Essentially Optimal Universally Composable Oblivious Transfer

Ilvan Damgard, Jesper Buus Nielsen, and Claudio Orlandi

BRICS, Department of Computer Science, Aarhus Universitet
Abogade 34, 820@8rhus, Denmark
{i van, buus, orl andi } @ai m . au. dk

Abstract Oblivious transfer is one of the most important cryptogiapbrimitives, both for theoretical and
practical reasons and several protocols were proposeddgdtine years. We provide the first oblivious trans-
fer protocol which is simultaneously optimal on the follogi list of parametersSecurity: it has universal
composition.Trust in setup assumptiongnly one of the parties needs to trust the setup (and some &etu
needed for UC security)Trust in computational assumptionsnly one of the parties needs to trust a com-
putational assumptiorRound complexityit uses only two roundsCommunication complexityit communi-
catesO(1) group elements to transfer one out of two group elements. BigeD notation hides32, mean-
ing that the communication is probably not optimal, but isesdially optimal in that the overhead is at least
constant. Our construction is based on pairings, and wenassbe presence of a key registration authority.
Key words: Oblivious Transfer, Universally Composable Security.

1 Introduction

An oblivious transfer (OT) involves two parties, a sendat ameceiver. The sender has two secret messages.
The receiver selects to retrieve one of them, without dgiotp which one. At the same time the receiver
is not allowed to learn more than one secret. Oblivious feansas first introduced by Wiesner [Wie83]
in the late seventies under the namecohjugate codingHowever, the importance of this primitive in the
cryptographic field was first pointed out by Rabin in [Rab81].

OT is the base for many secure multiparty computation (SM©@jogols [Yao86, GMW87], where
several instances of OT are run at the same time. Howevey ofahe proposed OT protocols do not give
any guarantee about the security under composition. Weiptréere the first protocol that is secure in the
universally composable [Can01] model, using just two r@usictcommunication and having only a constant
overhead Q(k) bits are communicated to do an OT/obits).

In addition we do not need to assume a common reference .shnsigad the receiver R once and for
all has to register a public key with a key registration atithdKR and prove to KR that it knows the
corresponding secret key. After this any sender S can vettle public key and perform an OTto R — in
particular, S needs to have no public key or trust any commf@rence string, giving our construction the
same flavor as a PKI for public-key encryption, where alsbRusegisters a public key, after which all S can
transfer messages securely to R. The public-key flavor opmincol makes ideal for asymmetric settings
where, e.g., one party is a server, which can afford the timaecast of registering a public key for the given
application. Clients then need only retrieve the public &kthe server to perform UC OT with the server.

As a final feature our protocol is perfectly secure for thedeenOur protocol can therefore be viewed
as optimal in four respects:

1. Itis secure under general composition.

2. It uses two rounds. Clearly there exists no one-round @fopol.

3. Only one party has to trust the setup — S has to trust thath€Rks that R knows its secret key. Since
OT is impossible in the plain UC model, some setup must bégiugnd having only one party do so is
optimal.

4. Only one party has to trust a computational assumptiopaiticular, S has perfect security. No OT for
the classical model can have perfect security for bothgmrti

The communication complexity is probably not optimal. Unitiee decisional linear (DLIN) assumption
we send32 group elements to transfer one out of two group elements dities a constant overhead, but is
probably far from optimal. This seems, so far, to be the uonfate price to pay for the other fully optimal
properties.

Our OT protocol is primarily based on homomorphic encryptio pairing friendly groups, which we
use to give a new instantiation of the notion of mixed comreaitits from [DNO2]. This instantiation is con-
structed to work well with the efficient non-interactive aémowledge (NIZK) proofs by Groth, Ostrovsky
and Sahai [GOS06, GS08], that are in turn based on parireglagptography. We put ourselves in the hy-
brid UC model, where all parties have access to secure ahdrgidated channels, and to a key registration
authority (KR). This model was presented and motivated GN#®04].

Related WorkExamples of two-round OT can be found in [NPO1, AIR01, Kal®3$wever, none of these
protocols achieve UC security. If we consider UC securify, fDotocols are known, but they require more
rounds of interaction [Gar04, JS07] or other parties heglpive computation [Fis06].

As a witness that a secure and efficient OT is of primary ingra#, several attempts were made in
the last years. Lindell [Lin08] has a very general constamcthat achieve full simulation, based on the
existence of homomorphic encryption solely. CamenischieNeand shelat [CNSO07] built a protocol for
adaptivek-out-of-n. OT, providing full simulation with specific number-thedeetissumptions. Upon this
work Green and Hohenberger [GHO7] built another adaptivetiat requires weaker assumptions.

Independently from our work Peikert, Vaikuntanathan andevéa[PVWO07], presented a two round UC
OT protocol. However, their protocol works in the commorerefice string, and uses different computa-
tional assumptions, therefore these two works can be sesmgsiementary.

2 Main Ildeas

In this section we are going to give the main ideas, leavihthal details to the rest of the paper. We first
present an attack that motivates the need of a composablbéilwe sketch the protocol.

We have two players called the sender (S) and the receivel tig)sender has two secrets x1, while
the receiver has a selection bitAt the end of the protocol R gets while S gets nothing.

2.1 Insecurity of OT Composition
We can describe a round optimal OT (i.e., 2 round OT) in thiefahg way:

Choose: R computes a message= Choose(b), and sends to S.
Transfer: S computes a message- Transfer(c, zp, 1) and sends it to R.
Retrieve: R retrievesr;, = Retrieve(t).

The security of such a protocol is usually stated like:

Receiver’s privacy: the output of the Choose phasgdoes not reveal any information abaéub S.
Sender’s privacy: the output of the Transfer phagedoes not reveal anything abatit_, to R.

! Note that this is the only possible order of the messageselbuild a protocol where S sends the first message and then R
computese, from this message, then clearly R can choose to learndpéndzx; .

This kind of security definition works in the case of a stafaha OT execution, but fails dramatically
in the case of even a sequential composition, and even fgrgaeric reasons. We consider the following
composed protocol toillustrate it: R and S run a first OT protoR inputsh, S inputszg, 1, and R gets:y,.
Then R and S run a second OT protocol. R ingdts inputszg, 2, and R gets},. Then R sends;), to S.
Now instantiate this protocol with a two-message OT secaceraing to the previous definition:

1. (&) R computes = Choose(b), and sendgto S.
(b) S computes = Transfer(c, xg, 1) and sends it to R.
(¢) Rretrievesr, = Retrieve(t).

2. (@) R computeg’ = Choose(d'), and sendg’ to S.
(b) S computeg’ = Transfer(c, z{,, z}) and sends it to R.
(c) Rretrievesr;, = Retrieve(t').

3. Rsends;, to S.

A cheating S could use, in the secoiichnsfer phase, the firs€hoose message, i.e., it could compute
t" = Transfer(c,), ;). Therefore R will retriever; instead ofr;,, without noticing it, and in the 3rd step,
it will send z} to S, clearly revealing information aboltwhich an ideal implementation would not.

Note that, despite the fact that the protocol presented iadahoc constructed counterexample, this
vulnerability is actually quite important and has many @mnegences: when parties run more OTs instances,
the receiver cannot be sure that the Transfer messagesrchigechoice. A protocol that is not secure
against this attack is the one in [AIRO1].

Intuitively this problem arises from the fact that the séguwf the sender and the security of the receiver
are analyzed separately, and therefore there is no “link¥éen theChoose phase and th&ransfer phasé.
Another common definition for the security of OT protocolghe half-simulation, as in [NPO5]. In this
scenario we usually require strong (simulation) securijgiast the receiver, but just stand-alone privacy
against the sender. Note that this would not protect ag#esattack sketched above. This relaxation is
usually justified by saying that the sender is commonly aeyeny a service provider, and therefore it can
be controlled better or more than the receiver, who reptesamy user. As the above example shows, this
motivation assumes that the server chooses not to leanrmiaf@n, which it could in fact learn by deviating
only so slightly from the implementatichUnder such an assumption (essentially that the server i®sit m
passively corrupted) things become much simpler. Here we a@ive security for both parties.

2.2 Our Protocol
We are going to present the main intuition behind our prdtocb steps.

Step 1: OT based on Homomorphic Encryptidesume to have available an additively homomaorphic cryp-
tosystem, i.e., a cryptosystem that satisfies the followin@=(x)E(y)) = =+ y, whereE, D represent the

2 A way to fix this problem, as some OT protocols do, is to chamhgestructure of the protocol, allowing Choose to output also
a piece of trapdoor informatiok that will be later used during the retrieve phase. In thig¢he protocol will be of the form:
(¢, k) = Choose(b);t = Transfer(c, zo,z1); x» = Retrieve(t, k). We prefer, instead of fixing just this problem, to develop
our protocol in the UC framework, for it provides us strongaarantees. In particular, UC security protects agaihsffdcts of
composition as that described above, while still allowisgaanalyze the protocol in isolation.

3 Also this motivation is not so strong given that in severgllagations the role of the sender and the receiver can bedap
Moreover, in some applications like authentication, ithie server that plays the role of the receiver, while the uksrspthe
role of the sender. This could in principle be handled by gisiat OT is symmetric: an OT from S to R can be turned into an
OT from R to S without further assumptions. This transfoiorahowever, adds another round of communication, and dgdw
produces a one-bit OT. For applications where two-round OString-OT is needed, “turning the OT around” is therefoot a
practical solution.

encryption and the decryption functidng hen the following is a simple OT construction if the pastae
semi-honest:

Choose: The receiver encrypts, = F(b) and sends it to the sender.
Transfer: The sender computes = E(1)c; ! = E(1 —b) andd = ¢°c}* and sendd it to the receiver.
Retrieve: The receiver decrypts, = D(d).

The idea is that the receiver léty, c;) be an encryption of the vectdi, 0) if he wants to get the first
secret or(0,1) if he wants the second one. The sender computes, explofig@namomorphic property:
ot = E((1 = b)zg + bx1) = E(xy).

Step 2: Managing a Malicious Receivéhe protocol is intuitively correct and private if both pest follow
the protocol. However, in the case of malicious adversdhiese are many evident security flaws. First of
all, if the receiver is not honest, he could send an encrgptibb ¢ {0, 1}. If for instance he sends an
encryption oft = 2, at the end of the protocol he will gt — xg, which leaks bothy andx, if they are
bits. Therefore the receiver has to prove that the messageliformed, by using a NIZK proof.

Step 3: Managing a Malicious Sendérsender, even behaving maliciously, cannot break the gyighthe
receiver without breaking the security of the underlyingrgption scheme. In fact, he just sees a ciphertext.
The receiver, however, has no way to check if the sender igting a “fresh” ciphertext, obtained through
the expected computation or just a chosen ciphertext tima¢ deom somewhere else. The actual problem is
that we do not check if the sender knows what he is inputtingotrand so the output may not even depend
at all on the Choose message. This kind of problem does rwt &éle sender to learn more than what he is
supposed to in a single execution of the protocol. But, asribex] in Section 2.1, if more than one instance
of the protocol is run, the loss of security is dramatic. Efi@re we have to ask also the sender to prove that
the message is well formed, using a NIZK proof.

Step 4: Achieving UCTo achieve UC we need to be able to simulate the view of theegairt the real
protocol, by having access just to the ideal functionalitis well known that it is impossible to achieve UC
OT in the plain model [CF01], and therefore we will assumeduehaccess to a KR authority [BCNPO4].
The protocol then consists of two phases. In the registratitase the receiver once and for all registers
an encryption keyk at the KR and proves that he knows the corresponding deorypey dk. In the
communication phase the parties then perform the actuau®ing the encryption schente = E,;. In the
simulation it is the simulator who simulates the KR authpnithich allows it to extract the decryption key
dk known by the receiver. This allows the simulator to compubeifc; the choice bit used by a corrupted
receiver.

In the case of a malicious sender things are more difficulfatt, to be able to simulate, we need to
extract bothzg, 21 from the messagé. But a well formedd contains no information at all about one of
the two secrets. To deal with this we need the receiver tstaganother keyk with the KR, whereck
is a public key for a commitment scheme. Then the sender ctsrtmicy and z; underck and gives a
NIZK proof that the commitments indeed contain messaged tseompute the reply from ¢y, c;. By
using a perfectly hiding commitment scheme, the receivdrnet be able to learn anything from these
commitments in the real protocol. In the simulation we wilbwever, let the simulator cheat and use an
extractable commitment scheme, which allows it to extiacindz; from the commitments.

Step 5: The Final Protocollhe UC functionality we want to implement is:
Choose: R inputs(choose, otid, b) to the ideal functionality, wheretid must be a fresh OT identifier.

“ Note that repeating this operation we can also achieveld#t(x)*) = az.

4

Transfer: The ideal functionality outputéchosen,otid) to S. S can then any number of times input a
message of the forrft r ansf er , otid, x(, 1) into the ideal functionality.
Retrieve: Each time the ideal functionality outpufset ri eve, S, otid, z;) to R.

This ideal functionality slightly generalizes the starttlane in that S can transfer several times using the
same choose message from R. This e.g. allows OT of longegstéfficiently. Collecting the above five
steps we get the following protocol:

Key-Registration: R registers an encryption key: and a commitment keyk and proves that it knows the
decryption keywlk (corresponding tek), and thaick is a key for a perfect hiding commitment scheme.
If so, the public keysk andck are given taS.

Choose: R gets his selection bit. He encrypts:; = E.x(b). He computes a NIZK proof .j,q.se thatc;
contains eithef or 1, and sendsc;, m¢p0se) t0 S.

Transfer: S gets his two inputg, x1. He getscy, Tepoose @aNd he aborts ifr ;.05 1S invalid. If not, he
computesyy = E(l)cl‘1 andd = ¢;°ci*. Then he computeSy = Comm,(zo), C1 = Comm,(x).
He finally computes a NIZKry,.q,s e that proves thadl is computed correctly from; and the values
inside the commitmentsy, C;. He sends everything to R.

Retrieve: R getsd, Cy, C1, Transfer @and he aborts if the check omy,.qns e, fails. If not, he decrypts
Dgi(d) = x and he outputs it.

There are a number of technical issues which we solved to thalkabove approach work: The “encryp-
tion scheme” used is in fact a mixed commitment scheme, ¢Hatilt on top of Boneh, Boyen and Shacham
[BBS04] cryptosystem. Next, this mixed commitment scheme o efficient decryption, i.e., the receiver
gets an element of the forgs, with x;, the message that the sender inputs in the OT. We will thexefor
start with the description of a bit OT protocol, where thislsarly not an issue. If we want to transmit more
data, we can think of our protocol as a random OT, where thdesguickszy andz; at random and the
receiver receives(y = ¢*° or K; = ¢*'. Even though the sender cannot chod§eand K as it desires,
he can compute them on his side. Together with the secondageesise sender then senllg, (mo) and
Ek,(m1), where(mg, m) are the actual messages of the OT dfyg (m;) is an encryption ofn;, under
the key K. In this way we avoid the discrete logarithm problem. Anotissue is that the NIZK proofs
from [GOS06, GS08] work in the CRS model, while we prefer tbquurselves in the KR model to have just
one party trust the setup. We deal with this by noting thatNh&K proofs can be instantiated with either
perfect soundness or perfect ZK, depending on how the CR®&adad. We let R register two CRSs, one of
each flavor as part of his public key. When R proves, he usesctieme with perfect soundness. When S
proves, he uses the scheme with perfect zero-knowledge.

3 Preliminaries

3.1 Pairing-Based Cryptography
In the last years pairing-based cryptography gained modemaare interest. Since its introduction in
[Jou00P, pairings were used in several applications and allowedhgese strong goals, like IBE [BF01].

In pairing-based cryptography we can define bilinear mapsden groups of points on elliptic curves
as follows:

% In fact, pairings were used even before in cryptography,rifeoto break the discrete logarithm problem (the MOV attack
[MOV93]).

Definition 1. LetG, G4, be two multiplicative cyclic groups of finite order and letg be a generator for
G. Thenwe say that: G x G — G is a bilinear map if:

Bilinear: e is bilinear, i.e., for allz,y € G, a,b € Z we have that(z?,y") = e(z,y)?.
Non-Degenerate: For all z € G, = # 1, e(x, z) generate<s .
Computable: Forall z,y € G, the pairinge(z, y) can be computed efficiently.

There are several computational assumptions in the wonining-based cryptography. In this paper
we will reduce the security of our protocol to the following:

Definition 2 (Decisional Linear (DLIN) Assumption [BBS04]). Let G, G, be groups of prime ordep
with a bilinear mape as defined above. The decisional linear assumption, sthtggtven three random
generatorsf, h, g and f", h®, ¢, it is hard to distinguish the case= r + s from a randon.

3.2 Universally Composable Security Framework

If we want to prove that a protocol is secure, we firstly needefine what secure means. The universally
composable security framework, defined by Canetti [Cari®Hecoming a standard definition if one wants
proper security guarantees. The strength of this framewelrks in the universally composable theorem,
that states that if a protocol is secure in the UC model, thenprotocol will preserve the same security
even if composed with an arbitrary number of copies of itselivith other protocols.

The price to pay for such a result is the impossibility of cdamsting any non-trivial protocol that is se-
cure in the UC modé&l In order to develop interesting protocols in the UC modehaed some kind of setup
assumptions. We put ourselves in the key registration (Ki®)aity scenario, first introduced in [BCNPO04].
In this model, that has the flavor of a public-key infrastamet we assume that there exists a trusted regis-
tration authority where parties can register public keyoeamted with their identities, while demonstrating
that they have access to the corresponding secret keysnatitecly, parties can let the authority choose
public keys for them, in scenarios where the correspondawges$ keys need not be revealed, even to the
owners of the public keys. Then, parties can query the aitjtfor a party identity and obtain the registered
public key for that identity. Any ideal functionality can C realized by interactive protocols in the KR
model, under standard computational hardness assumptions

An advantage of the KR assumption, in respect to other setsynaptions like the common reference
string model (CRS), is that it is trivial to ensure that alidgris not concentrated in one single entity. Namely,
the receiver can register his key to several KRs, and theeseattieve it from all of them. Now the sender
only has to trust that one of the KRs does its job properly todeinced that the receiver knows its secret
key. A full comparison of the KR model against the CRS modeliis of the scope of this paper, and we
refer to [BCNPO4] for more detalils.

There are several ways to implement a KR in the real worldahtiqular, as discussed in [BCNP04], it
is possible to implement it with a stand-alone zero-knogtedroof of knowledge, if we have the guarantee
that the proofs are run in a trusted environment — maybe tistrant shows up at the KR with the prover
on a smartcard, and then the KR runs the smartcard in anddddatting. If perfect isolation is not available,
it is still possible to run an UC setup in the case of partialason [DNWO08], where the parties are allowed
to communicate with the environment, but just a limited amtaf data.

We note that our protocol hagacefully degradationas defined in [BCNPOA4]: if the proof of secret key
given by the receiver is not UC (maybe because the assumhi@rihe proof was running in an isolated

® Actually, it is possible to implement symmetric protocadkelsecure channels [CKO02)].

setting failed), but it is at least a stand-alone proof ofiealge, then our OT protocol too will be a stand-
along secure implementation (of the multi-OT functionglit— the simulator will rewind the stand-alone
proof of knowledge from the receiver to get the secret key, tien proceed as the UC simulator for all
the OTs. Even if the proof fails to be just a stand-alone pafdfnowledge, but it is at least a proof of
membership, we will have some security, as the key beingfegihed gives unconditional security for the
sender, though without any composition guarantees. Théemgntation therefore in some sense delivers
the best possible security level given the quality of theted setup.

4 Underlying Primitives

4.1 Mixed Commitment Scheme

We use a special kind of commitment called mixed commitmBMNQ2], which is a commitment scheme
that can be instantiated with two kinds of key, giving twodsnof security. The first kind is perfectly
binding and extractable, while the second is perfectlyitgjdind equivocal. A key which produces perfectly
binding commitments will be called an extraction key (X-keyhile a key that produces perfectly hiding
commitments will be called an equivocal key (E-key). Thege kinds of keys have to be computationally
indistinguishable, in order for the commitment scheme tediked mixed.

We note that if we always instantiate the commitment schertie X+keys, we end up with a com-
mitment scheme that allows extraction, i.e. a public-kegrygption scheme, where some keys (the E-keys)
ensure that the “ciphertexts” contain no information alibetplaintexts. We use this as an essential ingre-
dient in our construction.

DLIN based Encryption Schemé/hen we build our mixed commitment scheme, we start from théND
based cryptosystem from Boneh, Boyen and Shacham [BBS@g¢ribed now.

Let G be an algorithm that takes a security parameter as inputatpdits(p, G, G1, e, g) such thap is
prime,G, G, are descriptions of groups of ordere : G x G — G is an admissible bilinear map, agds
a generator ofs. Those are the public parameters of the cryptosystem thisves follows:

Key Generation: Selectz, y randomly inZ}, then computé f, h) = (¢*, g¥). The encryption key igk =
(f,h) and the decryption key ig = (z,y).

Encryption: To encrypt a messag¥l € G, select two random valuess € Z;. Then compute the encryp-
tion asE.x(M;r, s) = (o, 3,7) = (f", h®,g" 5 M).

Decryption: The message can be efficiently decryptedag(a, 3,v) = M = aV/Eg=1 Y~

This encryption scheme is clearly IND-CPA secure under theNCassumption. Note that until now we did
not use the pairing at all. The pairing will be used to proweshents about encryptions.

Mixed Commitment Schem@/le now describe the mixed commitment scheme. This is the doment
scheme under which the sender commitg¢andz; (under an E-key), and when instantiated with an X-
key, it is the encryption scheme used by the receiver to @héryThis is an essential trick as it will make
commitments and encryptions work together nicely.

The keys for the commitment scheme is going to be the cipktsrtd DLIN cryptosystem. l.e., a com-
mitment key is of the formek = E.,(M;r, s). Acommitment ton € Z, is then of the form

Commyey, o (m; t,u) = ck™ Ee(1;t,u) .
This is clearly homomorphic in the sense that

Eer(Mo; to, uo) Eep(My;t1,u1) = Eep(MoMi;to +t1,up + u1) .

7

The basic idea of the mixed commitment scheme is then tlkétig an encryption of, then it follows
thatck™ E.x(1;t,u) is a random encryption df. And, it is possible to efficiently open this commitment to
anym givent andu and the randomness used to comptiteOn the other hand, ik is the encryption of a
generator (say), then

k™ Eer(1;t, u)

is a random encryption af™, and it is therefore perfectly binding. In addition, it isgsible to extracy™
from the commitment if the decryption ket is known. Thanks to the properties of the cryptosystem, it
is computationally infeasible to decide wheth#ris an encryption ofl or g, which is why it is a mixed
commitment scheme.

This leads to the construction of our scheme as follows:

General key generation: There is a key paifek, dk), whereek = (g, f,h) = (g, 9%, ¢¥) is an encryption
key anddk = (x,y) the decryption key. A full public key for the system is of thwerh (ek, ck), where
ck is an encryption undedtk.

Extraction key (X-key): For an X commitment key we havé = ckx = E.x(g;r,s) = (f7, h*, g" 5T,
wherer ands are random. We will denote iyt x «— KG x the algorithm that produces an X-key, and
we uselCx to denote the set of X-keys. The extraction trapdoakis= dk.

Equivocal key (E-key): For an E commitment key we havé = ckg = E.x(1;7,8) = (f",h%, g" %),
wherer and s are random andgz = (r,s) is the equivocation trapdoor. We will denote byr —
KGg(r, s) the algorithm that produces an E-key, and we Kigeto denote the set of E-keys.

Committing: To commit to a message < Z, under the general keyt and the commitment keyk, select
t,u €g Z3, and comput€omme,y, o (m; t, u) = ck™ Eep(1;t,u).

Opening: To open a commitment’, the committer release@n,t,u). The receiver checks that =
kM Eer (15, u).

The general secret kelk allows to efficiently determine if the commitment kel is an X-key or an
E-key, otherwise, they will be indistinguishable from thegerties of DLIN cryptosystem. Note that this
commitment is homomorphic with respect to addition.

It is clear that the E-keys produce perfectly hiding comneitts and that the X-keys produce perfectly
binding commitments. Here is how equivocation and extoactvork:

Equivocation: A random commitment ten under an E-keyk € Kg is of the form

Commey, o (m;t,u) = ck™ Eer(15t, u)
— (f?“’ hs’ gr—i—s)m(ft’ hu’gt—l—u) — (frm—l—t’ hsm-l—u’ grm+sm+t+u)

for uniformly random¢ andw. Given anym’ and lettingt’ = r(m — m/) + ¢t andu’ = s(m —m/) + u,
it follows that#’ and«’ are uniformly random and that
Commp, (s ¢, ') = (f7™ s grd b st

(frm—i-t’ hsm—l—u’ g

Tm+sm+t+“) = Commyey, o (m;t, u) .
l.e., given the randomness used to computenm,, ..(m; ¢, «) and the equivocation trapdooy =
(r,s) of ck one can opeomm,y, .(m;t, u) to any value.

Extraction: Forck € Kx andc = Commey c(m;t,u) = ck™FEe(1;t,u) we have thatDg,(c) =
Dgi(ck)™ - Dai(Eer(1;t,u)) = g™, from whichm can be retrieved by exhaustive searching if it is
from a small known set.

Note that the extraction has a limit on the sizemofthat can be extracted. In our first construction,
our message set will be jugb, 1} when we need extraction of. In our second construction we consider
K = g™ to be a key andn just a value used to generate the key. In that case we carcietieakeyK for
anym.

4.2 Efficient NIWI Proofs

Both during the choose and the transfer phase we need sordatadactive (NI) proofs. It turns out that

these proofs do not have to be fully zero-knowledge. It ifigaht that they are witness indistinguishable
(W1). Still, using standard WI proofs will result in increag dramatically the number of rounds of the
protocol. But also general NIWI proofs, even without ingieg the number of rounds, will let the protocol
be impractical. We use instead new NIWI constructions [G&SRS08] which allow to prove algebraic

relations in bilinear groups. In particular, we use thedwihg WI proofs:

Proof of Bit: In [GOS06] a composable NIWI to prove that the content of a mitment is either
0 or 1 is given. We will denote withmgy1(c) the proof for the following relations:Ry; =
{((ek,ck,c),(m,t,u))lc = Commey, c(m;t,u) A m € {0,1}}. The proof consists of group ele-
ments.

Proof of Multi-Exponent: In [GS08] a composable NIWI to prove the relation betweendbetent of a
number of commitments and the exponents of a multi-exp@atént is given. The proof consists of
group elements. We use it fBrexponents and denote withx (¢, g1, 92, g3, C1, C2, C3) the proof for
the following relations:

RMX = {((ek70ka6791792793701702703)7 (I’l,l’g,l’g,tl,tg,tg,Ul,’UQ,Ug))‘
c=01"95°95°,¥i =1,2,3 : C; = Commey, cx(xi; i, ui)} -

All the proofs are for the CRS model, where the proof assuimeasat random common reference string
crs has been honestly generated and it is known by the provehanetifier. More preciselyrs is sampled
ascrs <« CRS(r.s) for a poly-time algorithmCRS and uniformly randonr.,,. In fact, there exist two
different such generatof<SRSs andCRSz. Whencrs is generated b’RSg, then the proofs havperfect
soundness and computational WI (under DLIN). Wheg is generated byCRS , then the proofs are
perfectWI and computationally sound (under DLIN). The outputs cf tivo generators are in addition
computationally indistinguishable. We can exploit thisaimid the CRS model at all. We let the receiver
generate two common reference stringss = CRSs(7¢rs,5) andersz = CRSz(r¢rs,z) and use the KR
authority to verify thatcrsg andcrsz were generated in this way. Then the proofs from the sendireto
receiver are done undersz, and the sender is guaranteed WI evetrif; was not generated at random, as
the W1 is perfect. Proofs from the receiver to the sender aredindekrsg, and the sender is guaranteed
soundness evendf-sg was not generated at random, as the soundness is perfect.

5 Final Protocol

Since the mixed commitment scheme that we use does not Haierdgfextraction for arbitrary messages,
we at first use it to construdtit OT. Later, we are discussing how to achiewng OT.

5.1 Parameter Agreement

We assume that all parties agree on the finite groups undgrlge encryption scheme. In practice this would
probably happen by the groups being described in some sthadd hard-coded into the software for the
OT module. In the UC model we model it using an ideal functiiyjavhich simply outputs a description

9

of the groups to all parties. This ideal functionality cantbeught of as the standardization body, and be
activated with a messagget gr oups). It generates a DLIN group by runnirig, G, G1, e, g) — G(1¥),
and outputparam = (p, G, Gy, e, g) to all parties.

5.2 Key Registration Authority

Next we describe the registration phase. In the registrgittase all parties which later want to act as re-
ceivers have to register a public key with a KR authority arale knowledge of the corresponding secret
key. Later all parties which want to act as senders can vettiee public keys of the receivers from KR.
Following [BCNP04] we model this simplistically by having® KR, by letting the registrants show knowl-
edge of their secret keys by showing them directly to the K, latting the KR broadcast the corresponding
public keys.

In more detail, the KR is parametrized by some poly-timeti@haR and accepts messages of the form
(regi st er,pid, pk, sk) from some partyP;. It checks thaipk, sk) € R and if so send$P;, pk) to all
parties. The relatioi® is chosen such thapk, sk) being in R ensures thabk is a well-formed public key
and thatsk is the secret key.

In our protocol we use a public key of the formk = (param,ek,ckx,ckg,crsz,crsg),
where param = (p,G,Gi,e,g9) and ek = (f,h), and we use a secret key of the forsk =
(dk,7x,tE,Ters, 2, Ters,s), Wheredk = (z,y). The relationR checks thatf = ¢*, h = ¢¥, ckx =
KGx(rx), ckg = KGg(tg), crsz = CRSyz(rers,z) andcerss = CRSg(res,s). 1.e., it checks thatk
is a well-formed public key for DLIN cryptosystem (and thhetreceiver knows the decryption key) and
thatckx is an X-key for our mixed commitment scheme and tiaf is an E-key for our mixed commitment
scheme (and that the receiver knows the equivocation tcapdad thatrs is a well-formed common ref-
erence string for the NIWI system giving perfect WI (and tthegt receiver knows how to simulate proofs),
and thatersg is a well-formed common reference string for the NIWI systgiming perfect soundness.

The receiverP; letsparam be the public parameters agreed upon by all parties, andérgesk, ckx,
ckg, crsz andersg at random, thereby learning thé expected by KR. After key registration the receiver
deletes x, tg, rers,s @ndre, 7, as they are not needed in the protocol and they constitugeuaisy risk if
leaked. When the sender receiv@y, (param’, ek, ckx, ckg,crsz,crsg)) it checks thaparam’ is equal
to the parameterparam agreed upon earlier. If so, it remembers that the public Keseceiver P; is
(ek,ckx,ckp,crsy, crsg).

5.3 1-out-of-2 Bit Oblivious Transfer
We now describe the communication phase. Here the partrepedorm an unbounded number of OTs
using the established PKI.

Choose: The receiver is given a bib and an OT identifierotid. It computes a commitment; =
(a1, f1,71) = Commey k. (b). It sendsotid, ¢; to the sender. It also sends(c1), computed un-
dercrsg.

Transfer: The sender is given two secratg, 1 andotid. It waits for a message of the foronid, c¢1, mgv1
from the receiver and checks the receiver’s proofs andai¢epts, it computes and sends to the receiver
otid, d = ¢;°ci* Eer, (15, s) with r ands chosen at random and withh = («o, 50,7) = Eek(l)cl_l.7
Note that when the sender is honest, then= (o, 3,v) = (af°ai* ", B3° BT h* 501 g™ %).
In addition, the sender sends commitments «— Commey (o), C1 — Comme oy (1),
Cy « Commek,ckE (7”), Cy « Commek’ckE(s), and proofs WMx(a, g, 1, f, C(), Cl, CQ),
ijjx(ﬁ, Bo, 81, h, Cy, C1, 03) andeX(y, Y0,71, 9, Co, C1, 0203), to prove that’y, Cy, Co, C5 com-
mit to valuesz, z1, r, s used to computé. The NIWI proofs are performed unders ;.

" HereE.(1) is some fixed encryption df so that also R can computg. This just saves the sending &f.

10

Retrieve: The receiver checks the proofs, and, if it accepts, it etgrdasingdk and obtaing™ = D (d).
If g** = 1 it outputs0, otherwise it outputs.

The protocol sends th& commitments:;, d, Cy, C1, Cs, C3, each consisting af group elements. Be-
sides this a proof of sizéis sent and proofs of size2 are sent, for a total g0 group elements.

Theorem 1. The protocol in Section 5.3 securely realiZgs; in the UC-hybrid model.

Proof: We address the case of the malicious sender and the maligiceiver separately:

Security against Malicious Receivefhe simulator runs the KR phase. If any of the keys registésed
a corrupted receiver are not well formed, it ignores thestegfion, as would the real KR. Otherwise, it
extracts from the receiver the secret K&¥, vx,tg, 7ers, 2, Ters,s)-

In the communication phase, when it receives a messéigec, moy1 from a corrupted receiver, it
checks for the proof to be valid. If yes, it extragts= Dg.(c1). If g = 1, itinputs0 to the ideal function-
ality on behalf of the corrupted receiver. Otherwise it itgou If the proofs fail, the simulator just ignores
the message.

When the simulator is given, by the ideal functionality it behaves like an honest serafégy choosing
arandomz’_,.

This transfer message is perfectly indistinguishable feoprotocol one. In factl will be exactly the
same compared to a real protocol run, being an encryptioheofame message. All the commitments
C1,C5, Cs, C4 have the same distribution, akg is an E-key. The three proofs sent by the sender have the
same distribution as the proofs are perfect Wl when perfdramelercrs; — in fact the receiver could have
simulated the proofs itself.

Security against Malicious Sendefhe simulator runs the KR phase. For all honest receiverses a
random key(ek, ckx, ckg, crsz, crsg), wherecky is a random E-key;k g is a random X-keyersy is gen-
erated using"RSg, andcrsg is generated usinGRS ;. These four are indistinguishable for the corrupted
sender as E-keys and X-keys are indistinguishable and ttpritodistributions ofCRS,; and CRSg are
indistinguishable.

In the communication phase, when it has to send a choose geefsasomeotid from the honest
receiver to a corrupted sender, it does not know the reatehumtb. Instead it uses’ = 0.

When it receivestid, d, Cy, Co, Cs, Cy from the corrupted sender, along with the three proofs,atkh
the proofs as in the protocol. If the proofs are valid, it @agts g™ = Dy (C1) andg®* = Dg(Cs), and
recoverseg, x1 by lettingx; = 0 if ¢* = 1 andz; = 1 otherwise, withi = 0, 1. Then it inputs them to the
ideal functionality on behalf of the corrupted sender. @#hise, it just ignores the message.

The Hybrid Argumenil he above just sketches the simulator. Showing that thelatimn with this simulator
is indistinguishable from the real execution is as usuakdasing a hybrid argument.

That the simulation for a malicious receiver is perfect wesaaly argued above. We therefore focus on
the case of a malicious sender. We here sketch the sequehgkrafs used to go from the simulation to the
real protocol.

In the first step the only change is to uge= b instead oft’ = 0. Hereb is the real choice bit, which
is obtained by inspecting the ideal functionality — this #i@ulator cannot do, but we can do it as a mind
spiel to define a hybrid distribution. Note that this stepally does not change the distributionds, is an
E-key in the simulation and the distribution @ftherefore does not depend &rat all — it can be opened to
both0 and1. Furthermore, the proof is perfect Wl whenrsgs is generated usinGRS 7, and the distribution
of the proof therefore does not depend on which opening &f used.

11

In the second step we changey to be a random X-key instead of a random E-key and generate
using CRSg. This change is indistinguishable to the corrupted pad®égk is kept secret by the honest
receiver and the output distributions GRSgs andCRS; are computationally indistinguishable. Note that
after these two steps, the messages .1 have the same distribution as in the real protocol.

In the third step, the simulator computes the outpubf the receiver, not by extracting, andz; from
C, andCy and inputting(xo, 1) to the ideal functionality (to make it output), but by extracting a value
x; from d and letting the ideal functionality outpuf. When bothckr andckx are X-keys, as they are at
this point in the sequence of hybrids, it is straightforwarderify that if all three statements proved by the
sender are true, it will always hold thaj = ;. Since the NIWI proof system has perfect soundness when
crsyz is generated usin@RSg, as it is at this point in the sequence of hybrids, it followattthe third step
actually makes no difference in the distribution.

In the last stegky is changed to be a random E-key instead of a random X-key:agdis generated
usingCRSz. Again this is indistinguishable. Now the distribution dentical to the real protocol. O

5.4 1-out-of-2 String Oblivious Transfer

In this section we present a protocol for string OT that iseredficient than achieving string OT by standard
composition of bit OT.

The reason why we cannot just OT arbit value is that the receiver will not be able to decrypt the
answer anymore. Recall that the valligent from S to R is a commitment of the foil@omm,y, o1, ().

This allows the receiver to efficiently comput®& from d using the decryption keyk, asd is a commitment
under the X-keykx. The problem is that if we let, be arbitrary, then computing, from g** cannot be
done efficiently.

Our idea is to consider our protocol a random OT, where théesanputs two random valuesg, «1, and
the receiver gets a random group elem&pt= ¢**. Let us note that the sender cannot choose the values of
Ky andK, as the discrete logarithm problem is assumed to be hardHeveever, he can compute himself
the two elementd(y, K1, as he knowg, xy, z1. At the end, S and R shares a random group element, that
the sender can use as a key to encrypt his messeges/;, encoded as group elements, i.e. the sender
computes and sendsy, = ¢*° My, X1 = ¢** M; to the receiver. The receiver can retrielg = Xbe‘l.
SinceK_; is a uniformly random group element completely unknown leyrtteiver, it gets no information
on Mj_y. The only price paid is that we send two more group elemenisg Ithe total communication up
to 32 group elements.

Though intuitively clear, it remains to verify that the satuis maintained. It turns out that the only
non-trivial part is to check that the simulator can stillraxt the commitments from a malicious S — recall
thatckx is an E-key in the simulation and that the simulator theeefamnot extraaf, but must extract the
commitments given by the malicious S. We focus on this pad,laave the easier details to the reader.

Recall that e.g. the first componentdfbeinga;® ai* o, is accompanied by three commitmenis —
Commyeg, ok, (20), C1 «— Commey, ok, (1), Co «— Commey, o4, () @and a proof that they commit to values
used to compute the first componentdfRecall that in the simulationkz is an X-key. This means that
the simulator can usék to extractg®™ from Cy andg®* from C4, which allows to computd{, = ¢*° and
K, = ¢®1, as desired. The proofs therefore, so to say, do not provStkaowszy andzy, but that S knows
Ky and K1, which is sufficient to ensure that it knowlg, and M.

Acknowledgments
We thank the anonymous reviewer from AFRICACRYPT 2008 and'ERO 2008 for the useful comments.

12

References

[AIRO1]

[BBS04]
[BCNPO4]
[BFO1]
[Can01]
[CFO1]
[CKO2]
[CNS07]

[DNO2]

[DNWOS]

[Fis06]
[Gar04]
[GHO7]
[GMW87]
[GOS086]
[GS08]
[Jou00]
[JS07]
[Kalos]
[Lin08]
[MOV93]
[Nao07]
[NPO1]
[NPO5]
[PVWO07]

[Rab81]

William Aiello, Yuval Ishai, and Omer Reingold. Red oblivious transfer: How to sell digital goods. In Birgit
Pfitzmann, editorEUROCRYPTvolume 2045 ofLecture Notes in Computer Sciengages 119-135. Springer,
2001.

Dan Boneh, Xavier Boyen, and Hovav Shacham. Shorgsignatures. In Matthew K. Franklin, editQRYPTQ
volume 3152 ol ecture Notes in Computer Sciengages 41-55. Springer, 2004.

Boaz Barak, Ran Canetti, Jesper Buus Nielsen, afdeRPass. Universally composable protocols with relaxed
set-up assumptions. FOCS pages 186-195. IEEE Computer Society, 2004.

Dan Boneh and Matthew K. Franklin. Identity-basedrgption from the weil pairing. In Joe Kilian, editaZRYPTQ
volume 2139 oL ecture Notes in Computer Sciengages 213—-229. Springer, 2001.

Ran Canetti. Universally composable security: & paradigm for cryptographic protocols. FOCS pages 136—
145, 2001.

Ran Canetti and Marc Fischlin. Universally compdsalmmmitments. In Joe Kilian, editd@RYPTQvolume 2139

of Lecture Notes in Computer Scienpages 19-40. Springer, 2001.

Ran Canetti and Hugo Krawczyk. Universally compdseaiotions of key exchange and secure channels. In Lars R.
Knudsen, editol2UROCRYPTvolume 2332 of ecture Notes in Computer Scienpages 337-351. Springer, 2002.
Jan Camenisch, Gregory Neven, and Abhi Shelat. |8tatle adaptive oblivious transfer. In Naor [Nao07], mage
573-590.

Ivan Damgard and Jesper Buus Nielsen. Perfect pidind perfect binding universally composable commitment
schemes with constant expansion factor. In Moti Yung, ed@&YPTQvolume 2442 of ecture Notes in Computer
Sciencepages 581-596. Springer, 2002.

Ivan Damgard, Jesper Buus Nielsen, and Daniel \A/it$olated proofs of knowledge and isolated zero knowletfge
Nigel P. Smart, editoEUROCRYPTvolume 4965 of ecture Notes in Computer Scienpages 509-526. Springer,
2008.

Marc Fischlin. Universally composable obliviouarisfer in the multi-party setting. In David Pointchevaljter,
CT-RSAvolume 3860 of_ecture Notes in Computer Scienpages 332—349. Springer, 2006.

Juan A. Garay. Efficient and universally composaiiemitted oblivious transfer and applications. In Moni Nao
editor, TCC, volume 2951 of_ecture Notes in Computer Scienpages 297-316. Springer, 2004.

Matthew Green and Susan Hohenberger. Blind idef@sed encryption and simulatable oblivious transfer. In
ASIACRYPJTpages 265-282, 2007.

Oded Goldreich, Silvio Micali, and Avi Wigderson. aw to play any mental game or a completeness theorem for
protocols with honest majority. IBTOGC pages 218—-229. ACM, 1987.

Jens Groth, Rafail Ostrovsky, and Amit Sahai. Rerien-interactive zero knowledge for np. In Serge Vaudgnay
editor, EUROCRYPTvolume 4004 of_ecture Notes in Computer Scienpages 339-358. Springer, 2006.

Jens Groth and Amit Sahai. Efficient non-interactiveof systems for bilinear groups. BUROCRYPT2008.
http://eprint.iacr.org/2007/155.

Antoine Joux. A one round protocol for tripartitdfig-hellman. In Wieb Bosma, editoANTS volume 1838 of
Lecture Notes in Computer Scienpages 385-394. Springer, 2000.

Stanislaw Jarecki and Vitaly Shmatikov. Efficienbtparty secure computation on committed inputs. In Naor
[Nao07], pages 97-114.

Yael Tauman Kalai. Smooth projective hashing and-twessage oblivious transfer. In Ronald Cramer, editor,
EUROCRYPTvolume 3494 otecture Notes in Computer Scienpages 78-95. Springer, 2005.

Yehuda Lindell. Efficient fully-simulatable obligus transfer. ICT-RSA2008.http://eprint.iacr.org/
2008/ 035.

Alfred Menezes, Tatsuaki Okamoto, and Scott A. \fang. Reducing elliptic curve logarithms to logarithms in a
finite field. IEEE Transactions on Information Thei39(5):1639-1646, 1993.

Moni Naor, editor. Advances in Cryptology - EUROCRYPT 2007, 26th Annual Iate@ynal Conference on the
Theory and Applications of Cryptographic Techniques, Blmea, Spain, May 20-24, 2007, Proceedingslume
4515 ofLecture Notes in Computer Scien&pringer, 2007.

Moni Naor and Benny Pinkas. Efficient oblivious triargrotocols. INSODA pages 448-457, 2001.

Moni Naor and Benny Pinkas. Computationally secunivimus transferJ. Cryptology 18(1):1-35, 2005.

Chris Peikert, Vinod Vaikuntanathan, and Brent &vat A framework for efficient and composable oblivious sfen
Cryptology ePrint Archive, Report 2007/348, 200it.t p: / / eprint.iacr.org/.

Michael O. Rabin. How to exchange secrets by ohlwimansferTechnical Report TR-81, Harvard Aiken Compu-
tation Laboratory, 19811981.

13

[Wie83] Stephen Wiesner. Conjugate codi®iGACT Newsl5(1):78-88, 1983.
[Yao86] Andrew Chi-Chih Yao. How to generate and exchangeets (extended abstract). FOCS pages 162-167. IEEE,
1986.

14

