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Abstract: In this paper, we present some new variants based on the

Weil pairing for efficient pairing computations. The new pairing variants

have the short Miller iteration loop and simple final exponentiation. We

then show that computing the proposed pairings is more efficient than

computing the Weil pairing. Experimental results for these pairings are

also given.
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1. Introduction

The Weil and Tate pairings have been widely used to construct

pairing based cryptosystems [19]. Many results have been focused only

on speeding up the computation of the Tate pairing since the Tate pair-

ing is computed more efficiently than the Weil pairing in general [10,1].

Some variants based on the Tate pairing are presented with great ef-

ficiency, such as the eta pairing [3], the ate pairing [12,16,22] and the

R-ate pairing [15]. Zhao et al. prove that all pairings are in a group

from an abstract angle and then provide some new pairings as efficient

as the R-ate pairing [23]. Vercauteren gives an efficient method to find
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an optimal pairing for fast paring computations [21] and Hess states an

integral framework that covers all known efficient pairing functions [11].

Compared to the computation of the Tate pairing or its variants,

the major advantage of computing the Weil pairing is that it has no

time-consuming final exponentiation. However, it involves two different

Miller iteration loops. Motivated by reducing the Miller iteration loops

in the computation of the Tate pairing or its variants, we first construct

some new variants of the Weil pairing with short Miller iteration loops

using Frobenius endomorphisms. Computing the new variants of the

Weil pairing is faster than computing the standard Weil pairing. It is

clear that the new variants are computed slower than the other opti-

mal pairings based on the Tate pairing(e.g. the eta/ate/R-ate pairings).

However, it is a novel approach to constructing new efficient pairings

based on the Weil pairing. It is possible that further optimizations can

be achieved on the basis of our observations.

The rest of this paper is organized as follows. Section 2 introduces

basic mathematical concepts of pairings on elliptic curves. Section 3

gives the main results. Section 4 gives some applications and provides

some examples for efficiency comparisons. We draw our conclusion in

Section 5.

2. Mathematical Preliminaries

This section briefly recalls the definition of the Tate pairing, the

(twisted) ate pairing and the Weil pairing.

2.1. Tate Pairing

Let Fq be a finite field with q = pm elements, where p is a prime.

Let E be an elliptic curve defined over Fq and O be the point at infinity.

#E(Fq) is denoted as the order of the rational points group E(Fq) and

r is a large prime satisfying r|#E(Fq). Let k be the embedding degree,

i.e., the smallest positive integer such that r|qk − 1 .

Let P ∈ E[r] and R ∈ E(Fqk). For each integer i and point P , let

fi,P be a rational function on E such that

(fi,P ) = i(P )− (iP )− (i− 1)(O).
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Let D be a divisor [20] which is linearly equivalent to (R)− (O) with its

support disjoint from (fr,P ) . The Tate pairing [8] is a bilinear map

e : E[r]× E(Fqk)/rE(Fqk) → F∗
qk/(F

∗
qk)

r,

e(P,R) = fr,P (D).

Assume that all Miller functions are normalized in this paper [21,11].

One can define the reduced Tate pairing [4] as

e(P,R) = fr,P (R)
qk−1

r

Notice that fr,P (R)a(q
k−1)/r = far,P (R)(q

k−1)/r for any integer a [9].

2.2. Ate pairing and Twisted Ate pairing

We recall the definition of the (twisted) ate pairing and its vari-

ants from [12,16,22] in this subsection. The ate pairing extends the eta

pairing [3] on ordinary elliptic curves.

Let Fq be a finite field with q = pm elements, where p is a prime. Let

E be an ordinary elliptic curve over Fq. Let r be a large prime satisfying

r | #E(Fq). Denote the trace of Frobenius by t, i.e., #E(Fq) = q+1− t.

Let T = t − 1 ≡ q (mod r). Let πq be the Frobenius endomorphism,

πq : E → E : (x, y) 7→ (xq, yq). Denote Q ∈ G2 = E[r] ∩Ker(πq − [q])

and P ∈ G1 = E[r]∩Ker(πq− [1]). Let N = gcd(T k−1, qk−1) > 0 and

T k − 1 = LN , where k is its embedding degree. Then the ate pairing is

defined as fT,Q(P ) and

e(Q,P )L = fT,Q(P )c(q
k−1)/N ,

where c =
∑k−1

i=0 Sk−1−iqi (mod N).

Let E′ over Fq be a twist of degree d of E, i.e., E′ and E are

isomorphic over Fqd and d is minimal with this property. Let m =

gcd(k, d) and e = k/m. Denote Te = T e ≡ qe (mod r). Then the

twisted ate pairing is defined as fTe,P (Q) and

e(P,Q)L = fTe,P (Q)ct(q
k−1)/N ,

where ct =
∑m−1

i=0 T e(m−1−i)qei (mod N).

The ate pairing and twisted ate pairing are both non-degenerate

provided that r - L. Denote Ti = T i ≡ qi (mod r) and Tei = (T e)i ≡



22

(qe)i (mod r). Then the ate pairing and twisted ate pairing can be

generalized as fTe,Q(P ) and fTei,P (Q) respectively [22].

2.3. Weil Pairing

Using the same notation as previous, one may make a few slight

modifications and then define the Weil pairing. Let k be the minimal

positive integer such that E[r] ⊂ E(Fqk). According to the results in [2],

if r - q− 1 and (r, q) = 1, then E[r] ⊂ E(Fqk) if and only if r|qk − 1, i.e.,

the embedding degree for the Weil pairing is equal to the embedding

degree for the Tate pairing in this case.

Suppose that P, Q ∈ E[r] and P ̸= Q. Let DP and DQ be two

divisors which are linearly equivalent to (P ) − (O) and (Q) − (O), re-

spectively. Let fr,P and fr,Q be two rational functions on E such that

(fr,P ) = rDP and (fr,Q) = rDQ. Denote µr by the algebraic group of

r-th roots of unity. Then the Weil pairing is a bilinear map [18]

er : E[r]× E[r] → µr,

er(P,Q) = (−1)r
fr,P (Q)

fr,Q(P )
.

For good efficiency in practical implementations, one can define the

powered Weil pairing [17,14] as

êr(P,Q) = er(P,Q)q
l−1,

where l is a proper divisor of k. If k is even, we can take l = k/2.

Notice that the denominator elimination technique can be applied when

computing the powered Weil pairing.

3. Main Results

In this section, The main results of this paper are summarized in

the following theorem.

Theorem 1. Let Fq be a finite field with q = pm elements, where p is

an odd prime. Let E be an ordinary elliptic curve over Fq, r a large

prime satisfying r | #E(Fq). Assume that k is its embedding degree

and l is a proper divisor of k. Let t denote the trace of Frobenius,
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i.e., #E(Fq) = q + 1 − t. Let T = t − 1 ≡ q (mod r). Let πq be

the Frobenius endomorphism, πq : E → E : (x, y) 7→ (xq, yq). Denote

Q ∈ G2 = E[r] ∩Ker(πq − [q]) and P ∈ G1 = E[r] ∩Ker(πq − [1]). Let

E′ over Fq be a twist of degree d of E. Let m = gcd(k, d) and e = k/m.

Denote Si = Tei ≡ T ei ≡ (qe)i (mod r), where 0 < i < k − 1. Let a

be the smallest integer such that Sa
i ≡ 1 (mod r). Let L be an integer

such that Sa
i −1 = Lr. Then for such P and Q, the Weil pairing satisfies

êr(P,Q)L = (
fSi,P (Q)

fSi,Q(P )
)c(q

l−1),

where c =
∑a−1

j=0 S
a−1−j
i qej ≡ aqei(a−1) (mod r).

Proof : Since p is an odd prime, ql − 1 must be even. Then (−1)r(q
l−1)

is equal to 1. It is obvious from the definition of the Weil pairing that

êr(P,Q)L = (−1)r(q
l−1)(

fr,P (Q)

fr,Q(P )
)L(q

l−1) = (
fLr,P (Q)

fLr,Q(P )
)q

l−1.

Applying the identity Lr = Sa
i − 1 into the above equation, we obtain

êr(P,Q)L = (
fSa

i −1,P (Q)

fSa
i −1,Q(P )

)q
l−1 = (

fSa
i ,P

(Q)

fSa
i ,Q

(P )
)q

l−1 (3.1)

The second equality in the equation (3.1) holds since both P and Q

belong to E[r] [7]. By Lemma 2 in [3,12], we see that

fSa
i ,P

= f
Sa−1
i

Si,P
f
Sa−2
i

Si,SiP
· · · fSi,S

a−1
i P (3.2)

Lemma 5 in [12] and the discussions in [16,22] yield that f
Si,S

j
i P

(Q) =

fSi,P (Q)q
ej

with 0 6 j 6 a− 1. Then

fSa
i ,P

(Q) = (fSi,P (Q))
∑a−1

j=0
S
(a−1−j)
i qej

(3.3)

By using the same argument for fSa
i ,Q

(P ), we have

fSa
i ,Q

(P ) = (fSi,Q(P ))
∑a−1

j=0
S
(a−1−j)
i qej

. (3.4)

Substituting (3.3) and (3.4) into the equation (3.1), we have

êr(P,Q)L = (
fSi,P (Q)

fSi,Q(P )
)c(q

l−1),
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where c =
∑a−1

j=0 S
a−1−j
i qej ≡ aqei(a−1) (mod r). This completes the

whole proof. �

According to the results in Theorem 1, we can define the new pair-

ing as ẽ(P,Q) = (
fSi,P

(Q)

fSi,Q
(P ))

(ql−1). Since r > k > a and r is a prime, the

new pairing is equal to êr(P,Q)M with M ≡ Lc−1 (mod r) . This also

shows that the new pairing keeps bilinearity indeed using the observa-

tions in [23]. Some remarks on Theorem 1 are given as follows.

Remark 1. If r - L, then the new pairings are non-degenerate. If the

curve has a quadratic twist, i.e., d = 2, then it indicates that m = 2 and

e = k/2. So we have qe = qk/2 ≡ −1 (mod r) since qk ≡ 1 (mod r),

i.e., Si = ±1 (mod r). It also shows that L = 0 and r | L, which

implies that the new pairing becomes trivial in this case.

Remark 2. A series of the variants based on the Weil pairing can be

obtained as i varies. Also, the length of the Miller loop for the new

pairing depends on the bit-length of Si = T ei ≡ qei (mod r).

Remark 3. When k is an even integer, l can be chosen to k/2. Then

the new pairing is defined as ẽ(P,Q)q
l−1 = (

fSi,P
(Q)

fSi,Q
(P ))

ql−1 which enables

the denominator elimination technique in practical implementations.

4. Applications and Efficiency Comparisons

4.1. Applications on Pairing-friendly Curves

In this section, we apply Theorem 1 for obtaining some new variants

with short Miller iteration loop on pairing-friendly curves.

Cyclotomic family with k = 8 The authors give a family of

curves with k = 8 and D = 1 which makes the quartic twist possible

[13]. Its parametrization is given by

p = (125− 82x− 15x2 + 8x3 − 3x4 + 2x5 + x6)/180

r = (25− 8x2 + x4)/450

Notice that this family of elliptic curves has a quartic twist, i.e., d = 4.

Since k = 8, we have e = k
(k,d) = 2. Thus, we can choose Si = (p2)3 ≡

(x2−4)/3 (mod r) for defining the new variants of the Weil pairing with

short Miller loop. In practical implementations, ẽ(P,Q) = (
fSi,P

(Q)

fSi,Q
(P ))

p4−1
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can be used for good efficiency. The Miller loop of the new variants will

only be half of that required for the Weil pairing.

Cyclotomic family with k = 18 The authors give a family of

curves with k = 8 and D = 3 which makes the sextic twist possible [13].

Its parametrization is given by

p = (2401+1763x+343x2+259x3+188x4+37x5+7x6+5x7+x8)/21

r = (343 + 37x3 + x6)/343

Notice that this family of elliptic curves has a sextic twist, i.e., d = 6.

Since k = 18, we have e = k
(k,d) = 3. Thus, we can choose Si =

(p3)5 ≡ x3 + 18 (mod r) for defining the new variants of the Weil

pairing with short Miller loops. In practical implementations, ẽ(P,Q) =

(
fSi,P

(Q)

fSi,Q
(P ))

p9−1 can be used for good efficiency. Similar to the previous

examples, the Miller loop of the new variants only will be half of that

required for the Weil pairing.

Barreto-Naehrig curves The authors give a family of curves

with k = 12 [5]. There exists a twist of degree d = 6 for the family. Its

parametrization is given by

p = 36x4 + 36x3 + 24x2 + 6x+ 1

r = 36x4 + 36x3 + 18x2 + 6x+ 1

Since k = 18 and d = 6, it follows that e = k
(k,d) = 2. Thus, we can

choose Si = (p2)4 ≡ 36x3+18x2+6x+1 (mod r) for defining the new

variants of the Weil pairing. ẽ(P,Q) = (
fSi,P

(Q)

fSi,Q
(P ))

p6−1 can be used for

good efficiency. The bit length of Si for the new proposed pairing is 3/4

of that of r which provides a faster pairing than the Weil pairing.

4.2. Efficiency Comparisons

This subsection will give the implementation of the proposed pair-

ing and the Weil pairing on Barreto-Naehrig curves and show that com-

puting the proposed pairing is faster than computing the Weil pairing.

For x = 448873741399 as a parameter, the computations of the

new proposed pairing and the Weil pairing are implemented by Magma

online demo [6]. Table 1 indicates that computing the proposed pairing

ẽ(P,Q) is faster than computing the Weil pairing êr(P,Q) indeed.
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Table 1

Efficiency Comparisons of the Proposed Pairing and the Weil Pairing

pairing Miller iteration loop Timing(ms)

ẽ(P,Q) 36x3 + 18x2 + 6x+ 1 51

êr(P,Q) 36x4 + 36x3 + 18x2 + 6x+ 1 64

5. Conclusions

In this paper, we provide a novel approach to constructing the new

variant with short Miller loop based on the weil pairing using Frobenius

endomorphisms and show that the computing the new one is faster than

computing the Weil pairing indeed. Although the new variant of the

Weil pairing are less efficient than the other optimal pairings (e.g. the

eta/ate/R-ate pairings), these are the first steps towards new efficient

constructions of the variants based on the Weil pairing. It is possible to

further optimize these results.
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