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Abstract

We study an infinite class of functions which provably achieve an optimum alge-
braic immunity, an optimum algebraic degree and a good nonlinearity. We checked
that it has also a good behavior against fast algebraic attacks.
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1 Introduction

The property needed for resisting the standard algebraic attack of Courtois and Meier
[12] is a high algebraic immunity [26]: for a given Boolean function f on n variables,
any nonzero Boolean function g such that f ∗ g = 0 or (1 + f) ∗ g = 0 should have high
algebraic degree, where ∗ is the multiplication of functions inherited from multiplication
in F2, the finite field with two elements. The best possible algebraic immunity of n-
variable functions is dn

2 e [12].
Having a high algebraic immunity is not sufficient for resisting the fast algebraic attacks
introduced by Courtois in [10]: if one can find g of low degree and h 6= 0 of reasonable
degree such that f ∗ g = h, then a fast algebraic attack (FAA) is feasible.
Even a high resistance to fast algebraic attacks is not sufficient, since algebraic attacks
on the augmented function [19] can be efficient when fast algebraic attacks are not.

There are, up to now, two main infinite classes of Boolean functions achieving opti-
mum algebraic immunity. The first one contains functions in even numbers n of variables
and is obtained by an iterative construction. The constructed functions have been fur-
ther studied in [7], where it is shown that their algebraic degrees are close to n but their
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nonlinearity is 2n−1 −
(
n−1

n
2

)
, which is insufficient. Moreover, they are not balanced (but

it is possible to build balanced functions from these ones) and are weak against fast
algebraic attacks [2, 15]. The second class contains symmetric functions (whose values
depend only on the Hamming weight of the input vectors) [3, 15] or functions whose
values depend on the Hamming weight of the input vectors except for a few inputs. The
nonlinearities of these functions are often not exceeding 2n−1 −

(
n−1
bn

2
c
)

and when they do
exceed it, they are not much greater than this number (see [8]). They are still weaker
against fast algebraic attacks [2].

We study an infinite class of functions with optimum algebraic immunity and we show
it has good nonlinearity. We show that the functions of this class have also optimum
algebraic degree and behave well against fast algebraic attacks. This is the first time a
function (and moreover a whole infinite class of functions) is shown to satisfy all of the
main criteria for being used as a filtering function in a stream cipher.

2 Preliminaries

Let Fn
2 be the n-dimensional vector space over F2, and Bn the set of n-variable (Boolean)

functions from Fn
2 to F2. The Hamming weight wt(f) of a Boolean function f ∈ Bn is

the size of the support supp(f) = {x ∈ Fn
2 | f(x) = 1} of the function. The Hamming

distance dH(f, g) between two Boolean functions f and g is the Hamming weight of their
difference f + g (by abuse of notation, we use + to denote the addition on F2, i.e., the
XOR). We say that a Boolean function f is balanced if its truth table contains an equal
number of 1’s and 0’s, that is, if its Hamming weight equals 2n−1.

Any Boolean function has a unique representation as a multivariate polynomial over
F2, called the algebraic normal form (ANF), of the special form:

f(x1, · · · , xn) =
∑

I⊆{1,2,··· ,n}

aI

∏
i∈I

xi.

The algebraic degree, deg(f), is the global degree of this polynomial, that is, the number
of variables in the highest order term with non zero coefficient. A Boolean function is
affine if it has degree at most 1. The set of all affine functions is denoted by An.

We shall need another representation of Boolean functions, by univariate polynomials
over the field F2n . We identify the field F2n and the vector space Fn

2 : this field being
an n-dimensional F2-vector space, we can choose a basis (β1, · · · , βn) and identify every
element x =

∑n
i=1 xiβi ∈ F2n with the n-tuple of its coordinates (x1, · · · , xn) ∈ Fn

2 .
Every function f : F2n → F2n (and in particular every Boolean function f : F2n → F2)
can then be uniquely represented as a polynomial

∑2n−1
j=0 ajx

j where aj ∈ F2n . The
function is Boolean if and only if the functions f(x) and (f(x))2 are represented by the
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same polynomial, that is, if a0, a2n−1 ∈ F2 and, for every i = 1, · · · , 2n − 2, we have
a2j = (aj)2, where 2j is taken mod 2n − 1. Then the algebraic degree of the function
equals the maximum 2-weight w2(j) of j such that aj 6= 0, where the 2-weight of j
equals the number of 1’s in its binary expansion. Any Boolean function should have
high algebraic degree to allow the cryptosystem resisting the Berlekamp-Massey attack
[18].

Boolean functions used in cryptographic systems must have high nonlinearity to with-
stand fast correlation attacks (see e.g. [6]). The nonlinearity of an n-variable function
f is its distance from the set of all n-variable affine functions, i.e.,

nl(f) = min
g∈An

(dH(f, g)).

This parameter can be expressed by means of the Walsh transform. Let x =
(x1, · · · , xn) and λ = (λ1, · · · , λn) both belong to Fn

2 and λ ·x be the usual inner product
in Fn

2 : λ · x = λ1x1 + · · ·+ λnxn ∈ F2, or any other inner product in Fn
2 . Let f(x) be a

Boolean function in n variables. The Walsh transform (depending on the choice of the
inner product) of f(x) is the integer valued function over Fn

2 defined as

Wf (λ) =
∑
x∈Fn

2

(−1)f(x)+λ·x.

If we identify the vector space Fn
2 with the field F2n , then we can take for inner product:

λ · x = tr(λx).
A Boolean function f is balanced if and only if Wf (0) = 0. The nonlinearity of f can
also be given by

nl(f) = 2n−1 − 1
2

max
λ∈Fn

2

|Wf (λ)|.

For every n-variable function f we have nl(f) ≤ 2n−1 − 2n/2−1.
For an n-variable Boolean function f , different scenarios related to low degree mul-

tiples of f have been studied in [12, 26]. This led to the following definition.

Definition 1 For f ∈ Bn, define AN(f) = {g ∈ Bn | f ∗ g = 0}. Any function g ∈
AN(f) is called an annihilator of f . The algebraic immunity (AI) of f is the minimum
degree of all the nonzero annihilators of f and of all those of f + 1. We denote it by
AI(f).

As shown in [12], we have AI(f) ≤ dn
2 e.

If a function has optimal algebraic immunity
⌈

n
2

⌉
with n odd, then it is balanced

(see e.g. [7]). Whatever is n, a high value of AI(f) automatically implies that the
nonlinearity is not very low: M. Lobanov has obtained in [24] the following tight lower
bound:
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nl(f) ≥ 2
AI(f)−2∑

i=0

(
n− 1

i

)
.

However, this bound does not assure that the nonlinearity is high enough. Some functions
exhibited in [8] have better nonlinearities but the increasement is not sufficient.

A high algebraic immunity is a necessary but not sufficient condition for robustness
against all kinds of algebraic attacks. Indeed, if one can find g of low degree and h 6= 0 of
reasonable degree such that f∗g = h, then a fast algebraic attack is feasible, see [10, 1, 20]
(note however that fast algebraic attacks need more data than standard ones). This has
been exploited in [11] to present an attack on SFINKS [4] and we can say that with this
attack, which comes in addition to the standard algebraic attack, Courtois has made very
difficult the work of the designer. Since f ∗ g = h implies f ∗ h = f ∗ f ∗ g = f ∗ g = h,
we see that h is then an annihilator of f + 1 and its degree is then at least equal to the
algebraic immunity of f . An n-variable function f can be considered as optimal with
respect to fast algebraic attacks if there do not exist two functions g 6= 0 and h such that
f ∗ g = h and deg(g) + deg(h) < n with deg(g) < n/2. The question of the existence of
such functions was completely open until the present paper.

The pseudo-random generator must also resist algebraic attacks on the augmented
function [19], that is, the vectorial function F (x) = (f(x), f(L(x)), · · · , f(Lm−1(x))),
where L is the (linear) update function of the linear part of the generator. Alge-
braic attacks can be more efficient when applied to the augmented function rather
than to the function f itself. The efficiency of the attack depends not only on the
function f , but also on the update function (and naturally also on the choice of m),
since for two different update functions L and L′, the vectorial functions F (x) and
F ′(x) = (f(x), f(L′(x)), ..., f(L′m−1(x)) are not linearly equivalent (neither equivalent
in the more general sense called CCZ-equivalence, that is, affine equivalence of the graphs
of the functions). Testing the behavior of a function with respect to this attack is there-
fore a long term work (all possible update functions have to be investigated).

Finally, a new version of algebraic attack has been found recently by S. Rønjom
and T. Helleseth [29] and is very efficient. Its time complexity is roughly O(D), where
D =

∑deg(f)
i=0

(
N
i

)
, where N is the size of the linear part of the pseudo-random generator.

But it needs much more data than standard algebraic attacks: O(D) also! When f has
degree close to n and algebraic immunity close to n

2 , this is the square of what is needed
by standard algebraic attacks. However, this attack obliges the designer to choose a
function with very high degree.
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3 The infinite class and its algebraic immunity

Theorem 1 Let n be any positive integer and α a primitive element of the field F2n.
Let f be the Boolean function on F2n whose support is {0, 1, α, · · · , α2n−1−2}. Then f
has optimum algebraic immunity dn/2e.

Proof.
Let g be any Boolean function of algebraic degree at most dn/2e − 1. Let g(x) =∑2n−1

i=0 gix
i be its univariate representation in the field F2n , where gi ∈ F2n is null if the

2-weight w2(i) of i is at least dn/2e (which implies in particular that g2n−1 = 0).
If g is an annihilator of f , then we have g(αi) = 0 for every i = 0, · · · , 2n−1 − 2,
that is, the vector (g0, · · · , g2n−2) belongs to the Reed-Solomon code over F2n of zeroes
1, α, · · · , α2n−1−2 (see [25]). According to the BCH bound, if g is non-zero, then this vec-
tor has Hamming weight at least 2n−1. Moreover, suppose that the vector (g0, · · · , g2n−2)
has Hamming weight 2n−1 exactly. Then n is odd and g(x) =

∑
0≤i≤2n−2

w2(i)≤(n−1)/2

xi; but this

contradicts the fact that g(0) = 0. We deduce that the vector (g0, · · · , g2n−2) has Ham-
ming weight strictly greater than 2n−1, leading to a contradiction with the fact that g
has algebraic degree at most dn/2e− 1, since the number of integers of 2-weight at most
dn/2e − 1 is not strictly greater than 2n−1.
Let g be now a non-zero annihilator of f +1. The vector (g0, · · · , g2n−2) belongs then to
the Reed-Solomon code over F2n of zeroes α2n−1−1, · · · , α2n−2. According to the BCH
bound, this vector has then Hamming weight strictly greater than 2n−1. We arrive to
the same contradiction. Hence, there does not exist a non-zero annihilator of f or f + 1
of algebraic degree at most dn/2e − 1 and f has then (optimum) algebraic immunity
dn/2e. 2

4 Algebraic degree and nonlinearity of the function

Theorem 2 The univariate representation of the function f of Theorem 1 equals

1 +
2n−2∑
i=1

αi

(1 + αi)1/2
xi (1)

where u1/2 = u2n−1
. Hence, f has algebraic degree n−1 (which is optimum for a balanced

function).

Proof. Let f(x) =
∑2n−1

i=0 fi x
i be the univariate representation of f . We have f0 =
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f(0) = 1, f2n−1 = 0 (since f has even Hamming weight) and for every i ∈ {1, · · · , 2n−2}:

fi =
2n−2∑
j=0

f(αj) α−ij =
2n−1−2∑

j=0

α−ij =
1 + α−i(2n−1−1)

1 + α−i
=

(
1 + α−i(2n−2)

1 + α−2i

)1/2

=
(

1 + αi

1 + α−2i

)1/2

=
αi

(1 + αi)1/2
.

This proves Relation (1). We can see that f2n−2 6= 0 and therefore f has algebraic degree
n− 1. 2

Theorem 3 Let f be defined as in Theorem 1, then:

nl(f) ≥ 2n−1 − n · ln 2 · 2
n
2 − 1.

Proof.

nl(f) = 2n−1 − max
λ∈F∗2n

|Sλ| (2)

where

Sλ =
2n−2∑

i=2n−1−1

(−1)tr(λαi) (λ ∈ F∗
2n) (3)

Let ζ = e
2π
√
−1

2n−1 be a primitive root of 1 in the complex field C, χ be the multiplicative
character of F2n defined by χ(αj) = ζj (0 ≤ j ≤ 2n − 2) and χ(0) = 0. We define the
Gauss sum:

G(χµ) =
∑

x∈F∗2n

χµ(x)(−1)tr(x) (0 ≤ µ ≤ 2n − 2)

It is well-known (see [23]) that G(χ0) = −1 and |G(χµ)| = 2
n
2 for 1 ≤ µ ≤ 2n − 2. By

Fourier transformation we have

(−1)tr(αj) =
1

2n − 1

2n−2∑
µ=0

G(χµ)χµ(αj) (0 ≤ j ≤ 2n − 2)
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Let λ = αl (0 ≤ l ≤ 2n − 2) and q = 2n. Then χµ(λαi) = ζ−µ(l+i) and by (3),

Sλ =
1

q − 1

q−2∑
µ=0

G(χµ)
q−2∑

i= q
2
−1

χµ(λαi)

=
1

q − 1

q−2∑
µ=0

G(χµ)
q−2∑

i= q
2
−1

ζ−µ(l+i)

=
1

q − 1

q−2∑
µ=1

G(χµ)ζ−µl ζ−µ( q
2
−1) − 1

1− ζ−µ
− q

2


Therefore, for λ ∈ F∗

q ,

|Sλ| ≤ 1
q − 1

2
√

q

q
2
−1∑

µ=1

(
sin

πµ

q − 1

)−1

+
q

2

)

We have:
q
2
−1∑

µ=1

(
sin

πµ

q − 1

)−1

≤ (q − 1)
∫ 1

2

1
2(q−1)

dt

sin πt

≤ (q − 1)
∫ 1

2

1
2(q−1)

dt

2t

=
q − 1

2
ln(q − 1)

We get then:

|Sλ| ≤
1

q − 1

(√
q (q − 1) ln(q − 1) +

q

2

)
=
√

q ln(q − 1) +
q

2(q − 1)

and by (2)
nl(f) ≥ 2n−1 − n · ln 2 · 2

n
2 − 1.

2

Remark. The lower bound given by Theorem 3 shows that the nonlinearity of our
function f is provably considerably better (at least asymptotically) than those of the
previously found functions. Moreover, we checked for small values of n that the exact
value of nl(f) is much better than what gives this lower bound and seems quite sufficient
for resisting fast correlation attacks (for these small values of n, it behaves as 2n−1−2n/2).
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5 Immunity against fast algebraic attacks

The computer investigations made using Algorithm 2 of [2] suggest the following prop-
erties of the class of functions of Theorem 1:

• No nonzero function g of degree at most e and no function h of degree at most d
exist such that f ∗ g = h, when (e, d) = (1, n− 2) for n odd and (e, d) = (1, n− 3)
for n even. This has been checked for n ≤ 12 and we conjecture it for every n.

• For e > 1, pairs (g, h) of degrees (e, d) such that e+d < n−1 were never observed.
Precisely, the non-existence of such pairs could be checked exhaustively for n ≤ 9
and e < n/2, for n = 10 and e ≤ 3 and for n = 11 and e ≤ 2. This suggests that
this class of functions, even if not always optimal against fast algebraic attacks,
has a very good behavior.

The instance with n = 9 turns out to be optimal. To the best of our knowledge, this
is the first time where a function with optimum immunity against FAA’s can be observed.
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