
 1

Security needs in embedded systems
Anoop MS

Tata Elxsi Ltd. India
anoopms@tataelxsi.co.in

Abstract: The paper discusses the hardware and software security requirements
in an embedded device that are involved in the transfer of secure digital data.
The paper gives an overview on the security processes like
encryption/decryption, key agreement, digital signatures and digital certificates
that are used to achieve data protection during data transfer. The paper also
discusses the security requirements in the device to prevent possible physical
attacks to expose the secure data such as secret keys from the device. The
paper also briefs on the security enforced in a device by the use of proprietary
security technology and also discusses the security measures taken during the
production of the device.

1. Introduction
The embedded or handheld devices are getting increasingly connected and are more and
more involved in network communications. The users of these devices are now able to
execute almost all the network/internet applications that run in a PC on these devices.
These devices are also increasingly involved in transfer of secure data through public
networks that needs protection from unauthorized access and thus the security
requirements in embedded devices have become critical.

The secure data falls in different categories requiring different levels of security.
According to whose interest the protection of the data is, the secure data can be
classified as two: the users private data and the user restricted data. The users private
data are those data which when its security is compromised impacts directly on the user.
A simple example of compromising such security is having access to a user’s internet
banking password. But in case of user restricted data, it’s not the user but the content
(data) provider who suffers direct loss on compromising the security of that data. The
examples of such data are digital multimedia content such as copyrighted digital photos,
audio and video contents.

The secure data not only requires protection during data transfer but also while handling
the data at the end user devices. Vulnerability at the end user device, like easy access to
the secret keys that are used to encrypt or decrypt the data, can easily turn down the
entire security measures. The protocol involved for the secure transmission of either of
the above mentioned contents through a public network uses more or less the same
techniques but the handling of the user restricted data at the user’s end involves much
more care as the content is protected from the user itself!

Thus an embedded device must implement methods or protocol for secure data transfer
and also should implement security methods to defeat attempts of unauthorized access of
secure data from the device. The security needs for an embedded device thus can be
classified into two:

− Security needs for data transfer and

− Security needs within the device

2. Security needs for data transfer
The data in a public network passes through a number of untrusted intermediate points.
Therefore the secure data must be scrambled in such a way that the data will be useless

Security needs in embedded systems

 2

or unintelligible for anyone who is having unauthorized access to the secure data. This
can be achieved with the help of cryptographic methods such as Encryption/Decryption,
Key Agreement, Digital Signatures and Digital Certificates. The use of these cryptographic
methods in an embedded system to achieve data security is explained in the following
sections.

2.1. Data Encryption
Encryption is the process of scrambling/encrypting any amount of data using a (secret)
key so that only the recipient, who is having access to the key, will be able to
descramble/decrypt the data. The algorithm used for the encryption can be any publicly
available algorithm like DES [2], 3DES [8] or AES [7] or any algorithm proprietary to the
device manufacturer. The key is known only between the communicating devices and will
typically of length 100s of bits. If publicly available algorithms are used, the security of
the transferred data totally depends on the secrecy of the keys used for the encryption.
Sharing and maintaining the secret key between the communicating devices without any
unauthorized entity getting access to the keys is important for foolproof secure data
communication. These keys can be embedded in the device prior to the communication,
exchanged offline in a secure manner or established online using any key agreement
algorithm as explained in section 2.2.

The storage of the secret keys within the device is also critical for ensuring the complete
protection of data. Security requirement for the storage of secret keys in the device is
discussed in section 3.

2.2. Public-key Key Agreement Algorithm
When there are 100’s of devices in a network, sharing and maintaining secret keys
between all the devices for data encryption seems difficult, even unrealistic. This is where
the Key Agreement Algorithm is used. Using Key Agreement algorithm, a shared secret
can be established between communicating parties without the need for exchanging any
secret keys or secret parameters online or offline. This works as follows.

Key agreement algorithm is a public-key cryptography algorithm. For devices that use
Key agreement algorithm will have a private-key and an associated public-key. The
private-key is generally a random number of hundreds or few thousands of bits and the
public-keys are derived from the private-key using the one-way function specified by the
key agreement algorithm. One-way functions are mathematical function in which the
forward operation can be done easily but the reverse operation is too difficult that it is
practically impossible. The public-key is derived using private-key on the forward
operation of the one-way function. The reverse operation of obtaining the private-key
from the public-key is too difficult that it is practically impossible.

The devices that need to establish shared secret between them exchanges their public-
keys and other public constants, if any. Both the device on receiving the other devices
public-key performs key generation operation using its private-key to obtain the shared
secret. The key agreement works such a way that the shared secret calculated by both
the devices will be the same.

For e.g. let P be the private-key of a device and U(P, C) to be the public-key of the
device, the representation U(P, C) is to show that the public-key of a device is derived
from the private-key P of that device and some shared constants C known by all the
device taking part in the communication.

Consider two devices A and B. Let PA and UA(PA, C) are the private-key and public-key of
device A and PB and UB(PB, C) are the private-key and public-key of device B respectively.
Both device exchanges their public-keys.

Device A, having got the public-key of B, calculates key KA = Generate_Key(PA, UB(PB, C))
Device B, having got the public-key of A, calculates key KB = Generate_Key(PB, UA(PA, C))

Security needs in embedded systems

 3

The key generation algorithm ‘Generate_Key’ will be such that the generated keys at the
device A and B will be the same, that is shared secret KA=KB=K(PA, PB, C).

It is impossible for any middleman, who only have access to the public-keys, UA(PA, C)
and UB(PB, C), to obtain the shared secret K unless he has got the access to the private-
key, PA or PB of any of the communicating device. Examples of key generation algorithms
are DH [4] and ECDH [5].

In the key agreement algorithm the private-key used is a secret key and should not be
shared with any other devices in the network, even to the device to which it is
communicating. It is only the agreed shared secret key that is known between the
communicating devices. It must also be ensured that the private-key is not disclosed
from the device. The safe storage of the private-key of key agreement algorithm on the
device is thus important. Security requirements for safe storage of secret keys are
discussed in section 3.

2.3. Digital Signature
The device in a network may be communicating with the unknown or less familiar device
located 100s of kilometers apart. The communication may also require routing through
many intermediate points. During Key Agreement process, for establishing a secret key,
any middlemen can substitute a devices public-key to its public-key and thus results in
establishing a shared secret with the device. Therefore, for establishing shared secret
using the key agreement algorithm, it is important for device to receive an authenticated
public-key from the peer. For authenticated exchange of public-key, Digital Signature and
Digital Certificates are used.

DEVICE A

Device 'Sign Public-Key'

Signature
Algorithm

Device 'Sign Private-Key'

Data

Signature

DEVICE B

Signature
Verification
Algorithm

Is
verification
success?

Data
accepted

Data rejected

Digital signature is a public-key method to verify the authenticity of a received data from
the peer. In digital signature, like the key agreement algorithm, a device uses a pair of
keys, ‘sign private-key’ and ‘sign public-key’. Only the device knows its sign private-key

A B

UA(PA, C)

UB(PB, C)

Private-key = PA
Public-key UA(PA, C)

Private-key = PB

Public-key = UB(PB, C)

KA = Generate_Key (PA, UB(PB, C)) KB = Generate_Key (PB, UA(PA, C))

Security needs in embedded systems

 4

whereas the sign public-key is distributed to all the communicating devices. A device
signs the message using a signatures algorithm with its sign private-key to generate a
signature and any device that has got the access to the sign public-key of the signed
device can verify the data with the signature using the signature verification algorithm. If
any third party modifies the data or signature, the verification fails. Since only the signed
device knows its sign private-key, it will be impossible for any other device to forge the
signature. Examples of Digital Signature algorithms are RSA [3], DSA [2] or ECDSA [5].

2.4. Digital Certificate
Even while using the digital signature algorithm, the ‘sign public-key’ from a peer device
has to be obtained by an authenticated way to ensure the authenticity of a received
message. For key agreement or digital signature the authenticated transfer of public-key
in a large network is difficult or even not possible without a centralized trusted authority.
This centralized authority is trusted by all the devices in the network. This authority is
generally known as trusted Certificate Authority or CA. The Certificate Authority (CA)
signs the public-keys of devices along with the device ID using the CA’s private-key to
generate the signature. These CA signed data of a device (public-key, IDs etc.) along
with the signature arranged in a standard format is called as a certificate. The certificate
is issued by CA to all devices taking part in the communication. Any device, having the
CA’s public-key installed, can verify the authenticity of the received certificate and thus
the public-key of the peer device. One popular certificate format is X.509 [6].

For obtaining the certificate, a device requests the certificate to the CA. The device sends
its public-key, unique IDs and other information as required by the CA. The CA usually
does some background check to ensure the device is not hostile before issuing the
certificate. The certificate obtained by a device is rarely changed and the process of
obtaining a digital certificate for an embedded device is usually done offline.

Once communicating devices obtains its certificate from the CA, the devices exchange
their respective certificate before establishing a shared secret between them. Any device
on receiving the peer certificate verifies it using the CA’s public-key. Since the CA public-
key common to all the devices taking part in the communication and is never changed, it
is pre installed on all the devices in network generally through any offline trusted
methods. Once a peer authenticates the device certificate, the device can use the public-
key in the certificate to sign any message send by the device to the peer to prove the
messages authenticity.

The CA may be different for different networks and for different communication protocol.

2.5. Certificate Hierarchy
As the number of devices taking part in the communication increases and the location of
these devices is distributed over different parts of the world, a single certificate authority
may not suffice to issue and maintain certificates for all the devices. Certificate Hierarchy
is the solution here.

In Certificate Hierarchy there will be a Trusted Root CA who will give permission other CA
to issue certificate to the communicating devices. The Root CA will issue the certificate for
the respective intermediate certificate authority. The intermediate CA will issue
certificates to the device. In addition to issuing certificates to the devices, the
intermediate CA’s will also give its certificate, issued by root CA, to the devices. There
can be multiple level of certificate hierarchy in which the intermediate CA’s will give
permission to other CA to issue certificate to the communicating devices.

If a device A obtained a certificate from an intermediate CA, then it not only receive its
device certificate but also the certificate of the intermediate CA, which is issued by the
root CA. If there is multiple level of intermediate CA above the CA that issued certificate
to the device, the device will receive certificate of all intermediate CA’s up to the root CA.
During a secure communication a device may ask all the intermediate certificates from its
peer for successful verification of the received device certificate.

Security needs in embedded systems

 5

2.6. E.g. of Key Agreement algorithm
An example of key agreement protocol using digital certificates and digital signatures are
explained below. A single certificate hierarchy is assumed in this example.

DEVICE

PEER CERTIFICATE

Peer cert Pub Key

(Dev ID,Valid till date etc)

Sign of the above fieldsROOT CA CERTIFICATE

Root CA Pub Key

(Dev ID,Valid till date etc)

Sign of the above fields

DEVICE CERTIFICATE

KeyGen Priv Key*

Device cert Pub Key

(Dev ID,Valid till date etc)

Key Generation
Algorithm

Generated shared
secret**

Signature
Verification
Algorithm

Certificate
Verification
Algorithm

Peer KeyGen Pub Key

Peer KeyGen PubKey Sign

KeyGen Pub Key Sign

SIgnature
Algorithm

KeyGen Pub Key

Device cert Priv Key*

After certificate
and signature

verification

C
ER

TI
FI

C
AT

E
AU

TH
O

R
IT

Y

STEP A:
Sent to

peer
device

STEP B:
Received
from peer

device

Sign of the above fields

* Secrets known only by the device
** Secret known only between the communicating devices

Before connecting the device in the network, the device will acquire the device certificate
from the CA. The certificate will have a ‘sign public-key’ and the device will have a ‘sign
private-key’ corresponding to the sign public-key in the certificate stored securely in the
device to prevent it from disclosure. The sign public-key and sign private-key can be of
any digital signature algorithms such as RSA or DSA. The sign private-key can be used to
sign any data sent by the device to prove the authenticity of its data.

For key agreement, the device uses any key agreement algorithms like DH or ECDH. The
device generates a public-key and a private-key pair for key agreement algorithm. Let it
be ‘KeyGen public-key’ and ‘KeyGen private-key’. The device signs the KeyGen public-key
with the sign private-key that corresponds to the sign public-key in the certificate. Once
signed, the device sends the KeyGen public-key, its signature and its device certificate to
the peer device. Similarly the device receives these sets of data from the peer device. On
receiving the KeyGen public-key, signature and device certificate from the peer device,
the device verifies the signature of the KeyGen public-key with the sign public-key in the
peer device’s certificate. The device then verifies the peer device’s certificate using the

Security needs in embedded systems

 6

root CA certificate stored in the device. Once the verification processes are successfully
completed, the device proceeds with the key generation algorithm to obtain a shared
secret using the device’s KeyGen private-key and peer device’s KeyGen public-key. The
same process also takes place at the peer device and the shares secret generated by
both the devices will be the same.

The certificate private-key and the generated shared secret are stored inside a device
persistent memory and needs protection from disclosure. The KeyGen private-key is also
not disclosed but is valid only till the shared secret generation and is generally disposed
after the shared secret process is over. The KeyGen private-key is thus never stored.

3. Security needs within the device
Whether it is the private-key of any public-key algorithm as discussed in section 2 or it is
any previously negotiated shared secret between the devices, the security of data
transferred depends in the secrecy of these keys. To enforce additional security, some
cryptographic algorithms may also specify a set of constant values that should not be
disclosed from the device. These secret keys and secret values stored in the device that
requires protection from unauthorized exposure are referred as ‘secret keys’ in this
document.

The secret keys are stored inside the device, some even for the lifetime of the device.
Hardware and software security measures implemented in the device must defeat any
attempts of unauthorized access to retrieve these secret keys. Also, there are data such
as the Root CA Certificate in the device that can be disclosed but should be prevented
form unauthorized modification. If Root CA certificate can be modified, then the attacker
can make the device to accept any certificate by substituting a fake root CA certificate
and thus defeating the purpose certificate and secured communication. It is therefore
also important that the security in the device is such that the data such as Root CA
Certificates in the device is not subjected to unauthorized modification.

The level of security within the device varies depending on the nature of the protected
content. The need for device security is more in the case of device handling user
restricted data like copy-protected* video than in the case of user’s private data like
personal files or bank transactions. This is mainly because, in the case of user’s private
data since the user will suffer the direct loss on compromising such data, he/she will be
responsible for restricting the physical access to the secret keys and other secured
contents stored in the device. Also, the general implementation of secure data transfer
protocols recommends a unique secret key for each device. Therefore if the hardware
security of any of the device is compromised, it doesn’t affect the security of other device
in the network. But in the case of user restricted data, compromising the secret key of a
single device results in the compromise of the security of all the copy-protected content
handled by that device. One vulnerable device can thus results in helping an
unauthorized device to access the copy protected content, decrypt it and distribute
countless copy of the copy protected content.

The following section gives an example of prototype SoC to discuss the hardware and
software support required to enforce the security within the device and thereby defeating
the physical attack that compromises the security of the device.

3.1. Secure SoC
The Secure SoC provides physical protection to secret keys by keeping the components
like Secure ROM, which is handling the secret keys, inside the Secure SoC.

During execution time, the protected secure keys from the Secure ROM has to be loaded
to the RAM in clear text and during that time the bus from the Secure ROM to the RAM
can be monitored to access the secret keys. This can be prevented by allocating buffers
for secret keys or intermediate values of cryptographic operations involving secret keys in

* Copy protected contents are multimedia content that
have limited or no copying permission for the user.

Security needs in embedded systems

 7

the Internal RAM of the Secure SoC. This prevents the protected keys being available to
any bus outside the Secure SoC.

The Secure Bootloader in the Secure SoC ensures that the device boots up with the
genuine OS or firmware with right process privileges. The Memory Management Unit
(MMU) configured by the OS permits the access to the buffers in the Internal RAM that
involves secret key operations only to the secure processes with special OS privileges.

In the case where the Secure ROM is limited or pre-programmed by the hardware
manufacturer, the Secure ROM can be programmed with a master key. This master key
can be used to encrypt and store the device secret keys in the internal ROM.

Secure SoC

External ROM

Secure Bootloader
(Write protected)

Processor
Internal
ROM
R/W

Secure ROM Internal RAM

Firmware code Code
Signature

External
RAM

Encryption/
Decryption

Engine

Hardware MMU

In ideal case of a Secure SoC

− The Secure ROM cannot be physically accessed to retrieve the secret keys.

− The buses inside the Secure SoC cannot be monitored to obtain protected data or
keys.

− The removal or replacement of any components in the Secure SoC should be
impossible or should prevent the SoC from working.

The level of physical protection varies depending on the value of the protected content.
The protection can be just tamper detection of SoC to zeroing of all the stored content in
the SoC when a physical access attempt is made. Tamper detection protection method
does not prevent a attacker from obtaining the data from the chip but will only makes it
possible to know whether the chip is tampered or not. The zeroing requires special power
supply and hardware support that makes the chip costlier. The NIST issued FIPS 140 [9]
publication specifies different level of hardware and software security requirements for
device that is involved in store and transfer of sensitive information.

The role of each component in the Secure SoC to ensure the secure storage of secret
keys and other protected data are explained below.

3.2. Secure ROM
One method for storing the device secret keys securely in the persistent storage of a
device is to encrypt the secret keys before storing. Thus even if anyone managed to get
the data out of the persistent storage he/she will never be able to understand the secret
keys. To encrypt any data generally two things are required, an encryption algorithm and
a key for encryption. If any well-known algorithm like AES is used for encryption of the
secret keys, then the strength of the encryption is only as strong as the secrecy of the
key that used for the encryption. Thus the same problem faced for the storage of the
secret keys is faced again for the storage of the key that is used for encrypting the secret
keys. This problem is repeated unless an encryption algorithm is used that is known only

Security needs in embedded systems

 8

to the device manufacturer. If the device proprietary algorithm is used for the encryption
and storage of the secret keys, the security of the secret keys are only as strong as the
secrecy of the algorithm. Since the code binary is stored in the clear text in the device
memory and plenty of tools for reengineering the code like ‘objdump’ are available, the
chance of exposing the secret keys cannot be neglected.

Another method to store the secret keys is to store it inside a Secure ROM. The Secure
ROM resides inside the Secure SoC in the device. The hardware controller of the Secure
ROM descrambles the data before retrieving it back from the ROM. This hardware
support will prevent the unauthorized physical access to retrieve the secret key stored in
the Secure ROM.

The buffers that hold the secret keys or the intermediate values of cryptographic
operations involving the secret keys are allocated in the Internal RAM of Secure SoC.
Thus the secret keys are prevented from being available to any bus outside the Secure
SoC.

In the case where the Secure ROM is limited or pre-programmed by the hardware
manufacturer, the Secure ROM can be programmed with a device master key. The device
master key is a key unique to each device hardware or Secure SoC that can be further
used to encrypt and store the device secret keys in a less Secure ROM.

The possible vulnerability in the implementation of Secure ROM can be:

1. The Secure ROM is physically removed from the Secure SoC, place it in another
device and make it work to retrieve the protected keys.

2. The bus between Secure ROM and RAM is accessed to retrieve the protected keys.

3. An unprivileged/unauthorized application running on the device gets access to the
API for retrieving the secret keys from the Secure ROM.

In an ideal case of Secure SoC, the first two vulnerability doesn’t exist. The third
vulnerability can be prevented by use of Secure Bootloader and implementation of right
process privileges as explained in section 3.3 and 3.4 and thus not allowing an
unprivileged application to run and access the restricted memory locations of the device.

3.3. Internal RAM and Secure Processes
The buffers for secret keys or intermediate values of cryptographic operations involving
secret keys are allocated in the Internal RAM of the Secure SoC to prevent the secret
keys being available to any bus outside the Secure SoC. Let this memory area in the
Internal RAM be called as Secure Memory Area. Not every process should access this
memory area. Only the processes with special OS privilege, Secure Process, should be
able to access the Secure Memory Area. This is analogous to process with administrative
privilege or root privilege in an operating system.

The OS during boot up configures the memory management unit to permit access to
Secure Memory Area by only the Secure Processes. It is also important that the MMU
configuration code in the OS is not modified by an unauthorized user to get access to the
secure memory area. This can be ensured by the use of Secure Bootloader and code
signing as discussed in section 3.4. The Secure Processes are configured to start during
device bootup. The OS should disallow any unauthorized processes to run as Secure
Process or to start a new Secure Process. This can prevent any downloaded application, if
supported by the device, to access the Secure Memory Area to read the secret keys.

The results of an operation performed by a Secure Process on the secret keys are usually
public data such as encrypted data or a public-key. These output data are requires by
other less privilege processes to perform operation such as transmitting the output data
to other device. There can be several ways of calling a Secure Process by a less privileged
process. An example is explained below.

The Secure Processes waits, for e.g. on a semaphore, to get the input data and start
executing. The input data buffer will be a non-secure memory area. Any less privilege can

Security needs in embedded systems

 9

fill the input buffer and signal a Secure Process, by releasing the semaphore, to start
execution. The Secure Process, on receiving the signal, does the corresponding
cryptographic operation on the input data with the secret keys. The output of the
operation is placed in the non-secure memory area from where the less privilege process
can read the output.

3.4. Secure Boot-Loader and Code Signing
The secret keys, though protected by hardware security measure, have to be exposed for
through some API’s for use. It is necessary to ensure that the firmware of the device
cannot be modified so that an unauthorized user can use these API’s to extracts the
secret keys from the device. The firmware also contains secure critical code such as code
that handles security critical hardware configuration like Internal RAM configuration to
specify access permissions. Any attempt on overriding the firmware components of the
device thus must be turned down. The presence of Secure Bootloader can ensure this.

On startup before loading the firmware code, the Secure Bootloader checks whether the
firmware is genuine or not and prevents the device from booting up if the device
firmware is modified or replaced. An example of a Secure Bootloader implementation is
discussed below.

Device Manufacturer DEVICE

Secure Boot Loader

Boot Init
Code sign
verification

module
Public key*

ROM

Public key*

Private key*

Signature
Algorithm

Code Signature
Code + Data

files (E.g.
Root CA cert)

* The public key and the private key are generated by device manufacturer and is used
for the the signing and verification of the device firmware code.The private key has to be
kept secret by the device manufacturer

Dev specific
Data files -
Notsigned

Secure Bootloader resides on a write protected ROM inside the Secure SoC. Keeping
Secure Bootloader in a write protected ROM ensures that the Secure Bootloader itself is
never modified. In addition to the general boot initialization code, the Secure Bootloader
contains a signature verification module of the firmware code and the code verification
public-key to verify the firmware code.

The firmware code is signed using the device manufacturer’s code verification private-
key. The Secure Bootloader, on boot up checks the validity of the code by verifying the
signature using the code verification public-key.

Though the private-key that used to sign the firmware code is never shipped along with
the device, it has to be kept secret by the device manufacturer. The compromise in the
secrecy of the private-key that used to sign the firmware code enables anyone, who is
having access to the private-key, to write and sign a code that is acceptable by the
Secure Bootloader.

If the firmware of the device is non-upgradeable then the level of security in boot loader
can be enforced in much simpler method without the presence of a Secure Bootloader. In
such case, writing the entire firmware in a read-only memory and configuring the boot

Security needs in embedded systems

 10

loader to boot only from the given read-only memory area can prevent any unauthorized
firmware component to run on the device. But in many case, non-upgradeable firmware
brings too much limitations on a product.

There are files, like root CA certificate, which when modified can result in the compromise
of the device security. Such files also need to be signed along with the firmware code of
the device.

There are also file specific to each device, like encrypted secret keys or device
certificates, which when modified prevents the device from secure data transfer but does
not compromise the security of the device. The signing of these device specific files will
cause overhead during the production of the device or during the upgrade of the device
firmware where the device manufacturer needs to sign the firmware code for each
device. Since the device security is not compromised by the modification of these files,
these files can be kept in the device without being signed.

3.5. Encryption and decryption engine
In many secure protocol implementations, the shared secret generated by the Key
Agreement algorithm as discussed in section 2.2 is used as a master key and the sub-
keys are generated that are used for the process of encryption and decryption. When
used as the master key, the shared secret is stored in the device till expiry time as
specified as the protocol and the lifetime will be in the order of days or even months
depending on the protocol of data transfer. But the lifetime of sub-keys will be generally
small in the order of seconds. In this case the security requirement of the shared secret
is higher and hence stored securely in the device. But the security requirement of the
sub-keys is not that critical as that of the secret keys like shared secret or certificate
private-keys. The sub-keys generation protocol also will be such that it will be impossible
to derive the master key from the sub keys. In such cases where the security of keys
(sub-keys) used for encryption and decryption is not so critical, the encryption and
decryption engine (module) can reside outside the secure SoC. The sub-keys are
generated inside the Secure SoC and are passed to the encryption/decryption engine
outside the Secure SoC. In some other protocols the shared secret or secret keys itself
for encryption/decryption. In such case, the encryption/decryption engine should reside
inside the SoC to prevent the key from being available the bus outside Secure SoC.

The encryption and decryption engine thus have the choice to reside inside or outside the
Secure SoC depending on the security need of the keys used for encryption/decryption.

3.6. System Time
The digital certificate of a device generally comes with validity period. The validity periods
varies across different protocol implementation. Some protocols like SSL specify a fixed
validity period of few years or decades whereas other protocols like DTCP specifies
infinite validly for a certificate.

The system time in an embedded device will generally have interfaces to user to set or
modify the system time. For certificate verification process the device should maintain a
system time that is different from the system time modified by the user so that the users
are not able to modify the system time and make the device accept an expired
certificate. It is also important that the timer keeps counting even after when the device
is in the switched off state.

Unauthorized modification of system time is not so critical in many cases where the
device handles certificates having validity period of decades, i.e. 20-30 yrs or more. This
timeframe is sufficiently larger than the lifetime of many devices. Also, the chance for
root CA to update the root certificate within this time frame is also high. If the CA
changes a root CA certificate, the devices must update the root and the intermediate CA
certificates and should acquire a new device certificate from the CA.

Security needs in embedded systems

 11

4. Proprietary Technologies for secure data transfer
Proprietary security modules are implemented on some devices for the secure data
transfer between the compliant devices. The modules can be some or all the modules
mentioned in section 2 like Encryption/Decryption, Key Agreement, Digital Certificate or
Digital Signature modules.

The proprietary technologies implemented in device are usually kept secret to enforce
additional security for data transferred between the devices. It is therefore ensured by
the device manufacturer to not to disclose the technology, from or outside the device,
and thereby compromising the security enforced by these technologies. The device
manufacturer should find a method to store the software module in the device so that the
secrecy of the technology is not compromised from the device. Code (binary) of these
proprietary technology software modules usually will be in clear text inside the device.
Thus if someone can get access to the code in the device it may be easy to extract and
understand the implementation of the software module with the help of code
reengineering tools like 'objdump'. Thus the device must prevent access to retrieve the
code by placing it inside Secure SoC or encrypting and storing the code using a secret
key knowing only to the device manufacturer. If the code is stored encrypted, the boot
loader of the device must support the decryption and loading of the code during
execution and the secret key used for encryption and decryption of the code can be
stored in the device by the methods specified in section 3.

A proprietary technology can be either a device specific or a standard specific. In the case
of a device specific technology, the secure data transfer can happen only between the
devices of same manufacturer. An e.g. can be Apple’s iPod music player. Apple can use
their proprietary technology for secured transfer of files between their compliant devices
or applications like iPod, iTunes and iTunes store. Since the devices are from a single
manufacturer, keeping it secret, other than any user retrieves and understands the code
through any weak links from the device, seems to be practically possible.

If the proprietary technology is specified by a standard body, it can be used to enforce
additional security between the devices of different manufacturer. In this case the
standard body will disclose the technology to the device manufacturer on an agreement,
usually legal, to not to disclose the technology. Few e.g. of such technologies are M6
encryption technology used in DTCP [11] and DFAST scrambling algorithm used in
OpenCable’s CableCARD-Host interface protocol [10]. Maintaining the secrecy of the
technology becomes more and more difficult as the number of manufacturer to whom the
technology is circulated increases. As the number of manufactures increases, the security
provided by these technologies becomes minimal or even negligible. In this case It is
therefore important that the security of data transfer of such device does not rely only on
the secrecy of these proprietary technologies.

5. Revocation List
Though the security measures as explained in section 3 are used for secure storage of
secret keys in the device, the chances of retrieving it cannot be ruled out completely. In
devices with only 'tamper evident' security measures it is possible to retrieve the secret
keys from the device's NVM but with some physical tampering of the device.

Generally each device will have a separate set of secret key so that compromising one
devices secret key doesn’t compromise the security others. But in the case of devices
handling the copy-protected digital multimedia content through network, compromising
the secret key of a single device results in the compromise of the security of all the copy-
protected content handled by that device. One vulnerable device can thus results in
helping an unauthorized device to access the copy protected content, decrypt it and
distribute countless copy of the copy protected content. If came to notice, a broadcaster
can prevent such device to communicate with other devices in the network to get the
copy protected content by adding the device ID in a list called as the revocation list. All

Security needs in embedded systems

 12

trusted devices would have the access to revocation list from the broadcaster will stop
communicating with the device whose security is compromised.

6. Keys and certificate handling during device manufacture
In many cases, the different hardware and software components in an embedded device
are supplied by different vendors. The hardware vendors provide the hardware
component and the associated drivers for the device whereas the software vendor
provides the software components. The device manufacturer or the deice vendor
assembles these hardware and software components to make the product, which is
marketed with an aim of attaining revenue. The secret key for each device has to be
loaded in to the device during manufacture. It is usually is the interest of the device
vendors to protect the secret keys of the devices and thus the device vendors may refrain
from sharing the secret keys to different hardware and software vendors. But atleast
some part of the software has to use the shared secret and also as explained in section 3,
the device need hardware support to store the secret key securely in the device. With the
support of hardware and software vendors, the device manufacturer can store secret
keys securely in the device, also not disclosing it to the hardware and software vendor.
Two methods are explained here to handle the secret keys during production of the
device.

1. The hardware vendor supplies hardware with write-protected Secure ROM, pre-
programmed with unique random number for each device or for a set of devices.
This random number can be used as a hardware master key to encrypt device
secret keys.

2. The hardware vendor supplies hardware with programmable Secure ROM that can
be programmed by the device manufacturer with device secret keys

Device
Manufacturer
Vendor

DEVICE

ROM

Internal
RAM

Key
decryption

Module

Encrypted secret Keys

Secure ROM (Write protected)

Hardware Key

Software Manufacturer

Hardware Manufacturer

Hardware Key

Key
encryption

Module

D
ev

ic
e

S
ec

re
t

ke
ys

Decrypted
secret key

Device Certificate

Firmware code and
signature

Code
signing

algo

Firmware

Handling of secret keys when hardware vendor supplies the hardware
with pre-programmed Hardware Key

In Case 1 where the hardware comes with a pre-programmed random number inside the
Secure ROM, the random number acts as a hardware key or a master key that can be
used to encrypt the secret keys of the device. The software vendor provides software
methods/code to encrypt/decrypt secret keys using the hardware key. The device
manufacturer can use the encryption method to encrypt and store the secret keys inside
the device using the hardware key. The decryption method will be the part of device

Security needs in embedded systems

 13

firmware that goes along with device to decrypt and use the stored secret keys using the
hardware key.

In case 2 where the hardware comes with programmable Secure ROM, the hardware
vendor also supplies the software module or drivers to program/write the Secure ROM
with the keys. The software vendor or the device vendor now will have the flexibility to
decide whether to store the secret keys or a master key to encrypt the secret keys to be
stored in the Secure ROM.

Usually the device certificates of each device will be different. Since the device certificate
and the encrypted secret keys are different for each device, these will not be the code-
signed along with the firmware as discussed in section 3.4. Otherwise the device
manufacturer needs to sign (using any software provided by the software manufacturer)
the firmware code for each device. The device manufacturer will load the device
certificate or encrypted keys for each device on the ROM location as specified by the
software vendor. The certificate handling software component loads the certificate for
processing from the specified location.

The root CA certificate is unique for all the devices communicating using the same
protocol and its unauthorized modification or substitution results in compromise of device
security, the root CA certificate is code-signed along with the firmware code.

7. Conclusion
The available security measures for secure transfer of data between two devices are
matures enough to defeat any third party to decrypt and get access to the protected
content. But the security measures available to protect the stored secure data, like secret
keys, within the device are not yet foolproof. A tamper resistant protection mechanism in
a device may require hardware circuit to zeroise the secret keys when a physical attack is
made to the Secure SoC. The more the hardware security measures implemented in a
device to protect its secret keys and other secure data, the more costly the device will
be. Thus the hardware security measures implemented in the device are a trade of
between the cost of implementation and the cost of the data protected. Achieving a cost
effective yet foolproof method to protect the secret keys and secure data within the
device will be a boon to the owner of the contents that needs security, especially to the
content provider of copy-protected digital contents.

Security needs in embedded systems

 14

Reference
[1] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied

Cryptography, CRC Press, 1996
[2] FIPS PUB 186-2, Digital Signature Standard (DSS), January 2000, Available at

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
[3] RSA Laboratories, PKCS#1 v2.1: RSA Cryptography Standard, June 2002,

http://www.rsa.com/rsalabs/node.asp?id=2125
[4] RFC 2631, Diffie-Hellman Key Agreement Method, June 1999, Available at

http://tools.ietf.org/html/rfc2631
[5] Certicom, Standards for Efficient Cryptography, SEC 1: Elliptic Curve Cryptography,

Version 1.0, September 2000, Available at http://www.secg.org/download/aid-
385/sec1_final.pdf

[6] ITU, Recommendation X.509, Available at http://www.itu.int/rec/T-REC-X.509-
200508-I

[7] FIPS 197, Advanced Encryption Standard (AES), November 2001, Available at
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[8] NIST, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher,
May 2004, Available at http://csrc.nist.gov/publications/nistpubs/800-67/SP800-
67.pdf

[9] FIPS 140-2, Security requirements for cryptographic modules, May 2001, Available at
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[10] OpenCable, OpenCable System Security Specification, October 2006, Available at
http://www.cablelabs.com/specifications/OC-SP-SEC-I07-061031.pdf

[11] DTLA, Digital Transmission Content Protection Specification Volume 1 (Informational
Version), October 2007, Available at
http://www.dtcp.com/data/info%2020071001%20DTCP%20V1%201p51.pdf

[12] Anoop MS, Public Key Cryptography – Applications algorithm and mathematical
explanations, May 2007,
Available at http://msitbox.blogspot.com/2008/03/public-key-cryptography.html

[13] Anoop MS, Elliptic Curve Cryptography - An implementation guide, May 2007,
Available at http://msitbox.blogspot.com/2008/03/elliptic-curve-cryptography.html

[14] Openssl, http://www.openssl.org
[15] Certicom, http://www.certicom.com/index.php?action=ecc_tutorial,home
[16] RSA Laboratories, http://www.rsa.com/rsalabs/node.asp?id=2193

