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Abstract. In 2007, ℓ-Invertible Cycles (ℓIC) was proposed by Ding et
al. This is one of the most efficient trapdoors for encryption/signature
schemes, and of the mixed field type for multivariate quadratic public-
key cryptosystems. Such schemes fit on the implementation over low cost
smart cards or PDAs. In 2008, Fouque et al. proposed an efficient attack
against the ℓIC signature scheme by using Gröbner basis algorithms.
However, they only explicitly dealt with the odd case, i.e. ℓ is odd, but
the even case; they only implemented their proposed attack in the odd
case. In this paper, we propose an another practical attack against the
ℓIC encryption/signature scheme. Our proposed attack does not employ
Gröbner basis algorithms, and can be applied to the both even and odd
cases. We show the efficiency of the attack by using some experimental
results. Furthermore, the attack can be also applied to the ℓIC- scheme.
To the best of our knowledge, we for the first time show some experi-
mental results of a practical attack against the ℓIC- scheme for the even
case.

1 Introduction

In 2007, Ding, Wolf and Yang [4] proposed ℓ-Invertible Cycles (ℓIC), which is a
trapdoor for public-key encryption/signature schemes, and also proposed ℓIC-,
which is a signature scheme as a variation of it. The security of these schemes is
based on the hardness of solving simultaneous multivariate quadratic equations
(MQ system) over a finite field whose characteristic is two; we call the problem
“MQ problem”. The problem of deciding whether an MQ system has a solution
or not belongs to NP-complete, and quantum polynomial algorithms for solving
the MQ problem are still unknown. It has been expected that public-key cryp-
tosystems based on NP-complete problems like the MQ problem will replace the
schemes based on the integer factorization or discrete logarithm problems which
will be efficiently solved by quantum computers. Moreover, the schemes based
on the MQ problem are very practical under limited computational resources,
such as smart cards or PDAs. The ℓIC scheme is more efficient than Quartz[3]
under the same security level.

In 2007, Dubois, Fouque, Shamir and Stern [8] proposed a practical attack
against SFLASH which is called C∗− scheme with specific parameters. The ℓIC-
signature scheme is similar to SFLASH. In 2008, Fouque, Gilles, Perret and Stern



proposed an efficient attack against the ℓIC signature scheme by using Gröbner
basis algorithms. However, they only considered the cryptanalysis under some
condition; namely, they only considered the case that a secret-key as a pair of
two transformations S, T is a pair of linear maps not affine ones. Also, they
only explicitly dealt with the odd case, i.e. ℓ is odd, but the even case; they only
implemented their proposed attack in the odd case.

In this paper, we propose an another practical attack against the ℓIC en-
cryption/signature scheme. Our proposed attack does not employ Gröbner basis
algorithms, and can be applied to the both even and odd cases. We show the
efficiency of the attack by using some experimental results under the most gen-
eral condition that a secret-key as a pair of two transformations S, T is a pair
of affine ones. To the best of our knowledge, we for the first time show some
experimental results of a practical attack against the ℓIC- signature scheme for
the even case.

This paper is organized as follows. In Section 2, we will briefly introduce
ℓ-Invertible Cycles. In Section 3, 4, we will propose the attack against ℓIC. In
Section 5, we will show our experimental results. In Section 6, we will conclude
this paper.

2 ℓ-Invertible Cycles

In this section, we will describe about public-key cryptosystems based on the
multivariate quadratic equations (Multivariate Quadratic public-key Cryptogra-
phy: MQPKC), and ℓIC (ℓ-Invertible Cycles) and ℓIC- schemes.

2.1 MQPKC

We will briefly review about public-key cryptosystems based on the MQ prob-
lem. Matsumoto and Imai[16] proposed the first MQPKC scheme. In the last few
decades, there has been enormous amount of work devoted to this area. Most
public-key cryptosystems based on the MQ problem use a trapdoor function
below. For two vector spaces Kn1 and Kn2 over a finite field K = Fq whose
characteristic is 2, we construct a public-key as a map P : Kn1 → Kn2 . Each
scheme has the map F : Kn1 → Kn2 whose inverse images are efficiently com-
putable. This map, which is constructed by the n2 quadratic polynomials with
n1 variables, is called “central map.” We generate a secret-key as a pair of two
bijective affine transformations (S, T ). We call these transformations “secret
transformations.” Of course, the inverse images of secret transformations is easy
to compute if these transformations are known. Finally, the map P = T ◦F ◦S is
made to public. Since it is believed that solving the MQ problem is intractable,
we may assume that it is difficult to compute an inverse image for the public-key
if secret transformations are unknown.

For the encryption scheme use, Alice (a sender) sends a ciphertext C = P (m),
where m is a plaintext and P is Bob’s public-key. Bob (a receiver) obtains
m = P−1(C), where P−1 = S−1 ◦ F−1 ◦ T−1. For the signature scheme use, on



the other hand, Alice (a signer) generates a signature σ = P−1(m), where m is
a message and P is Alice’s public-key. Bob (a verifier) checks whether m = P (σ)
or not.

Many central maps are classed as four basic types below.

– MIA (Matsumoto-Imai Scheme A, C∗)[16], [18]

– HFE (Hidden Field Equations)[21]

– UOV (Unbalanced Oil and Vinegar)[20], [17]

– STS (Stepwise Triangular Systems)[15], [25]

Although these schemes are efficient, some of them are broken. So some
modifiers have been proposed for enforcing schemes against known attacks. For
more information about the modifiers, [24] is very useful for us. Ding et al. [4]
recommended three modifiers for ℓIC schemes below.

– Minus[23]

– Internal Perturbed Plus[21], [7], [6], [5]

– Embedding[4], similar to Fixing[2]

We will describe ℓIC-, which is a variation of ℓIC with the Minus method later.

2.2 ℓIC

We will show the central map based on ℓIC scheme[4]. Let ℓ ≥ 2 be a divisor
of n := n1 = n2. Define L by an n/ℓ-dimensional extended field of K = Fq. An
L-vector space Lℓ can be identified to a K-vector space Kn with a fixed basis
over K. Fix the values (λ1, . . . , λℓ) ∈ {0, . . . , n/ℓ − 1}ℓ. Then, the central map
of ℓIC scheme is

F : Lℓ → Lℓ; (A1, . . . , Aℓ) 7→ (A1
qλ1

A2, . . . , Aℓ
qλℓ

A1) . (1)

In addition, in [4], the concrete values of λi were proposed due to efficiency of
computation of the inverse image:

λ1 =

{

0 (ℓ : odd)
1 (ℓ : even)

, λi = 0 (2 ≤ i ≤ ℓ) (2)

In the case when ℓ is even, the condition that q = 2 (i.e. K = F2), are required
for bijectivity of the central map. Then, for A = (A1, . . . , Aℓ), the explicit central
map of these schemes is given as follows.

F (A) =

{

(A1A2, A2A3, . . . , AℓA1) (q : a power of two) for ℓ : odd
(A2

1A2, A2A3, . . . , AℓA1) (q = 2) for ℓ : even
(3)

We call these scheme odd-IC scheme and even-IC scheme, respectively.



2.3 ℓIC-

In [4], some schemes with modifiers were also proposed due to enforcing an ℓIC
scheme. The ℓIC- scheme is the scheme applied the Minus method to the ℓIC
scheme. Select an integer r < n, and define a projection map Π : Kn → Kn−r.
This scheme uses not P but ΠP = Π ◦ P as a public-key. This modification
prevents attackers from breaking the scheme by using bijectivity of P . Because
of filling the requirements for security, r has to be some big integer. So this
scheme is used not an encryption but a signature scheme.

Ding et al.[4] recommended a signature scheme based on a 3IC- scheme. But
they did not mention about specific construction of the scheme. We will describe
the possible concrete construction of this scheme below. This construction is the
same as that of SFLASH[1].

[Secret-key]

1. Generate the bijective affine transformation S : Kn → Kn. To be more
precise, generate randomly an n-dimensional non-singular matrix SL and an
n-dimensional vector SC over K, and set a function S(x) = SLx + SC .

2. Similarly, generate the affine transformation T : Kn → Kn (i.e. a matrix TL

and a vector TC).
3. Generate a random binary string ∆ (enough long to satisfy security require-

ments).

Let a secret-key be (S, T, ∆).

[Public-key]
Construct a map P = T ◦ F ◦ S, where F is the bilinear map over (L∗)ℓ below.

F ((A1, A2, A3)) = (A1A2, A2A3, A3A1) (Ai ∈ L) (4)

Recall that Kn is identified to Lℓ. By a projection Π : Kn → Kn−r, let a public-
key be Π ◦ P .

[Signing]
We regard the binary strings with length lg q as the elements over K.

1. By applying a hash function to a message, generate V ∈ Kn−r.
2. By applying a hash function to the concatenation between V and ∆, generate

W ∈ Kr.
3. By concatenating between V and W , generate B ∈ Kn. Let a signature be

P−1(B) = S−1(F−1(T−1(B))).

[Verification]

1. By applying the hash function to the message, generate Y ∈ Kn−r.
2. Verify that Y corresponds with the element generated by applying Π ◦P to

the signature.



3 Attack against ℓIC

In this section, we will give an attack against ℓIC schemes.

3.1 Summary of Attack against ℓIC

In this subsection, we will show a brief sketch of our attack against ℓIC. The
Table 1 shows an algorithm of breaking both a signature scheme (forging) and an
encryption scheme (deciphering) based on odd-IC schemes. The attack will be
applied to other ℓIC schemes. The attack against ℓIC consists of 2 steps below.

– Reduction to linear transformation
– Forging a signature(resp. Deciphering)

In this attack, we employ a property of the easily invertible central map F , which
is taken over a public-key P . The MQ problem is reduced to the linear system
problem.

Table 1. The algorithm of an attack against odd-IC scheme

Input: a public-key P , parameters q, n, ℓ, a message m (resp. a ciphertext c)
Output: the valid signature against m (resp. the plaintext for c)
{(Reduction to linear transformation)}

{νj} ← Linear terms of P
{ζij} ← Quadratic (not double) terms of P
vspace ← Kernel of {νj}
v ← A vector of the vspace satisfying equation(6)
PL(x) := P (x− v)− P (−v)
{(Forging (resp. Deciphering))}

{(γ(k), γ′(k)
)} ← {(γ(k), γ′(k)

)} satisfying forging equations (11)
V ← The element over Kn generated by applying hash function to m (resp. c)
y ← V − P (−v)
xspace ← Space of x satisfying forging equations (11) for y
x ← A vector of the xspace satisfying y = PL(x)
return x− v

3.2 Reduction to Linear Transformation

Some attacks against MQPKC need that S and T are not only the affine but
the linear transformations. The reduction attacks in the cases of SFLASH [14],
[13] and HFE [10] were proposed. This process is used for the attack by using
a differential against the Minus method. Moreover, this reduction is also useful
for our attack against ℓIC schemes. We will see in the next section.

As is well known, a polynomial is called a quadratic form or a homogeneous
polynomial if all terms of it have degree 2. As for ℓIC, each coordinate of F is



a quadratic form. We will see how to use this property. The aim of this attack
is to find v = (v1, . . . , vn) := S−1

L · Sc. Since each coordinate of F is a quadratic
form, that of PL(x) := P (x − v) − P (−v) is also the quadratic form, whose
coordinate consists of only quadratic (including double) terms of that of P .
Here, define the differential[12] by a bilinear function below. This function is
useful for cryptanalysis against the schemes based on the MQ problem.

DP (a, b) := P (a + b) − P (a) − P (b) + P (0) (5)

We will describe in detail the way of using the differential for an attack against
the Minus method later. By definition of DP , the equation below can be easily
shown.

−DP (x, −v) = P (x) − PL(x) − P (0) (6)

Because the right hand of (6) consists of only linear terms of P , it is efficiently
computable from the public-key P under the condition that K 6= F2. Then, we
can compute v by solving the linear equations created from (6). Since (a, P (a))
corresponds to (b = a + v, PL(b) = P (a) − P (−v)), the function PL, whose S
and T are linear, give information about the public-key P .

3.3 Forging Equation

We will adapt the attack against C∗ scheme[22] to ℓIC scheme. Because of concise
representation of index, let µ be the function below for each i ∈ Z. Note that
this symbol is different from [4]’s one.

µ(i) :=

{

ℓ (ℓ | i)
i mod ℓ (otherwise)

, (7)

where mod express the least non-negative residue. This residue is called the
“least positive residue”.

The obvious relation below is derived between (B1, . . . , Bℓ) = F ((A1, . . . , Aℓ)) =

(A1
qλ1

A2, . . . , Aℓ
qλℓ

A1).

Aµ(i+2)Bi
q

λµ(i+1)

− Ai
q

λi+λµ(i+1)

Bµ(i+1) = 0 (8)

Let y be P (x). Then, T−1(y) = F (S(x)), where S and T are some bijective affine
transformation. By applying (8) to this equation, the simple relation below is
found.

∑

1≤i,j≤n

γij
(k)xiyj +

n
∑

i=1

(αi
(k)xi + βi

(k)yi) + δ(k) = 0 , (9)

where γij
(k), αi

(k), βi
(k), δ(k) ∈ K. This relation induces linear equations be-

tween x and y(= P (x)). We call this relation forging equation.
Here, let us examine the number of linear independent equations, i.e. the rank

of the coefficient matrix. In the case of even-IC scheme, almost all y makes full
rank system. So we can easily forge signatures based on even-IC schemes by using



equations (9). In the case of odd-IC scheme, On the other hand, unfortunately
an linear dependent equation exists because λ1 = λ2 = · · · = λℓ = 0. Thus, (9)
gives us only (n − k)-dimensional equations, so we need exhaustive search from
k-dimensional space.

Odd Case In this subsection, we will give different relation from (8). Put
(B1, . . . , Bℓ) = F ((A1, . . . , Aℓ)) = (A1A2, . . . , AℓA1) for an odd-IC scheme. Us-
ing the technique of computation of inverse images shown in [4], we can obtain
the relation below.

(ℓ−1)/2
∏

j=0

Bµ(i+2j) = Ai
2

(ℓ−1)/2−1
∏

j=0

Bµ(i+2j+1) (10)

Note that the map Ai 7→ Ai
2 is bijective since Ai is in K, whose characteristic

is two. Like the previous subsubsection, for y = P (x), we can find the relation
q1(y1, . . . , yn) = q2(x1, . . . , xn, y1, . . . , yn), where the total degree of the polyno-
mial q1 and q2 is (ℓ + 1)/2.

Now we show an advantage of linearity of S and T . By applying (10) to
y = P (x) in this case, more simple relation below is found.

∑

|w1|=(ℓ+1)/2

γw1

(k)yw1
=

n
∑

i=1

∑

|w2|=(ℓ−1)/2

γ′
iw2

(k)
xi

2yw2
, (11)

where we define yw = yc1 · · · yc|w|
for y = (y1, . . . , yn) ∈ Kn and w = (c1, . . . , c|w|)

such that 1 ≤ ci ≤ n. For example, in the case that ℓ = 3, the equation below is
induced.

∑

1≤i1≤i2≤n

γi1i2
(k)yi1yi2 =

∑

1≤i,j≤n

γ′
ij

(k)
xi

2yj (12)

Thus the reduction attack in Section 3.2 has the advantage that we can save
computational space.

4 Attack against ℓIC-

We will describe an attack against ℓIC-, which is a Minus variation of ℓIC.

4.1 Summary of Attack against ℓIC-

In this section, we will show a brief sketch of our attack against ℓIC- schemes.
The Table 2 shows an algorithm of breaking signature schemes based on odd-IC−

scheme. The attack against ℓIC- consists of 3 steps below.

– Reduction to linear transformation
– Recovering the deleted part by using a differential
– Forging a signature



This attack is summarized as follows. First of all, the secret affine transforma-
tions S and T are reduced to the linear transformation. Secondly, we recover the
part which is deleted by the projection in the time of transforming ℓIC to ℓIC-.
Finally, we can apply the attack against ℓIC.

The first and third step were already showed at the previous section. In the
next subsection, we will explain details of the second step.

Table 2. The algorithm of an attack against odd-IC− scheme

Input: a public function ΠP , parameters q, n, ℓ, r, a message m
Output: the valid signature for m
{(Reduction to linear transformation)}

{νj} ← Linear terms of ΠP
{ζij} ← Quadratic (not double) terms of ΠP
vspace ← Kernel of {νj}
v ← A vector of the vspace satisfying equation(6)
ΠPL(x) := ΠP (x− v)−ΠP (−v)
{(Recovering the deleted part by using a differential)}

ΠDPL(a, x) := ΠPL(x + a)−ΠPL(x)−ΠPL(a)
Nspace ← Space of N which is kernel of function (21)
while true do

{(Forging)}
Nξ ← Regular(not scalar) matrix of Nspace
Pf ← Function Kn → Kn(full rank) by adding (ΠPL) ◦Nξ to ΠPL

γspace ← {(γ(k), γ′(k)
)} satisfying forging equations (11)

if rank(γspace) ≤ n then

{(γ(k), γ′(k)
)} ← γspace

break
end if

end while
V ← The element over Kn−r generated by applying hash function to m
y ← The element over Kn generated by V −ΠP (−v) (with random padding)
xspace ← Space of x satisfying forging equations (11) for y
x ← A vector of the xspace satisfying y = PL(x)
return x− v

4.2 Recovering with Differential

In [11], ℓIC- schemes were broken. This is an application of the attack against
SFLASH[8], [9]. We will describe in detail this attack. In what follows, we as-
sume that secret transformations are the linear transformation. Note that the
reduction attack is not applied to even-IC schemes because K is a prime field
F2.



For ξ := (ξ1, . . . , ξℓ) ∈ Lℓ, define

Mξ : Lℓ → Lℓ

(A1, . . . , Aℓ) 7→ (ξ1A1, . . . , ξℓAℓ) . (13)

We can check F◦Mξ = MF (ξ)◦F . Here, remember that a differential DF (A, B) =
F (A + B) − F (A) − F (B) + F (0). For A = (A1, . . . , Aℓ) and B = (B1, . . . , Bℓ),
we have the specific form of DF below.

DF (A, B) = (A1
qλ1

B2 + B1
qλ1

A2, . . . , Aℓ
qλℓ

B1 + Bℓ
qλℓ

A1) (14)

So we can see

DF (Mξ(A), B) + DF (A, Mξ(B)) = Lξ(DF (A, B)) , (15)

where Lξ := M
(ξ1

qλ1 +ξ2,...,ξℓ
qλℓ +ξ1)

.

A differential has various properties. If S is linear, the relation between DF
and DP is easily shown as follows.

DP (a, b) = (T ◦ DF )(S(a), S(b)) (16)

Thus, DP , which is generated by a public-key P , takes over properties of DF .
Let Nξ be S−1 ◦ Mξ ◦ S, let N ′

ξ be T ◦ Lξ ◦ T−1. The property (16) gives us the
useful equation below.

(Π ◦ DP )(Nξ(a), b) + (Π ◦ DP )(a, Nξ(b))

= Π(N ′
ξ(DP (a, b))) (17)

Let BSNξ
be the function which represents left side of (17). Then, we obtain the

simple relation below.

BSNξ
(a, b) = Π(N ′

ξ(DP (a, b))) (18)

We will see how to compute Nξ by using this relation in the next subsubsection.

If once we find Nξ, we can recover the projected part. By the definition of
Nξ, we can arrive at the useful property as the following.

(Π ◦ P )(Nξ(x)) = Π(T (F (Mξ ◦ S)(x)))

= Π((T ◦ MF (ξ))(F ◦ S)(x)) (19)

Then recovering the deleted part by the projection Π is done as stated below.

Pf := (P (1), . . . , P (n−r), P (1) ◦ Nξ, . . . , P (r) ◦ Nξ) (20)

Note that Pf does not have to correspond with original P because a verifier
checks Π(Pf ) only.



Compute Nξ on Odd Case We consider a way of computation of Nξ. To find
a solution of Nξ, we apply the technique of [8] or [9]. The difference of the attack
between [8] and [9] is caused by whether kernel of Lξ is trivial or not. On the
context of odd-IC scheme, by the definition that Lξ := M(ξ1+ξ2,...,ξℓ+ξ1), we can
find a non-trivial kernel, which is ξ1 = ξ2 = · · · = ξℓ. In other words, a solution
that the right side of (18) equals 0 exists. This leads us a computation method
of Nξ, i.e. solving kernel of the function below.

(Π ◦ DP )(Nξ(a), b) + (Π ◦ DP )(a, Nξ(b)) (21)

By the cryptanalysis similar to that of [9], we expect that Nξ is computable
under the condition that r ≤ n − 3.

Compute Nξ on Even Case On the other hand, in the case of even-IC scheme,
we can find only a trivial kernel. This is because Lξ = M(ξ1

2+ξ2,...,ξℓ+ξ1) = 0 is
equivalent to ξ1 = ξ2 = · · · = ξℓ ∈ F2. So we apply the technique of [8]. Let cij

be the (i, j)-element of N ′
ξ. Then the equation (18) is equivalent to the relation

below for i = 1, . . . , n − r.

BS
(i)
Nξ

=

n
∑

j=1

cijDP (j) (22)

We cannot solve directly the equation (22) since DP (n−r+1), . . . , DP (n) are in-

cluded in it. However, we expect that, for some i, BS
(i)
Nξ

is in the space generated

by only DP (j) (j = 1, . . . , n − r). We can solve this relations for i = 1, 2, 3 and
obtain non-trivial Nξ. Applying the [8]’s analysis to this scheme, Nξ can be prob-
ably induced under the condition that r is up to (n − 2)/3. 1 Our experimental
results implies that this assertion is almost correct.

5 Experimental Results

In this section, we will show some computational results of attacks against ℓIC
and ℓIC-. The computational complexity of our attack will be discussed.

5.1 ℓIC Case

The following is a summary of our attack against ℓIC schemes.

1 Reduction to linear transformation
2 Forging a signature (resp. Deciphering)

2–1 Finding forging equations (9), (11)
2–2 Forging a signature (resp. Deciphering) by using the forging equations

1 In [8], the idea of breaking SFLASH under the case that r < n/2 was also discussed.



Note that we start this algorithm directly from step 2 in the case that K = F2.
Main computation of this algorithm against odd-IC scheme is solving O(n(ℓ+1)/2)-

dimensional linear equations over Fq in step2–1. So the asymptotic computa-
tional complexity of this algorithm is

O(n3(ℓ+1)/2 lg2 q) . (23)

Similarly, the complexity against even-IC scheme is O(n6 lg2 q).
We used the computer whose CPU is 2GHz AMD Opteron 246, memory is

4GB, and hard disk is 160GB. Magma[26] was used as a software for writing the
program. The Table 3,4 shows experimental results of our attack.

Comparing our attack with [11], our attack would not be so efficient. This
is because our attack is simple and completely analogous of Patarin’s attack
[22]. Fouque et al.[11] stated that Patarin’s attack is not efficient and used a
technique of Gröbner basis. However, the results show that Patarin’s attack is
still practical and polynomial time under the condition that ℓ is small.

Table 3. Experimental Results against oddIC (over q = 28)

ℓ 3 3 5

n 69 138 35

k 23 46 7

time[s] 1353.1 73814.7 82309.1

Table 4. Experimental Results against evenIC (over q = 2)

ℓ 2 2 4 6

n 120 240 240 240

k 60 120 60 40

time[s] 327.1 5630.3 5618.9 5668.3

5.2 ℓIC- Case

We will explain about our attack experiments against ℓIC- schemes. In this
section, we classify our algorithm into 5 steps below.

1 Reduction to linear transformation
2 Recovering the deleted part by using a differential

2–1 Finding linear equations using a differential
2–2 Solving the equations and recovering the part deleted by a projection



3 Forging a signature
3–1 Finding forging equations (9), (11)
3–2 Forging a signature by using the forging equations

This method does not ensure whether we obtain non-trivial Nξ = S−1 ◦ Mξ ◦ S
in step 2–2. So our algorithm checks whether we can find non-trivial forging
equations (9) in step 3–1. Computational results show that almost all parameters
pass this check.

Once forging equation(9) are found, we can forge a signature by only exe-
cuting step 3–2, which is an easy task. The computational complexity of this
algorithm is the same as that of the ℓIC case above. The main operations of our
algorithm are step 2 and step 3–1.

Results of attack experiments against proposed parameter at [4] is shown at
the Table 5. We also show some experimental results against 2IC- schemes under
the condition that secret transformations are linear at the Table 6.

Table 5. Experimental Results against 3IC- (over q = 28)

n 30 36 48

k 10 12 16

r 10 12 16

time[s] 34.1 79.3 321.6

Table 6. Experimental Results against 2IC- with linear (over q = 2)

n 40 60 80

k 20 30 40

r 10 15 20

time[s] 317.3 2021.3 7725.6

6 Conclusion

We proposed a practical attack against the ℓIC schemes. This attack can be ap-
plied to the ℓIC- signature scheme under the most general condition that secret
transformations are linear. Also, oddIC− schemes (with affine secret transfor-
mations) for small ℓ are efficiently broken by our proposed attack. Furthermore,
we carried out computational experiments of the attack against 3IC- signature
scheme with the recommended parameters in [4] and showed that forging a sig-
nature is efficiently computable. Here we note that these attacks wold not be



applied directly to solving the all MQ problems. Main emphasis of our attack is
that, by using a property of the central map F , the MQ problem is reduced to
solving the linear equations. We used the property to obtain forging equations,
which is linear relations between the domain and the image of a public function
P . Also, the differential DF enables us to fill the deleted part by a projection.
Fouque et al.[11] stated that Patarin’s attack would not be efficient, so they used
Gröbner basis algorithms. On the other hand, our experimental results explic-
itly showed that Patarin’s attack is still practical and polynomial time under the
condition that ℓ is small.
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