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Abstract

In the last years, DNA sequencing techniques have advanced to the point that DNA iden-
tification and paternity testing has become almost a commodity. Due to the critical nature
of DNA related data, this causes substantial privacy issues. In this paper, we introduce
cryptographic privacy enhancing protocols that allow to perform the most common DNA-
based identity, paternity and ancestry tests and thus implement privacy-enhanced online
genealogy services or research projects. In the semi-honest attacker model, the protocols
guarantee that no sensitive information about the involvedDNA is exposed, and are resilient
against common forms of measurement errors during DNA sequencing. The protocols are
practical and efficient, both in terms of communication and computation complexity.

1 Introduction

Since the first deployment of DNA tests for person identification in 1994, advances in forensic
sciences have decreased the effort of collecting DNA samples to the point that DNA-based iden-
tification and paternity testing have almost become a commodity. Most western governments
keep databases with DNA profiles of criminal offenders and suspects: In the US, the FBI main-
tains the CODIS system [14, 6], storing (as of February 2007)more than4.3 million profiles;
the British authorities alone maintain a database containing DNA samples of more than five per-
cent of the population. Besides the professional law-enforcement domain, DNA-based tests are
increasingly available in private life: fathership tests are offered for as little as $150, online ge-
nealogy projects use DNA testing to derive family trees [11,1], and large-scale scientific studies
try to unravel the history of mankind (e.g., the GenoGraphicproject launched by the National
Geographic Society [24]). With upcoming technical advances, such as microarrays, the effort of
collecting and processing DNA samples will further decrease to the point where dedicated and
expensive lab equipment may become unnecessary. DNA tests may be offered by pharmacies
or stores, or even performed at home.

Besides person identification, DNA-related data is increasingly used in health care to gain
a precise diagnosis and optimize treatments. DNA may, for example, code a pre-disposition
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to develop a specific disease; knowledge of this genetic disposition allows for preventive mea-
sures. In addition, DNA information is used to test for drug allergies and estimate the individual
success rate of a specific treatment.

Due to its dual role of simultaneously providing both privacy-sensitive health data and iden-
tification information, special care must be taken when DNA-related data is stored and processed
for identification purposes. While person identification isusually done with a ‘Short Tandem
Repeat’ (STR) profile extracted from parts of the DNA that areconsidered non-functional, it
has turned out that potentially sensitive medical information can be derived from STRs as well.
For example, [16] notes that particular STRs may be linked togenetic diseases, since they are
closely located to a particular gene that is responsible fora genetic disorder. The results in
[10] show how STRs can be used to analyze the genome in order tolocate genes responsible
for a particular disease. Further, a series of examples displaying the links between STRs used
for forensics and diseases can be found in [5]. Given the current scientific knowledge on the
human genome, it can thus not be excluded that DNA profiles intended solely for identification
purposes reveal sensitive medical data as well.

This increases the already eminent privacy problem connected to the use of DNA for iden-
tification purposes. Apart from the fact that even samples collected for the sole purpose of
person identification may contain highly sensitive medicalinformation, the wide range of pos-
sibilities DNA identification offers, calls for a very careful policy on when to voluntarily reveal
DNA-related information.

While there is little doubt that DNA forensics is a powerful tool for police investigations,
the existence of DNA databases does create desires for use-cases that were not intended at
the time of data collection; examples are known from variousother domains, such as road
taxing information (which is now used to track suspects) or Internet data retention (which was
introduced as a tool against terrorism, and now is used to track peer to peer users). For DNA,
first proposals have been issued to use genetic information to determine the likelihood of a
person becoming a criminal [2]; for example, [17] quotes a USstate senator arguing that DNA
profiles may help predict which probationers will likely commit further crimes. A summary of
privacy issues in forensic use of DNA can be found in [13]. Thus, we believe it is important
to technically restrict the usage of DNA forensics to a minimum and to require a watchdog
organization to prevent abuse of the data—for example, while the police may have a database
of encrypted DNA, the watchdog organization may hold the keys necessary to make use of the
data.

In addition to forensic uses, DNA testing can allow for useful services to end consumers and
researchers. Already now, several providers offer DNA based ancestry discovery and paternity
testing; more advanced services (e.g., exact determining the exact ethnicity of a person) are also
becoming available. In the future, the number of such services is likely to increase, including
for example DNA based health recommendations. While we focus on identity testing here, our
techniques can also be applied in those settings.

Related Work on DNA protection. There has been a considerable interest in the protection
of genomic sequences for research purposes. Traditionally, protection was mainly achieved
through anonymization techniques (see [19] for an overview). However, it was recently shown
in [20] that re-identification of anonymized records is possible with high probability in case
the anonymization preserved genealogical relations. To provide better protection, cryptographic
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privacy enhancing technologies have been investigated recently. For example, [15] aims at sup-
porting large-scale biomedical research projects performing frequency counts of mutations; in
their approach, genomic sequences are encrypted using a homomorphic public-key encryption
scheme and the queries are performed directly on encrypted data. In [25] the authors concentrate
on running queries formulated as regular expressions obliviously on DNA data; the approach can
be extended to allow privacy-preserving fuzzy string searching.

While the approaches described above were designed for the protection of full DNA se-
quences in a research setting, the authors of [3] consideredthe protection of forensic DNA
databases: each entry in the database is encrypted with a keythat is derived (e.g., by a Fuzzy
Extractor [9, 18]) from the DNA sample itself. If a DNA sampleof a suspect is to be tested
against the entries in the database, a key is first extracted from the sample; the test proceeds by
trying to decrypt each entry in the database with the derivedkey. A match is obtained if at least
one entry in the database can successfully be decrypted. This approach has the disadvantage
that it is only applicable to a forensic testing scenario andcannot easily be extended to other ge-
nealogical tests considered in the present paper. Similarly, the concept of negative databases [8]
can be used to test a single profile against a database so that the content of the database cannot
be efficiently enumerated. However, this approach cannot beextended in a straightforward way
to handle error-prone profiles and more complex tests like parental tests.

Contribution. In the present paper we provide—to the best of our knowledge for the first
time—efficient and practical privacy enhancing protocols that allow the secure matching of
DNA profiles. In contrast to previous approaches, which considered protection of DNA se-
quences and databases, we aim at protection of STR profiles asthey are currently used in
forensics and genealogy. Our protocols support identity, parental and ancestor tests and thus
cover a wide range of questions on person relationships, offering the possibility to implement
privacy-enhanced Internet genealogy services or researchprojects.

In Section 2 we review Short Tandem Repeats, which are commonly used in forensic sci-
ences to perform both paternity and identity tests. In Section 3 we present privacy-preserving
protocols for the most common applications of DNA-based identity testing; furthermore we
discuss their efficiency and privacy. Finally, Section 4 discusses active attackers and shows
fundamental limits of STR privacy protection techniques.

2 Short Tandem Repeats and Identity Testing

Desoxyribo-Nucleic Acid (DNA) is found in basically every cell of a living organism and de-
termines to a great extent its physical characteristics. DNA consists of complementary pairs
of long strands of four different nucleotides (A,C,G,T); intotal, human DNA consists of sev-
eral billion nucleotides. Every person inherits half of itsDNA from the father and half from
the mother (except mitochondrial DNA and the male Y chromosome); siblings inherit different
combinations from their parents and thus have different butrelated DNA.

Some parts of the DNA, which have no apparent functionality,are known to contain short
sequences of nucleotides that repeat a number of times. Thisphenomenon is called a Short
Tandem Repeat (STR). The actual number of repetitive nucleotides in a STR varies widely over
the population and is thus useful for identification purposes. The length of individual STRs
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Locus Allele (Σ) Repeat structure

TH01 . . . . . .
8 [AATG]8

8.3 [AATG]5ATG[AATG]3
9 [AATG]9

9.3 [AATG]6ATG[AATG]3
. . . . . .

Table 1: Part of a specification how repetitive patterns are encoded as alleles (elements ofΣ) for
the locus TH01 [4].

can be determined using chemical analysis: the analyzed DNAmolecule is cut with restriction
enzymes in front of and immediately after the STR. Finally, the length of the obtained fragment
(and thus the number of repetitions, calledalleles) can be determined using gel electrophoresis.
STRs appear at different positions (calledloci) in the DNA molecule and can be analyzed by
using different types of restriction enzymes [4].

For the 22 pairs of autosomal chromosomes, every STR locus appears twice, one originating
from the father and one from the mother. Thus for these STRs weobtain two potentially differ-
ent numbers of repetitions. For the two types of sex chromosomes (X and Y), the structures are
different; when evaluating the Y chromosome, only one number of repeats is found. STRs are
a common phenomenon: thousands of different STRs are known,but only few, the core STRs,
are usually used for forensics. In the field of criminal forensics, the EuropeanSGM plusiden-
tification method uses 10 different STR loci and gender information, whereas the US CODIS
system utilizes a set of 13 loci. For genealogy, usually 37 or67 STRs on the Y-chromosome are
utilized.

In the rest of the paper, we will denote a STR occurring twice in a cell as a multiset{x1, x2}
of two not necessarily distinct elements over a finite setx1, x2 ∈ Σ, whereΣ is a set of sym-
bols (alleles) coding possible repetition numbers. For notational compatibility, STRs on the
Y-chromosome will be denoted as singleton sets{x} ∈ Σ. Note that it is possible for a STR
thatx1 = x2 if the number of repetitions in DNA material inherited from the father is identical
to the number of repetitions in the material inherited from the mother. The setΣ includes small
integers and a few fractional numbers, which are commonly used in forensic sciences to code
incomplete repetition patterns;Σ is always a finite set, typically containing 50 to 100 different
symbols. Table 1 illustrates for one locus (TH01) how repetitive DNA patterns are encoded as
alleles inΣ.

Even though the number of repetitions in a single STR varies over the population, the distri-
bution of allelesx andy is far from uniform overΣ; for each locus there are a few symbols that
occur with overwhelming probability. It is known from large-scale statistical analysis over the
DNA of the population [21] that one STR allelex, viewed as a random variable overΣ, contains
about 2.5 bits of entropy.

In the rest of the paper, by imposing an arbitrary order on theN loci considered, we will
denote the STR profile of a person by anN -tuple of multisets

S = 〈{x1,1, x1,2}, {x2,1, x2,2}, . . . , {xN,1, xN,2}〉 ,
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or anN -tuple of singleton sets

S = 〈{x1}, {x2}, . . . , {xN}〉

in case of STRs on the Y chromosome. For a profileS, we will use the short notation
〈{si,1, si,2}〉 or 〈{si}〉, where1 ≤ i ≤ N are indices of the loci; furthermore, we have
xi, xi,j ∈ Σ.

In this paper, we present protocols that allow to test whether two or three STR profiles are
‘related’ without disclosing the profiles to each other (or more precisely without leaking any
information on the individual profiles in an information theoretic sense or under computational
assumptions). We consider the following major questions onperson relationships, which can be
effectively tested on STRs:

• Identity testing. In this scenario, two STR profilesS = 〈{si,1, si,2}〉 and T =
〈{ti,1, ti,2}〉 are available; e.g., one profile may come from a crime scene and one from
a forensic database. The goal is to determine whether both profiles were taken from the
same person. This is the case if the alleles for each locus areidentical, i.e.,

N∧

i=1

[{si,1, si,2} = {ti,1, ti,2}] = TRUE, (1)

where ‘=’ denotes a binary operator testing equivalence of multisets.

Due to the imperfection of the chemical process used to analyze DNA samples and infer
the STR alleles, infrequent errors occur in STR profiles witha small probability. In addi-
tion, in the cell reproduction process infrequent mutations may occur, thereby interfering
with the STR patterns. To account for these imperfections, identity tests usually allow a
small number of mismatches at different loci. Instead of verifying the condition of Eq. (1)
for each of theN loci, a match is already reported if they are satisfied on at leastN − t

out of all N loci for a small numbert. Note that the accuracy of the test degrades sig-
nificantly with a growing numbert of errors. Thus, as the total numberN of tested loci
is already extremely limited, identity tests usually do notallow more than two errors in
order to allow reliable identification. The protocols presented in this paper are designed
to support this level of error-resilience.

• Common ancestor testing on the Y chromosome. In this scenario, two Y-chromosome
STRsS = 〈{si}〉 andT = 〈{ti}〉 are available, e.g., one may be stored in an online
genealogy database and one may be possessed by a person who wishes to determine his
ancestry. Due to the stability of the Y chromosome during reproduction, the persons from
which the profilesS andR are taken are considered to be related, if they share the sameY
chromosome and thus have the same STR profile. If there is a distant relationship between
S and R, some STR alleles may have changed due to mutations during reproduction.
Thus, a positive test result is reported if the STRs agree on all but at mostt loci, wheret

usually does not exceed three:
∨

C⊆{1,...,N},|C|≥N−t

∧

i∈C

[{si} = {ti}] = TRUE. (2)
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• Paternity testing with one parent. Two profilesS = 〈{si,1, si,2}〉 andT = 〈{ti,1, ti,2}〉
are available. The goal is to determine whetherT is a profile of a person that can po-
tentially be a parent of the person from whichS was taken. As noted above, during the
reproduction process, for each locus one STR allele is inherited from the parent. For
testing a parent-child relationship, it thus suffices to determine whether

N∧

i=1

[{s1,i, s2,i} ∩ {t1,i, t2,i} 6= ∅] = TRUE, (3)

where ‘∩’ denotes the multiset intersection operation. Again, in order to enhance the
robustness of the test, a limited numbert of mismatches at different loci may be allowed;
in that case, the logical operator

∧N
i=1 should be replaced (similar to the last case) by

∨

C⊆{1,...,N},|C|≥N−t

∧

i∈C .

• Paternity testing with two parents. In this case three profilesM = 〈{mi,1,mi,2}〉,
F = 〈{fi,1, fi,2}〉 andC = 〈{ci,1, ci,2}〉 are available. The task is to determine whether
profilesM andF come from persons who can be the parents of a person with profile C.
This is indeed the case if for each locus inC, one allele comes fromM and theother
allele comes fromF . Thus,M andF can be parents ofC, if

N∧

i=1

[{ci,1, ci,2} ∈ ({mi,1,mi,2} ⊠ {fi,1, fi,2})] (4)

=
N∧

i=1

((ci,1 = mi,1 ∨ ci,1 = mi,2) ∧ (ci,2 = fi,1 ∨ ci,2 = fi,2)) ∨

((ci,1 = fi,1 ∨ ci,1 = fi,2) ∧ (ci,2 = mi,1 ∨ ci,2 = mi,2)) = ⊤,

whereA ⊠ B denotes the set of all two-element multisets, where one element is taken
from A and the other one fromB, i.e.,A ⊠ B = {{a, b} | a ∈ A, b ∈ B}. Again, the test
may be designed so that it allows a small number of mismatches.

3 Protocols for Secure STR Matching

In this section we consider efficient privacy-preserving implementations of the tests outlined in
Section 2: two or three STR profiles are tested whether they are ‘related’ according to Eqs. (1)-
(4), while being assured that the protocol execution does not leak information about the profiles
except the result under computational assumptions. In particular, in case of a mismatch, no
protocol participant should learn any information about the other participant’s profiles, except
that they do not match his own.

Our protocols require a semi-honest attack model, i.e., parties that correctly follow the pro-
tocol. Furthermore, for obvious reasons, the protocol cannot guarantee that the participants use
proper input data; if a participant manages to use the DNA of her dog instead of her own, the
results of the protocol will be correspondingly wrong. In some of our settings, no party has an
interest in such a form of cheating; while, for example, an genealogy service may have an inter-
est in keeping more data than actually needed, there is little reason to manipulate the protocol
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output. (However note that it sometimes is possible to derive information from the protocols
input/output behavior alone; as we will show later in Section 4, such an information leak is
unavoidable). In settings in which one party has an interestin manipulating the output—such as
comparison of DNA found at a crime scene and that of a suspect—this party would usually not
participate in the protocol in the first place. Rather, our scheme allows for a separation of duties.
While the police can collect a database of encrypted DNA identities, a watchdog organization
may hold the keys and thus be able to prevent abusive use of theDNA database.

3.1 Preliminaries

The privacy problem addressed in this paper can be formulated as an instance of secure multi-
party computation [26, 7]. Technically, we show that secureevaluation of multivariate polyno-
mials (using homomorphic encryption) can yield efficient STR matching protocols. The use of
polynomial evaluation for comparison of private data (profile matching) was first proposed by
Freedman et al. [12]. For a specific matching problem, one constructs a polynomial over the
input values of each party, which evaluates to zero if and only if the inputs match. The matching
protocol consists of a secure two-party computation to evaluate the polynomial on the private
input values. In this paper we concentrate on protocols thatare secure in the semi-honest adver-
sary model; however, extensions to the malicious case are possible using standard constructions
of secure multiparty computation [23], at the expense of efficiency.

Homomorphic Encryption. In the constructions, we use a homomorphic public key encryp-
tion schemeEH , such as Paillier encryption [22] over a message spaceM, which has the
property thatEH(x + y) can be efficiently computed from the individual encryptionsEH(x)
andEH(y) without knowledge of the secret key, where the addition operation is performed in a
finite ring. Additionally,EH(rx) can be computed fromr andEH(x) asEH(x)r.

Besides Paillier encryption, it is also possible to employ the following homomorphic variant
of ElGamal [23] withM = Zq. Let p be a large prime andg be a generator of prime orderq

(with q | p − 1) of a suitably large subgroup ofZ∗
p. To generate a public-/private key pair, one

chooses a random1 ≤ α ≤ q − 1 and computesh = gα modp; the public key is given by
the tuple(p, g, h), whereas the private key isα. To encrypt an elementm ∈ Zq, one chooses a
random elementr ∈ Zq and computes the ciphertext tuple(c1, c2) = (gr modp, gmhr modp).
The scheme can thus be seen as plain ElGamal encryption, where a messagem is encoded as
gm before encryption. It is easy to see that this encryption scheme is homomorphic with respect
to addition inZq: suppose that(c1, c2) is the encryption of a plaintextx and (c′1, c

′
2) is the

encryption ofx′, then(c1c
′
1 modp, c2c

′
2 modp) is an encryption ofx + x′ modp.

Unfortunately this encryption scheme offers only limited decryption possibilities. As in
the plain ElGamal scheme, to decrypt a ciphertext(c1, c2), one first computesc2(c

α
1 )−1 modp,

yielding the encoded messagegm. Recoveringm from this encoding requires taking a discrete
logarithm inZ

∗
q , which is assumed to be intractable. However, if the encrypted messagem is

known to belong to a small message space,gm can be decoded by brute force search. Similarly,
given the private key, it can be tested efficiently whether(c1, c2) is the encryption of a specific
messagem. The protocols presented in the paper require only the latter capability: it is sufficient
to distinguish, given the knowledge of the private key, an encryption of the messagem = 0 from
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1. T maps his allelesti,1 = Hi(ti,1) andti,2 = Hi(ti,2) for 1 ≤ i ≤ N .

2. T computes the sumA =
∑N

i=1 ti,1 + ti,2 and sendsEH
pkT

(A) to S.

3. S similarly maps her allelessi,1 = Hi(si,1) andsi,2 = Hi(si,2), computes the
sumB =

∑N
i=1 si,1 + si,2 and computes an encryptionEH

pkT
(B).

4. S computes, using homomorphic properties ofEH , an encryptionEH
pkT

(rZI) =

EH
pkT

(r(A−B)), wherer is a blinding factor, chosen uniformly at random. The
obtained encryption is sent back toT .

5. T decrypts the result and reports a match if a zero is obtained.

Figure 1: Secure identity testing protocol.

an encryption of a messagem 6= 0. This can be performed efficiently by ordinary ElGamal
decryption to obtain the coded messagegm and by testing whethergm = 1.

Representation of Alleles. To represent alleles as elements of the message spaceM of the
underlying encryption scheme, we use families of random injective functions〈H1, . . . ,HN 〉,
where each function is randomly drawn from the set of injective functionsΣ → M. The cardi-
nality |M| acts as security parameter. In the protocols described below, we use the functionHi

to map the alleles of locusi. Due to the random choice ofHi, the mapping becomes dependent
on the locus. The correctness of the protocols highly depends on the property that the same
allele will be mapped to different messages at different loci. Given an STR profile〈{ti,1, ti,2}〉
or 〈{ti}〉, we will denote withti,j = Hi(ti,j) or ti = Hi(ti) the alleles, mapped according to
the locus in which they appear.

In the analysis, we will assume that eachHi is a random injective function, which is known
to all protocol participants. In practice it is possible, due to the small cardinality ofΣ, to
store eachHi as a table. Alternatively, a more space-efficient implementation can be derived
from any collision-resistant hash functionH that maps into the setM by letting Hi(m) =
H(pad‖ i ‖m), wherepaddenotes some padding. Assuming thatH is collision-resistant, the
functionHi will, due to the small cardinality ofΣ, be injective with high probability (note that
any two inputsa, a′ ∈ Σ that violate the injectivity ofHi immediately yield a collision ofH).

3.2 Identity Testing

We fix a family 〈H1, . . . ,HN 〉 of random functions, as described in Section 3.1. By mapping
all alleles to messages inM, secure evaluation of Eq. (1) reduces to determining whether the
sum

ZI =

N∑

i=1

(si,1 − ti,1) + (si,2 − ti,2) =

N∑

i=1

(si,1 + si,2) −
N∑

i=1

(ti,1 + ti,2) (5)
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evaluates to zero. This can be efficiently tested (in one round with constant communication
complexity) by the simple protocol depicted in Figure 1. Participant T maps all his alleles
usingHi, adds the mapped alleles, encrypts the result with his public keypkT and sends it to
participantS. S in turn maps her own alleles and subtracts their encryptionsfrom the value
received byT . Finally, the result is multiplicatively blinded and sent back toT , who reports
a match if he received an encryption of a zero. The protocol protects the privacy of both STR
profiles (assuming semi-honest participants), asS obtains only a semantically secure encryption
of the sum ofT ’s mapped alleles andT obtains only a binary answer: a zero if there was a match
or a uniformly chosen random number otherwise.

Correctness. It is easy to see that the above protocol is correct, i.e. it yieldsZI = 0 if and
only if there is a match, except with negligible probability. If there is a match between the STR
profiles ofS andT , i.e., for all loci 1 ≤ i ≤ N , the multisets{si,1, si,2} and{ti,1, ti,2} are
equivalent, Eq. (5) obviously yields zero. Suppose now thatthere is a mismatch. Under the
assumption that bothN = O(log |M|) and |Σ| = O(log |M|), the above protocol yields a
positive result only with negligible probability. This canbe seen as follows: The probability of
a false positive in the above protocol is equal to the probability that the following event happens

tN,2 =

N∑

i=1

(si,1 + si,2) −
N∑

i=1

ti,1 −
N−1∑

i=1

ti,2 ≡ κ.

Since the injective functionsHi for i = 1, . . . , N are randomly chosen from the set of injective
functionsΣ → M, the valuessi,1, si,2, ti,1 for i = 1, . . . , N andti,2 for i = 1, . . . , N − 1 are
randomly distributed. Hence,

Prob[ZI = 0] = Prob[HN (tN,2) = κ] =
1

|M|
, (6)

which is negligible.

Coping with Errors. The protocol as depicted above is sensitive to errors in the STR profile.
As mentioned in Section 2, usually a small number of mismatches (one or two) need to be
tolerated due to the chemical imperfections of the DNA sequencing process.

To cope with one mismatch, the above protocol can be extendedin a straightforward manner:
we modify the polynomial in such a way that we compute a sumZE as

ZE =
∑

(i,j)∈{1,...,N}, i<j

zizj,

wherezi = (si,1 + si,2) − (ti,1 − ti,2). By expanding the polynomial and writing it in terms
of factorssi,1 + si,2 and ti,1 + ti,2, ZE can be computed efficiently byS if T pre-computes
encryptions of the required terms(ti,1 + ti,2)

k(tj,1 + tj,2)
l for 0 ≤ k, l ≤ 1 and different

indicesi andj. The protocol is depicted in Figure 2.T starts by pre-computing the required
encryptions of his mapped alleles and forwards them toS, who in turn can use the homomorphic
properties ofEH to compute an encryptionEH

pkT
(ZE). Finally,R submits a blinded encryption

EH
pkT

(rZE) to T , who decrypts the result. If he obtains a zero, a match is reported.
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1. For each locus1 ≤ i ≤ N , T maps his allelesti,1 = Hi(ti,1) andti,2 = Hi(ti,2).

2. T computes encryptions of all productsEH
pkT

((ti,1 + ti,2)
k(tj,1 + tj,2)

l) for 0 ≤
k, l ≤ 1 with (k, l) 6= (0, 0) and1 ≤ i < j ≤ N and forwards them toR.

3. R maps her allelessi,1 = Hi(si,1) andsi,2 = Hi(si,2) and uses the homomor-
phic property of the encryption to obtain an encrypted valueEH

pkT
(ZE), which

she blinds with a uniformly random blinding factorr.

4. R forwardsEH
pkT

(rZE) to T , who decrypts the value and reports a match if and
only if he obtains a zero.

Figure 2: Secure identity testing protocol tolerating one allele error.

Communication Transmitted Data (in KB)
Complexity N = 13 N = 37 N = 67

Identity test,t = 0 1 0.3 0.3 0.3
Identity test,t = 1 3

2N(N − 1) 58.5 499.5 1658.3
Identity test,t = 2 7

6N(N − 1)(N − 2) 500.5 13597.5 83833.7
Common Ancestor Test,t = 1 3

2N(N − 1) 58.5 499.5 1658.3
Common Ancestor Test,t = 2 7

6N(N − 1)(N − 2) 500.5 13597.5 83833.7
One Parent Paternity Test,t = 0 18N 26.0 74.0 134.0
One Parent Paternity Test,t = 1 40N(N − 1) 3120.0 13320.0 44220.0
Two Parent Paternity Test,t = 0 23N + 1 74.7 212.7 385.2

Table 2: Complexity of the matching protocols.

Note thatZE will (except with negligible probability) be zero if an error occurs in at most
one locus of the profile: in this case only one of the valueszi will be non-zero. If there is more
than one error, at least one productzizj will be nonzero, which results inZE being nonzero,
except with negligible probability. This construction canbe generalized in a straightforward
manner for arbitraryt by summing over all products oft valueszi; however, the scheme soon
gets inefficient due to large space requirements for transmitting the pre-computed products of
mapped alleles.

Complexities. Table 2 gives an overview of the communication complexitiesof the matching
protocols proposed in this section. As it can be seen, the complexity highly depends on the num-
ber of errorst that need to be tolerated during the matching process. Besides the communication
complexity (measured in the number of transmitted encryptions with respect to the lengthN of
the STR profile), we also list the number of transmitted bytesfor practical length STR sequences
(N = 13, N = 37 andN = 67), assuming a message space of2048 bits forEH .
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1. For each locus1 ≤ i ≤ N , T maps his allelesti,1 = Hi(ti,1) andti,2 = Hi(ti,2).

2. T computes encryptions of all productsEH
pkT

((ti,1)
k(ti,2)

l) for 0 ≤ k, l ≤ 2
and(k, l) 6= (0, 0) and forwards them toR.

3. R maps her allelessi,1 = Hi(si,1) andsi,2 = Hi(si,2) and uses the homomor-
phic property of the encryption to obtain an encrypted valueEH

pkT
(ZO), which

she blinds with a uniformly random blinding factorr.

4. R forwardsEH
pkT

(rZO) to T , who decrypts the value and reports a match if and
only if he obtains a zero.

Figure 3: Secure paternity testing protocol (one parent case).

3.3 Paternity Testing with One Parent

The problem of paternity testing with one parent can be formulated as a secure function evalua-
tion problem as well. Evaluating Eq. (3) can be performed by testing whether the sum

ZO =

N∑

i=1

(si,1 − ti,1)(si,1 − ti,2)(si,2 − ti,1)(si,2 − ti,2)
︸ ︷︷ ︸

zi

(7)

is zero. This can be done, again using homomorphic encryption, by the efficient protocol de-
picted in Figure 3, which requires one round and linear communication complexity. These com-
plexity bounds can be achieved by observing that Eq. (7) can be written as a multivariate poly-
nomial of degree two inti,1 andti,2 for 1 ≤ i ≤ N . To securely and efficiently evaluate Eq. (7),
it is thus sufficient forT to provide encryptions of all mixed productsEH

pkT
((ti,1)

k(ti,2)
l) for

0 ≤ k, l ≤ 2 and (k, l) 6= (0, 0) under his public keypkT to R, who in turn can use the
homomorphic properties ofEH to compute an encryptionEH

pkT
(ZO). Finally, R submits a

blinded encryptionEH
pkT

(rZO) to T , who decrypts the result. If he obtains a zero, a match is
reported. The privacy of the profiles of bothT andR are assured (in the semi-honest model), as
R only obtains semantically secure encryptions andT receives a binary answer. Table 2 gives
an overview of the communication complexity of the approach, compared with the protocols of
Section 3.2.

Correctness. It is easy to see that the protocol is correct. If there is a paternity relationship
betweenS andR, i.e., for all loci we have{si,1, si,2} ∩ {ti,1, ti,2} 6= ∅, the sum of Eq. (7) will
certainly evaluate to zero and the protocol reports a match.Suppose now there is no match.
Then, for at least one locus1 ≤ i ≤ N , the elements in{si,1, si,2} will be different from
the elements in{ti,1, ti,2}. Subsequently, thei-th summand of Eq. (7) will, due to the random
nature of the mappingHi, be a random element of the message spaceM. The probability
Prob[ZO = 0] = Prob[z1 + . . . + zN = 0] = 1

|M| is negligible according to a similar reasoning
as in Eq. (6); thus the protocol will, except with negligibleprobability, report a mismatch.
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1. For each locus1 ≤ i ≤ N , T maps his allelesti = Hi(ti).

2. T computes encryptions of all productsEH
pkT

((ti)
k(tj)

l) for 0 ≤ k, l ≤ 1 with
(k, l) 6= (0, 0) and1 ≤ i < j ≤ N and forwards them toR.

3. R maps her allelessi = Hi(si) and uses the homomorphic property of the
encryption to obtain an encrypted valueEH

pkT
(ZC), which she blinds with a

uniformly random blinding factorr.

4. R forwardsEH
pkT

(rZC) to T , who decrypts the value and reports a match if and
only if he obtains a zero.

Figure 4: Secure common ancestor testing protocol.

Variations. The protocol can be made error-resilient in the same way as inSection 3.2. To
cope with one error, the valueZO is computed asZO =

∑

(i,j)∈{1,...,N}, i<j zizj , which can be

done by precomputing all required powers(ti,1)
k(ti,2)

l(tj,1)
m(tj,2)

n.

3.4 Common Ancestor Testing

By using a similar approach as the paternity test with one parent, privacy-preserving common
ancestor tests on the Y chromosome can be implemented. We again give only the protocol
that allows to cope with at most one error (t = 1); extensions to largert are straightforward.
Testing the condition of Eq. (2) between the two Y-chromosome STR profilesS = 〈{si}〉 and
T = 〈{ti}〉 for the case of one error requires evaluating the polynomial

ZC =
∑

(i,j)∈{1,...,N}, i<j

(si − ti)(sj − tj).

This can again be done by pre-evaluating all required powersof (ti)
k(tj)

l by the efficient pro-
tocol of Figure 4.

3.5 Paternity Testing with Two Parents

The problem of paternity testing with two parents can, in a similar way as the related problem
with one parent, be posed as a secure function evaluation problem. Evaluating Eq. (4) straight-
forwardly translates into the problem of testing whether

ZT =

N∑

i=1

[

(ci,1 − mi,1)(ci,1 − mi,2) + (ci,2 − fi,1)(ci,2 − fi,2)
]

·

[

(ci,1 − fi,1)(ci,1 − fi,2) + (ci,2 − mi,1)(ci,2 − mi,2)
]

(8)

evaluates to zero. By expanding the factors, the above equation can be written as a polynomial
in the valuesci,1, ci,2, Ai = mi,1 + mi,2, Bi = mi,1mi,2, Ci = fi,1 + fi,2 andDi = fi,1fi,2, in
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which all powers(ci,1)
k(ci,2)

l with 0 ≤ k, l ≤ 4 and termsAi, Bi, Ci,Di, AiBi, CiDi, AiCi,

AiDi, BiCi, BiDi, A
2
i , B

2
i , C2

i ,D2
i appear. This allows for an efficient oblivious evaluation of

the polynomial; depending on which party receives the answer of the matching process, the
following evaluation strategies can be employed:

• Result available to M . M starts the protocol by choosing a pair of public/private keys,
encrypting the valuesAi, Bi, A

2
i , B

2
i , AiBi and sending them toF , who in turn uses the

homomorphic properties of the encryption to compute encryptions of the cross terms
AiCi, AiDi, BiCi, BiDi; he then forwards all computed encryptions, includingCi,Di,

C2
i ,D2

i , CiDi, to C, who finally uses again the homomorphic property to compute an en-
cryption ofZT . This result is randomized with a multiplicative blinding factor and sent
back toM . Finally, M decrypts the result and checks the answer.

• Result available to F . This case is analogous to the previous one, with the roles ofF

andM interchanged.

• Result available to C . C starts the protocol by choosing a pair of public/private keys
and encrypting all required powers(ci,1)

k(ci,2)
l. He forwards all encryptions toF , who

computes all terms that involve the valuesCi,Di, sends the result on toM , who finally
evaluates the polynomial under encryption, blinds the result and sends the encrypted value
back toC, who decrypts to obtain the answer.

Note that the complexity of the protocol depends on the evaluation strategy. In caseM or F

receive the result, the protocol requires transmission of 19 encryptions for each locus; in caseC

gets the result, it requires 23 encryptions per locus.

4 Fundamental Limitations of STR Privacy

The protocols designed in this paper assumed semi-honest participants, who execute the proto-
cols correctly and do not ‘lie’ about their input profiles. Inthis section we consider the impact
of an attacker who (honestly) runs the matching protocol butis allowed to execute the proto-
col on arbitrarily chosen inputs. In this setting, we show a general impossibility: In case the
involved protocol participants can ‘lie’ about their STR profiles on which the protocols are run
and multiple dependent protocol runs are performed,no protocol can existthat perfectly assures
participants’ privacy in paternity tests. The intuitive reason for this result lies small length and
limited entropy of STR profiles, as noted in Section 2. As thisresult is an inherent consequence
of the problem statement, it is important to limit the abilities of the protocol participants to arbi-
trarily modify their input profiles. (This can e.g. be achieved by requiring the parties to commit
to their inputs before the protocol runs and proving that theexecution is correct with respect to
the committed profiles.)

We will illustrate this result for the one-parent parental testing problem of Eq. (3). If an at-
tacker has a parental relationship with the victim1, each invocation of an STR matching protocol

1Note that the parent-child relationship required between the attacker and victim for a successful attack is tran-
sitive. For example, a mother can use it to determine the sequence of her child, and in turn use this to determine
the sequence of the father. Using this, a sufficiently determined attacker could get the sequence of arbitrary persons,
though the level of determination and minimum duration of 9 month needed for that attack would make it difficult in
practice.
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allows to derive information about the victims DNA. In particular, we will show that running
N |Σ| tests allows a malicious attacker with a parent-child relationship to the victim to recon-
struct the entire STR sequence of the victim.

Suppose we have a black box matching protocol that, given STRprofilesS andT , outputs
yes if and only if the attackerS is in a parent-child relationship with the victimT . Suppose
further that the attacker is in a parent-child relationshipwith the victim, i.e.,S knows a STR
profile that results in ayes, and thatT can arbitrarily modify his input to the black box protocol.
Denote withS = 〈{si,1, si,2}〉 andT = 〈{ti,1, ti,2}〉 the STR profiles of the attacker and the
victim, respectively. By the assumption that the attacker and the victim are related, running one
instance of the test will result inyes. To learn whether a specific allelea ∈ Σ appears in the
STR profile ofT at locusi, i.e.,a ∈ {ti,1, ti,2}, the attacker replaces both allelessi,1 andsi,2 in
his own profile witha, and reruns the matching protocol with the modified profile. If the result
is still positive, he knows thata appears inT ’s STR profile at locusi. To learn the entire profile
of T , the attacker runs the protocol with all values ofa ∈ Σ on all positionsi. This results in
an attack that requires at mostN |Σ| protocol runs to extract the complete profile of the victim
(note that the attacker can optimize by stopping some tests early or incorporate knowledge on
the distribution of alleles inΣ).

Similar attacks exist for the other matching problems as well. For example, in the parental
test scenario with two parents, an attacker can run the test by feeding his own STR profile as
inputs of bothC andM . As, according to Eq. (3), every person can potentially be his own
parent, this allows to run the above attack also in a two-parent test scenario.

5 Conclusions

We have presented a set of protocols that allow to run the mostcommon DNA-based identity,
paternity and ancestry tests in a privacy-preserving manner; the protocols can form the basis for
privacy enhanced genealogical services or research projects. Our protocols take into account the
special structure and properties of STR profiles, which allows for error-resilient, efficient and
practical protocols. Furthermore, they offer full privacyin the semi-honest attacker model.
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