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Abstract

The irreducible factor(z) of @ (u(x)) andu(x) are often used in con-
structing pairing-friendly curvesu(z) andu, = w(z)¢ (mod r(z)) are
selected to be the Miller loop control polynomial in Ate pagr and Ate;
pairing. In this paper we show that whefk or the minimal prime which
dividesk is larger thar2, someu(z) andr(x) can not be used as curve gen-
eration parameters if we warite; pairing to be efficient. We also show
that the Miller loop length can not reach the bou'-@%r when we use the

factorization of®(u(x)) to generate elliptic curves.

1 Introduction

How to implement cryptosystem efficiently is very importam®Public-key Cryp-
tography. As pairing-based Cryptography is concernedctimputation of Tate
pairing is the bottleneck. Many work have been done such,&§.[&l these work
are based on Miller’s algorithm[12, 13]. The loop length ifl&t’s algorithm for
Tate pairing is aboutog,r. Recently a lot of works are focus on shorten the loop
length in Miller's algorithm such as eta pairing [1] whichterds [4], Ate pair-
ing [10], optimized Ate pairing [5]Ate; pairing [17], R-rate pairing [6], optimal
pairing [16]. u(z) andu,. = u(z)¢ (mod r(x)) are selected to be the Miller loop
control polynomial in [10, 17]. Thé\te; pairing can be more efficient for some
elliptic curves [17]. Usually we select these curves witbrsiMiller loop by com-
puter search. In this paper, we show that some elliptic cuare not suitable for
Ate; pairing. This will aid computer searching. The remaindetto$ paper is
organized as following: in section 2 we describe some backygls on pairings. In
section 3 our results are presented.
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2 Some backgrounds

Let E(IF,) be an elliptic curve over finite fielll, and#E(F,) be its group order.
If its group order has a large enough prime factandr divides ¢* — 1 where
k is a small positive integer, but does not divige— 1, 0 < i < k. We call
k the embedding degreef E(F,) and E(FF,) pairing-friendly curve Usually we
use Brezing-Weng's method [3] to generate pairing-frigralirves which can be
summarized as follows [7]:

Fix a integerk and a positive square free integer.

1. Choose a number fiell” containingy/—D and a primitivek-th root of unity
Ck-

2. Find an irreducible polynomial(x) € Z[z] such thatQ[z]/(r(z)) = K.

3. Lett(x) € Q[x] be a polynomial mapping t¢. + 1 € K.

4. Lety(z) € Q[z] be a polynomial mapping té% € K.

5. Letp(z) € Q[z] be given by(t(z)? + Dy(x)%/4. If p(x) andr(x) represent
primes, then the triplét(z), r(z), p(z)) represents a family of curves with embed-
ding degreé: and discriminantD.

Let P € E[r] and f; p be anF -rational function whose divisor i§f; p) =
i(P) — ([{]P) — (i — 1)O. Then the Tate pairing is well-defined, non-degenerated,
bilinear pairing

e Elr] x E(Fu)/rE(F ) — sz/(FZk)’“

6(P> Q) - (P’ Q> = fr,P(D)

For practical purpoges, we often use the reduced Tate gairin

é(P,Q) = fr.p(D)" .

To compute Tate pairing, it requires abdug, iterations of Miller loop. The
Ate pairing [10] can short the loop length in Miller's algttmn. Let £ be an
ordinary elliptic curves ovelf,, r a large prime whichr|#E(F,) andt the trace
of Frobenius(i.e #E(F,) = ¢ + 1 — t). Letw, be the Frobenius endomorphism,
g E— E: (z,y) — (29,y9). ForT =t —1,Q € Gy = E[r] N Ker(my, — [¢])
andP € Gy = E[r] N Ker(r, — [1]). fr,o(P) defines a bilinear pairing which
called Ate pairing. It requires aboldg (¢ — 1) iterations. Lefl; = T° (mod 7). In
[17], the authors define a new pairirfg, o(P) called Ate; pairing which iterates
T; times in pairing computation using Miller’s algorithm. If and7; are strictly
less thanr, we gain some advantages.

Let £(IF,) be an elliptic curve whose tra¢e# 0 and E(F,) has a subgroup of
orderr. In[7] wis defined to bq{%. When the size of subgroup order is fixed, the
largerw is, the shorter the loop fength is in Ate pairing. If we usefteorization
of &5 (u(x)) to construct elliptic curves, then < (k) [7]. It has been conjectured
in [16] that any non-degenerate pairing on an elliptic carwgthout efficiently
computable endomorphism different from powers of Frobesimequires at least
10%;; basic Miller iterations. If we take thieth cyclotomic polynomial to represent
the subgroupr, 2 the Frobenius trace and use Brezing-Weng’'s method to genera

pairing-friendly elliptic curves, then the Miller loop Igth is about‘;%;; :




3 Polynomialsfor Ate pairing and Ate; pairing

In this section we assume that the use of an irreducible faft® (u(x)) to con-
struct pairing-friendly curves. As Ate paring is concerne® have the following
Theorem.

Theorem 1. Letdegu(x) = a, the minimal Miller loop length forAte pairing is
alogar

@ Dol

Proof. Suppose®y(u(z)) = ri(x)re(x), from [7] we know thatdegr;(z) =

a1p(k), degra(x) = agp(k) wherea; + ag = a. If a1 > ag, we selectr (z) to

represent the subgroup Thenlim, ., lffgrtl((f)) = Uop(k) = —p(k). Since

@y, (u(z)) splits,az > 1. So the maximal value af is “L¢(k)(i.e. the minimal
Miller loop length forAte pairing is (a‘il(l’)g;’("k)). O

If a ia large enough, then ~ (k).

To construct elliptic curves with property described ahave must findu(z)
andr(z) such that(z)| @ (u(z)) anddegr(x) = (a—1)¢(k) wheredegu(z) = a.
The method described in [15] can be used to find these polyalsenin [15] power
integral basis is employed to find ) which would make®,(u(x)) factorable
and we know that one irreducible factor ®f.(u(z)) is of degreep(k). Usually
@ (u(z)) splits into two irreducible factors, so the other has dedeee 1)p(k).
The irreducible factor of degree — 1) (k) has some special property.

Proposition 1. For a fixedk, if ®;(u(x)) splits into two irreducible factors, then
there is an irreducible factor(x) such that - degu(x) < degr(z) iff p(k) > 4.

Proof. Assumedy (u(z)) = r1(z)ra(x), degri (z) = a1¢(k), degra(x) = asp(k),
wherea; + as = a anday > as. If a1p(k) > 2a, thenayp(k) > 2(ay + ag). It
follows thatyp (k) > 222 4 2. Sinced < 2 < 1 and2|y(k ) we havep(k) > 4.

If (k) > 4, thenalgp(kz) > 4a;. Slncea1 > ag, a1 > §. Soayp(k) > 4a; >
4.5 =2a.

O

Using PARI[14], we have following examples.

Example 1. k = 15, u(z) = 27 — 72% + 2025 — 292* + 2023 — 222 — 4z,
®15(u(r)) = (28 — 927 + 352° — 7625 + 9924 — 762 + 3022 — 4z + 1) (2®® —
4724 4107424 +- - 482 +1), p(15) = 8,a =7, (a—1)p(15) = (7—1)-8 = 48

Example2. k =8, u(z) = 23, ®g(u(z)) = (z* + 1)(2® — 2* +1).

I;;ingple?%f = %gélu(x) — 291(1)967 + 15340115366 + 454216 54 65%1915 4 %gﬁ%g +
e’ + e — it Pro(u(®) = grggargrer (@0 + 227+ —4dr + 1)
(12960000000022° + 8683200000001 + - - - + 11009524377905)




According to Proposition 1, ifp(k) > 4 thendegr(z) = (a — 1)p(k) >
2a = 2 - degu(x). This provides important information for constructing npag-
friendly curves. If some/—D € Q[z]/(r(z)), Brezing-Weng’s method can be
used to generating curve with such property. Otherwise weale Scott-Barreto’s
approach [7, 11].

Before discussing\te; pairing, we introduce some properties aba(t) and
Ue(x) = u(z)® (mod r(x)) wherel < ¢ < k.

The following lemma extends the result of Galbraith, McKad &alenca [9].

Lemmal. Let(; be a primitivek-th root of unity andQ(¢) the k-th cyclotomic
field. Then® (u(x)) splits whereu(x) € Qlx] iff there exists an finite extensidh
of Q such that(;, € E andu(x) = (i has a solution irE.

Proof. See [15]. O

Lemma 2. If ®;(u(x)) is reducible and has(z) as an irreducible factor, then
<I>ﬁ(uc(x)) is also reducible wheré < ¢ < k andu.(z) = u(z)® (mod r(x)).

r(x) is a common factor fo® . (u.(z)) .
(c.k)

Proof. Let # be a root for the equation(z) = (; andr(0) = 0, thenu(0)° = ¢

is aﬁ—th primitive root of unity(i.e.u(0)¢ = C( k )). Henceu(z)¢ = C( ks has
5 c,k c,k
a solutiond, according to Lemma lfe(‘kk) (u(z)®) splits. Since@(% (u(9)°) =0

and r(x) is irreducible, we have(m)|<1>( k_(u(x)€). From the assumption we
c,k
know thatu(z)¢ = f(z)r(x) + u.(x), henceu.(0) = C( ke By the same reason
c,k

mentioned above, we can draw the conclusion. O

Let S denote the sefu.(z) = u(x)® (mod r(z)),ged(c, k) = 1}. These
are thek-th primitive root of unity modulor(z). They form a group. There is
someu,,i,(r) € S has minimal degree. Given, € S, there existss € Z7
such thatu.(z) = upmin(x)® (mod r(z)). If u(z) = umin(x)® (mod r(zx)), then
degu(z) > umin(x). By lemma 2, (z)| Pk (tmin(x)). So if we useu,,;,(z) and
r(x) as curve’s generation parameters, we gain no advantages@Ate; pairing
whenk is prime.

Example4. k =8, u(z) = 223+ 2% + 2 — 2, andr(z) = 1628+ 3227 + 8825 —
82° — 31x* — 30823 — 162 — 442 + 353, letc = 3, 5, 7 such thatged(c, k) = 1,

_ 2.7 1.6 11..5 29 .4 2.3 14,2 25 49 —
thenus(e) = o' T o Ty gt a0 R g ()
—50° =g —x+3,ur(r) = —5r' — g — g+t -5+ gt -t

— i __ 600,.7 1305 ,..6 4496 .5 6895 .4 11280 .3

Sxamples, k = 5, ) = She - Bt ¢ et~ St 4 et -
54—1.7] + ml’ + 541 then(I)5(’LL(.YJ)) = m?"l(.%')?”g(l’) Where?"'l(l') =
28 —22"+72%—102°+162* — 1023 —22% +4z+1 andry (z) = 12960000000022° —
8683200000002 +- - -+11009524377905, we select(x) = ro(x), thendegus(z) =
14, degus(x) = 19, deguq(z) = 19.



Theorem 2. Supposet|k or the minimal prime which dividek is larger than2,

if ®x(u(x)) = ri(x)re(x) anddegri(x) > degra(z), then there does not exist
ue(z) = u(z)® (mod r1(z)), whereged(c, k) # 1,1 < ¢ < kandc # @ such
thatdegu.(x) < degu(x).

Proof. Letk = plf -+ plm wherep; < pa- -+ < pm, ue(z) = u(z)¢ (mod rq(z)),
degu.(z) = banddegr;(z) = a1¢(k), then the degree @( e (uc(x))is b@((ckk))

By Lemma 2,<I> k

(uc(x)) is factorable and has, (x) as an irreducible factor.
c,k)

5) > ap(k)(ie. b > “(1*"““)) Whenged(c, k) # 1, the
(c,k)

maximal value forgp(m) is I% if i, =1or *"(”“) if {4 > 1. If a > b where

a = degu(z), it follows thata; < J-ora; < pla_ Since4|k or the minimal

prime which divides is larger thare, we haves; < 5. Buta; > §, a contradic-

tion. Sodegu.(z) > degu(z). O

Hence we havégp(

Example6. Letk = 8, u(z) = 55z +140x5+&%m3+26x we havebg(u(z)) =
sTisooos 71 (2)r2(z) wherer; = 28 4+ 1226 4 562 4 7222 + 100 and ry =
8122V + 3132218 4 - .- — 4425523222 + 61465600, we select(x) = ro(z), when
c = 2,6 we havedegus(z) = 14, degug(z) = 14.

Hence ifu,in () € {us(z) = u(x)® (mod r(z)),1 < s < k,ged(s, k) = 1}
such thatu,,;, (x) has minimal degree, by Theorem &gu.(z) > degumin(z)
for all u.(z) = w(z)¢ (mod r(x)),1 < ¢ < k. Hence curves that have such
property should be avoided iate; pairing.

Proposition 2. If the irreducible factors ofb; (u(x)) are used to generate pairing-
friendly curves, then the Miller loop length Afe; pairing can not reach the bound
logr

e(k)"

Proof. Suppose-(x) is an irreducible factor ofy (u(z)) anddegr(z) = ap(k),

by Lemma 2y (x)|® e (uc(z)) whereu, = u(z)¢ (mod r(x)). Letdegu.(x) =
b, if the Miller loop Iength ofAte; pairing is 10(g’; thenb = a, which means that

degfI)(_kk)(uc(x)) a- gp((c )) Sincer(x) is irreducible factor ofbﬁ)(uc(x)),

thendegr(z) = a - ¢(k) < degfb%(uc(a@)) = a- (%), a contradiction. O
c,k ’
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