
On the CCA1-Security of Elgamal and
Damg̊ard’s Elgamal

Helger Lipmaa

1 Cybernetica AS, Estonia
2 Tallinn University, Estonia

Abstract. It is known that there exists a reduction from the CCA1-
security of Damg̊ard’s Elgamal (DEG) cryptosystem to what we call
the ddhdsdh assumption. We show that ddhdsdh is unnecessary for DEG-
CCA1, while DDH is insufficient for DEG-CCA1. We also show that
CCA1-security of the Elgamal cryptosystem is equivalent to another
assumption ddhcsdh, while we show that ddhdsdh is insufficient for El-
gamal’s CCA1-security. Finally, we prove a generic-group model lower
bound Ω(3

√
q) for the hardest considered assumption ddhcsdh, where q is

the largest prime factor of the group order.

Keywords. CCA1-security, DEG cryptosystem, Elgamal cryptosystem,
generic group model, irreduction.

1 Introduction

Of the common security notions of public-key cryptosystems, CPA-security (se-
curity against chosen plaintext attacks) is not sufficient in many real-life appli-
cations. On the other hand, CCA2-security (security against adaptive chosen ci-
phertext attacks) is often too strong since it does forbid homomorphic properties
that are necessary to efficiently implement many cryptographic protocols. CCA2-
secure cryptosystems are also typically less efficient than CPA-secure cryptosys-
tems. CCA1-security (security against nonadaptive chosen ciphertext attacks),
a notion that is strictly stronger than CPA-security but does not yet forbid the
cryptosystem to be homomorphic, seems to be a reasonable compromise.

In particular, CCA1-secure cryptosystems can be used instead of CPA-secure
cryptosystems in many cryptographic protocols (say, e-voting) to achieve bet-
ter security without any loss in efficiency. For example, one might be able to
design an e-voting protocol where a vote cannot be decrypted even by an ad-
versary who can non-adaptively (say, before the e-voting period starts) decrypt
any ciphertexts of her choosing. We emphasize that while designing such crypto-
graphic protocols, one should still recall that CCA1-security is a strictly weaker
assumption than CCA2-security.

Unfortunately, CCA1-security itself has received very little study, and in par-
ticular not much is known about CCA1-security of most of the commonly used
cryptosystems. As a concrete (and important) example, while the Elgamal cryp-
tosystem [7] is one of the best-known and most efficient (number-theory based)

2 Helger Lipmaa

public-key cryptosystems, results on its security have been slow to come. Only
in 1998, it was proven that Elgamal is CPA-secure [14]. On the other hand, the
Elgamal cryptosystem is clearly not CCA2-secure, because it is homomorphic.
However, Elgamal’s CCA1-security is a well-known open problem.

In 1991, Damg̊ard proposed what we will call the DEG (Damg̊ard’s Elga-
mal) cryptosystem [4]. DEG is a relatively straightforward modification of Elga-
mal that employs an additional exponentiation to reject “incorrect” ciphertexts.
Damg̊ard proved DEG to be CCA1-secure under a nonfalsifiable [11] knowledge-
of-the-exponent assumption. Only in 2006, Gjøsteen [8] proved that DEG is
CCA1-secure under a more standard assumption that we will call ddhdsdh: it
basically states that DDH remains secure when the adversary is given a nonadap-
tive access to the Decisional Static Diffie-Hellman (DSDH) oracle [2]. Gjøsteen’s
security reduction consisted of a relatively long chain of games. Recently, in an
unpublished preprint, Wu and Stinson [15] presented two alternative proofs of the
CCA1-security of the DEG cryptosystem. First, they showed that DEG is CCA1-
secure if both the DDH assumption and a weaker version of the knowledge-of-
exponent assumption (see [15] for precise statement) hold. Second, they pre-
sented an alternative proof that it is CCA1-secure under the ddhdsdh assumption,
which is simpler than Gjøsteen’s original proof.

Our contributions. In this paper, we establish the complete complexity land-
scape of CCA1-security of the Elgamal and the DEG cryptosystems. We establish
precise security assumptions under which these cryptosystems are CCA1-secure.
To be able to do so, we need to introduce several assumptions where the ad-
versary has a nonadaptive oracle access to an oracle solving a more primitive
assumption. Denote by XY the assumption that no adversary, given a nonadap-
tive oracle access to the Y oracle, can break the assumption X. Here, since Y
is usually a static security assumption [2], it will be assumed that the fixed pa-
rameters of Y will be the same as the corresponding parameters in X. As an
example, in the ddhdsdh assumption, the adversary for the ddh problem has four
inputs: a generator g and three group elements h1, h2, h3. The DSDH problem
is defined with respect to two fixed group elements g′ and h′1, and the adver-
sary obtains two random group elements h′2 and h′3. We will assume that in the
ddhdsdh assumption, g′ = g and h′1 = h1. For the sake of clarity, we will give full
definitions of all three used XY -type assumptions later.

All our reductions can be seen as simple hybrid arguments following the
general guideline “if X ⇒ X ′ and Y ′ ⇒ Y , then XY ⇒ (X ′)Y

′
”.(Here and

in what follows, X ⇒ Y means that the assumption Y can be reduced to the
assumption X.) Thus all our reductions consist of at most two game hops. Our
proof technique, albeit simple, may be a contribution by itself.

Regarding DEG, we first give a simple proof that DEG is CCA1-secure if and
only if the ddegcsdeg assumption holds, where both csdeg and ddeg are new but
standard-looking (falsifiable) assumptions; we will give the precise definition of
ddegcsdeg in Sect. 3. This result is a tautology which is mainly useful to simplify
further results. As for Elgamal, we show that Elgamal is CCA1-secure iff the

On the CCA1-Security of Elgamal and Damg̊ard’s Elgamal 3

ddhcsdh assumption holds, that is, if ddh is secure given nonadaptive access to
a Computational Static Diffie-Hellman (csdh, [2]) oracle. This result is also a
tautology. While ddhcsdh is a new assumption, it is again standard-looking (and
falsifiable). We emphasize once more that it is the first known positive result
about the CCA1-security of Elgamal at all.

We then concentrate on showing that the used assumptions are all (poten-
tially) different. For this we construct several irreductions [3, 1]. However, due to
the nature of the studied problems, our irreductions are not ideally strong, and
thus only of (somewhat) indicative nature. Briefly, the problem is that the CCA1-
security is a static assumption, where the decryption oracle queries are limited
to use the same secret key that is later used for encryption. For this reason, not
only the underlying assumptions (like ddhdsdh) inherit the same property, but
also reductions and irreductions. On the one hand, for the underlying assump-
tions and reductions, this is good: for assumptions, since such static assumptions
are weaker than non-static assumptions; for reductions, since static reductions
are weaker than non-static reductions. On the other hand, for the irreductions
this is bad, since static irreductions are weaker than non-static irreductions (i.e.,
they only show the nonexistence of static reductions and not all possible reduc-
tions). A possible solution here is to strengthen the CCA1-security assumption
by allowing the decryption oracle to decrypt with a secret key that corresponds
to any public key. This would solve the mentioned problem. However, since such
a strengthened version of CCA1-security is nonstandard, we leave its study to a
followup work.

We present (static) irreductions showing that ddh cannot be reduced to
ddegcsdeg (unless ddh is easy), ddegcsdeg cannot be reduced to ddhdsdh (unless
ddegcsdeg is easy) and ddhdsdh cannot be reduced to the ddhcsdh (unless ddhdsdh

is easy). All those irreductions are optimal in the sense that they show that if
assumption X can be reduced to Y in polynomial time, then X has to be solvable
in polynomial time itself and thus both assumptions are broken.

Intuitively, the new irreductions show that DEG is CCA1-secure under an as-
sumption that is strictly stronger than DDH (and thus there is no hope to prove
that it is CCA1-secure just under the DDH assumption) and strictly weaker than
ddhdsdh, the assumption under which its CCA1-security was known before. Thus
means that the CCA1-security of DEG can be rightfully seen as an independent
(and plausible) security assumption, which is a new and possibly surprising re-
sult. Moreover, the CCA1-security of Elgamal is based on an assumption that is
strictly stronger than the assumption that underlies the CCA1-security of DEG.
In a nutshell, this means that while being somewhat less efficient than Elgamal,
DEG is “more CCA1-secure” in a well-defined sense.

Finally, we show in the generic group model that the hardest considered
assumption, ddhcsdh (that is, the CCA1-security of Elgamal), is secure in the
generic group model [13]. More precisely, we show that any generic group algo-
rithm that breaks ddhcsdh must take Ω(3

√
q) steps, where q is the largest prime

factor of the group order. We prove this lower bound in the generic group model
by using the formalization of Maurer [10], but due to the use of nonadaptive

4 Helger Lipmaa

oracle in our assumption, the proof of lower bound is more involved than any of
the proofs in [10]. This can be compared to the known exact lower bound Ω(

√
q)

for ddh (that is, the CPA-security of Elgamal) [13], and shows that ddhcsdh is
likely to be secure (in generic group model) while the defined irreductions are
likely to be meaningful due to the different lower bound.

To summarize, we prove that:

Elgamal-CCA1
⇐

ddhcsdh
⇐

ddhdsdh
⇐

ddegcsdeg
⇐

DEG-CCA1
⇐

ddh
⇒ 6⇒ ? 6⇒ ? ⇒ 6⇒ ?

Here, we have denoted with a star (?) the new (ir)reductions that are most
important in our opinion. We use theorems to prove the starred (ir)reductions,
and lemmas to prove other reductions.

Therefore, we give a complete map of the related security reductions and
irreductions between these security assumptions. We stress that irreductions are
not yet commonly used, and we hope that the current paper provides an insight
to their significance. (And shows, that they are often not difficult to construct.)

Recent Related Work. First, a number of recent papers [6, 5, 9] have studied
the CCA1/CCA2-security of hybrid versions of the DEG cryptosystem. Such
versions use additional cryptographic primitives like symmetric encryption and
MAC. Compared to them, nonhybrid versions studied in this paper are both
better known and simpler. Moreover, the study of nonhybrid versions is impor-
tant because they are homomorphic and thus widely usable in cryptographic
protocols. Second, in an unpublished preprint [15], Wu and Stinson also show
that the Elgamal cryptosystem is one-way (under nonadaptive chosen ciphertext
attacks) under two different conditions. They did not study the CCA1-security
of Elgamal.

2 Preliminaries

2.1 Assumptions

Let the value of the predicate [a ?= b] be 1, if a = b, and 0 otherwise. In the
case of any security assumption X, we let the public variables (X1, . . . , Xm) be
all variables seen by the adversary (in a fixed order implicit in the definition).
In the cases that we study in this paper, the first public variables are system
parameters (like a generator of the underlying group), then the public key and
finally the variables sent to the adversary during the security game.

Denote

cdh(g, gx, gy) := gxy , ddh(g, gx, gy, gz) := [gz ?= cdh(g, gx, gy)] .

Based on these standard cdh and ddh oracles, we also define the Computational
and Decisional Static Diffie-Hellman oracles [2]:

csdh(g,gx)(gy) := cdh(g, gx, gy) = gxy ,

dsdh(g,gx)(gy, gz) := ddh(g, gx, gy, gz) = [gz ?= cdh(g, gx, gy)] .

On the CCA1-Security of Elgamal and Damg̊ard’s Elgamal 5

Note that cdh and csdh are essentially the same functions, but as oracles they
behave differently since (g, gx) have been hardcoded in csdh and thus cannot be
chosen by the adversary. The same comment is true for ddh and dsdh.

Fix a group G = 〈g〉 of order q. The ddh game is defined as follows:

Setup phase. Challenger sets sk← Zq, pk← gsk. He sends pk to adversary A.
Challenge phase. Challenger sets bA ← {0, 1}, y∗ ← Zq, z∗ ← Zq, h∗1 ← gy

∗
.

He sets h∗2 ← gz
∗

if bA = 0 and h∗2 = pky
∗

if bA = 1. Challenger sends
(h∗1, h

∗
2) to A.

Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA, that is, if
b′A = ddh(g,pk, h∗1, h

∗
2).

Group G is a (τ, ε)-ddh group if for any adversary A working in time τ ,
Pr[A wins in the ddh game] ≤ 1

2 +ε. Note that the public variables are ddh1 = g,
ddh2 = pk, ddh3 = h∗1, ddh4 = h∗2.

For comparison, we now give a complete description of a static game, csdh.
Fix a groupG = 〈g〉 of order q, a generator g of groupG, and a random pk← G.
The csdh(g,pk) game is defined as follows:

Challenge phase. Challenger sets xA ← Zq. He sets h ← gxA . Challenger
sends h to A.

Guess phase. A returns a group element h′A ∈ G. A wins if h′A =
csdhg,pk(h) = pkxA .

Group G is a (τ, ε)-csdh group if for any g,pk and any adversary A working in
time τ , Pr[A wins in the csdh game] ≤ 1

q + ε.
Based on arbitrary assumptions X and Y we define a new assumption XY .

In the XY game, an adversary has nonadaptive oracle access to an oracle solving
assumption Y , and she has to break a random instance of the X assumption. In
our case, the Y assumption is always a static assumption, that is, it is defined
with respect to some public parameters that come from the instance that the
adversary for XY has to solve. Note that if Y is static, then we have to always fix
the public parameters in the definition of X and Y . Clearly, XY ⇒ (X ′)Y

′
when

X ⇒ X ′ and Y ′ ⇒ Y . This can be proven by using a hybrid argument, showing
say that XY ⇒ XY ′ , that XY ′ ⇒ (X ′)Y

′
, etc. A group is (τ, ε)-XY group if for

any adversary A working in time τ , Pr[A wins in the XY game] ≤ δ + ε, where
δ = 1

2 in a decisional assumption, and δ = 1
q in a computational assumption.

For the sake of clarity, we now give a precise definition of the ddhdsdh game,
and we state its relation to some of the existing assumptions. Similarly, we will
later define all other used assumptions. Fix a group G = 〈g〉 of order q. The
ddhdsdh game is defined as follows:

Setup phase. Challenger sets sk← Zq, pk← gsk. He sends pk to adversary A.
Query phase. A has a (nonadaptive) access to oracle dsdh(g,pk)(·, ·).
Challenge phase. Challenger sets bA ← {0, 1}, y∗, z∗ ← Zq, h∗1 ← gy

∗
. He sets

h∗2 ← gz
∗

if bA = 0 and h∗2 ← pky
∗

= csdh(g,pk)(h∗1) if bA = 1. Challenger
sends (h∗1, h

∗
2) to A.

6 Helger Lipmaa

Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA, that is, if
b′A = ddh(g,pk, h∗1, h

∗
2).

Group G is a (τ, ε)-ddhdsdh group if for any adversary A working in time τ ,
Pr[A wins in the ddhdsdh game] ≤ 1

2 + ε. Here, the 2 variables are g and pk are
shared by the ddh oracle invoked in the query phase and by the instance the
adversary is trying to solve.

Several versions of the XY game for different values of X and Y , have been
used before. ddhdsdh assumption has been used before say in [8]. The gap DH
assumption of [12] is similar to cdhdsdh (defined later), except that there the
adversary gets access to the oracle also after seeing the challenge. Some other
papers deal with the so called one-more DDH assumption, where A has to
answer correctly to t+ 1 DDH challenges after making only t DDH queries. See,
for example, [3].

2.2 Reductions And Irreductions

We say that security assumption Y can be reduced to assumption X, X ⇒ Y , if
there exists a reduction R, such that: for every adversary A that breaks assump-
tion X, R can break assumption Y by using A as an oracle. More precisely, in an
X ⇒ Y reduction game, the challenger C generates for R the public parameters
of an Y instance. Then, the challenger sends to R a challenge of the game Y
that R has to solve. R can use A as an oracle.

Following [3], we call an algorithm I an irreduction Z 6⇒Y X, if it can,
given as an oracle an arbitrary reduction algorithm Z ⇒ X, solve problem Y .
If Y = X, then we say that I is an optimal irreduction algorithm and write
Z 6⇒! X. More precisely, in a Z 6⇒Y X irreduction game, the challenger C
generates for I the public parameters of an Y instance. Then, the challenger
sends to I a challenge of the game Y that I has to solve. I can use a reduction
R of the game Z ⇒ X as an oracle.

Now, in our case, most of the assumptions are static in nature. That is,
we either have an assumption Xα with some externally given variables α, or
an assumption X

Yα,β
α,β′ , where variables α of the X’s instance are fixed in the

invocation of the oracle for Y . (To simplify the notation, we will usually not
write down α, β and β′, but define them while defining the static assumption
XY .) Analogously, in a static reduction XY ⇒ (X ′)Y

′
game, the adversary in

the XY ⇒ (X ′)Y
′

game (1) has to know how to answer the Y queries only
when some variables are fixed, and (2) can only query the oracle that solves XY

or Y ′ under some fixed variables. Analogously, an adversary in the irreduction
XY 6⇒Z (X ′)Y

′
game has similar restrictions.

Briefly, the problem is that the CCA1-security is a static assumption, where
the decryption oracle queries are limited to use the same secret key that is later
used for encryption. For this reason, not only the underlying assumptions (like
ddhdsdh) inherit the same property, but also reductions and irreductions. This
is since in the reduction and irreduction games, some of the oracles are equal to
the decryption oracle (or to some other static oracle). On the one hand, for the

On the CCA1-Security of Elgamal and Damg̊ard’s Elgamal 7

underlying assumptions and reductions, this is good: for assumptions, since such
static assumptions are weaker than non-static assumptions; for reductions, since
static reductions are weaker than non-static reductions. On the other hand, for
the irreductions this is bad, since static irreductions are weaker than non-static
irreductions (i.e., they only show the nonexistence of static reductions and not
all possible reductions).

Thus, In our (ir)reductions, it is important to see which variables are fixed in
all X, Y , and Z. For example, in an reduction X ⇒ Z, both instances X and Z
may depend on some public generator g and public key pk. In all our reductions,
the reduction algorithm only uses the oracle A with all public parameters and
public keys being fixed. We say that such a reduction is static. Analogously, we
say that an irreduction Z 6⇒Y X is static, if its oracle reduction algorithm is
static. To make this completely clear, we state the names of fixed parameters in
all of our results. We refer to the beginning of Sec. 5 for further discussion.

Finally, when we show the existence of a reduction (resp., irreduction), we
construct a reduction R (resp., irreduction I) that simulates the challenger C to
adversary A (resp., reduction R). In the case of an irreduction, I also simulates
A to R. If a party X simulates party Y, then we denote X as X [Y] for the sake
of clarity.

2.3 Cryptosystems

A public-key cryptosystem Π is a triple of efficient algorithms (G,E,D), where
G(1k) outputs a key pair (sk,pk), Epk(m; r) returns a ciphertext and Dsk(c)
returns a plaintext, so that Dsk(Epk(m; r)) = m for any (sk,pk) ∈ G(1k). Here,
k is a security parameter that we will just handle as a constant.

Fix a cyclic group G = 〈g〉 of order q. The Elgamal cryptosystem [7] in group
G is defined as follows:

Key generation G(1k). Select a random sk← Zq, set pk← gsk. Publish pk.
Encryption Epk(m; ·). Return⊥ ifm 6∈ G. Otherwise, select a random r ← Zq,

set Epk(m; r)← (gr,m · pkr).
Decryption Dsk(c). Parse c = (c1, c2), return⊥ if ci 6∈ G for some i. Otherwise,

return Dsk(c)← c2/c
sk
1 .

Fix a group G = 〈g〉 of order q. The Damg̊ard’s Elgamal (DEG) cryptosys-
tem [4] in group G is defined as follows:

Key generation G(1k). Select random sk1, sk2 ← Zq, set pk1 ← gsk1 ,pk2 ←
gsk2 . Publish pk← (pk1,pk2), set sk← (sk1, sk2).

Encryption Epk(m; ·). Return⊥ ifm 6∈ G. Otherwise, select a random r ← Zq,
set Epk(m; r)← (gr,pkr1,m · pkr2).

Decryption Dsk(c). Parse c = (c1, c2, c3), return ⊥ if ci 6∈ G for some i. Return
⊥ if c2 6= csk1

1 . Otherwise, return Dsk(c)← c3/c
sk2
1 .

Let Π = (G,E,D) be a public-key cryptosystem. The CCA1-game for Π is
defined as follows:

8 Helger Lipmaa

Setup phase. Challenger chooses (sk,pk)← G(1k) and sends pk to adversary
A.

Query phase. A has access to an oracle Dsk(·).
Challenge phase. A submits (m0,m1) to the challenger, who picks a random

bit bA ← {0, 1} and a random r ← Zq, and returns Epk(mbA ; r).
Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA.

A public-key cryptosystem is (τ, γ, ε)-CCA1-secure if for any adversary A work-
ing in time τ and making γ queries, Pr[A wins in the CCA1-game] ≤ 1

2 + ε.
A (τ, 0, ε)-CCA1-secure cryptosystem is also said to be (τ, ε)-CPA-secure. Note
that CCA1-security is an explicitly static assumption, since the adversary can
only access the decryption oracle with respect to a fixed secret key.

The DEG cryptosystem was proven to be CCA1-secure under the ddhdsdh

assumption in [8]. More precisely, Gjøsten proved the CCA1-security of a (hash-
proof based) generalization of the DEG cryptosystem under a generalization of
the ddhdsdh assumption. Elgamal’s cryptosystem is known to be CPA-secure [14]
but not known to be CCA1-secure for γ = poly(k).

3 CCA1-Security of DEG

In this section we investigate the CCA1-security of DEG.

3.1 DEG Is CCA1-Secure ⇔ ddegcsdeg

First, we prove that the security of DEG is equivalent to a new but standard-
looking assumption ddegcsdeg. This result itself is not so interesting, but com-
bined with the result from the next subsection it will provide a reduction of the
CCA1-security of DEG to the more standard (but as we will also see later, a
likely stronger) ddhdsdh assumption.

The ddegcsdeg Assumption. We first define the new assumption. For im-
plicitly defined g,pk1,pk2, let DEG0 := {(gy,pky1,pkz2) : y, z ← Zq} and
DEG1 := {(gy,pky1,pky2) : y ← Zq}. Define the next oracles csdeg(·,·,·) and ddeg:

– csdeg(g,pk1,pk2)
(h1, h2) first checks if ddh(g,pk1, h1, h2) = 1. If this is not

true, it returns ⊥. Otherwise, it returns h3 ← cdh(g,pk2, h1).
– ddeg(g,pk1,pk2, h1, h2, h3) has to distinguish between DEG0 and
DEG1. That is, on the promise that ddh(g,pk1, h1, h2) = 1,
ddeg(g,pk1,pk2, h1, h2, h3) ← [ddh(g,pk2, h1, h3) ?= 1]. The oracle is
not required to output anything if ddh(g,pk1, h1, h2) = 0.

Fix a group G = 〈g〉 of order q. The ddegcsdeg game in group G is defined as
follows:

Setup phase. Challenger sets sk1, sk2 ← Zq, pk1 ← gsk1 , pk2 ← gsk2 . He sends
pk← (pk1,pk2) to adversary A, and sets sk← (sk1, sk2).

On the CCA1-Security of Elgamal and Damg̊ard’s Elgamal 9

Query phase. A has access to the oracle csdeg(g,pk1,pk2)
(·, ·).

Challenge phase. Challenger sets bA ← {0, 1}, y∗, z∗ ← Zq, h∗1 ← gy
∗
, and

h∗2 ← pky
∗

1 . If bA = 0, then h∗3 ← G. If bA = 1, then h∗3 ← pky
∗

2 . Challenger
sends (h∗1, h

∗
2, h
∗
3) to A.

Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA.

Group G is a (τ, γ, ε)-ddegcsdeg group if for any adversary A working in time τ
and making γ queries, Pr[A wins] ≤ 1

2 +ε. Note that this definition does directly
follow from the definition of the csdeg(·,·,·) and ddeg oracles.

Security Results. In all next results, small denotes some unspecified small
value (usually O(1) group operations) that is dominated by some other addend
in the same formula. The next lemma is basically a tautology, and useful mostly
to simplify further proofs.

Lemma 1 (DEG-CCA1 ⇔ ddegcsdeg). Fix a group G = 〈g〉 of order q.
(1) Assume that G is a (τ, γ, ε)-ddegcsdeg group. Then DEG is (τ − γ ·
(τcsdeg + small) − small, γ, 2ε)-CCA1-secure where τcsdeg is the working time of
the csdeg(·,·,·) oracle.
(2) Assume that DEG is (τ, γ, ε)-CCA1-secure. Then G is a (τ−γ ·(τD+small)−
small, γ, ε)-ddegcsdeg group, where τD is the working time of the decryption oracle
D.

Proof. 1) First direction (DEG-CCA1 ⇒ ddegcsdeg with fixed
(g,pk1,pk2)): Assume A is an adversary who can (τ ′, γ′, ε′)-break the CCA1-
security of DEG with probability ε′ and in time τ ′, making γ′ queries. Construct
the next reduction R that aims to break ddegcsdeg:

– Challenger generates new sk ← (sk1, sk2) ← Z2
q, pk1 ← gsk1 , pk2 ← gsk2

and sends pk← (pk1,pk2) to R. R forwards pk to A.
– In the query phase, whenever A asks a decryption Dsk query (c1, c2, c3)

from Dsk(·, ·, ·), R rejects if either c1, c2 or c3 is not a valid group element.
Otherwise R makes a csdeg(g,pk1,pk2)

(c1, c2) query. R receives a c′ such
that c′ ← ⊥, if c2 6= csk1

1 , and c′ ← csk2
1 otherwise. R returns ⊥ in the first

case, and c3/c
′ in the second case.

– In the challenge phase, whenever A submits her challenge (m∗0,m
∗
1), R

asks the challenger for his own challenge. The challenger sets bR ← {0, 1},
y∗ ← Zq, h∗1 ← gy

∗
, h∗2 ← pky

∗

1 . If bR = 0, then he sets h∗3 ← G, otherwise
h∗3 ← pky

∗

2 . R picks a random bit bA ← {0, 1}, and sends (h∗1, h
∗
2,m

∗
bA
·h∗3)

to A. A returns a bit b′A.
– In the guess phase, if b′A = bA, then R returns b′R ← 1, otherwise R returns
b′R ← 0.

Now,Pr[R wins] = Pr[b′R = bR] = Pr[A wins|bR = 1] · Pr[bR = 1] +
Pr[A wins|bR = 0] · Pr[bR = 0] =

(
1
2 + ε′

)
· 1

2 + 1
2 ·

1
2 = 1

2 + ε′

2 . Clearly R
works in time τ = τ ′ + γ · (τcsdeg + small) + small. ut

10 Helger Lipmaa

2) Second direction (ddegcsdeg ⇒ DEG-CCA1 with fixed
(g,pk1,pk2)): Assume A is an adversary who can (τ ′, γ′, ε′)-break the ddegcsdeg

assumption. Construct the next reduction R that aims to break the CCA1-
security of the DEG cryptosystem:

– Challenger generates new sk ← (sk1, sk2) ← Z2
q, pk1 ← gsk1 , pk2 ← gsk2 ,

and sends pk = (pk1,pk2) to R. R forwards pk to A.
– In the query phase, whenever A asks a query csdeg(g,pk1,pk2)

(h1, h2), R
makes a decryption Dsk query (h1, h2, 1), and receives back either ⊥ or
k ← h− sk2

1 . R returns h3 ← ⊥ in the first case, and h3 ← k−1 in the
second case.

– In the challenge phase, whenever A asks for a challenge, R sends his chal-
lenge pair (m∗0,m

∗
1)← (gr

∗
1 , 1), for r∗1 ← Zq, to the challenger. Challenger

picks a random bit bR ← {0, 1} and a random r∗2 ← Zq, and sends
(c∗1, c

∗
2, c
∗
3) ← (gr

∗
2 ,pkr

∗
2

1 , g
r∗1 (1−bR) · pkr

∗
2

2) to R. R forwards (c∗1, c
∗
2, c
∗
3) to

A, who returns a guess b′A.
– In the guess phase, R returns b′R ← b′A to challenger.

Now, Pr[R wins] = Pr[b′R = bR] = Pr[A wins] = ε′. Clearly R works in time
τ ′ + γ · (τD + small) + small. ut

Lemma 2 (DEG-CCA1 ⇒ ddhdsdh with fixed (g,pk = pk1)).
(1) Assume that G = 〈g〉 is a (τ, γ, ε)-ddhdsdh group. Then the DEG cryptosys-
tem is CCA1-secure in group G.
(2) Any ddhdsdh group G = 〈g〉 is also a ddegcsdeg group.

Proof. Proof of the first claim is given in [8, 15]. The second claim follows from
the first claim and Lem. 1. ut

By following a very similar proof, a variant of the DEG cryptosystem where the
decryption, given an invalid ciphertext, returns a random plaintext instead of
⊥, is CCA1-secure under the ddh assumption.

Relation with ddh. It is obviously important to establish the relationships
of the new assumptions with the well-known assumptions like ddh. Here we
construct a static reduction ddh ⇒ ddegcsdeg and in Thm. 1, we construct a
static irreduction ddegcsdeg 6⇒! ddh. As a careful reader will observe, in fact
both the reduction and the irreduction will be to the static version of ddh,
where the first three inputs (g,pk1,pk2) are fixed, and the adversary can only
choose the four inputs. This static version of ddh is clearly at least as strong as
ddh since anybody who can break the static version can also break the ddh.

Lemma 3 (ddh⇒ ddegcsdeg with fixed (g,pk1,pk2)). Any (τ, γ, ε)-ddegcsdeg

group G = 〈g〉 is also a (τ − small, ε)-ddh group.

Proof. Fix a group G = 〈g〉 of order q. Assume A is an adversary who can
(τ ′, γ′, ε′)-break the ddh assumption. Construct the next reduction R that aims
to break ddegcsdeg in the same group:

On the CCA1-Security of Elgamal and Damg̊ard’s Elgamal 11

– Challenger generates new (sk1 ← Zq, sk2 ← Zq,pk1 ← gsk1 ,pk2 ← gsk2)
and sends pk = (pk1,pk2) to R. R forwards (g,pk2) to A as her system
parameters.

– In the challenge phase, if A asks for a challenge, thenR asks for a challenge.
Challenger sets bR ← {0, 1}, y∗ ← Zq, h∗1 ← gy

∗
, h∗2 ← pky

∗

1 . If bR = 0,
then he sets h∗3 ← G, otherwise h∗3 ← pky

∗

2 . He sends (h∗1, h
∗
2, h
∗
3) to R.

R sends (h∗1, h
∗
3) to A. A returns a bit b′A. R returns b′R ← b′A to the

challenger.

Clearly, R wins if and only if A wins. ut

4 CCA1-Security of ElGamal

To prove the security of ElGamal we need the next assumption. As we will see
from the security proofs, this assumption basically just asserts that Elgamal is
CCA1-secure.

Fix a group G = 〈g〉 of order q. The ddhcsdh game is defined as follows:

Setup phase. Challenger sets sk← Zq, pk← gsk. He sends pk to adversary A.
Query phase. A has access to oracle csdh(g,pk)(·), that is, csdh(g,pk)(h) := hsk.
Challenge phase. Challenger sets bA ← {0, 1}, y∗ ← Zq, h∗1 ← gy

∗
. He sets

h∗2 ← G if bA = 0 and h∗2 ← pky
∗

= csdh(g,pk)(h∗1) if bA = 1. Challenger
sends (h∗1, h

∗
2) to A.

Guess phase. A returns a bit b′A ∈ {0, 1}. A wins if b′A = bA, that is, if
bA = ddh(g,pk, h∗1, h

∗
2).

Group G is a (τ, γ, ε)-ddhcsdh group if for any adversary A working in time τ
and making γ queries, Pr[A wins in the ddhcsdh game] ≤ 1

2 + ε.

Lemma 4 (Elgamal-CCA1 ⇔ ddhcsdh with fixed (g,pk)). Fix a group
G = 〈g〉 of order q.
(1) Assume that G is a (τ, γ, ε)-ddhcsdh group. Then ElGamal is (τ − γ ·
(τcsdh + small) − small, γ, 2ε)-CCA1-secure, where τcsdh is the working time of
the csdh(g,pk)(·) oracle.
(2) Assume that ElGamal is (τ, γ, ε)-CCA1-secure. Then G is a (τ − γ · (τD +
small)− small, γ, ε)-ddhcsdh group, where τD is the working time of the D oracle.

Proof. 1) First direction (Elgamal-CCA1 ⇒ ddhcsdh with fixed (g,pk)):
Assume A is an adversary who can (τ ′, γ′, ε′)-break the CCA1-security of Elga-
mal in group G with probability ε′ and in time τ ′, making γ′ queries. Construct
the next reduction R that aims to break ddhcsdh in group G:

12 Helger Lipmaa

– Challenger generates a new keypair (sk ← Zq,pk ← gsk) and sends pk to
R. R forwards pk to A.

– In the query phase, whenever A asks a decryption Dsk query (c1, c2), R
rejects if either c1 or c2 is not a valid group element. Otherwise R asks a
CSDH query c3 ← csdh(g,pk)(c1). R returns c2/c3.

– In the challenge phase, whenever A gives a pair (m∗0,m
∗
1) of messages, R

asks his challenge from the challenger. The challenger sets bR ← {0, 1},
y∗ ← Zq, h∗1 ← gy

∗
. If bR = 0, then he sets h∗2 ← G, otherwise h∗2 ← pky

∗
.

R picks a random bit bA ← {0, 1} and sends (h1,mbA ·h2) to A. A returns
a bit b′A.

– In the guess phase, if b′A = bA, then R returns b′R = 1, otherwise R returns
b′R = 0.

Now, Pr[R wins in the ddhcsdh game] = Pr[b′R = bR] = Pr[A wins|bR =
1] · Pr[bR = 1] + Pr[A wins|bR = 0] · Pr[bR = 0] = (1

2 + ε′) · 1
2 + 1

2 ·
1
2 = 1

2 + ε′

2 .
Clearly R works in time τ ′ + γ · (τcsdh + small) + small. ut

2) Second direction (ddhcsdh ⇒ Elgamal-CCA1 with fixed (g,pk)):
Assume A is an adversary who can (τ ′, γ′, ε′)-break the ddhcsdh assumption in
group G. Construct the next reduction R that aims to break the CCA1-security
of Elgamal:

– Challenger generates a new keypair (sk ← Zq,pk ← gsk) and sends pk to
R. R forwards pk to A.

– In the query phase, whenever A asks a CSDH query csdh(g,pk)(h), R asks
a decryption Dsk query (h, 1), and receives back c← h− sk. R returns c−1

to A.
– In the challenge phase, whenever A asks for a challenge, R sends his mes-

sage pair (m∗0,m
∗
1) ← (gr, 1) to challenger, where r ← Zq. Challenger

picks a random bit bR ← {0, 1} and a random r∗ ← Zq, and sends
(c∗1, c

∗
2) ← (gr

∗
, gr(1−bR) · pkr

∗
) to R. R forwards (c∗1, c

∗
2) to A, who re-

turns a guess b′A. R returns b′R ← b′A to challenger.

Now, Pr[R wins] = Pr[b′R = bR] = Pr[A wins] = ε. Clearly R works in time
τ ′ + γ · (τD + small) + small. ut

It is straightforward to prove the next lemma.

Lemma 5 (ddhdsdh ⇒ ddhcsdh). If ddhcsdh holds, then ddhdsdh holds.

Proof (Sketch). Build a wrapper that uses the oracle that solves the CDH prob-
lem to solve the DDH problem. ut

5 Irreductions

We will now show irreductions between the main security assumptions of this pa-
per. We emphasize, see Sect. 2.2, that the irreductions will be somewhat limited

On the CCA1-Security of Elgamal and Damg̊ard’s Elgamal 13

by fixing some of the parameters. For example, Lem.3 stated that there does ex-
ist a reduction that solves ddegcsdeg on some input (g,pk1,pk2, h

∗
1, h
∗
2, h
∗
3) (with

pk1,pk2) being randomly generated) given an access to a dsdh(g,pk2)
oracle with

inputs (·, ·), i.e., with (g,pk2) being fixed. As an example, the next Thm. 1
shows that there does not exist a reduction that solves dsdh on some input
(g,pk, h∗1, h

∗
2) (with pk being randomly generated) given an access to a ddegcsdeg

oracle with inputs (g,pk, ·, ·, ·), i.e., again with two inputs being fixed. Other
irreductions are similar. Thus, the next irreductions are somewhat limited, since
they do exclude the existence of reductions with arbitrary oracle queries. Nev-
ertheless, they are still important, since all (known to us) reductions between
similar problems in fact have limited oracle access.

In what follows, we will not state the concrete security parameters in the
theorems, however, they are easy to calculate and one can verify that all following
theorems provide exact (ir)reductions.

Theorem 1 (ddegcsdeg 6⇒! ddh). If there exists a static reduction R that
reduces ddh to ddegcsdeg, then there exists an efficient static irreduction I that,
given R as an oracle and with fixed (g,pk), solves ddh.

Proof. Fix a cyclic group G = 〈g〉 of prime order q. Assume that R = RA is an
arbitrary reduction that uses A as an oracle to solve ddh. Here, A is an arbi-
trary algorithm that solves ddegcsdeg. Equivalently,A = Acsdeg(g,pk1,pk2)(·,·) solves
ddeg. In particular, A can have an access to a csdeg(g,pk1,pk2)

oracle provided to
her byR. We now construct the next oracle machine I = IR to solve ddh in time
and with success probability comparable with those of R. Note that I simulates
the oracle A to R, and therefore has access to the oracle csdeg(g,pk1,pk2)

(·, ·).
Moreover, I simulates the challenger C2 of the internal ddegcsdeg ⇒ ddh game
to R.

– The challenger C1 of the ddegcsdeg 6⇒! ddh game sets sk← Zq and pk← gsk.
He sends pk to I as the public key in the ddegcsdeg 6⇒! ddh game.

– I simulates the challenger C2 to R in the ddegcsdeg ⇒ ddh game as follows:
• Setup phase: I[C2] forwards pk1 ← pk, as the public parameter of

the ddegcsdeg ⇒ ddh game, to R. R generates pk2 ← G.
• Query phase: If R asks a ddegcsdeg(g,pk1,pk2) query (h1, h2, h3) from
A, then I[A] simulates A as follows:
1. I sends the query (h1, h2) to her csdeg(g,pk1,pk2)

(·, ·) oracle in the
ddegcsdeg game. The oracle replies with some h′3.

2. If h′3 = h3, then I sets b′A ← 1, otherwise I sets b′A ← 0.
3. I replies with b′A as her answer to the ddegcsdeg challenge.

• Challenge phase: If R asks C2 for his challenge in the ddegcsdeg ⇒
ddh game, then I[C2] simulates C2 as follows. She asks the challenger
C1 for her challenge (h∗1, h

∗
2) in the irreduction game. I[A] forwards

(h∗1, h
∗
2) to R as his challenge.

• Guess phase: R outputs a bit b′R.
– Guess phase (of irreduction game): I returns b′R.

14 Helger Lipmaa

Clearly, I emulatesA correctly. Thus, Pr[I wins] = Pr[R wins], and I spends
marginally more time than R. ut

Theorem 2 (ddhdsdh 6⇒! ddegcsdeg for static reductions with fixed
(g,pk1,pk2)). If there is a static reduction R that reduces ddegcsdeg to ddhdsdh,
then there is an efficient static irreduction I that, given R as an oracle and with
fixed (g,pk1,pk2), solves ddegcsdeg.

Proof. Fix a cyclic group G = 〈g〉 of prime order q. Let A be an arbitrary
algorithm that solves ddhdsdh. Equivalently, Addh(g,pk,·,·) solves ddh. Assume
that R = RA is an efficient algorithm that uses A as an oracle to solve ddegcsdeg.
Equivalently, R = RA,csdeg(g,pk1,pk2)(·,·) is an efficient algorithm that solves ddeg.
Construct now the next oracle machine I = IR,csdeg(·,·,·) to solve ddeg with the
help of R and csdeg(g,pk1,pk2)

(·, ·) as oracles, in time and with success probability
comparable with those of R.

– Setup phase: The challenger C1 of the ddhdsdh 6⇒! ddegcsdeg game sets
sk1, sk2 ∈ Zq and pk← (pk1 ← gsk1 ,pk2 ← gsk2). He sends pk to I as the
public key in the ddhdsdh 6⇒! ddegcsdeg game.

– I simulates both the challenger C2 and A to R in the ddhdsdh ⇒ ddegcsdeg

game as follows:
• Setup phase: I[C2] forwards pk to R as R’s public key in the

ddhdsdh ⇒ ddegcsdeg game.
• Query phase:
∗ If R asks a csdeg(g,pk1,pk2)

(·, ·) query (h1, h2) from A, then I[A]
forwards it to her own csdeg(g,pk1,pk2)

oracle.
∗ If R asks a ddhdsdh query (h1, h2) from A, then I[A] forwards it

to her csdeg(g,pk1,pk2)
(·, ·) oracle. If the oracle returns ⊥, then I

returns 0. Otherwise, I returns 1. (Note that I does not need to
use a ddh oracle of the ddhdsdh game here.)

• Challenge phase: If R asks for a ddeg challenge from C2, then I[C2]
simulates C2 as follows:
1. I asks challenger C1 for her challenge in the ddh game. C1 sets
bI ← {0, 1} and y∗ ← Zq. He sets h∗1 ← gy

∗
and h∗2 ← pky

∗

1 . If
bI = 0 then he sets h∗3 ← G, otherwise he sets h∗3 ← pky

∗

2 . C1 sends
(h∗1, h

∗
2, h
∗
3) to I as a challenge.

2. I[C2] forwards (h∗1, h
∗
2, h
∗
3) to R as his challenge.

• Guess phase: R outputs a bit b′R.
– Guess phase (of the irreduction game): I returns b′I ← b′R.

First, I emulates the queries correctly. Thus if R responds with a correct
answer to the ddh query, then I responds with a correct answer to the ddhdsdh

query. Thus Pr[I wins] = Pr[R wins], and I works in time τ + γddeg · (τddeg +
small) +γA · small+ small, where τ is the working time of R, τddeg is the working
time of the ddeg oracle, γddeg is the number of queries to the ddeg oracle, γA is
the number of queries to A. ut

On the CCA1-Security of Elgamal and Damg̊ard’s Elgamal 15

Theorem 3 (ddhcsdh 6⇒! ddhdsdh for static reductions with fixed
(g,pk)). If there is a static reduction R that reduces ddhdsdh to ddhcsdh, then
there is an efficient static irreduction I that, given R as an oracle and with fixed
(g,pk), solves ddhdsdh.

Proof. Fix a cyclic group G = 〈g〉 of prime order q. Let A be an arbitrary algo-
rithm that solves ddhcsdh. Equivalently, A = Acsdh(g,pk1)(·) solves ddh. Assume
that R = RA is an efficient algorithm that uses A as an oracle to solve ddhdsdh.
Equivalently, R = RA,dsdh(g,pk)(·) is an efficient algorithm that solves ddh. Con-
struct now the next oracle machine I = IR,ddh to solve ddh with the help of
R and dsdh(g,pk)(·) as oracles, in time and with success probability comparable
with those of R.

– Challenger C1 of the ddhcsdh 6⇒! ddhdsdh game sets sk ∈ Zq and pk← gsk.
He sends pk to I as the public key.

– I simulates the challenger C2 of the ddhcsdh ⇒ ddhdsdh game to R:
• Setup phase: I forwards pk to R as his public key in the ddhcsdh ⇒

ddhdsdh game. R forwards pk as the public key to A in the ddhcsdh

game.
• Query phase:
∗ IfR asks a dsdh(g,pk)(·, ·) query (h1, h2) fromA, then I[A] forwards

it to her dsdh oracle.
∗ If R asks a ddhcsdh query (h1, h2) from A, then I[A] forwards h1

to her csdh(g,pk)(·) oracle, getting back some value h′. If h′ = h2

then I returns 1, otherwise I returns 0.
• Challenge phase: When R asks his challenge from I[C2], then I[C2]

asks her challenge from C1. C1 sets bI ← {0, 1} and y∗ ← Zq. He
sets h∗1 ← gy

∗
. If bI = 0 then he sets h∗2 ← G, otherwise he sets

h∗2 ← pky
∗

= cdh(g,pk, h∗1). C1 sends (h∗1, h
∗
2) to I as a challenge. I

forwards (h∗1, h
∗
2) to R as his challenge.

• Guess phase: R outputs a bit b′R.
– Guess phase (of the irreduction game): I returns b′I ← b′R.

First, I emulates the queries correctly. Thus if R responds with a correct
answer to the cdh query, then I responds with a correct answer to the ddhcsdh

query. Thus Pr[I wins] = Pr[R wins], and I works in time τ + γddh · (τddh +
small) + γA · small + small, where τ is the working time of R, τddh is the working
time of the ddh oracle, γddh is the number of queries to the ddh oracle, γA is
the number of queries to A. ut

6 Hardness in Generic Group Model

Maurer’s Formalization of Generic Group Model. In this section, we
show that ddhcsdh is hard in the generic group model [13]. To do this, we use
the abstraction of generic group model from [10]. Namely, we assume that B is a

16 Helger Lipmaa

black-box that can store values from a certain ring R in internal state variables
V1, V2, . . ., Vm. The storage capacity m is in our case unbounded. The initial
state consists of the values of V d := [V1, . . . , Vd] for some d < m, which are set ac-
cording to some probability distribution PV d . The black-box B allows two types
of operations, computation operations on internal state variables, and queries
about the internal state. No other interaction with B is possible. Formally, for
a set Π of operations on R, a computation operation consists of selecting a
(say) t-ary operation f ∈ Π and indices i1 . . . , it+1 ≤ m. Then B computes
f(Vi1 , . . . , Vit) and stores the result in Vit+1 . Since m is unbounded, we can al-
ways assume that it+1 is a unique index. We also assume that no computation
operation (f, Vi1 , . . . , Vit) is repeated. As for queries, for a set Σ of relations on R,
a query consits of selecting a (say) t-ary relation σ ∈ Σ and indices i1 . . . , it ≤ m.
The query is replied by σ(Vi1 , . . . , Vit).

In the case of proving lower bounds for a decisional problem, the task is to
distinguish between two black boxes B and B′ of the same type with different
distributions of the initial state V d. The success probability of an algorithm
is taken over the choice of the initial state V d, and of the randomness of the
algorithm.

Let C denote the set of constant operations on R. Let L denote the set of
linear functions (of the form of a1V1 + · · ·+ adVd) on the initial state V d. For a
given set Π of operations, let Π be the set of functions on the initial state that
can be computed using operations in Π. See [10] for more details.

We also use the following lemma from [13].

Lemma 6 (Shoup [13]). The fraction of solutions (x1, . . . , xk) ∈ Zn of the
multivariate polynomial equation p(x1, . . . , xk) ≡ 0 (mod n) of degree d is at
most d/q, where q is the largest prime factor of n.

Hardness of ddhcsdh in Generic Group Model. Recall that the hardest
assumption of this paper is ddhcsdh, which is equivalent to the assumption that
Elgamal is CCA1-secure. To motivate that ddhcsdh is a reasonable assumption,
we now prove its security in the generic group model. We note here that differ-
ently from [10], the adversary here has a nonadaptive access to a multiplication
operator in R. This will add another level of complication to the proof.

Theorem 4. Let R = Zn, where p is the smallest prime factor of n and q is
the largest prime factor of n. For Π = C ∪ {+} and Σ = {=}, the advantage
of every k-step adversary, k ≥ 1, that has access to a nonadaptive oracle for
multiplication with x, for distinguishing a random triple (x, y, z) from a triple
(x, y, x · y) is upper bounded by (4k3 − (3 +

√
3)k2 − k + 2)/(54q).

Proof. As in [10], the basic strategy of the proof is to consider two black boxes,
one of which has initial state (x, y, z), and another one has initial state (x, y, x·y).
For either of the black boxes, we assume that the adversary has been successful if
it has found a collision between two different elements Vi and Vj . The distinguish-
ing probability is upperbounded by the maximum of those two collision-finding
probabilities.

On the CCA1-Security of Elgamal and Damg̊ard’s Elgamal 17

We only analyze the case where the initial state is (x, y, x · y). Let Q be the
number of queries made by the adversary to the nonadaptive oracle (thus the
adversary obtains values x, . . ., xQ), P the number of degree ≤ Q polynomials
computed by the adversary before the challenge phase starts, and R be the
number of polynomials computed after the challenge phase. For simplicity, we
assume that when xi are already given, any degree ` polynomial can be computed
in 1 step. (The precise bound depends crucially on this. For example, if it took `
steps to compute a single polynomial, we would get upper bound (k2−k)/(2q).)
Due to this,

Q+ P +R ≤ k . (1)

Due to the presence of the nonadaptive oracle, the adversary first asks the
black-box to compute P different polynomials

fi(x, y) :=
Q∑
j=0

fijx
j + ciy + dixy (2)

for i ∈ {0, . . . , P − 1}. Since neither y or x · y is available yet, ci = di = 0. Thus,
after the query phase, B’s state is equal to (x, y, x · y, f0(x, y), . . . , fP−1(x, y)).

After the challenge phase, the adversary can ask the black-box to com-
pute R functions fi(x, y) :=

∑Q
j=0 aijfj(x) + bix + ciy + dixy + ei =∑Q

t=0

(∑P−1
j=0 aijfjt

)
xt + bix + ciy + dixy + ei for i ∈ {P, . . . , P + R − 1}.

Clearly, each fi(x, y) for i ≥ P can be also written in form Eq. (2) though not
with ci and di necessarily being equal to 0. Here we assume that fi 6= fj as a
polynomial.

Now, any fi(x, y) is a degree ≤ Q polynomial. According to Lem. 6, the
probability that any two of the P +R functions fi 6= fj have a common root is
Q/q, and thus the total probability of finding a collision is bounded by

Q ·
(
P+R

2

)
q

. (3)

Let k′ =
√
k2 − k + 1. Note that

√
3

2 · k ≤ k′ ≤ k for k ≥ 1. Observe that,
under the inequality Eq. (1), Eq. (3) is largest if Q = (2k − k′ − 1)/3 and
P +R = (k + k′ + 1)/3. Then for k ≥ 1,

Q ·
(
P +R

2

)
=

2k3 + 2k2k′ − 3k2 − 2kk′ − 3k + 2k′ + 2
54

≤4k3 − (3 +
√

3)k2 − k + 2
54

.

In particular, constant success probability requires k = Ω(3
√
q) steps. ut

Acknowledgments. The author was supported by Estonian Science Founda-
tion, grant #8058, and European Union through the European Regional Devel-
opment Fund. We thank Daniel Brown for discussions.

18 Helger Lipmaa

References

1. Bresson, E., Monnerat, J., Vergnaud, D.: Separation Results on the “One-More”
Computational Problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp.
71–87. Springer-Verlag, San Francisco, CA, USA (Apr 8–11, 2008)

2. Brown, D., Gallant, R.: The Static Diffie-Hellman Problem. Tech. Rep.
2004/306, International Association for Cryptologic Research (2004),
http://eprint.iacr.org/2004/306, available at http://eprint.iacr.org/2004/306

3. Brown, D.R.L.: Irreducibility to the One-More Evaluation Problems: More May
Be Less. Tech. Rep. 2008/435, International Association for Cryptologic Research
(2007), available at http://eprint.iacr.org/2007/435

4. Damg̊ard, I.: Towards Practical Public Key Systems Secure against Chosen Cipher-
text Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer-Verlag, 1992, Santa Barbara, California, USA (Aug 11–15, 1991)

5. Desmedt, Y., Lipmaa, H., Phan, D.H.: Hybrid Damg̊ard Is CCA1-Secure under
the DDH Assumption. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS
2008. LNCS, vol. 5339, pp. 18–30. Springer-Verlag, Hong Kong, China (Dec 2–4,
2008)

6. Desmedt, Y., Phan, D.H.: A CCA Secure Hybrid Damg̊ard’s ElGamal Encryption.
In: Bao, F., Chen, K. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 68–82. Springer-
Verlag, Shanghai, China (October 30 – November 1, 2008)

7. Elgamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

8. Gjøsteen, K.: A New Security Proof for Damg̊ard’s ElGamal. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 150–158. Springer-Verlag, San Jose, CA,
USA (Feb 13–17, 2006)

9. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A New Randomness Extraction
Paradigm for Hybrid Encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 590–609. Springer-Verlag, Colgone, Germany (Apr 26–30, 2009)

10. Maurer, U.M.: Abstract Models of Computation in Cryptography. In: Smart, N.P.
(ed.) WCC 2005. LNCS, vol. 3796, pp. 1–12. Springer-Verlag, Cirencester, UK
(Dec 19–21, 2005)

11. Naor, M.: On Cryptographic Assumptions and Challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer-Verlag, Santa Barbara,
USA (Aug 17–21, 2003)

12. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for
the Security of Cryptographic Schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol.
1992, pp. 104–118. Springer-Verlag, Cheju Island, Korea (Feb 13–15, 2001)

13. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer-Verlag, Kon-
stanz, Germany (11–15 May 1997)

14. Tsiounis, Y., Yung, M.: On the Security of ElGamal-Based Encryption. In: Imai,
H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134. Springer-Verlag,
Pacifico Yokohama, Japan (5–6 Feb 1998)

15. Wu, J., Stinson, D.R.: On the Security of the ElGamal Encryption Scheme and
Damg̊ard’s Variant. Tech. Rep. 2008/200, International Association for Cryptologic
Research (2008), available at http://eprint.iacr.org/2008/200

