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Abstract. HB and HB+ are a shared-key authentication protocol designed for
low-cost devices such as RFID tags. It was proposed by Juels and Weis at Crypto
2005. The security of the protocol relies on the “learning parity with noise” (LPN)
problem, which was proved to be NP-hard.
The best known attack [4] on LPN requires exponential number of samples and
exponential number of operations to be performed. This makes this attack im-
practical because it is infeasible to collect exponentially-many observations of
the protocol execution.
We present a passive attack on HB protocol which requires only linear (to the
length of the secret key) number of samples. Number of performed operations is
still exponential, but attack is efficient for some real-life values of the parameters,
i. e. noise 1

8 and key length 144-bits.
Keywords: lightweight cryptography, RFID, authentication, HB, HB+, passive
attack

1 Introduction

The HB Scheme HB and HB+ schemes are based on the “learning parity with
noise” (LPN) problem, which was proved to be NP-hard. HB/HB+ are designed
to be reliable authentication protocols for low-cost devices with small computa-
tional power.

Previous Attacks Over the last years, there have been proposed several attacks
on the LPN problem. Most of them are tune-ups of the 2003 BKW algorithm
(Blum, Kalai, Wasserman) [1].

The BKW algorithm takes an exponential (in the size of the secret key) num-
ber of samples and then tries to find a secret key by adding up sample vectors to
receive vectors from canonical basis of vector space.
? contact author



HB+ is vulnerable to man-in-the-middle attack proposed by Gilbert, Rob-
shaw, and Silbert [3]. It is quite simple but it is questionable if it is possible to
perform in the real-life.

Our Results In this paper we present completely different approach to attack
LPN problem.

Our attack is “practical” – we need only to collect two successful executions
of the HB protocol in order to start an attack. We assume that executions of the
HB protocols use at least parameters computed in [4], i. e. number of bits being
sent during single execution of the protocol is O(n2), where n is the key length.
Number of bits required by the best known algorithm is Ω(2n) while we need
only to collect O(n3) bits.

Our first implementation of the algorithm breaks 80-bit HB with noise pa-
rameter 1

4 . We estimate that algorithm presented is able to practically break HB
for noise parameter 1

4 for keys of the length up to n = 96.

2 HB & HB+ protocols

The HB Protocol. The Tag and the Reader share public values: n, ε, η and a
secret key x. In order to be authenticated by a Reader, the Tag and Reader repeat
the following round of the protocol r times:

HB protocol
Public parameters: n, ε, η, r

Secret key: x ∈ {0, 1}n

Tag Reader
a
←− choose a ∈ {0, 1}n

choose ν according to Berε
l = <a|x> ⊕ ν

l
−→ check l ?

= <a|x>

The Reader authenticates the Tag if the number of accepted labels is at least
(1 − η) · r.

Efficiency of the HB As one can see, the efficiency of the HB protocol depends
on three values: n, ε, r (in fact r = r(η)). The number of bits being sent during an
authentication process by the reader is equal to Nr(n, η) = n · r(η), tag responds
with Nt = r(η) bits. Unfortunately, the simplicity in the hardware design badly
influences on the protocol efficiency. According to [4], the number of bits being
send during a reliable authentication are in the table below (all values in KB,
1KB = 8192b).

η
1
20

1
8

1
4

n 128 4 7 18
512 16 28 73
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So, for some parameters of the HB/HB+ protocol, it may take seconds to
authenticate even an expensive tag. The meaning of the “high-speed data rate”
for RFIDs depends on the manufacturer and varies usually from 20KB/s to
40KB/s. Low-end RFIDs are even 10-times slower.

This leads to the observation that for cheap RFIDs key length and number
of rounds and thus noise parameter ε should be adjusted at the relatively low
level.

The HB+ Protocol. The HB+ had been proposed as a protocol robust against
active attacks (while HB is immune against passive attacks). Use of the blinding
factor y turns an active attack on HB+ into a passive attack on HB.

In the HB+ scheme the Tag and the Reader share public values: n, ε, η, r and
secret keys x, y. In order to be authenticated by a Reader, the Tag and Reader
repeat the following round of the protocol r times:

HB+ protocol
Public parameters: n, ε, η, r

Secret keys: x, y ∈ {0, 1}n

Tag Reader

choose b ∈ {0, 1}n
b
−→

a
←− choose a ∈ {0, 1}n

choose ν according to Berε
l = <a|x> ⊕ <b|y> ⊕ ν

l
−→ check l ?

= <a|x> ⊕ <b|y>

Let us notice that if an attacker wants to break actively the HB+ Tag i. e. by
sending appropriate values of a, she has to be able to passively break HB.

3 The Attack

Let B = {ai | i = 1, . . . , n} be a basis of the linear space V = {0, 1}n. For a vector
v ∈ V let lv,x denote a correct answer (without noise) for the challenge v and
secret key x for the HB. Let L(B, x) denote a set of labels (correct answers)
corresponding to each vector of the basis B.

Let B(v) be a representation of a vector v in the basis B. Let lB(v),x be a linear
combination of the labels of basis vectors corresponding to a representation of
v in the basis B. Then, of course, for all v ∈ V lB(v),x = lv,x.

We use notation introduced above for the samples from the real observa-
tions, so now labels lv,x, lw,x collected during eavesdropping the HB can differ,
even for v = w (when one of the answers of the Tag is with noise and the other
one not).
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Good Base Property Let us assume that we have collected n pairs challenge-
response of the HB protocol - B0 = {(ai, lai,x) | i = 1, . . . , n}. Let us also assume
that for each i during eavesdropping the noise value ν was always equal to 0.
In other words, let us assume that we have collected correct answers (without
noise), i. e. eavesdropped lai,x = <ai|x>. Then for every set of accepted au-
thentications of a Tag t: O = (O,L) = {(a j, la j,x) | j = 1, . . . , r} the following
inequality holds:

∣∣∣{ j | la j,x , lB(a j)}
∣∣∣ < ηr.

Definition 1. We define a 0-Basis for a HB protocol instance (ε, η, r, n, x) as a
set B0 = {(ai, lai,x) | i = 1, . . . , n} for which:

– B = {ai | i = 1, . . . n} is a basis of the linear space V = {0, 1}n,
– for every O = {(a j, la j,x) | j = 1, . . . , r} where a j ∈ V, |O| = r ≥ n and∣∣∣{ j | la j,x , <a j|x>}

∣∣∣ < ηr it holds
∣∣∣{ j | la j,x , lB(a j)}

∣∣∣ < ηr.

Let us remark that finding 0-Basis is equivalent to finding a secret key x.
This is because, one can easily find a transition matrix from a basis B to a canon-
ical basis and then multiplying labels of the B0 by the transition matrix.

Brute-Force Attack Brute-Force Attack goes as follows:

1. collect a set of samples O = (O,L) = {(ai, lai)}, ai ∈ {0, 1}n, lai ∈ {0, 1},
|O| ≥ 2n;

2. find a subset OB = (OB,LB) ⊂ O where OB is a basis for {0, 1}n;
3. find a representation in the basis OB of all other collected vectors;
4. repeat

(a) pick at random w ∈ Berε ;
(b) choose w · n labels in LB and switch their values;
(c) check if OB with new values of the labels is a 0-Basis (perform a test on

the rest vectors of the set O);
until OB with new values of labels is a 0-Basis;

The above Brute-Force Attack needs on average checking of the
(

n
εn

)
subsets

of different values of the labels.

3.1 Attack algorithm description

Let us describe the main idea behind our algorithm. The algorithm takes a set
of observations O, then divides it into two parts. One part is used for 0-Basis-
testing while the second one is used as a “universe” from which we pick at
random potential 0-Basis.

As we show later, we need that the size of the set of the observations must
be at least |O| ≥ n + n

1−η = O(n). The size of the testing set should be at least of
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the size of the length of the secret key. We also need about n
1−η observations to

be sure that in the sample space there exists at least one 0-Basis. For parameters
suggested in [4] and small keys (length smaller than 128), it occurs that our
algorithm needs to collect observations from only 2 successful executions of the
HB.

Let us assume that in each execution of the protocol we collect r pairs
(ai, lai,x), where ai is n-bits vector, x is n-bits secret and lai,x is a label of ai. Let
Oi denote a set of challenge vectors and by LOi a set of the labels corresponding
to these challenges.

0-Basis Walker Algorithm
Input: public values of the HB - ε, η, r, n
O = O1 ∪ . . . ∪ Ok - set of vectors and its labels L = LO1 ∪ . . . ∪ LOk
from k observations of the HB instance (ε, η, r, n, x)

1. split sets O, L into sets T, LT and C, LC respectively;
2. do
3. {
4. draw a set B ∈R C, where |B| = n with corresponding labels LB;
5. if(B is a basis of vector space V)
6. {
7. accepted := 0;
8. foreach vector w ∈ T
9. {
10. find representation B(w);
11. calculate lB(w);
12. if(lB(w),x == lw,x) { accepted++; }
13. }
14. if(accepted > (1 − η) ∗ |T |) { found_good_basis = TRUE; }
15. }
16. } while(found_good_basis == FALSE);

After execution of the above algorithm we get a basis B = {b1, . . . , bn} and
corresponding set of labels LB = {lb1,x, . . . , lbn,x}.

3.2 012-Basis Walker

Because one has to check if the 0-Basis test holds, one has to find a represen-
tation of the testing-vectors. It takes a while, so is worth to use the same basis
several times. We define i-Basis as a set OB ⊂ O of size n of the observations
of the HB protocol for which switching values of exactly i labels turns OB into
0-Basis. To find a representations of test vectors in a basis OB it takes O(n2 · |S |),
so it is worth to check if a set OB is 1-Basis or 2-Basis, because checking i-Basis
property requires

(
n
i

)
· |OB| operations.

Let us call by 012-Basis Walker Algorithm (012-BWA, BWA) a modification
of the 0-Basis Walker Algorithm which checks also 1- and 2-Basis property for
every picked set. As we will see later this has a good influence on the efficiency
of the algorithm.
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Algorithm analysis Firstly let us find a probability that BWA finds i-Basis.

Lemma 1. Let r be the number of rounds of the HB protocol. Let ε be the prob-
ability that a Tag during the HB answers with noise (label has incorrect value).
Let η be the Fouque acceptance threshold - η = η(ε) [4] parameter (i. e. a Tag
succeed in authenticating itself when the number of incorrect answers (labels)
was less than η · r. Let C denote a subset of the observations from which a basis
B is picked at random (|C| = c). Let pB denote the probability that randomly
chosen set B is a basis of a vector space V. Then the probability that the set B
picked uniformly at random from the set C is i-basis equals to

pi = pB

(
n
i

) bη·cc∑
j=i

(
c − n
j − i

)
ε j(1 − ε)c− j.

Proof. The probability that random chosen set B of size n from the set C is
i-basis can be calculated as follows.

Let C[ j] denotes an event that are exactly j incorrect labels in the set C.
Because |C| = c and noise parameter equals to ε thus P(C[ j]) =

(
c
j

)
εi(1 − ε)c− j

P(B ∈R C is an i-Basis | there is less than ηc incorrect labels in C) =
bc·ηc∑
j=i

P(B ∈R C is an i-Basis | there is exactly j incorrect labels in C) · P(C[ j])

The sum starts from j = i because if B is i-basis then in the set C must have
at least i incorrect labels. The upper bound of the sum is bc · ηc because we are
assuming that C comes only from successful authentications. The probability pB

that set B is a basis over V is independent on the choices of the labels. The value
pB ≈ 0.2887 comes from [2], it is approximately the probability that a random
chosen set of the size n represents a basis (for n ≥ 20). The probability that one
taking n labels from the set of c labels, takes exactly i wrong labels is equal to
(c− j

n−i)( j
i)

(c
n)

. After few elementary simplifications we obtain (c− j
n−i)( j

i)
(c

n)
·
(
c
j

)
=

(
n
i

)
·
(
c−n
j−i

)
.
ut

The expected value and the variance of the number of basis that should be tested.
Let Xi denote random variable that count the number of basis that should be

tested before at most one i-basis is found. Variable Xi is obviously geometri-
cally distributed with the success probability equal to pXi =

∑i
j=0 pi. Thus the

expected value of Xi is equal to 1
pXi

and the variance is equal to
1−pXi

p2
Xi

.
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The expected value of the number The expected value of the number
of basis that should be tested for |C| = 3 ∗ n. of basis that should be tested for |C| = n2.

ε = 0.125, η = 0.256 ε = 0.25, η = 0.348
n = 48 68 24172
n = 64 348 1.39 · 106

n = 80 1963 9.04 · 107

n = 96 11865 6.33 · 109

n = 112 75287 4.67 · 1011

n = 128 495413 3.59 · 1013

n = 144 3.35 · 106 2.84 · 1015

n = 160 2.32 · 107 2.3 · 1017

ε = 0.125 ε = 0.25
n = 48 44 5271
n = 64 167 146704
n = 80 694 4.55 · 106

n = 96 3062 1.51 · 108

n = 112 14108 5.3 · 109

n = 128 67206 1.92 · 1011

n = 144 328581 7.21 · 1012

n = 160 1.64 · 106 2.76 · 1014

Table 1. The value of η suggested in ([4]).

Finding Wrong Secrets Now we deal with the problem of getting secret keys
different from the searched ones. In the current section we show how often a
“bad“ basis passes the test.

Lemma 2. Let C be a set of observations of a tag with a secret key x. Let i > 0
and B be an i-Basis. Then for a test set T :

P(lt , lB(t) | t ∈ T ) =
1
2
.

Proof. (Sketch) We prove it by the induction. For i = 1 there exists one vector
b ∈ B for which label is wrong. This vector occurs in the representation of every
vector w ∈ T with probability 1

2 . Let us divide a set T into two subsets. In the
subset Tc there are all observations with the correct value of the label, i. e. for
w ∈ Tc : lw = <w|x>. In the subset Tb there are vectors with wrong values of
the labels.
P(lt , lB(t) | t ∈ T ) = P(lt , lB(t) | t ∈ Tb)+P(lt , lB(t) | ti ∈ Tc) = ε

2 ·|T |+
1−ε

2 ·|T | =
1
2 . We have proved lemma for k = 1, now let us assume that we have it prover
for k, we show that it holds for k + 1. Let Bk+1 be a (k + 1)-Basis, then there
exists exactly k + 1 k-Basis that differ from Bk+1 on exactly one label. Let Bk be
such a basis. Let us assume that Bk and Bk+1 differ on the vector b. We have to
consider two cases:
1st For the vectors w that do not have b in the representation lBk(w) = lBk+1(w),
therefore P(lw = lBk+1(w)) = P(lw = lBk(w)) = 1

2
2nd For the vectors w that do have b in the representation lBk(w) , lBk+1(w),
therefore P(lw = lBk+1(w)) = P(lw , lBk(w)) = 1

2 ut

Corollary 1. Let i > 0 and let B be an i-Basis. Let T be a set of test vectors,
|T | = t. Then the probability that B passes a test is equal to

(
1
2

)t ∑η·t
i=0

(
t
i

)
.
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Proof. Having result form lemma 2 the proof is quite easy. (B, LB) passes a test
for at most η · t out of t vectors w j ∈ T : lwi,x , lB(wi). The probability that exactly

d vectors from T disagree, is equal to
(

t
d

) (
1
2

)d (
1 − 1

2

)t−d
=

(
t
d

) (
1
2

)t
. Now to end

the proof we just sum such probabilities for all d ∈ [0, η · t]. ut

η = 0.125 η = 0.25
t = 50 1.62187 · 10−8 0.000152932

t = 100 9.55679 · 10−16 2.81814 · 10−7

t = 150 6.45682 · 10−23 1.91504 · 10−10

t = 200 3.27574 · 10−29 4.19651 · 10−13

t = 250 2.43421 · 10−36 3.11924 · 10−16

t = 300 1.84152 · 10−43 7.16702 · 10−19

Table 2. The probability that wrong secret passes a test.

Improved basis selection In our algorithm we draw sets B and LB of n vectors
from the sets C and LC respectively. The set B is a basis of vector space V with
probability pB ≈ 0.2887. The value of this probability was introduced in [2].

One can significantly increase the probability of picking i-Basis (for i =
0, 1, 2):

1. Uniform random draw of the set B.
B can be drawn uniformly at random from the set C. Then the probability that

B is i-basis is equal to

Pr(B is i-basis | B ∈R C) = pB ·

(
(1−η)c

n−i

)(
ηc
i

)(
c
n

) .

Thus the probability that such drawn set B is at most 2-basis and B pass the test
in our algorithm is equal to:

pC = Pr(B is i-Basis ∩ B “passes the test” | B ∈R C) =

= pB ·

i∑
j=0

(
(1−η)c

n− j

)(
ηc
j

)
(

c
n

) .
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2. Uniform random draw of the set B from infinite set.
If we draw set of vectors B from infinite set then the probability the B is i-basis

is equal to

Pr(B is i-basis) = pB

(
n
i

)
ηi(1 − η)n−i.

Thus the probability that B is at most 2-basis and B passes the test in our algo-
rithm is equal to:

Pr(B is i-basis | B ∈R C) =

Pr(B is at most i-basis ∩ B “passes the test”) = pB ·

i∑
j=0

(
n
j

)
η j(1 − η)n− j.

It is obvious that this probability is the limit of the previous probability pC .
Values of the expected value for the limit distribution are in the chart 1.

3. Improved uniform random draw of the set B.
As we have written earlier the sets C, LC are sums of k sets of the vectors

collected in one course of HB protocol (i. e.. C = C1 ∪ . . . ∪ Ck and LC =

LC1 ∪ . . . ∪ LCk ). We also know that in each well ended HB protocol course
fewer than ηr vectors are incorrect. Thus if we draw n

k vectors and its labels
from each Ci and LLi respectively then the probability that B is 0-basis is

Pr(B is 0-basis|B is improved drawn from a set of size c) = pB ·


((1−η) c

k
n
k

)
( c

k
n
k

)


k

.

Equivalently we can derive formulas for the probability that B is 1-basis
and 2-basis. If a number of collected observations of at least n successful the
HB protocol courses then we can pick a basis’ with the probability of the limit
distribution (point 2).

3.3 Experimental Results

We have implemented and tested our algorithm for several values. We have bro-
ken HB for the parameter ε = 0.125, η = 0.256, n = 144 it took few hours on
home PC. For the parameters ε = 0.25, η = 0.348, n = 80 it takes average 10
hours on home PC.

This results and the values in chart 1 suggest, that we are able to break
n = 96 bit version of 0.25-HB and n = 154 bit version of 0.125-HB protocol.
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Final Remarks

We have shown a passive attack for the HB protocol which allow to perform an
active attack for HB+ scheme (not man-in-the middle). Our attack needs only
O(n) eavesdropped pairs of challenge-response, where n is the length of a secret
key, while the best known algorithm LF2 needs exponential number of samples.
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