← P ′
1(M)

YtoM[Hk(X)]←M
Ret X

query P2(Y ):

If YtoM[Y ] 6= ⊥ then
Ret O′

0(YtoM[Y ])
Ret P ′

2(Y )

The table YtoM is initially everywhere bottom. When A halts with output bit b, adversary B
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outputs b. Adversary B runs in time t + cµ(qTimeH(µ) + q log q) where c is an absolute, small
constant and log q accounts for the time required for YtoM. We now justify that

Pr
[

ACONSH ⇒ 1
]

= Pr
[

BCONSH ⇒ 1
]

, and (2)

Pr
[

APROH,S ⇒ 1
]

= Pr
[

BPROH,SS ⇒ 1
]

. (3)

For (2) we have by construction that bothA and B behave identically untilA induces a construction-
disrespecting pair of queries. Consider the first such pair made by A, letting the resulting transcript
entries be (1, Qi, Ri)A and (2, Hk(Ri), Rj)A where i < j. If A is interacting with the oracles
(H, I1, I2) in game CONSH, then it receives responses Ri = I1(Qi) and Rj = I2(Hk(Ri)) =
I2(Hk(I1(Qi))). If, on the other hand, A is running within B (which in turn has the same oracles
(H, I1, I2)), then instead of the query (2, Hk(Ri), Rj)A, the transcript will have an entry (0, Qj , R

′
j)B

in its place. Here, Qj = Qi and, by the construction of MCM, R′
j = I2(Hk(I1(Qi))). Therefore

in both cases A receives identically distributed oracle responses. Repeating this reasoning for each
pair of construction-disrespecting queries justifies (2).

For (3) we first show that the probability that APROH,S ⇒ 1 is equal to the probability that
BPROH,S ⇒ 1. The argument is similar to the one just given. In short, consider a pair of
construction-disrespecting queries and their transcript entries (1, Qi, Ri)A and (2, Hk(Ri), Rj)A
for i < j. If A is interacting with (R,S1,S2) it receives responses Ri computed by RI

∗
M,τ (1, Qi) and

Rj = R(Qi) (because the conditional in S2 will evaluate to true for such a query). If A is running
within B, then B replaces (2, Hk(Ri), Rj)A with (0, Qj , Rj)B where Qj = Qi and Rj = R(Qi). Thus
the events occur with the same probability. Now we note that, for any construction-respecting ad-
versary B, execution of BPROH,S never causes the conditional statement in S2 to evaluate to true.
Thus we can replace S with SS, justifying (3).

Lemma 5.2 Let A be a construction-respecting pro adversary against H running in time at most t
and making at most (q0, q1, q2) queries to its oracles with the maximum query length being µ bits.
Then there exists a cr adversary B such that

Advpro
H,SS(A) ≤ Advcr

H(B) +
(q0 + q2)

2

2η+τ
+

(q0 + q1)
2

2ν+τ
+ (q0 + q1)q2

(

1

2η
+ ∆

)

(4)

where B runs in time at most tB ≤ t + cµ(q0 ·TimeH(µ) + (q0 + q1) log(q0 + q1) + q0 log q0 + q2).

Proof: First we lift the injectivity constraint of the third oracle, i.e. I2, in game CONSH, incurring
a standard birthday-bound loss. That is let CONS′

H be the game that is the same as CONSH except
that oracle P2 now implements a random function RFη,η+τ (2, ·). Then,

Pr
[

ACONSH ⇒ 1
]

≤ Pr
[

ACONS′
H ⇒ 1

]

+
(q1 + q3)

2

2η+τ
(5)

where here the numerator of the last term is the maximum number of times a range point of I2
is sampled. Game G0 (Figure 4, boxed statements included) implements CONS′

H. The table F

is used to build the random function RFη,η+τ (2, ·). (The consistency checks on lines 014 and 033
ensure that game G0 implements a random function for the third oracle.) The random injection
I1 is implemented directly using a subroutine RI

∗
M,τ (1, ·) called on lines 011 and 021. This justifies

that

Pr
[

ACONS′
H ⇒ 1

]

= Pr
[

AG0 ⇒ 1
]

. (6)
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procedure Initialize

000 Ret k
$
← KH

procedure O0(M)

010 j ← j + 1; M j ←M

011 Xj ← RI
∗
M,τ (1, M j)

012 Y j ← Hk(X
j); Cj $

← {0, 1}η+τ

013 If F[Y j ] 6= ⊥ then

014 bad← true; Cj ← F[Y j ]

015 Ret F[Y j ]← Cj

procedure P1(M) G0 G1

020 j ← j + 1; M j ←M

021 Xj ← RI
∗
M,τ (1, M j)

022 Ret Xj

procedure P2(Y )

030 j ← j + 1; Y j ← Y

031 Cj $
← {0, 1}η+τ

032 If F[Y j ] 6= ⊥ then

033 bad← true; Cj ← F[Y j ]

034 Ret F[Y j ]← Cj

procedure Initialize

200 Ret k
$
← KH

procedure O0(M)

210 j ← j + 1; M j ←M

211 Xj ← RI
∗
M,τ (1, M j)

212 Y j ← Hk(X
j)

213 If F[Y j ] 6= ⊥ then bad← true

214 F[Y j ]← 1

215 Ret Cj $
← {0, 1}η+τ

procedure P1(M) G2

220 j ← j + 1; M j ←M

221 Xj ← RI
∗
M,τ (1, M j)

222 Ret Xj

procedure P2(Y )

230 j ← j + 1; Y j ← Y

231 If F[Y j ] 6= ⊥ then bad← true

232 F[Y j ]← 1

233 Ret Cj $
← {0, 1}η+τ

procedure Initialize

300 Ret k
$
← KH

procedure O0(M)

310 j ← j + 1; M j ←M

311 Xj ← RI
∗
M,τ (1, M j) 8RF

∗
M,τ (1, M j)8

312 Y j ← Hk(X
j)

313 If F[0, 0, Y j ] 6= ⊥ then bad1← true

314 If F[0, 2, Y j ] 6= ⊥ then bad2← true

315 F[0, 0, Y j ]← F[0, 2, Y j ]← 1

317 Ret Cj $
← {0, 1}η+τ

procedure P1(M) G3 8G48

320 j ← j + 1; M j ←M

321 Xj ← RI
∗
M,τ (1, M j) 8RF

∗
M,τ (1, M j)8

322 Y j ← Hk(X
j)

323 If F[1, 2, Y j ] 6= ⊥ then bad2← true

324 Ret Xj

procedure P2(Y )

330 j ← j + 1; Y j ← Y

331 If F[0, 2, Y j ] 6= ⊥ then bad2← true

332 F[0, 2, Y j ]← F[1, 2, Y j ]← 1

333 Ret Cj $
← {0, 1}η+τ

Figure 4: Games used in the proof of Theorem 3.2. Initially j = 0 and the table F is everywhere ⊥.

Game G1 (Figure 4, boxed statements omitted) is exactly like G0 but with the boxed statements
removed. In particular this means that O0 and P2 always return random bits. Notice that queries
to O0 can determine points under the injection on line 011 (something not possible via a query to
the oracle R); however, the adversary learns nothing about these points and therefore they appear
fresh if later returned by an P1 query. Similarly, O0 queries can set values in the table F on line
015, but these values do not impact any later random variables in the game (because of the boxed
statements are omitted in game G1). Thus, G1 implements the oracles (R,SS1,SS2), i.e. game
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PROH,SS , and so

Pr
[

APROH,SS ⇒ 1
]

= Pr
[

AG1 ⇒ 1
]

. (7)

The games are also identical-until-bad and so the fundamental lemma of game-playing [4], together
with (5), (6), and (7), justifies

Advpro
H,SS(A) = Pr

[

ACONSH ⇒ 1
]

− Pr
[

APROH,SS ⇒ 1
]

≤ Pr
[

ACONS′
H ⇒ 1

]

− Pr
[

APROH,SS ⇒ 1
]

+
(q1 + q3)

2

2η+τ

= Pr
[

AG0 ⇒ 1
]

− Pr
[

AG1 ⇒ 1
]

+
(q1 + q3)

2

2η+τ

≤ Pr
[

AG1 sets bad
]

+
(q1 + q3)

2

2η+τ
(8)

Game G2, shown in Figure 4, modifies game G1 in the following ways. The random sampling of
Cj in O0 and P2 are deferred until the end of the procedures. Instead of filling the table F with
values, positions are just marked with a 1 to represent having been defined. It is clear that

Pr
[

AG1 sets bad
]

= Pr
[

AG2 sets bad
]

. (9)

Game G3 (Figure 4, boxed statements included and barred statements omitted) differs from G2 in
that we replace bad with two distinct flags bad1 and bad2. The former is set when two Y j values
defined in O0 collide (line 313). The latter is set if a Y j value in O0 and a Y j value in P2 collide
(lines 314 and 331) or if a Y j value chosen in P1 collides with a Y j previously chosen in P2 (line
323). We have that if executing AG2 on a sequence of random coins leads to bad being set, then
executing AG3 on the same random coins will necessarily lead to either bad1 or bad2 being set.
(Note that more sequences of random coins could result in AG3 setting one of the two flags, because
of the line 323.) Thus

Pr
[

AG2 sets bad
]

≤ Pr
[

AG3 sets bad1 ∨ AG3 sets bad2
]

(10)

≤ Pr
[

AG3 sets bad1
]

+ Pr
[

AG3 sets bad2
]

. (11)

We can bound the probability of bad1 being set as follows. We build an adversary B which breaks
the collision-resistance of H whenever bad1 is set in G3, meaning

Pr
[

AG3 sets bad1
]

= Advcr
H(B) . (12)

Let B be the adversary that, on input k, runs A(k) and answers A’s oracle queries as in G3. If
ever two values Xi 6= Xj are computed such that Hk(X

i) = Hk(X
j) then B returns (Xi, Xj). To

justify (12), first note that the distributions of random variables in the process k
$
← KH ; B(k) and

in AG3 are the same. Suppose B forces bad1 to be set. Then two values Y i and Y j collide for some
i 6= j. The fact that A never makes pointless queries implies that the corresponding queries M i

and M j made to O0 by A are not equal. In turn the injectivity of RI
∗
M,τ (1, ·) gives that Xi 6= Xj .

To bound the probability of bad2 being set, we first perform one more game transition. Game
G4 (Figure 4, boxed statements replaced by barred statements) behaves exactly like G3 except we
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remove the injectivity of the first mixing step. We relate the games G3 and G4 by the inequality

Pr
[

AG3 sets bad2
]

≤ Pr
[

AG4 sets bad2
]

+
(q1 + q2)

2

2ν+τ
(13)

which can be justified by a simple birthday argument where q1 + q2 is the maximum number of
range points sampled by RI

∗
M,τ (1, ·) in G3.

Now we bound the probability that bad2 is set in G4. We first argue that the probability of bad2

being set is unrelated to the adaptivity of A and the choice of messages queried by A to P2. If bad2

is set on line 314 or 323, it is because of a fresh random choice of Y about which the adversary
knows nothing. If bad2 is set on line 331, then the adversarially-chosen value Y collides with a
value Y previously chosen. However, because A is construction-respecting it has no information
about Y at the time of the P2 query. (The only way to learn such a point would be to query P1

before the bad2-setting query to P2.). Thus even in this case it’s a fresh random value.

We can therefore bound the probability of bad2 being set in G4 by the probability of success

in the following combinatorial game. Pick a key k
$
← KH . Fix any q3 points y1, . . . ,yq3 from

{0, 1}ν . Let Y = {y1, . . . ,yq3}. Fix any q1 + q2 numbers l1, . . . , lq1+q2 such that {0, 1}li ∈MH for

1 ≤ i ≤ q1 + q2. Finally, choose values Xi
$
← {0, 1}li for 1 ≤ i ≤ q1 + q2. The combinatorial game

is “successful” if there exists i, j such that Hk(Xi) = yj . In terms of our proof, A gets to pick the
(optimal) y values and l values and these will be its P2 queries and the lengths of it’s O0 and P1

queries, respectively. We have that

Pr
[

AG4 sets bad2
]

≤ Pr
[

Hk(X
i) = Y j for some i,j

]

≤

q0+q1
∑

i=1

∑

k∈KH

Pr [Hk(Xi) ∈ Y |K = k ] · Pr [K = k ]

=

q0+q1
∑

i=1

∑

k∈KH

Pr





q3
∨

j=1

Xi ∈ PreIm(k, li,yj)



 · pk

≤

q0+q1
∑

i=1

∑

k∈KH

q3
∑

j=1

Pr [Xi ∈ PreIm(k, li,yj) ] · pk

=

q0+q1
∑

i=1

q2
∑

j=1

∑

k∈KH

|PreIm(k, li,yj)|

2li
· pk

≤

q0+q1
∑

i=1

q2
∑

j=1

∑

k∈KH

(

2li−η

2li
+ δ(k, li,yj)

)

· pk

=

q0+q1
∑

i=1

q2
∑

j=1





2li−η

2li
+

∑

k∈KH

pk · δ(k, li,yj)





≤
(q0 + q1)q3

2η
+

q0+q1
∑

i=1

q2
∑

j=1

∑

k∈KH

pk ·∆k

≤
(q0 + q1)q3

2η
+ (q0 + q1)q2∆
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where pk = Pr[k = k : k
$
← KH ]. Combining the inequality above with (8), (9), (10), (11), (12),

and (13) implies equation (4), the advantage relation given in Lemma 5.2.

To finish the proof of the lemma, we analyze the resources used by the adversary B. Adversary B
runs AG3. Note, however, that lines 314, 315, 323, 331, and 332 of G3 can be omitted since
these only deal with setting bad2. Lines 311 and 321 (implementing the random injection) require
at most (q0 + q1) log(q0 + q1) time since q0 + q1 points are sampled. Line 312 requires at most
q0 ·TimeH(µ) time over the course of the game. Line 313 will require at most q0 log q0 time. Thus,
tB ≤ t + cµ(q0 · TimeH(µ) + (q0 + q1) log(q0 + q1) + q0 log q0 + q2) for a small, absolute constant c.

6 Secure Mixing Steps: the TE Construction

We now turn to showing the feasibility of instantiating the mixing steps E1 and E2 starting from
blockciphers. We note that our eventual construction also works starting from a suitable fixed-
input-length random oracle. This would have slight theoretical benefits because it is unknown
whether the ROM and ICM are equivalent [16]. However, one might want to utilize blockciphers
and the proofs are only rendered more complex when considering invertible components, thus we
stick to the former.

We specify a construction that is a PRIO, i.e. indifferentiable from a random injection. Un-
der the composability guarantees of the indifferentiability framework [22] (though see Section 8),
the security of schemes (e.g., MCM) proven secure while modeling components as ideal injections
remains when these objects are replaced by PRIOs.

At first glance the notion of a PRIO might appear to be essentially equivalent to that of a
pseudorandom oracle. The distinction is somewhat analogous to the difference between PRPs and
PRFs. Indeed, random injections and random functions behave similarly up to a birthday-bound,
which implies that any PRIO is a good PRO and vice versa. But the more important (and subtle)
concern is that the closeness of the definitions might lead one to the conclusion that there are trivial
constructions for our mixing steps, utilizing any PRO. However, this would be entirely insufficient
for our application because, while a PRO appears injective with high probability, it is not necessarily
injective by construction. Once we step outside of idealized models we would then have a standard
model object that does not suffice for the collision-resistance guarantee of Section 3. So for clarity
of exposition and analysis, we found it useful to draw a distinction between the two objects.

Building a PRIO that is injective by construction from a blockcipher (modeled as ideal) proves
a challenging task. Our object must be publically computable, so no secret keys are allowed. A
minimum intuitive security requirement for the object is that the outputs resulting from applying
it to two messages that differ in a single bit must appear to have been chosen independently at
random, even when adversaries have direct access to the underlying blockcipher. This rules out
the straightforward use of existing blockcipher modes of operation, such as CBC, with a public key
and fixed IV or even the more complex variable-length enciphering schemes (e.g. [20, 19, 30, 18]).

The TE construction. Our construction utilizes two blockciphers and a trapdoor one-way
permutation. Note that in the ideal cipher model one can easily derive two ciphers from a single
cipher Ê at the cost of one bit of keying material: E(K, M) ≡ Ê(1 || K, M) and E′(K, M) ≡
Ê(0 || K, M). For simplicity then we assume access to two ciphers E: {0, 1}k × {0, 1}n→{0, 1}n

and E′: {0, 1}k × {0, 1}n→{0, 1}n. The cipher E will be used in a blockcipher mode much like
CTR mode encryption. The cipher E′ will be utilized to build a function F for generating tags
that will be (with high probability) unique to each input message. A message’s tag then serves as
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algorithm Ef (M):

T ← F(M)
M1M2 · · ·Mm

n←M
For i = 1 to m do

Yi ← E(T, 〈i〉)⊕Mi

Y0 ← f(T )
Ret Y0 || Y1 || · · · || Ym

algorithm F(M):

M1M2 · · ·Ml
n← PadPF(M)

X0 ← IV 1
For i = 1 to l do

Xi ← E′(Mi, Xi−1)⊕Xi−1

Ret Xl

	 
�
�  � �� � ���� ��� ����


� 
�
�� �� �� ��

Figure 5: A description of TE[E,F ] = (Ff , E ,M,M+, k). (Top) Algorithm Ef and the description
of function F . (Bottom) A diagram of Ef applied to a message M for which |M | = 3n.

the key for a CTR-mode-like enciphering step. In fact our function F will realize a blockcipher-
based construction of a pseudorandom oracle, originally suggested in [12] and proven secure in [10].
Finally, a trapdoor one-way permutation f is applied to the tag value, the result being the first
portion of the output. This step ensures the injectivity of the construction, while the one-wayness
“hides” the tag. We will require the trapdoor property in the proof.

LetM = {0, 1}≤L′
where L′ = n·2128. LetM+ =M || {0, 1}k. Let F be a trapdoor permutation

generator. Then we define the cryptographic function TE[E,F ] = (Ff , E ,M,M+, k) as follows.

The algorithm Ff runs (f, f−1)
$
← F(1k) and outputs f . The algorithm Ef and a realization of F

are specified in Figure 5. Used there is a prefix-free padding function PadPF: {0, 1}∗→({0, 1}n)+.
This means that for any two messages M, M ′ ∈ {0, 1}∗ with |M | 6= |M ′| the string PadPF(M) is
not a prefix of PadPF(M ′). (Such functions are simple, one example is to unambiguously pad M to
sequence of n−1 bit blocks. Then append a zero to all the blocks except the last, to which a one is

appended.) Note that the security of TE relies on adversaries not knowing f−1.4 If E
$
← BC(k, n)

and F = RFM,k, we write EE,F (M) to denote computing E on message M using oracle access to E
and F .

The security of TE. First we point out that our realization of F above is a PRO, based on the
proof in [10]. The composability guarantees of the indifferentiability framework established in [22]
then allow us to just treat F as a random oracle. As per the definition in Section 2, we allow the
simulator in game PRIO to choose the trapdoor one-way permutation f used in TE. Namely, the

4Note also that k might be too small for a secure instance of F, in which case one might have to use F repeatedly
to ensure a full domain point of f is generated.
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subroutine SI

(f, f−1)
$

← F(1k)

Ret f

subroutine SE(K, C)

If EE[K, C] 6= ⊥ then Ret EE[K, C]

Ret U
$

← {0, 1}n

subroutine SD(K, U)

If DD[K, U ] 6= ⊥ then Ret DD[K, U ]

Ret C
$

← {0, 1}n

subroutine SF (M)

M1 · · ·Mm
n←M

Y0 · · ·Ym
k,n
←− I(M)

Γ← f−1(Y0)

For 1 ≤ i ≤ m do

EE[Γ, 〈i〉n]←Mi ⊕ Yi

DD[Γ, Mi ⊕ Yi]← 〈i〉n

Ret Γ

Figure 6: The simulator S = (SI,SE ,SD,SF ) used in the proof of Theorem 6.1.

Initialize procedure of PRIOE,S (for some simulator S = (SI,S1,S2,S3)) runs SI and returns its

return value. In game CONSE , Initialize directly runs (f, f−1)
$
← F(1k) and returns f .

Our simulator is shown in Figure 6, where I = RI
∗
M,k. Recall that the notation M j

1 · · ·M
j
m

n←M
for some string M means, informally, to parse M into as many n-bit blocks as possible, putting

the remaining bits in a final string M j
m. Likewise Y j

0 · · ·Y
j
m

k,n
←− I(M j) for some string M j means

parse the string returned by I into a k-bit prefix, as many n-bit blocks as possible, and putting
the remaining bits into a final string Y j

m.
The next theorem captures the main result of this section.

Theorem 6.1 Fix k ≥ 0 and n ≥ 0. Let E
$
← BC(k, n) be an ideal cipher with inverse D, let

F = RFM,k, and let F be a trapdoor permutation generator. Let TE[E,F ] = (Ff , E ,M,M+, k) be
as specified above. Let A be an adversary that asks at most (q0, q1, q2, q3) oracle queries, each of
length at most µ bits, and runs in time at most t. Then there exists an adversary B such that

Advprio
E,S (A) ≤ Advspowf

F,k (B) +
(q0σ + q1 + q2)

2

2n
+

(q0 + q3)
2

2k
.

where σ = ⌈µ/n⌉. Let q = q0 + q1 + q2 + q3. The simulator S, defined in Figure 6, runs in time
at most tS ≤ cµ(q3Timef−1(1k) + q log q) for some absolute constant c and makes q3 queries to
its oracle. Adversary B runs in time t′ ≤ t + c′µ((q1 + q2)Timef (1k) + q log q) for some absolute
constant c′ and makes at most (q0 +q3, q3) queries to its first oracle and second oracles respectively.

A proof of the theorem is provided in Section 7, here we just provide a brief proof sketch. An
adversary is given either oracles implementing the tuple of algorithms (E , E, D,F) or (I,SE ,SD,SF )
where I = RI

∗
M,k. Recall that D is the oracle implementing the inverse of E. Intuitively the

structure of TE ensures that an adversary, attempting to discover information about the tag and
via it the random pad created for some message M , must reveal M to the simulator (by querying
the fourth oracle). Knowing M , the simulator can ‘program’ the random pad to be consistent with
output of the ideal injection I.

The simulator will fail if either of two events occurs. The first event corresponds to when two
tags collide in the course of simulating the construction. If this happens the CTR mode must
generate the same pad, and no longer hides relationships between input and output bits. Such an
event will occur with low probability because F is a RO. The second kind of event is if the adversary
infers a tag value without utilizing its fourth oracle (F or SF ). If it can do so, then it can query its
second (E or SE) or third oracle (D or SD) before the simulator knows how the responses should be
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chosen. This event should happen with low probability because it requires the adversary inverts f
on some image returned as the first k bits of a query to the first oracle. Since neither event occurs
with high probability, we achieve a bound on the adversary’s ability to differentiate the two sets of
oracles.

Discussion. One might wonder if we can dispense with the one way permutation. In fact it is
requisite: omitting it would result in a construction easily differentiable from a random injective
oracle. An adversary could simply query its first oracle on a random message M1, receiving T || Y1.
Then the adversary could query its third oracle (either D or SD) on (T, Y1). At this point the
simulator has no knowledge about M1 and will therefore only respond correctly with low probability.

The TE construction is a proof-of-concept: it is the first object to achieve our new goal of being
simultaneously constructively injective and indifferentiable from a random injection. On the other
hand it has several drawbacks when considering it for practical use. It is length-increasing (outputs
are larger than the inputs by at least the number of key bits of the underlying blockcipher). This
means that when utilized in MCM the output hash values will be larger compared to the outputs
of the provably CR function H. Further, the construction requires two passes over the data and
the application of a trapdoor permutation. In settings where speed is not essential (e.g., contract
signing), the extra expense of using TE over that already incurred by hashing with a standard-
model, provably collision-resistant function H might not be prohibitive. All this said, the TE

construction does show that the MCM approach is feasible. We hope that future research will
surface improvements.

7 Proof of Theorem 6.1

Overview. Our proof is broken down into several lemmas. Lemma 7.1 shows how to move the
CONSE game closer to the PRIOE,S game, without significant loss. Lemma 7.2 works in the other
direction, modifying the PRIOE,S game to move it closer to CONSE . These lemmas culminate in
showing that the PRIO security experiment is captured by the difference between two identical-
until-bad games G0 and G1. After applying the fundamental lemma of game-playing [4], the rest
of the proof involves bounding the probability that bad is set in these games. This last is captured
by Lemma 7.3, and involves several more game transitions from G1 to a setting in which one can
show that bad is set only if the adversary can invert f on some point. (Recall that in Section 2 we
discuss that a one-way function is also a some-point one-way function.)

For the rest of this section, let k ≥ 0 and n ≥ 0 be numbers. Let A be a prio adversary against
TE[E,F ] = (Ff , E ,M,M+, k) for E = ICk,n, F = RFM,k. Assume A makes at most (q0, q1, q2, q3)
queries to its four oracles. Let µ be the maximal length of message queried by A and define
σ = ⌈µ/n⌉. The simulator S = (SI,SE ,SD,SF ) is defined in Figure 6.

We first state the separate lemmas and use them to conclude, then prove each in turn.

Lemma 7.1 Adv(ACONSE ,AG0) ≤ (σq0 + q1 + q2)
2/2n+1

�

Lemma 7.2 Adv(AG1,APRIOE ) ≤ (q0 + q3)
2/2k+1

�

The above lemmas, combined with the fact that we can apply the fundamental lemma of game-
playing [4] due to G0 and G1 being identical-until-bad, give that

Advprio
E,S (A) ≤ Adv(AG0,AG1) +

(σq0 + q1 + q2)
2

2n+1
+

(q0 + q3)
2

2k+1

≤ Pr
[

AG1 sets bad
]

+
(σq0 + q1 + q2)

2

2n+1
+

(q0 + q3)
2

2k+1
. (14)
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The next lemma captures the bulk of the proof.

Lemma 7.3 There exists a spowf adversary B such that

Pr
[

AG1 sets bad
]

≤ Advspowf
F,k (B) +

(q0 + q3)
2

2k+1

and B runs in time t′ ≤ t + cµ((q1 + q2)TimeF(1k) + q log q) and makes at most q0 + q3 queries to
its PI oracle and at most q3 queries to its Inv oracle. �

Combining this last lemma with (14) implies Theorem 6.1.

7.1 Proof of Lemma 7.1

We specify a sequence of games R0 −→ R1 −→ R2 −→ R3 −→ R4 −→ R5 −→ G0 such that

Adv(ACONSE ,AR0) = 0 (15)

Adv(AR0,AR1) ≤
(σq0 + q1 + q2)

2

2n+1
(16)

Adv(AR1,AR2) = Adv(AR2,AR3) = 0 (17)

Adv(AR3,AR4) = Adv(AR4,AR5) = 0 (18)

Adv(AR5,AG0) = 0 (19)

which together imply the lemma statement. The first four games are shown in Figure 7 and
Figure 8 and game G0 is shown in Figure 10. In all games we omit explicitly showing an Initialize

procedure; in every game it just computes (f, f−1)
$
← F and returns f . We now discuss the game

transitions to justify the equations above.
Game R0 implements CONSE . The game uses two tables E and D to facilitate implementing

an ideal cipher and a table F to facilitate implementating a random oracle. Table I is built, but
never used in R0 since pointless queries are disallowed. (It will be useful in future games). We have
justified (15).

Game R1 is the same as R0 except that we omit the boxed statements, which in game R0 were
used to ensure that the ideal cipher implementation behaves as a family of permutations. In R1,
instead, domain or range points could be allowed to collide. A standard birthday-bound argument
then justifies (16). (The boxed statements only execute should a randomly selected value collide
with some small number of previously defined values.)

Game R2 is the same as R1, just explicitly omitting the conditionals and associated boxed
statements from game R1. Game R3 drops updating D in two places. This does not affect the game
execution because the values in D are only used in P2 and the restriction against pointless queries
means that P2 will never be queried on a K, U such that D[K, U ] was defined in a previous query
to P1 or P2. We have justified (17).

Game R4 changes handling of P3 queries: instead of directly sampling and recording in F, the
oracle now queries O0 on M to retrieve Y j

0 · · ·Y
j
m, and then returns f−1(Y j

0 ). The consistency
check at the beginning of O0 ensures that if a previous query to O0 by A set F[M ], then the correct
value is returned. On the other hand, R4 differs from R3 in that a query to P3 on M might set
several random variables that were not set for such a query in R3 (e.g., values in E). However, the
adversary learns nothing about these values until it makes a O0(M) or P1 query, and so choosing
them in response to the earlier query is just eager sampling. The change is therefore conservative,
meaning Adv(AR3,AR4) = 0.
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Game R5 makes two conservative changes to R4. First, the consistency checks for selection
of T in O0 are dropped. This check is now redundant because P3 no longer adds entries to F

separately and so consistency is established by the check against I at the beginning of the O0

procedure. Second, R5 adds extra consistency checks at the beginning of P1 and P2. This is
facilitated by adding the tables EE and DD, which have entries added in P3. We argue that the
modifications to P1 and P2 does not change the game’s behavior. If EE[K, C] does not equal bottom
when handling a query P1(K, C), then E[K, C] is set to EE[K, C]. This is because for EE[K, C] to
be set, P3 must have been called, and, in turn, this ensures that O0 was executed. Moreover,
the value EE[K, C] = Mi ⊕ Yi = Pi is exactly the value stored in E in O0. A similar argument
establishes that DD[K, U ] being set coincides with a consistent value already stored in D[K, U ].
These changes therefore do not change the behavior of the game, and so Adv(AR4,AR5) = 0. We
have justified (18).

Game G0 is game R5 but with a flag bad that can be set. The flag does not otherwise affect
the execution of the game, and so Adv(AR3,AG0) = 0. We have justified (19).

7.2 Proof of Lemma 7.2

We specify a sequence of games I0 −→ I1 −→ G1 such that

Adv(AI0,APRIOE,S ) ≤
(q0 + q3)

2

2k+1
(20)

Adv(AI0,AI1) = Adv(AI1,AG1) = 0 (21)

which together imply the lemma statement. Games I0 and I1 are shown in Figure 9. Game
G1 is shown in Figure 10. Procedure Initialize is not shown, in all games it simply generates

(f, f−1)
$
← F(1k) and returns f . We now discuss each game in turn to justify Equations (20)

and (21).
In game I0 procedure O0 implements a random function while P1, P2, and P3 implement the

SE , SD, and SF subroutines of the simulator S = (SI,SE ,SD,SF ). Here I0 does not explicitly
include SI, instead we allow the procedures access to f−1 as if SI was used. The only distinction,
then, between I0 and PRIOE,S is that O0 is a random function in the former and a random injection
in the latter. Game I0 also includes extra book-keeping code such asthe table E, but this does not
affect the implemented functionality. The PRP/PRF switching lemma [4] implies (20), since at
most q0 + q3 invocations of O0 occur, meaning that many bit strings of length at least k + 1 bits
are sampled.

Game I1 modifies the way game I0 implements O0. Nevertheless, the values returned by O0

in I1 are randomly chosen strings of length k + |M | for any message M queried. To see this, note
that T is selected uniformly, and by the permutivity of f this means f(T ) inherits this distribution.
Each Yi value is equal to Pi ⊕Mi where Pi is chosen randomly, so each Yi value is a random bit
string. We have justified that Adv(AI0,AI1) = 0.

Game G1 is game I1 but with a flag bad that might be set. The flag does not modify any other
variables, and otherwise the games are identical. We have justified (21).

7.3 Proof of Lemma 7.3

We proceed through a sequence of games G1 −→ G2 −→ G3 −→ G4 −→ G5 and build from game
G5 a spowf adversary B. The games are shown in Figures 10 and 11 and B is shown in Figure 12.
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procedure O0(M) * Implements E * Game R0 R1

If I[M ] 6= ⊥ then Ret I[M ]

M1 · · ·Mm
n←M

T
$

← {0, 1}k

If F[M ] 6= ⊥ then T ← F[M ]

F[M ]← T ; Φ← f(T )

for i = 1 to m do

Pi
$

← {0, 1}n

If D[T, Pi] 6= ⊥ then Pi
$

← {0, 1}n \ E[T, ·]

If E[T, 〈i〉n] 6= ⊥ then Pi ← E[T, 〈i〉n]

E[T, 〈i〉n]← Pi ; D[T, Pi]← 〈i〉n

Yi ← Pi ⊕Mi

Ret I[M ]← Φ || Y1 || · · · || Ym

procedure P1(K, C) * Implements E *

U
$

← {0, 1}n

If D[K, U ] 6= ⊥ then U
$

← {0, 1}n \ E[K, ·]

If E[K, C] 6= ⊥ then U ← E[K, C]

E[K, C]← U ; D[K, U ]← C

Ret U

procedure P2(K, U) * Implements D *

C
$

← {0, 1}n

If E[K, C] 6= ⊥ then C
$

← {0, 1}n \ D[K, ·]

If D[K, U ] 6= ⊥ then C ← D[K, U ]

E[K, C]← U ; D[K, U ]← C

Ret C

procedure P3(M) * Implements F *

If F[M ] = ⊥ then F[M ]
$

← {0, 1}k

Ret F[M ]

procedure O0(M) Game R2 R3

If I[M ] 6= ⊥ then Ret I[M ]

M1 · · ·Mm
n←M

T
$

← {0, 1}k

If F[M ] 6= ⊥ then T ← F[M ]

F[M ]← T ; Φ← f(T )

for i = 1 to m do

Pi
$

← {0, 1}n

If E[T, 〈i〉n] 6= ⊥ then Pi ← E[T, 〈i〉n]

E[T, 〈i〉n]← Pi ; D[T, Pi]← 〈i〉n

Yi ← Pi ⊕Mi

Ret I[M ]← Φ || Y1 || · · · || Ym

procedure P1(K, C)

U
$

← {0, 1}n

If E[K, C] 6= ⊥ then U ← E[K, C]

E[K, C]← U ; D[K, U ]← C * Stop updating D *

Ret U

procedure P2(K, U)

C
$

← {0, 1}n

If D[K, U ] 6= ⊥ then C ← D[K, U ]

E[K, C]← U ; D[K, U ]← C * Stop updating D *

Ret C

procedure P3(M)

If F[M ] = ⊥ then F[M ]
$

← {0, 1}k

Ret F[M ]

Figure 7: Games R0, R1, R2, and R3. The notation E[K, ·] (resp. D[K, ·]) denotes the set Y =

{Y | ∃X s.t. Y = D[K, X]}.
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procedure O0(M) Game R4

If I[M ] 6= ⊥ then Ret I[M ]

M1 · · ·Mm
n←M

T
$

← {0, 1}k

If F[M ] 6= ⊥ then T ← F[M ]

F[M ]← T ; Φ← f(T )

for i = 1 to m do

Pi
$

← {0, 1}n

If E[T, 〈i〉n] 6= ⊥ then Pi ← E[T, 〈i〉n]

E[T, 〈i〉n]← Pi ; D[T, Pi]← 〈i〉n

Yi ← Pi ⊕Mi

Ret I[M ]← Φ || Y1 || · · · || Ym

procedure P1(K, C)

U
$

← {0, 1}n

If E[K, C] 6= ⊥ then U ← E[K, C]

Ret E[K, C]← U

procedure P2(K, U)

C
$

← {0, 1}n

If D[K, U ] 6= ⊥ then C ← D[K, U ]

E[K, C]← U

Ret C

procedure P3(M)

j ← j + 1

Y
j
0 · · ·Y

j
m

k,n
←−O0(M) * sample using O0 *

Ret Γ← f−1(Y0)

procedure O0(M) Game R5

If I[M ] 6= ⊥ then Ret I[M ]

M1 · · ·Mm
n←M

T
$

← {0, 1}k; Φ← f(T ) * remove F check *

for i = 1 to m do

Pi
$

← {0, 1}n

If E[T, 〈i〉n] 6= ⊥ then Pi ← E[T, 〈i〉n]

E[T, 〈i〉n]← Pi ; D[T, Pi]← 〈i〉n

Yi ← Pi ⊕Mi

Ret I[M ]← Φ || Y1 || · · · || Ym

procedure P1(K, C)

If EE[K, C] 6= ⊥ then Ret EE[K, C] * add check *

U
$

← {0, 1}n

If E[K, C] 6= ⊥ then U ← E[K, C]

Ret E[K, C]← U

procedure P2(K, U)

If DD[K, U ] 6= ⊥ then Ret DD[K, U ] * add check *

C
$

← {0, 1}n

If D[K, U ] 6= ⊥ then C ← D[K, U ]

E[K, C]← U

Ret C

procedure P3(M)

M1 · · ·Mm
n←M

Y0 · · ·Ym
k,n
←−O0(M)

Γ← f−1(Y0)

For 1 ≤ i ≤ m do * add tables *

EE[Γ, 〈i〉n]←Mi ⊕ Yi

DD[Γ, Mi ⊕ Yi]← 〈i〉n

Ret Γ

Figure 8: Games R4 and R5.
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procedure O0(M) * Implements I * Game I0

If I[M ] 6= ⊥ then Ret I[M ]

Φ || Ỹ
$

← {0, 1}k+|M|

Ret I[M ]← Φ || Ỹ

procedure P1(K, C) * Implements SE *

If EE[K, C] 6= ⊥ then Ret EE[K, C]

Ret E[K, C]
$

← {0, 1}n

procedure P2(K, U) * Implements SD *

If DD[K, U ] 6= ⊥ then Ret DD[K, U ]

C
$

← {0, 1}n

E[K, C]← U

Ret C

procedure P3(M) * Implements SF *

M1 · · ·Mm
n←M

Y0 · · ·Ym
k,n
←−O0(M)

Γ← f−1(Y0)

For 1 ≤ i ≤ m do

EE[Γ, 〈i〉n]←Mi ⊕ Yi

DD[Γ, Mi ⊕ Yi]← 〈i〉n

Ret Γ

procedure O0(M) * Still implements I * Game I1

If I[M ] 6= ⊥ then Ret I[M ]

M1 · · ·Mm
n←M

T
$

← {0, 1}k; Φ← f(T )

for i = 1 to m do

Pi
$

← {0, 1}n

E[T, 〈i〉n]← Pi ; D[T, Pi]← 〈i〉n

Yi ← Pi ⊕Mi

Ret I[M ]← Φ || Y1 || · · · || Ym

procedure P1(K, C)

If EE[K, C] 6= ⊥ then Ret EE[K, C]

Ret E[K, C]
$

← {0, 1}n

procedure P2(K, U)

If DD[K, U ] 6= ⊥ then Ret DD[K, U ]

C
$

← {0, 1}n

E[K, C]← U

Ret C

procedure P3(M)

M1 · · ·Mm
n←M

Y0 · · ·Ym
k,n
←−O0(M)

Γ← f−1(Y0)

For 1 ≤ i ≤ m do

EE[Γ, 〈i〉n]←Mi ⊕ Yi

DD[Γ, Mi ⊕ Yi]← 〈i〉n

Ret Γ

Figure 9: Games I0 and I1.

We will justify that

Pr
[

AG1 sets bad
]

= Pr
[

AG2 sets bad
]

(22)

= Pr
[

AG3 sets bad
]

(23)

≤ Pr
[

AG4 sets bad
]

+
(q0 + q3)

2

2k+1
(24)

= Pr
[

AG5 sets bad
]

+
(q0 + q3)

2

2k+1
(25)

≤ Advspowf
F,k (B) +

(q0 + q3)
2

2k+1
. (26)

These equations (along with the analysis of B’s running time below) imply Lemma 7.3. We discuss
each game transition in turn and then B to justify equations (22) through (26).

Game G2 is the same as G1 except that instead of recording points in E based on T or K, points
are recorded via f(T ) and f(K). Since f is a permutation this does not change the implemented
functionality, justifying (22). Game G3 (boxed statements are omitted) adds a set T for recording
choices of T in O0 and a flag bad2 that is set if two values T are chosen to be the same value in the
course of the game. The functionality of the oracle is not modified, however, leading to equality
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procedure O0(M) Game G0 G1

If I[M ] 6= ⊥ then Ret I[M ]

M1 · · ·Mm
n←M

T
$

← {0, 1}k; Φ← f(T )

for i = 1 to m do

Pi
$

← {0, 1}n

If E[T, 〈i〉n] 6= ⊥ then

bad← true; Pi ← E[T, 〈i〉n] * add bad flag *

E[T, 〈i〉n]← Pi ; D[T, Pi]← 〈i〉n

Yi ← Pi ⊕Mi

Ret I[M ]← Φ || Y1 || · · · || Ym

procedure P1(K, C)

If EE[K, C] 6= ⊥ then Ret EE[K, C]

U
$

← {0, 1}n

If E[K, C] 6= ⊥ then

bad← true; U ← E[K, C] * add bad flag *

Ret E[K, C]← U

procedure P2(K, U)

If DD[K, U ] 6= ⊥ then Ret DD[K, U ]

C
$

← {0, 1}n

If D[K, U ] 6= ⊥ then

bad← true ; C ← D[K, U ] * add bad flag *

E[K, C]← U

Ret C

procedure P3(M)

M1 · · ·Mm
n←M

Y0 · · ·Ym
k,n
←−O0(M)

Γ← f−1(Y0)

For 1 ≤ i ≤ m do

EE[Γ, 〈i〉n]←Mi ⊕ Yi

DD[Γ, Mi ⊕ Yi]← 〈i〉n

Ret Γ

procedure O0(M) Game G2

If I[M ] 6= ⊥ then Ret I[M ]

M1 · · ·Mm
n←M

T
$

← {0, 1}k; Φ← f(T )

for i = 1 to m do

Pi
$

← {0, 1}n

If E[Φ, 〈i〉n] 6= ⊥ then bad← true * record via f(T ) *

E[Φ, 〈i〉n]← Pi ; D[Φ, Pi]← 〈i〉n

Yi ← Pi ⊕Mi

Ret I[M ]← Φ || Y1 || · · · || Ym

procedure P1(K, C)

If EE[K, C] 6= ⊥ then Ret EE[K, C]

U
$

← {0, 1}n; Φ← f(K)

If E[Φ, C] 6= ⊥ then bad← true * record via f(K) *

Ret E[Φ, C]← U

procedure P2(K, U)

If DD[K, U ] 6= ⊥ then Ret DD[K, U ]

C
$

← {0, 1}n ; Φ← f(K)

If D[Φ, U ] 6= ⊥ then bad← true * record via f(K) *

E[Φ, C]← U

Ret C

procedure P3(M)

M1 · · ·Mm
n←M

Y0 · · ·Ym
k,n
←−O0(M)

Γ← f−1(Y0)

For 1 ≤ i ≤ m do

EE[Γ, 〈i〉n]←Mi ⊕ Yi

DD[Γ, Mi ⊕ Yi]← 〈i〉n

Ret Γ

Figure 10: Games G0 (boxed statements included), G1 (boxed statements omitted), and G2.

(23). Game G4 (boxed statements included) restricts sampling of T to not allow such duplicates.
We have that

Pr
[

AG3 sets bad
]

− Pr
[

AG4 sets bad
]

≤ Pr
[

AG4 sets bad2
]

(27)

by the fact that G3 and G4 are identical-until-bad2 and the fundamental lemma of game-playing [4].
At most q0 + q3 values are added to T in G4. The probability that any pair of such points collides
is at most 1/2k, so

Pr
[

AG4 sets bad2
]

≤
(q0 + q3)

2

2k+1
.

Combining the above with (27) justifies (24). Game G5 just samples from {0, 1}k\T directly when
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procedure O0(M) Game G3 G4

If I[M ] 6= ⊥ then Ret I[M ]

M1 · · ·Mm
n←M

T
$

← {0, 1}k

If T ∈ T then * check for duplicate selections *

bad2← true; T
$

← {0, 1}k\T

T ∪← T ; Φ← f(T )

for i = 1 to m do

Pi
$

← {0, 1}n

If E[Φ, 〈i〉n] 6= ⊥ then bad← true

E[Φ, 〈i〉n]← Pi ; D[Φ, Pi]← 〈i〉n

Yi ← Pi ⊕Mi

Ret I[M ]← Φ || Y1 || · · · || Ym

procedure P1(K, C)

If EE[K, C] 6= ⊥ then Ret EE[K, C]

U
$

← {0, 1}n; Φ← f(K)

If E[Φ, C] 6= ⊥ then bad← true

Ret E[Φ, C]← U

procedure P2(K, U)

If DD[K, U ] 6= ⊥ then Ret DD[K, U ]

C
$

← {0, 1}n ; Φ← f(K)

If D[Φ, U ] 6= ⊥ then bad← true

E[Φ, C]← U

Ret C

procedure P3(M)

M1 · · ·Mm
n←M

Y0 · · ·Ym
k,n
←−O0(M)

Γ← f−1(Y0)

For 1 ≤ i ≤ m do

EE[Γ, 〈i〉n]←Mi ⊕ Yi

DD[Γ, Mi ⊕ Yi]← 〈i〉n

Ret Γ

procedure O0(M) Game G5

If I[M ] 6= ⊥ then Ret I[M ]

M1 · · ·Mm
n←M

T
$

← {0, 1}k\T * sample directly *

T ∪← T ; Φ← f(T )

for i = 1 to m do

Pi
$

← {0, 1}n

If E[Φ, 〈i〉n] 6= ⊥ then bad← true

E[Φ, 〈i〉n]← Pi ; D[Φ, Pi]← 〈i〉n

Yi ← Pi ⊕Mi

Ret I[M ]← Φ || Y1 || · · · || Ym

procedure P1(K, C)

If EE[K, C] 6= ⊥ then Ret EE[K, C]

U
$

← {0, 1}n; Φ← f(K)

If E[Φ, C] 6= ⊥ then bad← true

Ret E[Φ, C]← U

procedure P2(K, U)

If DD[K, U ] 6= ⊥ then Ret DD[K, U ]

C
$

← {0, 1}n ; Φ← f(K)

If D[Φ, U ] 6= ⊥ then bad← true

E[Φ, C]← U

Ret C

procedure P3(M)

M1 · · ·Mm
n←M

Y0 · · ·Ym
k,n
←−O0(M)

Γ← f−1(Y0)

For 1 ≤ i ≤ m do

EE[Γ, 〈i〉n]←Mi ⊕ Yi

DD[Γ, Mi ⊕ Yi]← 〈i〉n

Ret Γ

Figure 11: Games G3 (boxed statement omitted), G4 (boxed statement included), and G5.

choosing T values in O0. This conservative change implements the same functionality as in G4,
which justifies (25).

Adversary B works just like AG5 except no initialize procedure is used (instead, B receives the
spowf experiment’s choice of f); O0 is handled using the PI oracle provided to B; and P3 uses the
Inv oracle provided to B to invert some image points. Several observations are in order about the
behavior of B. First, every point queried to Inv necessarily is a value returned by PI since Y j

0 is
returned by O0. Second, if bad is set, then (i) the value P[Φ] output by B is the preimage of an
image Φ returned by PI and (ii) B never queried Φ to Inv.

To justify (i) we observe that bad is set only in two cases. The first occurs when an execution
of O0 set a point E[Φ, 〈i〉n] and a query to P1 was made with K such that f(K) = Φ. The second
occurs when an execution of O0 set a point D[Φ, Pi] and a query to P2 was made with K such that

27



Adversary BPI,Inv(f)

Run A(f), answering oracle queries as follows:

query O0(M)

If I[M ] 6= ⊥ then Ret I[M ]

M1 · · ·Mm
n←M

Φ← PI * use image oracle *

for i = 1 to m do

Pi
$

← {0, 1}n

If E[Φ, 〈i〉n] 6= ⊥ then bad← true; Output P[Φ]

E[Φ, 〈i〉n]← Pi ; D[Φ, Pi]← 〈i〉n

Yi ← Pi ⊕Mi

Ret I[M ]← Φ || Y1 || · · · || Ym

query P1(K, C)

If EE[K, C] 6= ⊥ then Ret EE[K, C]

U
$

← {0, 1}n ; Φ← f(K) ; P[Φ]← K * record K *

If E[Φ, C] 6= ⊥ then bad← true; Output P[Φ]

Ret E[Φ, C]← U

query P2(K, U)

If DD[K, U ] 6= ⊥ then Ret DD[K, U ]

C
$

← {0, 1}n ; Φ← f(K) ; P[Φ]← K * record K *

If D[Φ, U ] 6= ⊥ then bad← true; Output P[Φ]

E[Φ, C]← U

Ret C

query P3(M)

M1 · · ·Mm
n←M

Y0 · · ·Ym
k,n
←−O0(M)

Γ← Inv(Y j
0 ) * use inverse oracle *

For 1 ≤ i ≤ m do

EE[Γ, 〈i〉n]←Mi ⊕ Yi

DD[Γ, Mi ⊕ Yi]← 〈i〉n

Ret Γ

When A halts, output ⊥

Figure 12: The spowf adversary B against F.

f(K) = Φ. In these two cases, the value output must be a preimage of a value Φ returned by PI.
(Other possible cases will not lead to bad being set. Pointless queries disallow bad being set due
to two queries to P1, or to P2. That PI samples without replacement means bad cannot be due to
two executions of O0.)

To justify (ii), we note that no value P[Φ] is ever recorded after a query Inv(Y0) for Y0 = Φ.
This is so because of the checks against EE and DD in the code of P1 and P2. By justifying (i) and
(ii) we have justified (26).

The running time of B is at most the time to run A plus overhead proportional to (q1 +
q2)Timef (k) + q log q where q = q0 + q1 + q2 + q3. The log q factor accounts for the time to
implement the tables P, E, D, EE, and DD. Thus, t′ ≤ t + cµ((q1 + q2)Timef (k) + q log q) where µ is
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the longest message queried by A and c is a small, absolute constant. Moreover, B makes q0 + q3

queries to its PI oracle and makes q3 queries to its Inv oracle.

8 Composability Limitations and Open Problems

Recall that the key benefit of indifferentiability results is the guarantee of composability, as discussed
in depth in [22]. For example, a cryptographic scheme E proven secure when utilizing a (monolithic)
random oracle R remains secure if the random oracle is replaced by a PRO construction C. When
we say “remains secure” we mean that the existence of an adversary breaking the security of ER

implies the existence of an adversary that breaks the security of EC . This means we can safely
argue about the security of EC in two steps: show that C is indifferentiable from R and then that
ER is secure. Enabling this approach is a significant benefit of simulation-based definitions (the
UC framework is another example [7]). Our results also allow for secure composition, but with
important (and perhaps subtle) qualifications.

First, we note that both Theorem 3.2 and Theorem 6.1 differ from previous indifferentiability
results because they are complexity-theoretic in nature. Specifically, the indifferentiability of MCM

from a random oracle (Theorem 3.2) relies on an adversary’s inability to find collisions under H.
The indifferentiability of TE from a random injection (Theorem 6.1) relies on an adversary’s in-
ability to invert the trapdoor permutation f . We must bound the computational power of the
adversary in both results, since an unbounded adversary can always find collisions against H or
invert f . This means that EMCM, for example, is secure only against computationally-bounded ad-
versaries, even if ER is information-theoretically secure. This is a problem for random-oracle-based
constructions E that require information-theoretic security (see, e.g. [6]).

Second, Theorem 6.1 relies on a simulator that knows the trapdoor of the one-way permutation
(i.e., it gets to control generation of the permutation). Effectively then, instantiating TE requires
a trusted party to publish a description of f , which can be considered a common reference string
(CRS). We allow the simulator to choose the CRS in the proof. Recent results by Pass and Canetti
et al. [25, 8] call into question the (wide) use of such powerful simulators, in that composability
of some security properties might be lost. For example, Pass discusses how deniability of non-
interactive zero-knowledge proofs (the prover can assert that he never even proved a statement)
does not hold if the proof relies on the zero-knowledge simulator choosing the CRS [25]. Indeed
interpreting the composability theorem for the indifferentiability framework [22, Thm. 1] in the
context of TGen implies that some security properties (e.g., deniability) of constructions using TE

will not hold in settings where other parties are allowed to know f .
These subtle nuances of our results lead to a host of provocative open questions. What other

properties, beyond deniability, are compromised by the weak composability guarantees of TE? Is
it (im)possible to build PRIOs without relying on such strong simulators? Can we strengthen the
MCM security result, or find other constructions, that simultaneously are provably CR and yet
have information-theoretic indifferentiability from a RO?
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A Proof of Lemma 2.1

Let k be a security parameter and F be trapdoor permutation generator and A be an spowf
adversary against F that makes exactly q queries to its PI oracle. Then we construct a owf adversary
B against F that works as shown below.

adversary B(f, Y ∗)

r
$
← [1 .. q]; cnt← 0
D ← ∅
Run API,Inv answering queries by:
query PI

cnt← cnt + 1
If cnt = r then reply with Y ∗

X
$
← {0, 1}k\D ; Y ← f(X)

If Y = Y ∗ then output X

D ∪←X ; R[Y ]← X
reply with Y

query Inv(Y ′)
If Y ′ = Y ∗ then output ⊥
reply with R[Y ′]

When A outputs X∗, output X∗

Note that A’s environment, as simulated by B, is exactly that of the spowf experiment unless B
aborts early (outputs X or ⊥). Informally, if the choice r is “correct”, then A won’t force B to
halt with output ⊥ (since by the rules of the spowf game, A cannot query to Inv the image point
it will invert) and otherwise B outputs the preimage of Y ∗. A standard argument rigorously gives
this, yielding that

Advspowf
F,k (A) ≤ q ·Advowf

F,k (B) .
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