
Essentially Optimal Universally Composable Oblivious Transfer

Ivan Damgård, Jesper Buus Nielsen, and Claudio Orlandi

BRICS, Department of Computer Science, Aarhus Universitet,
Åbogade 34, 8200̊Arhus, Denmark

{ivan,buus,orlandi}@daimi.au.dk

Abstract Oblivious transfer is one of the most important cryptographic primitives, both for theoretical and
practical reasons and several protocols were proposed during the years. We provide the first oblivious trans-
fer protocol which is simultaneously optimal on the following list of parameters:Security: it has universal
composition.Trust in setup assumptions:only one of the parties needs to trust the setup (and some setup is
needed for UC security).Trust in computational assumptions:only one of the parties needs to trust a com-
putational assumption.Round complexity:it uses only two rounds.Communication complexity:it communi-
catesO(1) group elements to transfer one out of two group elements. TheBig-O notation hides32, mean-
ing that the communication is probably not optimal, but is essentially optimal in that the overhead is at least
constant. Our construction is based on pairings, and we assume the presence of a key registration authority.
Key words: Oblivious Transfer, Universally Composable Security.

1 Introduction

An oblivious transfer (OT) involves two parties, a sender and a receiver. The sender has two secret messages.
The receiver selects to retrieve one of them, without disclosing which one. At the same time the receiver
is not allowed to learn more than one secret. Oblivious transfer was first introduced by Wiesner [Wie83]
in the late seventies under the name ofconjugate coding. However, the importance of this primitive in the
cryptographic field was first pointed out by Rabin in [Rab81].

OT is the base for many secure multiparty computation (SMC) protocols [Yao86, GMW87], where
several instances of OT are run at the same time. However, many of the proposed OT protocols do not give
any guarantee about the security under composition. We present here the first protocol that is secure in the
universally composable [Can01] model, using just two rounds of communication and having only a constant
overhead (O(k) bits are communicated to do an OT ofk bits).

In addition we do not need to assume a common reference string. Instead the receiver R once and for
all has to register a public key with a key registration authority KR and prove to KR that it knows the
corresponding secret key. After this any sender S can retrieve the public key and perform an OT to R — in
particular, S needs to have no public key or trust any common reference string, giving our construction the
same flavor as a PKI for public-key encryption, where also just R registers a public key, after which all S can
transfer messages securely to R. The public-key flavor of ourprotocol makes ideal for asymmetric settings
where, e.g., one party is a server, which can afford the time and cost of registering a public key for the given
application. Clients then need only retrieve the public keyof the server to perform UC OT with the server.

As a final feature our protocol is perfectly secure for the sender. Our protocol can therefore be viewed
as optimal in four respects:

1. It is secure under general composition.
2. It uses two rounds. Clearly there exists no one-round OT protocol.
3. Only one party has to trust the setup — S has to trust that KR checks that R knows its secret key. Since

OT is impossible in the plain UC model, some setup must be trusted, and having only one party do so is
optimal.



4. Only one party has to trust a computational assumption. Inparticular, S has perfect security. No OT for
the classical model can have perfect security for both parties.

The communication complexity is probably not optimal. Under the decisional linear (DLIN) assumption
we send32 group elements to transfer one out of two group elements. This gives a constant overhead, but is
probably far from optimal. This seems, so far, to be the unfortunate price to pay for the other fully optimal
properties.

Our OT protocol is primarily based on homomorphic encryption in pairing friendly groups, which we
use to give a new instantiation of the notion of mixed commitments from [DN02]. This instantiation is con-
structed to work well with the efficient non-interactive zero-knowledge (NIZK) proofs by Groth, Ostrovsky
and Sahai [GOS06, GS08], that are in turn based on paring-based cryptography. We put ourselves in the hy-
brid UC model, where all parties have access to secure and authenticated channels, and to a key registration
authority (KR). This model was presented and motivated in [BCNP04].

Related Work.Examples of two-round OT can be found in [NP01, AIR01, Kal05]. However, none of these
protocols achieve UC security. If we consider UC security, OT protocols are known, but they require more
rounds of interaction [Gar04, JS07] or other parties helping the computation [Fis06].

As a witness that a secure and efficient OT is of primary importance, several attempts were made in
the last years. Lindell [Lin08] has a very general construction that achieve full simulation, based on the
existence of homomorphic encryption solely. Camenisch, Neven and shelat [CNS07] built a protocol for
adaptivek-out-of-n OT, providing full simulation with specific number-theoretic assumptions. Upon this
work Green and Hohenberger [GH07] built another adaptive OT, that requires weaker assumptions.

Independently from our work Peikert, Vaikuntanathan and Waters [PVW07], presented a two round UC
OT protocol. However, their protocol works in the common reference string, and uses different computa-
tional assumptions, therefore these two works can be seen ascomplementary.

2 Main Ideas

In this section we are going to give the main ideas, leaving all the details to the rest of the paper. We first
present an attack that motivates the need of a composable OT,then we sketch the protocol.

We have two players called the sender (S) and the receiver (R). The sender has two secretsx0, x1, while
the receiver has a selection bitb. At the end of the protocol R getsxb while S gets nothing.

2.1 Insecurity of OT Composition
We can describe a round optimal OT (i.e., 2 round OT) in the following way:

Choose: R computes a messagec = Choose(b), and sendsc to S.
Transfer: S computes a messaget = Transfer(c, x0, x1) and sends it to R.
Retrieve: R retrievesxb = Retrieve(t). 1

The security of such a protocol is usually stated like:

Receiver’s privacy: the output of the Choose phase,c, does not reveal any information aboutb to S.
Sender’s privacy: the output of the Transfer phase,t, does not reveal anything aboutx1−b to R.

1 Note that this is the only possible order of the messages. If we build a protocol where S sends the first message and then R
computesxb from this message, then clearly R can choose to learn bothx0 andx1.

2



This kind of security definition works in the case of a stand-alone OT execution, but fails dramatically
in the case of even a sequential composition, and even for very generic reasons. We consider the following
composed protocol to illustrate it: R and S run a first OT protocol. R inputsb, S inputsx0, x1, and R getsxb.
Then R and S run a second OT protocol. R inputsb′, S inputsx′

0, x
′

1, and R getsx′

b′ . Then R sendsx′

b′ to S.
Now instantiate this protocol with a two-message OT secure according to the previous definition:

1. (a) R computesc = Choose(b), and sendsc to S.
(b) S computest = Transfer(c, x0, x1) and sends it to R.
(c) R retrievesxb = Retrieve(t).

2. (a) R computesc′ = Choose(b′), and sendsc′ to S.
(b) S computest′ = Transfer(c′, x′

0, x
′

1) and sends it to R.
(c) R retrievesx′

b′ = Retrieve(t′).
3. R sendsx′

b′ to S.

A cheating S could use, in the secondTransfer phase, the firstChoose message, i.e., it could compute
t′ = Transfer(c, x′

0, x
′

1). Therefore R will retrievex′

b instead ofx′

b′ , without noticing it, and in the 3rd step,
it will send x′

b to S, clearly revealing information aboutb, which an ideal implementation would not.
Note that, despite the fact that the protocol presented is anad-hoc constructed counterexample, this

vulnerability is actually quite important and has many consequences: when parties run more OTs instances,
the receiver cannot be sure that the Transfer messages contain his choice. A protocol that is not secure
against this attack is the one in [AIR01].

Intuitively this problem arises from the fact that the security of the sender and the security of the receiver
are analyzed separately, and therefore there is no “link” between theChoose phase and theTransfer phase2.
Another common definition for the security of OT protocols isthe half-simulation, as in [NP05]. In this
scenario we usually require strong (simulation) security against the receiver, but just stand-alone privacy
against the sender. Note that this would not protect againstthe attack sketched above. This relaxation is
usually justified by saying that the sender is commonly a server or a service provider, and therefore it can
be controlled better or more than the receiver, who represents any user. As the above example shows, this
motivation assumes that the server chooses not to learn information, which it could in fact learn by deviating
only so slightly from the implementation.3 Under such an assumption (essentially that the server is at most
passively corrupted) things become much simpler. Here we want active security for both parties.

2.2 Our Protocol
We are going to present the main intuition behind our protocol in 5 steps.

Step 1: OT based on Homomorphic Encryption.Assume to have available an additively homomorphic cryp-
tosystem, i.e., a cryptosystem that satisfies the following: D(E(x)E(y)) = x+y, whereE,D represent the

2 A way to fix this problem, as some OT protocols do, is to change the structure of the protocol, allowing Choose to output also
a piece of trapdoor informationk that will be later used during the retrieve phase. In this case the protocol will be of the form:
(c, k) = Choose(b); t = Transfer(c, x0, x1); xb = Retrieve(t, k). We prefer, instead of fixing just this problem, to develop
our protocol in the UC framework, for it provides us strongerguarantees. In particular, UC security protects against ill effects of
composition as that described above, while still allowing us to analyze the protocol in isolation.

3 Also this motivation is not so strong given that in several applications the role of the sender and the receiver can be swapped.
Moreover, in some applications like authentication, it is the server that plays the role of the receiver, while the user plays the
role of the sender. This could in principle be handled by using that OT is symmetric: an OT from S to R can be turned into an
OT from R to S without further assumptions. This transformation however, adds another round of communication, and it always
produces a one-bit OT. For applications where two-round OT or string-OT is needed, “turning the OT around” is therefore not a
practical solution.

3



encryption and the decryption functions4. Then the following is a simple OT construction if the parties are
semi-honest:

Choose: The receiver encryptsc1 = E(b) and sends it to the sender.
Transfer: The sender computesc0 = E(1)c−1

1 = E(1− b) andd = cx0

0 cx1

1 and sendsd it to the receiver.
Retrieve: The receiver decryptsxb = D(d).

The idea is that the receiver let(c0, c1) be an encryption of the vector(1, 0) if he wants to get the first
secret or(0, 1) if he wants the second one. The sender computes, exploiting the homomorphic property:
cx0

0 cx1

1 = E((1 − b)x0 + bx1) = E(xb).

Step 2: Managing a Malicious Receiver.The protocol is intuitively correct and private if both parties follow
the protocol. However, in the case of malicious adversariesthere are many evident security flaws. First of
all, if the receiver is not honest, he could send an encryption of b 6∈ {0, 1}. If for instance he sends an
encryption ofb = 2, at the end of the protocol he will get2x1 − x0, which leaks bothx0 andx1 if they are
bits. Therefore the receiver has to prove that the message iswell formed, by using a NIZK proof.

Step 3: Managing a Malicious Sender.A sender, even behaving maliciously, cannot break the privacy of the
receiver without breaking the security of the underlying encryption scheme. In fact, he just sees a ciphertext.
The receiver, however, has no way to check if the sender is inputting a “fresh” ciphertext, obtained through
the expected computation or just a chosen ciphertext that came from somewhere else. The actual problem is
that we do not check if the sender knows what he is inputting ornot, and so the output may not even depend
at all on the Choose message. This kind of problem does not allow the sender to learn more than what he is
supposed to in a single execution of the protocol. But, as described in Section 2.1, if more than one instance
of the protocol is run, the loss of security is dramatic. Therefore we have to ask also the sender to prove that
the message is well formed, using a NIZK proof.

Step 4: Achieving UC.To achieve UC we need to be able to simulate the view of the parties in the real
protocol, by having access just to the ideal functionality.It is well known that it is impossible to achieve UC
OT in the plain model [CF01], and therefore we will assume to have access to a KR authority [BCNP04].
The protocol then consists of two phases. In the registration phase the receiver once and for all registers
an encryption keyek at the KR and proves that he knows the corresponding decryption key dk. In the
communication phase the parties then perform the actual OTsusing the encryption schemeE = Eek. In the
simulation it is the simulator who simulates the KR authority, which allows it to extract the decryption key
dk known by the receiver. This allows the simulator to compute from c1 the choice bit used by a corrupted
receiver.

In the case of a malicious sender things are more difficult. Infact, to be able to simulate, we need to
extract bothx0, x1 from the messaged. But a well formedd contains no information at all about one of
the two secrets. To deal with this we need the receiver to register another keyck with the KR, whereck
is a public key for a commitment scheme. Then the sender commits to x0 andx1 underck and gives a
NIZK proof that the commitments indeed contain messages used to compute the replyd from c0, c1. By
using a perfectly hiding commitment scheme, the receiver will not be able to learn anything from these
commitments in the real protocol. In the simulation we will,however, let the simulator cheat and use an
extractable commitment scheme, which allows it to extractx0 andx1 from the commitments.

Step 5: The Final Protocol.The UC functionality we want to implement is:

Choose: R inputs(choose, otid, b) to the ideal functionality, whereotid must be a fresh OT identifier.

4 Note that repeating this operation we can also achieve thatD(E(x)a) = ax.

4



Transfer: The ideal functionality outputs(chosen, otid) to S. S can then any number of times input a
message of the form(transfer, otid, x0, x1) into the ideal functionality.

Retrieve: Each time the ideal functionality outputs(retrieve, S, otid, xb) to R.

This ideal functionality slightly generalizes the standard one in that S can transfer several times using the
same choose message from R. This e.g. allows OT of longer strings efficiently. Collecting the above five
steps we get the following protocol:

Key-Registration: R registers an encryption keyek and a commitment keyck and proves that it knows the
decryption keydk (corresponding toek), and thatck is a key for a perfect hiding commitment scheme.
If so, the public keysek andck are given toS.

Choose: R gets his selection bitb. He encryptsc1 = Eek(b). He computes a NIZK proofπchoose that c1

contains either0 or 1, and sends(c1, πchoose) to S.
Transfer: S gets his two inputsx0, x1. He getsc1, πchoose and he aborts ifπchoose is invalid. If not, he

computesc0 = E(1)c−1
1 andd = cx0

0 cx1

1 . Then he computesC0 = Commck(x0), C1 = Commck(x1).
He finally computes a NIZKπtransfer that proves thatd is computed correctly fromc1 and the values
inside the commitmentsC0, C1. He sends everything to R.

Retrieve: R getsd,C0, C1, πtransfer and he aborts if the check onπtransfer fails. If not, he decrypts
Ddk(d) = xb and he outputs it.

There are a number of technical issues which we solved to makethe above approach work: The “encryp-
tion scheme” used is in fact a mixed commitment scheme, that is built on top of Boneh, Boyen and Shacham
[BBS04] cryptosystem. Next, this mixed commitment scheme has no efficient decryption, i.e., the receiver
gets an element of the formgxb , with xb the message that the sender inputs in the OT. We will therefore
start with the description of a bit OT protocol, where this isclearly not an issue. If we want to transmit more
data, we can think of our protocol as a random OT, where the sender picksx0 andx1 at random and the
receiver receivesK0 = gx0 or K1 = gx1 . Even though the sender cannot chooseK0 andK1 as it desires,
he can compute them on his side. Together with the second message the sender then sendsEK0

(m0) and
EK1

(m1), where(m0,m1) are the actual messages of the OT andEKb
(mb) is an encryption ofmb under

the keyKb. In this way we avoid the discrete logarithm problem. Another issue is that the NIZK proofs
from [GOS06, GS08] work in the CRS model, while we prefer to put ourselves in the KR model to have just
one party trust the setup. We deal with this by noting that theNIZK proofs can be instantiated with either
perfect soundness or perfect ZK, depending on how the CRS is created. We let R register two CRSs, one of
each flavor as part of his public key. When R proves, he uses thescheme with perfect soundness. When S
proves, he uses the scheme with perfect zero-knowledge.

3 Preliminaries

3.1 Pairing-Based Cryptography
In the last years pairing-based cryptography gained more and more interest. Since its introduction in
[Jou00]5, pairings were used in several applications and allowed to achieve strong goals, like IBE [BF01].

In pairing-based cryptography we can define bilinear maps between groups of points on elliptic curves
as follows:

5 In fact, pairings were used even before in cryptography, in order to break the discrete logarithm problem (the MOV attack
[MOV93]).

5



Definition 1. Let G, G1, be two multiplicative cyclic groups of finite ordern, and letg be a generator for
G. Then we say thate : G×G→ G1 is a bilinear map if:

Bilinear: e is bilinear, i.e., for allx, y ∈ G, a, b ∈ Z we have thate(xa, yb) = e(x, y)ab.
Non-Degenerate:For all x ∈ G, x 6= 1, e(x, x) generatesG1.
Computable: For all x, y ∈ G, the pairinge(x, y) can be computed efficiently.

There are several computational assumptions in the world ofpairing-based cryptography. In this paper
we will reduce the security of our protocol to the following:

Definition 2 (Decisional Linear (DLIN) Assumption [BBS04]). Let G, G1 be groups of prime orderp
with a bilinear mape as defined above. The decisional linear assumption, states that given three random
generatorsf, h, g andf r, hs, gt, it is hard to distinguish the caset = r + s from a randomt.

3.2 Universally Composable Security Framework
If we want to prove that a protocol is secure, we firstly need todefine what secure means. The universally
composable security framework, defined by Canetti [Can01],is becoming a standard definition if one wants
proper security guarantees. The strength of this frameworkrelies in the universally composable theorem,
that states that if a protocol is secure in the UC model, then this protocol will preserve the same security
even if composed with an arbitrary number of copies of itselfor with other protocols.

The price to pay for such a result is the impossibility of constructing any non-trivial protocol that is se-
cure in the UC model6. In order to develop interesting protocols in the UC model weneed some kind of setup
assumptions. We put ourselves in the key registration (KR) authority scenario, first introduced in [BCNP04].
In this model, that has the flavor of a public-key infrastructure, we assume that there exists a trusted regis-
tration authority where parties can register public keys associated with their identities, while demonstrating
that they have access to the corresponding secret keys. Alternatively, parties can let the authority choose
public keys for them, in scenarios where the corresponding secret keys need not be revealed, even to the
owners of the public keys. Then, parties can query the authority for a party identity and obtain the registered
public key for that identity. Any ideal functionality can beUC realized by interactive protocols in the KR
model, under standard computational hardness assumptions.

An advantage of the KR assumption, in respect to other setup assumptions like the common reference
string model (CRS), is that it is trivial to ensure that all trust is not concentrated in one single entity. Namely,
the receiver can register his key to several KRs, and the sender retrieve it from all of them. Now the sender
only has to trust that one of the KRs does its job properly to beconvinced that the receiver knows its secret
key. A full comparison of the KR model against the CRS model isout of the scope of this paper, and we
refer to [BCNP04] for more details.

There are several ways to implement a KR in the real world. In particular, as discussed in [BCNP04], it
is possible to implement it with a stand-alone zero-knowledge proof of knowledge, if we have the guarantee
that the proofs are run in a trusted environment — maybe the registrant shows up at the KR with the prover
on a smartcard, and then the KR runs the smartcard in an isolated setting. If perfect isolation is not available,
it is still possible to run an UC setup in the case of partial isolation [DNW08], where the parties are allowed
to communicate with the environment, but just a limited amount of data.

We note that our protocol hasgracefully degradation, as defined in [BCNP04]: if the proof of secret key
given by the receiver is not UC (maybe because the assumptionthat the proof was running in an isolated

6 Actually, it is possible to implement symmetric protocols like secure channels [CK02].

6



setting failed), but it is at least a stand-alone proof of knowledge, then our OT protocol too will be a stand-
along secure implementation (of the multi-OT functionality) — the simulator will rewind the stand-alone
proof of knowledge from the receiver to get the secret key, and then proceed as the UC simulator for all
the OTs. Even if the proof fails to be just a stand-alone proofof knowledge, but it is at least a proof of
membership, we will have some security, as the key being well-formed gives unconditional security for the
sender, though without any composition guarantees. The implementation therefore in some sense delivers
the best possible security level given the quality of the trusted setup.

4 Underlying Primitives

4.1 Mixed Commitment Scheme
We use a special kind of commitment called mixed commitment [DN02], which is a commitment scheme
that can be instantiated with two kinds of key, giving two kinds of security. The first kind is perfectly
binding and extractable, while the second is perfectly hiding and equivocal. A key which produces perfectly
binding commitments will be called an extraction key (X-key) while a key that produces perfectly hiding
commitments will be called an equivocal key (E-key). These two kinds of keys have to be computationally
indistinguishable, in order for the commitment scheme to becalled mixed.

We note that if we always instantiate the commitment scheme with X-keys, we end up with a com-
mitment scheme that allows extraction, i.e. a public-key encryption scheme, where some keys (the E-keys)
ensure that the “ciphertexts” contain no information aboutthe plaintexts. We use this as an essential ingre-
dient in our construction.

DLIN based Encryption Scheme.When we build our mixed commitment scheme, we start from the DLIN
based cryptosystem from Boneh, Boyen and Shacham [BBS04], described now.

Let G be an algorithm that takes a security parameter as input and outputs(p, G, G1, e, g) such thatp is
prime,G, G1 are descriptions of groups of orderp, e : G×G→ G1 is an admissible bilinear map, andg is
a generator ofG. Those are the public parameters of the cryptosystem that works as follows:

Key Generation: Selectx, y randomly inZ
∗

p, then compute(f, h) = (gx, gy). The encryption key isek =
(f, h) and the decryption key isdk = (x, y).

Encryption: To encrypt a messageM ∈ G, select two random valuesr, s ∈ Z
∗

p. Then compute the encryp-
tion asEek(M ; r, s) = (α, β, γ) = (f r, hs, gr+sM).

Decryption: The message can be efficiently decrypted asDdk(α, β, γ) = M = α−1/xβ−1/yγ.

This encryption scheme is clearly IND-CPA secure under the DLIN assumption. Note that until now we did
not use the pairing at all. The pairing will be used to prove statements about encryptions.

Mixed Commitment Scheme.We now describe the mixed commitment scheme. This is the commitment
scheme under which the sender commits tox0 andx1 (under an E-key), and when instantiated with an X-
key, it is the encryption scheme used by the receiver to encrypt b. This is an essential trick as it will make
commitments and encryptions work together nicely.

The keys for the commitment scheme is going to be the ciphertexts of DLIN cryptosystem. I.e., a com-
mitment key is of the formck = Eek(M ; r, s). A commitment tom ∈ Zp is then of the form

Commek,ck(m; t, u) = ckmEek(1; t, u) .

This is clearly homomorphic in the sense that

Eek(M0; t0, u0)Eek(M1; t1, u1) = Eek(M0M1; t0 + t1, u0 + u1) .

7



The basic idea of the mixed commitment scheme is then that ifck is an encryption of1, then it follows
thatckmEek(1; t, u) is a random encryption of1. And, it is possible to efficiently open this commitment to
anym givent andu and the randomness used to computeck. On the other hand, ifck is the encryption of a
generator (sayg), then

ckmEek(1; t, u)

is a random encryption ofgm, and it is therefore perfectly binding. In addition, it is possible to extractgm

from the commitment if the decryption keydk is known. Thanks to the properties of the cryptosystem, it
is computationally infeasible to decide whetherck is an encryption of1 or g, which is why it is a mixed
commitment scheme.

This leads to the construction of our scheme as follows:

General key generation: There is a key pair(ek, dk), whereek = (g, f, h) = (g, gx, gy) is an encryption
key anddk = (x, y) the decryption key. A full public key for the system is of the form (ek, ck), where
ck is an encryption underek.

Extraction key (X-key): For an X commitment key we haveck = ckX = Eek(g; r, s) = (f r, hs, gr+s+1),
wherer ands are random. We will denote byckX ← KGX the algorithm that produces an X-key, and
we useKX to denote the set of X-keys. The extraction trapdoor istX = dk.

Equivocal key (E-key): For an E commitment key we haveck = ckE = Eek(1; r, s) = (f r, hs, gr+s),
wherer and s are random andtE = (r, s) is the equivocation trapdoor. We will denote byckE ←
KGE(r, s) the algorithm that produces an E-key, and we useKE to denote the set of E-keys.

Committing: To commit to a messagem ∈ Zp under the general keyek and the commitment keyck, select
t, u ∈R Z

∗

p, and computeCommek,ck(m; t, u) = ckmEek(1; t, u).
Opening: To open a commitmentC, the committer releases(m, t, u). The receiver checks thatC =

ckmEek(1; t, u).

The general secret keydk allows to efficiently determine if the commitment keyck is an X-key or an
E-key, otherwise, they will be indistinguishable from the properties of DLIN cryptosystem. Note that this
commitment is homomorphic with respect to addition.

It is clear that the E-keys produce perfectly hiding commitments and that the X-keys produce perfectly
binding commitments. Here is how equivocation and extraction work:

Equivocation: A random commitment tom under an E-keyck ∈ KE is of the form

Commek,ck(m; t, u) = ckmEek(1; t, u)

= (f r, hs, gr+s)m(f t, hu, gt+u) = (f rm+t, hsm+u, grm+sm+t+u)

for uniformly randomt andu. Given anym′ and lettingt′ = r(m−m′) + t andu′ = s(m−m′) + u,
it follows thatt′ andu′ are uniformly random and that

Commek,ck(m
′; t′, u′) = (f rm′+t′ , hsm′+u′

, grm′+sm′+t′+u′

)

= (f rm+t, hsm+u, grm+sm+t+u) = Commek,ck(m; t, u) .

I.e., given the randomness used to computeCommek,ck(m; t, u) and the equivocation trapdoortE =
(r, s) of ck one can openCommek,ck(m; t, u) to any value.

Extraction: For ck ∈ KX and c = Commek,ck(m; t, u) = ckmEek(1; t, u) we have thatDdk(c) =
Ddk(ck)m · Ddk(Eek(1; t, u)) = gm, from whichm can be retrieved by exhaustive searching if it is
from a small known set.

8



Note that the extraction has a limit on the size ofm that can be extracted. In our first construction,
our message set will be just{0, 1} when we need extraction ofm. In our second construction we consider
K = gm to be a key andm just a value used to generate the key. In that case we can extract the keyK for
anym.

4.2 Efficient NIWI Proofs
Both during the choose and the transfer phase we need some non-interactive (NI) proofs. It turns out that
these proofs do not have to be fully zero-knowledge. It is sufficient that they are witness indistinguishable
(WI). Still, using standard WI proofs will result in increasing dramatically the number of rounds of the
protocol. But also general NIWI proofs, even without increasing the number of rounds, will let the protocol
be impractical. We use instead new NIWI constructions [GOS06, GS08] which allow to prove algebraic
relations in bilinear groups. In particular, we use the following WI proofs:

Proof of Bit: In [GOS06] a composable NIWI to prove that the content of a commitment is either
0 or 1 is given. We will denote withπ0∨1(c) the proof for the following relations:Rbit =
{((ek, ck, c), (m, t, u))|c = Commek,ck(m; t, u) ∧ m ∈ {0, 1}}. The proof consists of6 group ele-
ments.

Proof of Multi-Exponent: In [GS08] a composable NIWI to prove the relation between thecontent of a
number of commitments and the exponents of a multi-exponentiation is given. The proof consists of2
group elements. We use it for3 exponents and denote withπMX(c, g1, g2, g3, C1, C2, C3) the proof for
the following relations:

RMX = {((ek, ck, c, g1 , g2, g3, C1, C2, C3), (x1, x2, x3, t1, t2, t3, u1, u2, u3))|

c = gx1

1 gx2

2 gx3

3 ,∀i = 1, 2, 3 : Ci = Commek,ck(xi; ti, ui)} .

All the proofs are for the CRS model, where the proof assumes that a random common reference string
crs has been honestly generated and it is known by the prover and the verifier. More preciselycrs is sampled
ascrs ← CRS(rcrs) for a poly-time algorithmCRS and uniformly randomrcrs. In fact, there exist two
different such generatorsCRSS andCRSZ . Whencrs is generated byCRSS , then the proofs haveperfect
soundness and computational WI (under DLIN). Whencrs is generated byCRSZ , then the proofs are
perfectWI and computationally sound (under DLIN). The outputs of the two generators are in addition
computationally indistinguishable. We can exploit this toavoid the CRS model at all. We let the receiver
generate two common reference stringscrsS = CRSS(rcrs,S) andcrsZ = CRSZ(rcrs,Z) and use the KR
authority to verify thatcrsS andcrsZ were generated in this way. Then the proofs from the sender tothe
receiver are done undercrsZ , and the sender is guaranteed WI even ifcrsZ was not generated at random, as
the WI is perfect. Proofs from the receiver to the sender are done undercrsS, and the sender is guaranteed
soundness even ifcrsS was not generated at random, as the soundness is perfect.

5 Final Protocol

Since the mixed commitment scheme that we use does not have efficient extraction for arbitrary messages,
we at first use it to constructbit OT. Later, we are discussing how to achievestring OT.

5.1 Parameter Agreement
We assume that all parties agree on the finite groups underlying the encryption scheme. In practice this would
probably happen by the groups being described in some standard and hard-coded into the software for the
OT module. In the UC model we model it using an ideal functionality which simply outputs a description

9



of the groups to all parties. This ideal functionality can bethought of as the standardization body, and be
activated with a message(get groups). It generates a DLIN group by running(p, G, G1, e, g) ← G(1k),
and outputsparam = (p, G, G1, e, g) to all parties.

5.2 Key Registration Authority
Next we describe the registration phase. In the registration phase all parties which later want to act as re-
ceivers have to register a public key with a KR authority and prove knowledge of the corresponding secret
key. Later all parties which want to act as senders can retrieve the public keys of the receivers from KR.
Following [BCNP04] we model this simplistically by having one KR, by letting the registrants show knowl-
edge of their secret keys by showing them directly to the KR, and letting the KR broadcast the corresponding
public keys.

In more detail, the KR is parametrized by some poly-time relation R and accepts messages of the form
(register, pid, pk, sk) from some partyPi. It checks that(pk, sk) ∈ R and if so sends(Pi, pk) to all
parties. The relationR is chosen such that(pk, sk) being inR ensures thatpk is a well-formed public key
and thatsk is the secret key.

In our protocol we use a public key of the formpk = (param, ek, ckX , ckE , crsZ , crsS),
where param = (p, G, G1, e, g) and ek = (f, h), and we use a secret key of the formsk =
(dk, rX , tE, rcrs,Z , rcrs,S), wheredk = (x, y). The relationR checks thatf = gx, h = gy, ckX =
KGX(rX), ckE = KGE(tE), crsZ = CRSZ(rcrs,Z) and crsS = CRSS(rcrs,S). I.e., it checks thatek
is a well-formed public key for DLIN cryptosystem (and that the receiver knows the decryption key) and
thatckX is an X-key for our mixed commitment scheme and thatckE is an E-key for our mixed commitment
scheme (and that the receiver knows the equivocation trapdoor) and thatcrsZ is a well-formed common ref-
erence string for the NIWI system giving perfect WI (and thatthe receiver knows how to simulate proofs),
and thatcrsS is a well-formed common reference string for the NIWI systemgiving perfect soundness.

The receiverPi letsparam be the public parameters agreed upon by all parties, and it generatesek, ckX ,
ckE , crsZ andcrsS at random, thereby learning thesk expected by KR. After key registration the receiver
deletesrX , tE, rcrs,S andrcrs,Z , as they are not needed in the protocol and they constitute a security risk if
leaked. When the sender receives(Pi, (param′, ek, ckX , ckE , crsZ , crsS)) it checks thatparam′ is equal
to the parametersparam agreed upon earlier. If so, it remembers that the public key of receiverPi is
(ek, ckX , ckE , crsZ , crsS).

5.3 1-out-of-2 Bit Oblivious Transfer
We now describe the communication phase. Here the parties can perform an unbounded number of OTs
using the established PKI.

Choose: The receiver is given a bitb and an OT identifierotid. It computes a commitmentc1 =
(α1, β1, γ1) = Commek,ckX

(b). It sendsotid, c1 to the sender. It also sendsπ0∨1(c1), computed un-
dercrsS.

Transfer: The sender is given two secretsx0, x1 andotid. It waits for a message of the formotid, c1, π0∨1

from the receiver and checks the receiver’s proofs and, if itaccepts, it computes and sends to the receiver
otid, d = cx0

0 cx1

1 Eek(1; r, s) with r ands chosen at random and withc0 = (α0, β0, γ0) = Eek(1)c
−1
1 .7

Note that when the sender is honest, thend = (α, β, γ) = (αx0

0 αx1

1 f r, βx0

0 βx1

1 hs, γx0

0 γx1

1 gr+s).
In addition, the sender sends commitmentsC0 ← Commek,ckE

(x0), C1 ← Commek,ckE
(x1),

C2 ← Commek,ckE
(r), C3 ← Commek,ckE

(s), and proofs πMX(α,α0, α1, f, C0, C1, C2),
πMX(β, β0, β1, h, C0, C1, C3) andπMX(γ, γ0, γ1, g, C0, C1, C2C3), to prove thatC0, C1, C2, C3 com-
mit to valuesx0, x1, r, s used to computed. The NIWI proofs are performed undercrsZ .

7 HereEek(1) is some fixed encryption of1 so that also R can computec0. This just saves the sending ofc0.

10



Retrieve: The receiver checks the proofs, and, if it accepts, it extractsd usingdk and obtainsgxb = Ddk(d).
If gxb = 1 it outputs0, otherwise it outputs1.

The protocol sends the6 commitmentsc1, d, C0, C1, C2, C3, each consisting of3 group elements. Be-
sides this a proof of size6 is sent and3 proofs of size2 are sent, for a total of30 group elements.

Theorem 1. The protocol in Section 5.3 securely realizesFOT in the UC-hybrid model.

Proof: We address the case of the malicious sender and the maliciousreceiver separately:

Security against Malicious Receiver:The simulator runs the KR phase. If any of the keys registeredby
a corrupted receiver are not well formed, it ignores the registration, as would the real KR. Otherwise, it
extracts from the receiver the secret key(dk, rX , tE , rcrs,Z , rcrs,S).

In the communication phase, when it receives a messageotid, c1, π0∨1 from a corrupted receiver, it
checks for the proof to be valid. If yes, it extractsgb = Ddk(c1). If gb = 1, it inputs0 to the ideal function-
ality on behalf of the corrupted receiver. Otherwise it inputs 1. If the proofs fail, the simulator just ignores
the message.

When the simulator is givenxb by the ideal functionality it behaves like an honest sender,after choosing
a randomx′

1−b.
This transfer message is perfectly indistinguishable froma protocol one. In factd will be exactly the

same compared to a real protocol run, being an encryption of the same messagexb. All the commitments
C1, C2, C3, C4 have the same distribution, asckE is an E-key. The three proofs sent by the sender have the
same distribution as the proofs are perfect WI when performed undercrsZ — in fact the receiver could have
simulated the proofs itself.

Security against Malicious Sender:The simulator runs the KR phase. For all honest receivers it uses a
random key(ek, ckX , ckE , crsZ , crsS), whereckX is a random E-key,ckE is a random X-key,crsZ is gen-
erated usingCRSS , andcrsS is generated usingCRSZ . These four are indistinguishable for the corrupted
sender as E-keys and X-keys are indistinguishable and the output distributions ofCRSZ andCRSS are
indistinguishable.

In the communication phase, when it has to send a choose message for someotid from the honest
receiver to a corrupted sender, it does not know the real choice bitb. Instead it usesb′ = 0.

When it receivesotid, d, C1, C2, C3, C4 from the corrupted sender, along with the three proofs, it checks
the proofs as in the protocol. If the proofs are valid, it extractsgx0 = Ddk(C1) andgx1 = Ddk(C2), and
recoversx0, x1 by lettingxi = 0 if gxi = 1 andxi = 1 otherwise, withi = 0, 1. Then it inputs them to the
ideal functionality on behalf of the corrupted sender. Otherwise, it just ignores the message.

The Hybrid Argument.The above just sketches the simulator. Showing that the simulation with this simulator
is indistinguishable from the real execution is as usual done using a hybrid argument.

That the simulation for a malicious receiver is perfect was already argued above. We therefore focus on
the case of a malicious sender. We here sketch the sequence ofhybrids used to go from the simulation to the
real protocol.

In the first step the only change is to useb′ = b instead ofb′ = 0. Hereb is the real choice bit, which
is obtained by inspecting the ideal functionality — this thesimulator cannot do, but we can do it as a mind
spiel to define a hybrid distribution. Note that this step actually does not change the distribution asckX is an
E-key in the simulation and the distribution ofc1 therefore does not depend onb′ at all — it can be opened to
both0 and1. Furthermore, the proof is perfect WI whencrsS is generated usingCRSZ , and the distribution
of the proof therefore does not depend on which opening ofc1 is used.

11



In the second step we changeckX to be a random X-key instead of a random E-key and generatecrsS

usingCRSS . This change is indistinguishable to the corrupted partiesasdk is kept secret by the honest
receiver and the output distributions ofCRSS andCRSZ are computationally indistinguishable. Note that
after these two steps, the messagesc1, π0∨1 have the same distribution as in the real protocol.

In the third step, the simulator computes the outputxb of the receiver, not by extractingx0 andx1 from
C1 andC2 and inputting(x0, x1) to the ideal functionality (to make it outputxb), but by extracting a value
x′

b from d and letting the ideal functionality outputx′

b. When bothckE andckX are X-keys, as they are at
this point in the sequence of hybrids, it is straightforwardto verify that if all three statements proved by the
sender are true, it will always hold thatx′

b = xb. Since the NIWI proof system has perfect soundness when
crsZ is generated usingCRSS , as it is at this point in the sequence of hybrids, it follows that the third step
actually makes no difference in the distribution.

In the last stepckE is changed to be a random E-key instead of a random X-key andcrsZ is generated
usingCRSZ . Again this is indistinguishable. Now the distribution is identical to the real protocol. �

5.4 1-out-of-2 String Oblivious Transfer

In this section we present a protocol for string OT that is more efficient than achieving string OT by standard
composition of bit OT.

The reason why we cannot just OT ann-bit value is that the receiver will not be able to decrypt the
answer anymore. Recall that the valued sent from S to R is a commitment of the formCommek,ckX

(xb).
This allows the receiver to efficiently computegxb from d using the decryption keydk, asd is a commitment
under the X-keyckX . The problem is that if we letxb be arbitrary, then computingxb from gxb cannot be
done efficiently.

Our idea is to consider our protocol a random OT, where the sender inputs two random valuesx0, x1, and
the receiver gets a random group elementKb = gxb . Let us note that the sender cannot choose the values of
K0 andK1, as the discrete logarithm problem is assumed to be hard here. However, he can compute himself
the two elementsK0,K1, as he knowsg, x0, x1. At the end, S and R shares a random group element, that
the sender can use as a key to encrypt his messagesM0,M1, encoded as group elements, i.e. the sender
computes and sendsX0 = gx0M0,X1 = gx1M1 to the receiver. The receiver can retrieveMb = XbK

−1
b .

SinceK1−b is a uniformly random group element completely unknown by the receiver, it gets no information
on M1−b. The only price paid is that we send two more group elements, bring the total communication up
to 32 group elements.

Though intuitively clear, it remains to verify that the security is maintained. It turns out that the only
non-trivial part is to check that the simulator can still extract the commitments from a malicious S — recall
thatckX is an E-key in the simulation and that the simulator therefore cannot extractd, but must extract the
commitments given by the malicious S. We focus on this part, and leave the easier details to the reader.

Recall that e.g. the first component ofd, beingαx0

0 αx1

1 αr, is accompanied by three commitmentsC0 ←
Commek,ckE

(x0), C1 ← Commek,ckE
(x1), C2 ← Commek,ckE

(r) and a proof that they commit to values
used to compute the first component ofd. Recall that in the simulationckE is an X-key. This means that
the simulator can usedk to extractgx0 from C0 andgx1 from C1, which allows to computeK0 = gx0 and
K1 = gx1 , as desired. The proofs therefore, so to say, do not prove that S knowsx0 andx1, but that S knows
K0 andK1, which is sufficient to ensure that it knowsM0 andM1.

Acknowledgments

We thank the anonymous reviewer from AFRICACRYPT 2008 and CRYPTO 2008 for the useful comments.

12



References

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital goods. In Birgit
Pfitzmann, editor,EUROCRYPT, volume 2045 ofLecture Notes in Computer Science, pages 119–135. Springer,
2001.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew K. Franklin, editor,CRYPTO,
volume 3152 ofLecture Notes in Computer Science, pages 41–55. Springer, 2004.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable protocols with relaxed
set-up assumptions. InFOCS, pages 186–195. IEEE Computer Society, 2004.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian, editor,CRYPTO,
volume 2139 ofLecture Notes in Computer Science, pages 213–229. Springer, 2001.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. InFOCS, pages 136–
145, 2001.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,CRYPTO, volume 2139
of Lecture Notes in Computer Science, pages 19–40. Springer, 2001.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure channels. In Lars R.
Knudsen, editor,EUROCRYPT, volume 2332 ofLecture Notes in Computer Science, pages 337–351. Springer, 2002.

[CNS07] Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive oblivious transfer. In Naor [Nao07], pages
573–590.

[DN02] Ivan Damgård and Jesper Buus Nielsen. Perfect hiding and perfect binding universally composable commitment
schemes with constant expansion factor. In Moti Yung, editor, CRYPTO, volume 2442 ofLecture Notes in Computer
Science, pages 581–596. Springer, 2002.

[DNW08] Ivan Damgård, Jesper Buus Nielsen, and Daniel Wichs. Isolated proofs of knowledge and isolated zero knowledge. In
Nigel P. Smart, editor,EUROCRYPT, volume 4965 ofLecture Notes in Computer Science, pages 509–526. Springer,
2008.

[Fis06] Marc Fischlin. Universally composable oblivious transfer in the multi-party setting. In David Pointcheval, editor,
CT-RSA, volume 3860 ofLecture Notes in Computer Science, pages 332–349. Springer, 2006.

[Gar04] Juan A. Garay. Efficient and universally composablecommitted oblivious transfer and applications. In Moni Naor,
editor,TCC, volume 2951 ofLecture Notes in Computer Science, pages 297–316. Springer, 2004.

[GH07] Matthew Green and Susan Hohenberger. Blind identity-based encryption and simulatable oblivious transfer. In
ASIACRYPT, pages 265–282, 2007.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness theorem for
protocols with honest majority. InSTOC, pages 218–229. ACM, 1987.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for np. In Serge Vaudenay,
editor,EUROCRYPT, volume 4004 ofLecture Notes in Computer Science, pages 339–358. Springer, 2006.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactiveproof systems for bilinear groups. InEUROCRYPT, 2008.
http://eprint.iacr.org/2007/155.

[Jou00] Antoine Joux. A one round protocol for tripartite diffie-hellman. In Wieb Bosma, editor,ANTS, volume 1838 of
Lecture Notes in Computer Science, pages 385–394. Springer, 2000.

[JS07] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on committed inputs. In Naor
[Nao07], pages 97–114.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 ofLecture Notes in Computer Science, pages 78–95. Springer, 2005.

[Lin08] Yehuda Lindell. Efficient fully-simulatable oblivious transfer. InCT-RSA, 2008.http://eprint.iacr.org/
2008/035.

[MOV93] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic curve logarithms to logarithms in a
finite field. IEEE Transactions on Information Theory, 39(5):1639–1646, 1993.

[Nao07] Moni Naor, editor. Advances in Cryptology - EUROCRYPT 2007, 26th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007, Proceedings, volume
4515 ofLecture Notes in Computer Science. Springer, 2007.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. InSODA, pages 448–457, 2001.
[NP05] Moni Naor and Benny Pinkas. Computationally secure oblivious transfer.J. Cryptology, 18(1):1–35, 2005.
[PVW07] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious transfer.

Cryptology ePrint Archive, Report 2007/348, 2007.http://eprint.iacr.org/.
[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer.Technical Report TR-81, Harvard Aiken Compu-

tation Laboratory, 1981, 1981.

13



[Wie83] Stephen Wiesner. Conjugate coding.SIGACT News, 15(1):78–88, 1983.
[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). InFOCS, pages 162–167. IEEE,

1986.

14


