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Abstract

In this paper, based on the scheme proposed by Bar-
reto et al in ASIACRYPT 2005, an identity-based
signcryption scheme in multiple Private Key Gen-
erator (PKG) environment is proposed, which mit-
igates the problems referred to users’ private keys
escrow and distribution in single PKG system. For se-
curity of the scheme, it is proved to satisfy the prop-
erties of message confidentiality and existential
signature-unforgeability, assuming the intractabil-
ity of the q-Strong Diffie-Hellman problem and the
q-Bilinear Diffie-Hellman Inversion problem. For ef-
ficiency, compared with the state-of-the-art signcryp-
tion schemes of the same kind, our proposal needs less
pairing computations and is shown to be the most ef-
ficient identity-based signcryption scheme for multiple
PKGs up to date.

1. Introduction

The concept Identity-based Cryptography was first
introduced by Shamir [12] in 1984. Its basic idea is that
the users can choose arbitrary strings, such as their email
addresses or other online identifies, as their public keys,
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and Development Program of China (Grant No. 2006AA01Z419),
the Major Research Plan of the National Natural Science Foun-
dation of China (Grant No. 90604023) and the Natural Science
Foundation of Beijing (Grant No. 4072020).

and the corresponding private keys are created by bind-
ing the identity with a master private key of a trusted au-
thority (called private key generation, or PKG for short).
This eliminates much of the overhead associated with
key management in conventional public key infrastruc-
ture. However, as pointed out in [13], it is unrealistic
in practice to set up a single global private key gener-
ator mainly because of the inherent key escrow prob-
lem, i.e., the PKG knows all its users’ private keys. An-
other flaw of this single PKG cryptographic system is
that when distributing the users’ private keys, so many
secure channels between the PKG and its users are re-
quired. In order to mitigate these problems, Wang and
Cao [13] proposed the multiple PKGs environment for
identity-based cryptographic systems. Exactly speaking,
in this multiple PKGs environment, sharing the com-
mon global system parameters, each administrator do-
main maintains its own domain PKG which generates its
own master private key, computes and publishes the cor-
responding master public key, then generates and dis-
tributes private keys for the registered users within its
domain. A reasonable requirement for this environment
is that users could securely communicate with each other
no matter whether they belong to the same domain or
not. Actuality, the original idea of the multiple PKGs
environment was first suggested in an authenticated key
agreement protocol [5]. Later, a practical identity-based
encryption scheme in multiple PKGs environment was
presented in [13], and two identity-based signcryption
schemes for multiple PKGs were respectively designed
in [7, 8].

Signcryption, first proposed by Zheng [15], is a
cryptographic primitive that performs digital signa-
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ture and public key encryption in a single operation, at
lower computational costs and communication over-
heads than that of doing both operations sequentially.
The first identity-based signcryption scheme was pro-
posed by Malone-Lee [10], but it was pointed out by
Libert and Quisquater [9] that this scheme was not
semantically secure. Then, an identity-based sign-
cryption scheme was designed by Boyen [4], which
provides several strong security properties of confi-
dentiality, non-reputation, etc. Later, Boyen’s scheme
was improved in efficiency in [1, 6], where Bar-
reto et al’s proposal [1], to the best of our knowledge,
happens to be the most efficient identity-based sign-
cryption scheme up to date.

In this paper, based on the scheme proposed by Bar-
reto et al [1], we present an identity-based signcryp-
tion scheme for multiple PKGs. Our proposal is proved
to satisfy the security of message confidentiality and ex-
istential signature-unforgeability, assuming the in-
tractability of the q-Strong Diffie-Hellman problem
and the q-Bilinear Diffie-Hellman Inversion prob-
lem which were formalized by Boneh and Boyen
[2, 3, 1]. Thanks to the original advantages of Bar-
reto et al’s scheme, our identity-based signcryption
scheme for multiple PKGs achieves high efficiency
in implementation, which is better than the homo-
geneous schemes proposed in [7] and [8], and hap-
pens to be the most efficient identity-based signcryption
scheme for multiple PKGs up to date.

This paper is organized as follows. Some prelimi-
naries are given in section 2. The formal model and
some security notions for our identity-based signcryp-
tion scheme for multiple PKGs are constructed in sec-
tion 3. The details of the proposed scheme are elabo-
rated in section 4. We prove compliance of our imple-
mentation with the security model and analyze the effi-
ciency of our scheme in section 5. Finally, in section 6,
we draw some conclusions.

2. Preliminaries

In this section, we describe the basic security theo-
retic concepts of bilinear map groups and the hard prob-
lems underlying our proposed algorithms.

Let k be a security parameter and p be a k-bit prime
number. Let G1,G2 be cyclic additive groups generated
by G1, G2 respectively, both of whose orders are p . Let
GT be a cyclic multiplicative group of the same order.
We say that (G1,G2,GT ) are bilinear map groups if
there exists a bilinear map e : G1 × G2 → GT satis-
fying :

1. Bilinearity: e(aP, bQ) = e(P, Q)ab for all (P, Q) ∈
G1 ×G2, a, b ∈ Zp.

2. Non-degeneracy: There exists P ∈ G1, Q ∈ G2 such
that e(P, Q) 6= 1GT

.
3. Computability: For all (P, Q) ∈ G1×G2, e(P, Q) is

efficiently computable.
4. There exists an efficient, publicly computable (but not

necessarily invertible) isomorphism ψ : G2 → G1

such that ψ(G2) = G1.

The computational assumptions for the security of
our scheme were previously formalized by Boneh and
Boyen [2, 3, 1] and are recalled in the following defini-
tion.

Definition 1. Let (G1,G2,GT ) be bilinear map groups
with generators P ∈ G1 and Q ∈ G2. Two hard prob-
lems are described as follows:
q-Strong Diffie-Hellman problem(q-SDHP).
Given a (q + 2)-tuple (P, Q, αQ, α2Q, . . . , αqQ), find
a pair (c, 1

c+αP ) with c ∈ Z∗p.
q-Bilinear Diffie-Hellman Inversion problem(q-
BDHIP).
Given a (q + 2)-tuple (P, Q, αQ, α2Q, . . . , αqQ), com-
pute e(P, Q)1/α ∈ GT .

3. Formal Model of Identity-based Sign-
cryption

3.1. Generic Scheme

An identity-based signcryption scheme for multi-
ple PKGs consists of five algorithms: Global-Setup,
Domain-Setup, Key-Extraction, Signcryption and
Unsigncryption, whose functions are specified as fol-
lows.

Global-Setup. Given a security parameter k, the glob-
ally trusted third-party outputs the system’s global pub-
lic parameters params.
Domain-Setup. Given the common parameters
params, each domain PKGi generates its domain mas-
ter private key si and the corresponding domain public
key Qpubi

.
Key-Extraction. Given an identity IDU, the domain
PKGiU computes the corresponding private key SIDU ,
then secretly transmits it to its owner.
Signcryption. Given a message M and a receiver’s
identity IDB , the sender obtains the ciphertext σ by
computing Signcryption(M, SIDA , IDB).
Unsigncryption. Given a ciphertext σ and a sender’s
identity IDA, the intended receiver computes Unsign-
cryption(σ, IDA, SIDB), then returns a message M and
its valid signature, or outputs a distinguished symbol ⊥
if σ does not decrypt into a message bearing the signer
IDA’s signature.
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For consistency, we of course require that if σ = Sign-
cryption(M, SIDA , IDB), then M should be a part of
Unsigncryption(σ, IDA, SIDB).

3.2. Security Notions

The formal security notions for identity-based sign-
cryption schemes have been defined in [4, 6, 1] ,
where Barreto et al [1] mainly considered the prop-
erty of message confidentiality and the existentially
signature-unforgeable security against adaptive cho-
sen message and ciphertext attacks. We modify their
definitions slightly to adapt for our identity-based sign-
cryption scheme for multiple PKGs.

Definition 2. An identity-based signcryption scheme for
multiple PKGs, briefly called IBSCMP, is said to satisfy
the Message Confidentiality property (or the indistin-
guishability against adaptive chosen ciphertext attacks
property: IND-IBSCMP-CCA) if no probabilistic poly-
nomial time (PPT) adversary has a non-negligible ad-
vantage in the following game.

1. The challenger C runs the Global-Setup and
Domain-Setup algorithms on input of a security pa-
rameter k and sends the system’s global-wide pub-
lic parameter params and each domain-wide mas-
ter public key Qpubi

to the adversary A.
2. In a find stage, A performs a polynomially bounded

number of the following queries.
– Key-extraction queries: A chooses an identity IDU

under PKGiU , then C computes SIDU = Key-
Extraction(IDU) and sends SIDU to A.

– Signcryption queries: A chooses a pair of identi-
ties (IDS, IDR) and a plaintext M , then C returns to
A a ciphertext σ = Signcryption(M, SIDS , IDR),
where SIDS = Key-Extraction(IDS).

– Unsigncryption queries: A chooses a pair of iden-
tities (IDS, IDR) and a ciphertext σ, then C returns
the result of Unsigncryption(σ, IDS, SIDR) to A,
where SIDR = Key-Extraction(IDR).

3. A produces two equal length plaintexts M0,M1 and
a pair of identities (ID∗S, ID∗R), where the private key
of ID∗R can not have been extracted. C computes σ∗ =
Signcryption(Mb, SID∗S , ID

∗
R) for a random bit b ∈

{0, 1} and sends σ∗ to A.
4. In the guess stage, A makes new queries as in the

find stage. This time, neither the key-extraction query
on ID∗R nor the unsigncryption query on σ∗ could be
asked.

5. A finally outputs a bit b′ and wins the game if b′ = b.

The advantage of A is defined as 2Pr[b′ = b]− 1.

Definition 3. IBSCMP is said to be Existentially
Signature-unforgeable against adaptive chosen mes-

sage and ciphertext attacks (ESUF-IBSCMP-CMA)
if no PPT adversary can succeed in the follow-
ing game with a non-negligible advantage.

1. The challenger C and the adversary A respectively
does the same as step 1 and 2 of the game in defini-
tion 2.

2. A produces a triple (σ∗, ID∗S, ID∗R), where the pri-
vate key of ID∗S was not previously asked. A wins the
game if the result of unsigncryption(σ∗, ID∗S, SID∗R)
is a valid message-signature pair (M∗, s∗) such that
no signcryption query involved M∗, ID∗S and some re-
ceiver ID′R (possibly different from ID∗R) and resulted
in a ciphertext σ′ whose decryption under the private
key SID′R is the alleged forgery (M∗, s∗, ID∗S).

The advantage of the adversary A is its probability of
victory.

We note that, in both of above definitions, inside attacks
are considered.

4. An Identity-based Signcryption Scheme
for Multiple PKGs

In this section, modifying Barreto et al’s signcryp-
tion scheme proposed in [1], we design an identity-based
signcryption scheme in multi-PKG environment as fol-
lows.

Global-Setup. Given k ∈ Z+, the globally trusted third-
party does the following:
1. Chooses bilinear map groups (G1,G2,GT ) of prime

order p > 2k and generators G2 ∈ G2, G1 =
ψ(G2) ∈ G1, and computes g = e(G1, G2) ∈ GT .

2. Picks three hash functions H1 : {0, 1}∗ × G2 → Z∗p,
H2 : {0, 1}∗ ×GT → Z∗p and H3 : GT → {0, 1}n.

The global public parameters are
params := {G1,G2,GT , G1, G2, g, e, ψ, H1,H2,H3}.
Domain-Setup. Given global public parameters, each
domain PKGi does the following:
1. Randomly chooses si ∈ Z∗p as the domain master pri-

vate key and keeps it secret.
2. Calculates Kpubi

= siG2 as the domain master pub-
lic key and publishes Kpubi

.
Key-Extraction. Given an identity IDU, this algorithm
outputs the private key SIDU under the domain PKGiU ,
where SIDU = 1

H1(IDU, KpubiU
)+siU

G2 ∈ G2.

Signcryption. Given a message M ∈ {0, 1}∗ and a re-
ceiver’s identity IDB , the sender does as follows:
1. Randomly picks x ∈ Z∗p, computes r = gx and c =

M ⊕H3(r) ∈ {0, 1}n.
2. Sets h = H2(M, r) ∈ Z∗p.
3. Computes S = (x + h)ψ(SIDA), T =

x
(
H1(IDB, KpubiB

)G1 + ψ(KpubiB
)
)
.
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The ciphertext is σ = 〈c, S, T 〉 ∈ {0, 1}n ×G1 ×G1.

Unsigncryption. Given a ciphertext σ = 〈c, S, T 〉 and
some sender’s identity IDA, the intended receiver does
the following:
1. Computes r = e(T, SIDB),M = c⊕H3(r), and h =

H2(M, r).
2. Returns the message M and the signature (h, S) ∈
Z∗p × G1 if r = e

(
S,H1(IDA, KpubiA

)G2 +
KpubiA

)
g−h and the ⊥ symbol otherwise.

It is easy to see that the proposed scheme is consistent.

5. Security Results and Efficiency Compar-
isons

The following theorems claim the security of our
proposal under the same irreflexivity assumption as
Boyen’s scheme [4]: the signcryption algorithm is as-
sumed to disallow messages from being addressed to
the same identity as authored them.

Theorem 1. Let A be an adversary against the IND-
IBSCMP-CCA security of our scheme. If A has an ad-
vantage ε after running for time t, making at most
qhi

, qs, qu queries to Hi (i = 1, 2, 3), the signcryption
oracle and the unsigncryption oracle respectively, then
we have an algorithm B that solves the q-BDHIP for
q = qh1 with probability

ε′ > ε

qh1(2qh2 + qh3)

(
1− qs

qs + qh2

2k

)(
1− qu

2k

)

and within a time t′ < t + O(qs + qu)tp + O(q2
h1

)tm +
O(quqh2)te, where k is the security parameter whereas
tp, tm and te are respectively the costs of a pairing com-
putation, a multiplication in G2 and an exponentiation
in GT .

Proof. Algorithm B takes a random instance
(P, Q, αQ, α2Q, . . . , αqQ) of the q-BDHIP as in-
put, and attempts to extract e(P, Q)1/α by running A as
a subroutine and acting as A’s challenger in the game
of definition 2.

At first, B does some preparations for interacting
with A. It randomly selects R1, . . . , Rq from Z∗p and
ξ ∈ {1, 2, . . . , q}. For i ∈ {1, . . . , q}\{ξ}, it computes
xi = xξ − Ri where xξ = Rξ. Then it sets up gener-
ators G2 ∈ G2, G1 = ψ(G2) ∈ G1 and another ele-
ment X = αG2 ∈ G2 such that it knows q − 1 pairs
(Ri, Ii = 1

Ri+αG2), i ∈ {1, . . . , q}\{ξ}. To do so,

1. It expands f(z) =
∏q

i=1, i 6=ξ(z + Ri) to obtain
c0, . . . , cq−1 ∈ Z∗p so that f(z) =

∑q−1
j=1 cjz

j , and
sets generators G2 =

∑q−1
j=0 cj(αjQ) = f(α)Q ∈

G2 and G1 = ψ(G2) = f(α)P ∈ G1. Another ele-
ment X ∈ G2 is fixed to X =

∑q
j=1 cj−1(αjQ) =

αG2 although B does not know α.

2. For i ∈ {1, . . . , q}\{ξ}, it expands fi(z) = f(z)
z+Ri

=∏q
k=1, k 6=ξ, k 6=i(z+Rk) to get d0, d1, . . . , dq−2 ∈ Z∗p

such that fi(z) =
∑q−2

j=0 djz
j , and computes the

pair (Ri, Ii) by calculating Ii =
∑q−2

j=0 dj(αjQ) =

fi(α)Q = f(α)
α+Ri

Q = 1
Ri+αG2.

Subsequently, B randomly selects yj ∈ Z∗p for j =
1, 2, . . . , N , where N(< q) is the total number of do-
main PKGs. The domain-wide master public key of
PKGj is chosen as Kpubj

= −X − (xξ + yj)G2 =
(−α − xξ − yj)G2 so that its unknown private key
is implicitly set to sj = −α − xξ − yj ∈ Z∗p. For
i ∈ {1, . . . , q}, j ∈ {1, . . . , N}, let Hi,j = xi + yj ,
then B has pairs (Hi,j ,−Ii) = (Hi,j ,

1
Hi,j+sj

G2), i ∈
{1, . . . , q}\{ξ}, j ∈ {1, . . . , N}.

B then initializes a counter l to 1 and starts A on in-
put of (G1, G2,Kpub1 , . . . , KpubN

). During the game,
A will consult B for answers to the random oracles
H1,H2 and H3, and B generates these answers ran-
domly, but to maintain the consistency and to avoid col-
lision,B keeps three lists L1, L2, L3 respectively to store
the answers.

– H1-queries on input IDU under some PKG,
say PKGj : if it is the first time for IDU to
query H1 , B returns Hl,j , stores the information
(IDU ,Kpubj

,Hl,j) in L1, and increments l; other-
wise, returns the corresponding value Hi,j in L1.

– H2-queries on input (M, r): B returns the defined
value if it exists and a random value h2 ∈ Z∗p oth-
erwise. To anticipate possible subsequent unsign-
cryption requests, B additionally simulates H3 on
its own to obtain h3 = H3(r) ∈ {0, 1}n, c =
M ⊕ h3, γ = r · e(G1, G2)h2 , and stores the in-
formation (M, r, h2, c, γ) in L2.

– H3-queries on input r ∈ GT : B returns the previ-
ously assigned value if it exists and a random value
h3 ∈ {0, 1}n otherwise. In the latter case, the in-
put r and the response h3 are stored in L3.

– Key-extraction queries on input IDl under some
PKGj : if l = ξ, then B fails. Otherwise, it knows
that H1(IDl,Kpubj ) = Hl,j and returns −Il =

1
Hl,j+sj

G2 ∈ G2.
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– Signcryption queries for a plaintext M and iden-
tities (IDS , IDR) = (IDµ, IDν) under PKGiµ

and PKGiν
respectively, µ, ν ∈ {1, . . . , q}, iµ, iν ∈

{1, . . . , N}: We assume that µ = ξ (and hence
ν 6= ξ by the irreflexivity assumption), because oth-
erwise B knows the sender’s private key SIDµ =
−Iµ and answers the query according to the Sign-
cryption algorithm. Thus B randomly chooses
λ, h ∈ Z∗p and computes S = λψ(SIDν

) =
−λψ(Iν), T = λψ(Hξ,iµ

G2 + Kpubiµ
) −

hψ(Hν,iν
G2 + Kpubiν

) in order to obtain the de-
sired equality r = e(T, SIDν ) = e(S,Hξ,iµG2 +
Kpubiµ

)e(G1, G2)−h = e
(
ψ(SIDν ),Hξ,iµG2 +

Kpubiµ

)λ
e(G1, G2)−h before patching the hash

value H2(M, r) to h (B fails if H2 is already defined
but this only happens with probability qs+qh2

2k ).
At last, B returns the ciphertext σ = 〈M ⊕
H3(r), S, T 〉.

– Unsigncryption queries on a ciphertext σ =
〈c, S, T 〉 for identities (IDS , IDR) = (IDµ, IDν)
under PKGiµ

and PKGiν
respectively: we assume

that ν = ξ for similar reasons as in signcryp-
tion queries, hence µ 6= ξ by the irreflexivity as-
sumption. Therefore, B has the sender’s private key
SIDµ and also knows that, for all valid ciphertexts,
logSIDµ

(
ψ−1(S) − hSIDµ

)
= logψ(QIDν )(T ),

where h = H2(M, r) is obtained in the Signcryp-
tion algorithm and QIDν

= Hν,iν
G2 + Kpubiν

.
Hence,

e(T, SIDµ)
= e

(
ψ(QIDν

), ψ−1(S)− hSIDµ

)

= e
(
ψ(QIDν

), ψ−1(S)
)
e
(
ψ(QIDν

), SIDµ

)−h (∗)
= e(S,QIDν

)e
(
ψ(QIDν

), SIDµ

)−h
.

Thus, B computes γ = e(S,QIDµ), where QIDµ =
Hµ,iµ

G2 + Kpubiµ
, and searches through list L2

for entries of the form (Mi, ri, h
(i)
2 , c, γ) indexed

by i ∈ {1, . . . , qh2}. If none is found, σ is rejected.
Otherwise, each one of them is further examined for
the corresponding indexes, B checks if

e(T, SIDµ)

= e(S,QIDν
)e

(
ψ(QIDν

), SIDµ

)−h
(i)
2 , (∗∗)

meaning that (∗) is satisfied. The pairings are com-
puted only once and at most qh2 exponentiations are
needed. If the unique i ∈ {1, . . . , qh2} satisfying
(∗∗) is detected, the matching pair (Mi, 〈h2,i, S〉) is
returned. Otherwise, σ is rejected. Overall, an inap-
propriate rejection occurs with probability smaller
than qu

2k across the game.

At the challenge phase, A outputs mesages (M0,M1)
and identities (IDS , IDR) under PKGiS

and PKGiR
re-

spectively for which she never obtained IDR’s private
key. If IDR 6= IDξ, B aborts. Otherwise, it randomly
picks β ∈ Z∗p , c ∈ {0, 1}n and S ∈ G1 to return the
challenge σ∗ = 〈c, S, T 〉 where T = −βG1 ∈ G1. If
we define ρ = β/α and since siR

= −α − Iξ − yiR
=

−α−Hξ,iR
where iR ∈ {1, . . . , N}, we can check that

T = −βG1 = −αρG1 = (Hξ,iR
+ siR

)ρG1

= ρHξ,iR
G1 + ρψ(KpubiR

).
A cannot recognize that σ∗ is not a proper ciphertext
unless she queries H2 or H3 on e(G1, G2)ρ. Along
the guess stage, her view is simulated as before and
her eventual output is ignored. Standard arguments can
show that a successful A is very likely to query H2 or
H3 on the input e(G1, G2)ρ if the simulation is indistin-
guishable from a real attack environment.

To produce a result, B fetches a random en-
try (M, r, h2, c, γ) or (r, h3) from the lists L2 or L3.
With probability 1

2qh2+qh3
, the chosen entry will contain

the right element r = e(G1, G2)ρ = e(P, Q)f(α)2β/α,
where f(z) =

∑q−1
i=0 ciz

i is the polynomial for which
G2 = f(α)Q. At last, the q-BDHIP solution can be ex-
tracted by e(P, Q)1/α = r(c2

0β)−1
π−(c2

0)
−1

where π =(
e
( q−2∑

i=0

ci+1(αiP ), c0Q
)
e
(
G1,

q−2∑
j=0

cj+1(αjQ)
))

.

In an analysis of B’s advantage, we note that it suc-
ceeds in above game if and only if all of the following
independent events happen:

E1: IDξ is challenged, which implies that no key-
extraction query is made on IDξ.

E2: There is no collision on H2 in a signcryption query.
E3: No valid ciphertext is rejected.
E4: B selects the correct element from L2 or L3 at the

last phase.

Clearly, Pr[E1] = 1
qh1

, Pr[E2] > 1 − qs(qs+qh2 )

2k ,

Pr[E3] > 1− qu

2k , Pr[E4] = 1
2qs+qu

. Thus,

ε′ = ε · Pr[E1 ∧ E2 ∧ E3 ∧ E4]

> ε

qh1(2qh2 + qh3)
(
1− qs

qs + qh2

2k

)(
1− qu

2k

)
.

On the other hand,B’s workload is dominated by O(q2
h1

)
multiplications in the preparation phase, O(qs+qu) pair-
ing calculations and O(quqh2) exponentiations in GT in
its emulation of the signcryption and unsigncryption or-
acles, thus it totally takes a time t′ < t+O(qs +qu)tp +
O(q2

h1
)tm + O(quqh2)te. ¤

Theorem 2. Let A be an adversary against the ESUF-
IBSCMP-CMA security of our scheme. If A produces
a forgery with probability ε > 10qh1(qs + 1)(qs +
qh2)/(2k−1) after running a time t, and making at most
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qhi queries to random oracles Hi (i = 1, 2, 3), qs sign-
cryption queries and qu unsigncryption queries, then we
have an algorithm B that is able to solve the q-SDHP
for q = qh1 in expected time t′

6 120686qh1qh2

t+O
(
(qs+qu)tp

)
+quqh2 te

ε(1−1/2k)(1−q/2k)
+ O(q2tm),

where tp, te, tm denote the same quantities as in theo-
rem 1.

Proof. Algorithm B takes a random instance
(P, Q, αQ, α2Q, . . . , αqQ) of the q-Strong Diffie-
Hellman problem as input, and attempts to extract a
pair (ω, 1

ω+αP ), ω ∈ Z∗p by running A as a subrou-
tine and acting as A’s challenger in the game of defini-
tion 3.

At first, we will show that a forger in the ESUF-
IBSCMP-CMA game implies a forger in a chosen-
message and given identity attack.

Before it, we need some preparations. B randomly
selects Ri ∈ Z∗p for i ∈ {1, . . . , q − 1}. With the tech-
nique used in the proof of theorem 1, it sets up gener-
ators G2 ∈ G2, G1 = ψ(G2) ∈ G1 and another ele-
ment X = αG2 ∈ G2 such that it knows q − 1 pairs
(Ri,

1
Ri+αG2) for i ∈ {1, . . . , q − 1}. Subsequently,

B randomly selects yj ∈ Z∗p for j = 1, 2, . . . , N ,
where N(< q) is the total number of domain PKGs.
The domain-wide master public key of PKGj is chosen
as Kpubj = X − yjG2 = (α − yj)G2 so that its un-
known private key is implicitly set to sj = α − yj ∈
Z∗p. For i ∈ {1, . . . , q − 1} and j ∈ {1, . . . , N}, let
Hi,j = Ri + yj , then we have pairs (Hi,j ,

1
Hi,j+sj

G2).
B then initializes a counter v to 1 and randomly chooses
an identity ID∗ ∈ {0, 1}∗ under PKGj , j ∈ {1, . . . , N}
as the sender’s identity of a challenge to some forger
in a chosen-message and given identity attack against
our scheme. Now we describe the oracles that B needed
for answering necessary consultations. To maintain the
consistency and to avoid collision, B keeps three lists
L1, L2, L3 respectively to store the random answers of
the random oracles H1,H2 and H3.

– H1-queries on input identity IDU under some
PKGiU

: if it is the first time for IDU to query H1,
B returns ω + yj(ω is randomly chosen from Z∗p)
if IDU = ID∗ and returns Hv,iU

if IDU 6= ID∗,
then stores the answer in L1 and increments v; oth-
erwise, returns the corresponding value in existed
information.

– H2-queries on input (M, r) and H3-queries for an
input r ∈ GT are exactly the same as those pro-
posed in the proof of theorem 1.

– Key-extraction queries on an input IDv under some
PKGj : if IDv = ID∗, then B fails. Otherwise, it
knows that H1(IDv,Kpubj ) = Hv,j and returns

1
Hv,j+sj

G2 ∈ G2.

– Signcryption queries for a plaintext M and iden-
tities (IDS , IDR) = (IDµ, IDν) under PKGiµ

and PKGiν
respectively, µ, ν ∈ {1, . . . , q}, iµ, iν ∈

{1, . . . , N}: we assume that IDµ = ID∗ for the
same reason proposed in the signcryption query dur-
ing the proof of theorem 1, and hence IDν 6= ID∗

by the irreflexivity assumption. B randomly chooses
λ, h ∈ Z∗p , and computes S = λψ(SIDν

) =
λψ( 1

Hν,iν +siν
G2), T = λψ((ω + yiµ

)G2 +
Kpubiµ

) − hψ(Hν,iν
G2 + Kpubiν

) in order to ob-
tain the equality r = e(T, SIDν

)= e(S, (ω +
yiµ)G2+Kpubiµ

)e(G1, G2)−h = e
(
ψ(SIDν ), (ω+

yiµ)G2 + Kpubiµ

)λ
e(G1, G2)−h before patching

the hash value H2(M, r) to h (B fails if H2 is al-
ready defined but this only happens with probabil-
ity at most qs+qh2

2k ). At last, the ciphertext σ =
〈M ⊕H3(r), S, T 〉 is returned.

– Unsigncryption queries on a ciphertext σ =
〈c, S, T 〉 for identities (IDS , IDR) = (IDµ, IDν)
under PKGiµ

and PKGiν
respectively: we assume

that IDν = ID∗(and hence IDµ 6= ID∗ by
the irreflexivity assumption) because otherwise B
knows the receiver’s private key and can normally
run the Unsigncryption algorithm. Therefore, B
has the sender’s private key SIDµ

= 1
Hµ,iµ+siµ

G2

and also knows that, for all valid ciphertexts,
logSIDµ

(
ψ−1(S) − hSIDµ

)
= logψ(QIDν )(T ),

where h = H2(M, r) is obtained in the Signcryp-
tion algorithm and QIDν = (ω + yiν )G2 +Kpubiν

.
Hence, what B should do is the same as that de-
scribed in the unsigncryption query during the proof
of theorem 1.

Now we show how to design an algorithmF in a chosen-
message and given identity attack to our scheme by run-
ning the ESUF-IBSCMP-CMA attacker A that makes
qhi queries to random oracles Hi (i = 1, 2, 3), qs sign-
cryption queries and qu queries to unsigncryption ora-
cle. For any ID under some PKG, our algorithm F is as
follows:

1. F Chooses l ∈ {1, . . . , q} randomly. Denote by
(IDj ,Kpubij

) the input of the j-th query to H1 asked
byA,F sets (ID∗

j ,K∗
pubij

) to be (ID,Kpub) if j = l

and (IDj ,Kpubij
) otherwise.

2. F Runs A with the given system parameters and re-
sponds toA’s queries to H1,H2,H3, signcryption or-
acle and unsigncryption oracle by taking the place of
A’s input IDj with ID∗

j and running corresponding
oracles.

3. Denote the output of A as (IDout,m, σ). If
IDout = ID and (ID,m, σ) is valid, then F out-
puts (ID,m, σ); otherwise, F fails.
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We can see that the advantage of F is ε∗ > (1 −
1
2k ) 1

qh1
ε > 10(qs + 1)(qs + qh2)/2k, and its running

time is almost the same as A needs.
Subsequently, B runs F which is a forger in a

chosen-message and given identity attack to our scheme
as a subroutine instead of A and attempts to solve the
q-SDHP. It is noted that F can extract private keys as-
sociated to any identity but ID∗ by querying the
key-extraction oracle. Therefore, thanks to the irreflex-
ivity assumption, it is able to extract clear message-
signature pairs from ciphertexts produced by the forger
as it knows the private key of the receiving iden-
tity. Thus, we just consider the message-signature
pairs which are decrypted from ciphertexts pro-
duced by the forger and could be seen as ID∗’s valid
signature. Applying the forking lemma [11, Theo-
rem 13], from the forger F , we can build an algorithm
F ′ that replays F a sufficient number of times on the in-
put (ID∗,Kpubj

) to obtain two suitable forgeries which
can be decrypted into two valid message-signature
pairs 〈m, r, h1, S1〉, 〈m, r, h2, S2〉 with h1 6= h2, in ex-
pected time t∗ 6 120686qh1t/ε. Since both forgeries
satisfy the verification equation, we obtain

e(S1, QID∗)g−h1 = e(S2, QID∗)g−h2 ,

where QID∗ = (ω+yj)G2+Kpubj = (ω+α)G2. Then
it comes that

e
(
(h1 − h2)−1(S1 − S2), QID∗

)
= e(G1, G2),

and hence (h1−h2)−1(S1−S2) = 1
ω+αG1. Proceeded

as in [2], B can extract 1
ω+αP from 1

ω+αG1 as fol-
lows: it first obtains γ−1, γ0, . . . , γq−2 ∈ Z∗p for which
f(z)
z+ω = γ−1

z+ω +
∑q−2

i=0 γiz
i where f(z) =

∏q−1
i=0 (z +Ri)

obtained at the preparation phase and eventually com-
putes 1

γ−1

(
1

ω+αG1−
∑q−2

i=0 γiψ(αiQ)
)

= 1
ω+αP . Thus,

B gets the pair (ω, 1
ω+αP ).

It finally comes that, since F makes a forgery in a
time t with probability ε∗ > (1 − 1

2k ) 1
qh1

ε > 10(qs +

1)(qs + qh2)/2k, B solves the q-SDHP in time less than

120686qh1qh2

t+O
(
(qs+qu)tp

)
+quqh2 te

ε(1−1/2k)(1−q/2k)
+ O(q2tm),

where the last term accounts for the cost of the prepara-
tion phase. ¤

In the rest of this section, let us analyze the efficiency
of our identity-based signcryption scheme for multiple
PKGs. Table 1 summaries the number of relevant basic
operations underlying several identity-based signcryp-
tion schemes for multiple PKGs, namely, GT exponen-
tiations, scalar point multiplications, and pairing evalu-
ations. It is noted that the computation of the pairing is
the most time-consuming in pairing based cryptographic

schemes [14]. It is easy to see from Table 1 that our pro-
posal needs less pairing computations , so it is more ef-
ficient than that of Li et al ’s [8] and Lal-Kushwah’s [7].

Table 1. Efficiency comparison

Li-Hu-Zhang Lal-Kushwah ours
exp 1 1 1

SC mult 2 3 2
pairing 1 1

exp 1 1
USC mult 1

pairing 4 3 2

Note: SC – Signcryption; USC – Unsigncryption

6. Conclusion

We have proposed a new identity-based signcryp-
tion scheme for multiple PKGs, which is proved to be
indistinguishable against adaptive chosen ciphertext at-
tacks and signature-unforgeable against adaptive chosen
plaintext and ciphertext attacks based on some compu-
tational assumptions. Compared with the state-of-the-
art signcryption schemes of the same kind, our scheme
needs less pairing computations and is the most efficient
identity-based signcryption scheme in multiple PKGs
environment up to date.
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