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Abstract

The irreducible factorr(x) of Φk(u(x)) andu(x) are often used in con-
structing pairing-friendly curves.u(x) and uc ≡ u(x)c (mod r(x)) are
selected to be the Miller loop control polynomial in Ate pairing andAtei

pairing. In this paper we show that when4|k or the minimal prime which
dividesk is larger than2, someu(x) andr(x) can not be used as curve gen-
eration parameters if we wantAtei pairing to be efficient. We also show
that the Miller loop length can not reach the boundlog2r

ϕ(k) when we use the
factorization ofΦk(u(x)) to generate elliptic curves.

1 Introduction

How to implement cryptosystem efficiently is very importantin Public-key Cryp-
tography. As pairing-based Cryptography is concerned, thecomputation of Tate
pairing is the bottleneck. Many work have been done such as [8, 2]. All these work
are based on Miller’s algorithm[12, 13]. The loop length in Miller’s algorithm for
Tate pairing is aboutlog2r. Recently a lot of works are focus on shorten the loop
length in Miller’s algorithm such as eta pairing [1] which extends [4], Ate pair-
ing [10], optimized Ate pairing [5],Atei pairing [17],R-rate pairing [6], optimal
pairing [16]. u(x) anduc ≡ u(x)c (mod r(x)) are selected to be the Miller loop
control polynomial in [10, 17]. TheAtei pairing can be more efficient for some
elliptic curves [17]. Usually we select these curves with short Miller loop by com-
puter search. In this paper, we show that some elliptic curves are not suitable for
Atei pairing. This will aid computer searching. The remainder ofthis paper is
organized as following: in section 2 we describe some backgrounds on pairings. In
section 3 our results are presented.
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2 Some backgrounds

Let E(Fq) be an elliptic curve over finite fieldFq and#E(Fq) be its group order.
If its group order has a large enough prime factorr andr divides qk − 1 where
k is a small positive integer, but does not divideqi − 1, 0 < i < k. We call
k the embedding degreeof E(Fq) andE(Fq) pairing-friendly curve. Usually we
use Brezing-Weng’s method [3] to generate pairing-friendly curves which can be
summarized as follows [7]:

Fix a integerk and a positive square free integerD :
1. Choose a number fieldK containing

√
−D and a primitivek-th root of unity

ζk.
2. Find an irreducible polynomialr(x) ∈ Z[x] such thatQ[x]/(r(x)) ∼= K.
3. Let t(x) ∈ Q[x] be a polynomial mapping toζk + 1 ∈ K.
4. Let y(x) ∈ Q[x] be a polynomial mapping toζk−1√

−D
∈ K.

5. Let p(x) ∈ Q[x] be given by(t(x)2 + Dy(x)2/4. If p(x) andr(x) represent
primes, then the triple(t(x), r(x), p(x)) represents a family of curves with embed-
ding degreek and discriminantD.

Let P ∈ E[r] andfi,P be anFqk-rational function whose divisor is(fi,P ) =
i(P )− ([i]P )− (i− 1)O. Then the Tate pairing is well-defined, non-degenerated,
bilinear pairing

e: E[r] × E(Fqk)/rE(Fqk) → F∗
qk/(F∗

qk)r

e(P,Q) → 〈P,Q〉 = fr,P (D)
For practical purposes, we often use the reduced Tate pairing

ê(P,Q) = fr,P (D)
qk−1

r .
To compute Tate pairing, it requires aboutlog2r iterations of Miller loop. The

Ate pairing [10] can short the loop length in Miller’s algorithm. Let E be an
ordinary elliptic curves overFq, r a large prime whichr|#E(Fq) andt the trace
of Frobenius(i.e.#E(Fq) = q + 1 − t). Let πq be the Frobenius endomorphism,
πq: E → E: (x, y) → (xq, yq). ForT = t − 1, Q ∈ G2 = E[r] ∩ Ker(πq − [q])
andP ∈ G1 = E[r] ∩ Ker(πq − [1]). fT,Q(P ) defines a bilinear pairing which
called Ate pairing. It requires aboutlog(t−1) iterations. LetTi ≡ T i (mod r). In
[17], the authors define a new pairingfTi,Q(P ) calledAtei pairing which iterates
Ti times in pairing computation using Miller’s algorithm. IfT andTi are strictly
less thanr, we gain some advantages.

Let E(Fq) be an elliptic curve whose tracet 6= 0 andE(Fq) has a subgroup of
orderr. In [7] ω is defined to belogr

log|t| . When the size of subgroup order is fixed, the
largerω is, the shorter the loop length is in Ate pairing. If we use thefactorization
of Φk(u(x)) to construct elliptic curves, thenω ≤ ϕ(k) [7]. It has been conjectured
in [16] that any non-degenerate pairing on an elliptic curves without efficiently
computable endomorphism different from powers of Frobennius requires at least
log2r

ϕ(k) basic Miller iterations. If we take thek-th cyclotomic polynomial to represent
the subgroupr, x the Frobenius trace and use Brezing-Weng’s method to generate
pairing-friendly elliptic curves, then the Miller loop length is aboutlog2r

ϕ(k) .
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3 Polynomials for Ate pairing and Atei pairing

In this section we assume that the use of an irreducible factor of Φk(u(x)) to con-
struct pairing-friendly curves. As Ate paring is concerned, we have the following
Theorem.

Theorem 1. Let degu(x) = a, the minimal Miller loop length forAte pairing is
alog2r

(a−1)ϕ(k) .

Proof. SupposeΦk(u(x)) = r1(x)r2(x), from [7] we know thatdegr1(x) =
a1ϕ(k), degr2(x) = a2ϕ(k) wherea1 + a2 = a. If a1 ≥ a2, we selectr1(x) to
represent the subgroupr. Thenlimx→∞

logr1(x)
logt(x) = a1

a
ϕ(k) = a1

a1+a2
ϕ(k). Since

Φk(u(x)) splits,a2 ≥ 1. So the maximal value ofω is a−1
a

ϕ(k)(i.e. the minimal

Miller loop length forAte pairing is alog2r
(a−1)ϕ(k) ).

If a ia large enough, thenω ≈ ϕ(k).
To construct elliptic curves with property described above, we must findu(x)

andr(x) such thatr(x)|Φk(u(x)) anddegr(x) = (a−1)ϕ(k) wheredegu(x) = a.
The method described in [15] can be used to find these polynomials. In [15] power
integral basis is employed to findu(x) which would makeΦk(u(x)) factorable
and we know that one irreducible factor ofΦk(u(x)) is of degreeϕ(k). Usually
Φk(u(x)) splits into two irreducible factors, so the other has degree(a − 1)ϕ(k).
The irreducible factor of degree(a − 1)ϕ(k) has some special property.

Proposition 1. For a fixedk, if Φk(u(x)) splits into two irreducible factors, then
there is an irreducible factorr(x) such that2 · degu(x) ≤ degr(x) iff ϕ(k) ≥ 4.

Proof. AssumeΦk(u(x)) = r1(x)r2(x), degr1(x) = a1ϕ(k), degr2(x) = a2ϕ(k),
wherea1 + a2 = a anda1 ≥ a2. If a1ϕ(k) ≥ 2a, thena1ϕ(k) ≥ 2(a1 + a2). It
follows thatϕ(k) ≥ 2a2

a1
+ 2. Since0 < a2

a1
≤ 1 and2|ϕ(k), we haveϕ(k) ≥ 4.

If ϕ(k) ≥ 4, thena1ϕ(k) ≥ 4a1. Sincea1 ≥ a2, a1 ≥ a
2 . Soa1ϕ(k) ≥ 4a1 ≥

4 · a
2 = 2a.

Using PARI[14], we have following examples.

Example 1. k = 15, u(x) = x7 − 7x6 + 20x5 − 29x4 + 20x3 − 2x2 − 4x,
Φ15(u(x)) = (x8 − 9x7 + 35x6 − 76x5 + 99x4 − 76x3 + 30x2 − 4x + 1)(x48 −
47x47+1074x46+· · ·+8x+1), ϕ(15) = 8, a = 7, (a−1)ϕ(15) = (7−1)·8 = 48

Example 2. k = 8, u(x) = x3, Φ8(u(x)) = (x4 + 1)(x8 − x4 + 1).

Example 3. k = 10, u(x) = 600
541x7 + 1305

541 x6 + 4496
541 x5 + 6895

541 x4 + 11280
541 x3 +

8515
541 x2 + 1034

541 x − 1651
541 , Φ10(u(x)) = 1

85662167761 (x8 + 2x7 + · · · − 4x + 1)
(129600000000x20 + 868320000000x19 + · · · + 11009524377905)
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According to Proposition 1, ifϕ(k) ≥ 4 then degr(x) = (a − 1)ϕ(k) >
2a = 2 · degu(x). This provides important information for constructing pairing-
friendly curves. If some

√
−D ∈ Q[x]/(r(x)), Brezing-Weng’s method can be

used to generating curve with such property. Otherwise we can take Scott-Barreto’s
approach [7, 11].

Before discussingAtei pairing, we introduce some properties aboutu(x) and
uc(x) ≡ u(x)c (mod r(x)) where1 < c < k.

The following lemma extends the result of Galbraith, McKee and Valença [9].

Lemma 1. Let ζk be a primitivek-th root of unity andQ(ζk) thek-th cyclotomic
field. ThenΦk(u(x)) splits whereu(x) ∈ Q[x] iff there exists an finite extensionE
of Q such thatζk ∈ E andu(x) = ζk has a solution inE.

Proof. See [15].

Lemma 2. If Φk(u(x)) is reducible and hasr(x) as an irreducible factor, then
Φ k

(c,k)
(uc(x)) is also reducible where1 < c < k anduc(x) ≡ u(x)c (mod r(x)).

r(x) is a common factor forΦ k
(c,k)

(uc(x)) .

Proof. Let θ be a root for the equationu(x) = ζk andr(θ) = 0, thenu(θ)c = ζc
k

is a k
(c,k)-th primitive root of unity(i.e.u(θ)c = ζ k

(c,k)
). Henceu(x)c = ζ k

(c,k)
has

a solutionθ, according to Lemma 1,Φ k
(c,k)

(u(x)c) splits. SinceΦ k
(c,k)

(u(θ)c) = 0

and r(x) is irreducible, we haver(x)|Φ k
(c,k)

(u(x)c). From the assumption we

know thatu(x)c = f(x)r(x) + uc(x), henceuc(θ) = ζ k
(c,k)

. By the same reason

mentioned above, we can draw the conclusion.

Let S denote the set{uc(x) ≡ u(x)c (mod r(x)), gcd(c, k) = 1}. These
are thek-th primitive root of unity modulor(x). They form a group. There is
someumin(x) ∈ S has minimal degree. Givenuc ∈ S, there existss ∈ Z+

such thatuc(x) ≡ umin(x)s (mod r(x)). If u(x) ≡ umin(x)c (mod r(x)), then
degu(x) ≥ umin(x). By lemma 2,r(x)|Φk(umin(x)). So if we useumin(x) and
r(x) as curve’s generation parameters, we gain no advantages in usingAtei pairing
whenk is prime.

Example 4. k = 8, u(x) = 2
3x3 + 1

3x2 +x− 5
3 , andr(x) = 16x8 +32x7 +88x6−

8x5 − 31x4 − 308x3 − 16x2 − 44x + 353, let c = 3, 5, 7 such thatgcd(c, k) = 1,
thenu3(x) = 2

9x7 + 1
9x6 + 11

18x5 − 29
36x4 + 2

3x3 − 14
9 x2 + 25

18x − 49
36 , u5(x) =

−2
3x3− 1

3x2−x+ 5
3 , u7(x) = −2

9x7− 1
9x6− 11

18x5+ 29
36x4− 2

3x3+ 14
9 x2− 25

18x+ 49
36 .

Example 5. k = 5, if u(x) = 600
541x7 − 1305

541 x6 + 4496
541 x5 − 6895

541 x4 + 11280
541 x3 −

8515
541 x2 + 1034

541 x + 1651
541 , thenΦ5(u(x)) = 1

85662167761 r1(x)r2(x) wherer1(x) =
x8−2x7+7x6−10x5+16x4−10x3−2x2+4x+1 andr2(x) = 129600000000x20−
868320000000x19+· · ·+11009524377905, we selectr(x) = r2(x), thendegu2(x) =
14,degu3(x) = 19,degu4(x) = 19.
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Theorem 2. Suppose4|k or the minimal prime which dividesk is larger than2,
if Φk(u(x)) = r1(x)r2(x) and degr1(x) ≥ degr2(x), then there does not exist
uc(x) ≡ u(x)c (mod r1(x)), wheregcd(c, k) 6= 1, 1 < c < k andc 6= ϕ(k)

2 such
thatdeguc(x) < degu(x).

Proof. Let k = pl1
1 · · · plm

m wherep1 < p2 · · · < pm, uc(x) ≡ u(x)c (mod r1(x)),
deguc(x) = b anddegr1(x) = a1ϕ(k), then the degree ofΦ k

(c,k)
(uc(x)) is bϕ( k

(c,k)).

By Lemma 2,Φ k
(c,k)

(uc(x)) is factorable and hasr1(x) as an irreducible factor.

Hence we havebϕ( k
(c,k)) > a1ϕ(k)(i.e. b > a1ϕ(k)

ϕ( k
(c,k)

)
). Whengcd(c, k) 6= 1, the

maximal value forϕ( k
(c,k)) is ϕ(k)

p1−1 if l1 = 1 or ϕ(k)
p1

if l1 > 1. If a > b where
a = degu(x), it follows thata1 < a

p1
or a1 < a

p1−1 . Since4|k or the minimal
prime which dividesk is larger than2, we havea1 < a

2 . But a1 ≥ a
2 , a contradic-

tion. Sodeguc(x) ≥ degu(x).

Example 6. Letk = 8, u(x) = 3
280x7+ 19

140x5+ 99
140x3+ 26

35x, we haveΦ8(u(x)) =
1

6146560000 r1(x)r2(x) wherer1 = x8 + 12x6 + 56x4 + 72x2 + 100 and r2 =
81x20 + 3132x18 + · · · − 44255232x2 + 61465600, we selectr(x) = r2(x), when
c = 2, 6 we havedegu2(x) = 14,degu6(x) = 14.

Hence ifumin(x) ∈ {us(x) ≡ u(x)s (mod r(x)), 1 < s < k, gcd(s, k) = 1}
such thatumin(x) has minimal degree, by Theorem 2,deguc(x) ≥ degumin(x)
for all uc(x) ≡ u(x)c (mod r(x)), 1 < c < k. Hence curves that have such
property should be avoided inAtei pairing.

Proposition 2. If the irreducible factors ofΦk(u(x)) are used to generate pairing-
friendly curves, then the Miller loop length ofAtei pairing can not reach the bound
logr
ϕ(k) .

Proof. Supposer(x) is an irreducible factor ofΦk(u(x)) anddegr(x) = aϕ(k),
by Lemma 2,r(x)|Φ k

(c,k)
(uc(x)) whereuc ≡ u(x)c (mod r(x)). Letdeguc(x) =

b, if the Miller loop length ofAtei pairing is logr
ϕ(k) , thenb = a, which means that

degΦ k
(c,k)

(uc(x)) = a · ϕ( k
(c,k)). Sincer(x) is irreducible factor ofΦ k

(c,k)
(uc(x)),

thendegr(x) = a · ϕ(k) < degΦ k
(c,k)

(uc(x)) = a · ϕ( k
(c,k)), a contradiction.
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