
Pairings on hyperelliptic curves with a real
model

Steven D. Galbraith1, Xibin Lin1,2, and David J. Mireles Morales1

1Mathematics Department
Royal Holloway, University of London

United Kingdom
{steven.galbraith, d.mireles-morales}@rhul.ac.uk

2School of Mathematics and Computational Science
Sun-Yat Sen University

P.R.China
linxibin@mail2.sysu.edu.cn

Abstract. We analyse the efficiency of pairing computations on hyper-
elliptic curves given by a real model using a balanced divisor at infinity.
Several optimisations are proposed and analysed. Genus two curves given
by a real model arise when considering pairing friendly groups of order
dividing p2 − p + 1. We compare the performance of pairings on such
groups in both elliptic and hyperelliptic versions. We conclude that pair-
ings can be efficiently computable in real models of hyperelliptic curves.

1 Introduction

The study of efficient pairing computation on hyperelliptic curves has focused
exclusively on the analysis of hyperelliptic curves given by an imaginary model.
With the development of new divisor addition algorithms on hyperelliptic curves
given by a real model [5], it is natural to ask if pairings can be implemented on
these curves competitively.

The authors of [6] construct a genus 2 curve C, defined over Fp for p a prime
p ≡ 5 mod 6. The jacobian Jac(C) of this curve has p2 − p + 1 points, and
embedding degree 6 with respect to any subgroup with prime order r > 3. The
curve C is given by a real model (see [5]), which in particular means that it has
2 points at infinity.

In [15], Verheul presents the construction of an elliptic curve with embedding
degree 3. This curve is defined over a field Fp2 for p a prime p ≡ 5 mod 6, and
has p2 − p + 1 Fp2-rational points. Pairings on these elliptic curves have been
studied by Hu et.al. in [10].

The similiarities between these curves make them natural candidates for a
comparison between elliptic and hyperelliptic curve pairing implementations. In
this article we explore several optimisation techniques on these curves, impleme-
nent pairings and compare their performance. Among the optimisations used in
the implementation is the recent R-ate pairing proposal presented by Lee, Lee

and Park in [11], and the well-known denominator elimination technique, which
is combined with the R-ate pairing thanks to Theorem 2.

A crucial step towards a competitive implementation of pairings on hyperel-
liptic curves given by a real model is having efficient divisor addition algorithms
that result in simple Miller functions. The addition algorithms presented in [5]
allow for a fast implementation not only because the operation count in the ad-
dition and doubling algorithms is smaller than that in previous proposals [14],
but also because the Miller function, whose evaluation is the bottleneck in pair-
ing computations on high genus curves, is simpler using the algorithms of [5].
We make a theoretical and practical comparison of the efficiency of our pairings
compared with that of pairings on elliptic and hyperelliptic curves. We conclude
that pairings can be efficiently implemented on hyperelliptic curves given by a
real model.

This article is organized as follows: Section 2 describes the representation of
divisors (and hence the addition algorithms) that we will use for genus 2 curves
given by a real model. In this section we also present the embedding degree 6
construction of Galbraith, Pujolas, Ritzenthaler and Smith [6]. Section 3 presents
a brief overview of pairing computation techniques, including the recently pre-
sented R-ate pairing. Section 4 describes our parameter generation algorithms
and the optimisations used in the implementation. In Section 5 we report our
implementation results and compare them with pairing computation results ob-
tained for similar elliptic or hyperelliptic curves. Some conclusions are discussed
in Section 6.

2 Curves

Given an algebraic curve C and two divisors D0 and D1 on C, we say that D0

and D1 are linearly equivalent, denoted D0 ∼ D1, if there is a function f such
that

div(f) = D1 −D0

where div(f) is the divisor of f .

Definition 1. The divisor class group of C is the group of divisor classes mod-
ulo linear equivalence. We will denote it as Cl(C). The class of a divisor D in
Cl(C) will be denoted by [D]. We define Cl0(C) as the degree zero subgroup of
Cl(C).

Notice that the degree of the divisor div(f) associated to a function f is
always zero, and thus it makes sense to talk of the degree of a divisor class [D]
in Cl(C). In this article we will work exclusively with curves C which are elliptic
or hyperelliptic curves of genus 2.

2.1 Arithmetic on hyperelliptic curves

Let C be a genus 2 hyperelliptic curve given by

C : y2 = F (x),

2

where char(K) 6= 2, 3 and F (x) ∈ K(x) is a square-free degree 6 polynomial. We
say that this is a real model for C. The desingularization of C has 2 different
points at infinity, which we will denote ∞+ and ∞−. Let D∞ = ∞+ +∞−,
note that this divisor is K-rational even if the points ∞+ and ∞− are not
independently so.

Proposition 1 (Proposition 1 in [5]). Let D∞ denote the divisor D∞ =
∞++∞−, and let D ∈ Div0(C) be a K-rational divisor on the curve C. Then [D]
has a unique representative in Cl0(C) of the form [D0−D∞], where D0 = P1+P2

is an effective K-rational divisor of degree 2 such that P1 6= P̄2.

If D0 = P1 + P2, generically P1, P2 /∈ {∞+,∞−}, so we will only discuss
arithmetic for generic divisors. Further details can be found in [5].

We will use Mumford’s representation to represent divisors of the form

D = P1 + P2 −D∞, P1, P2 /∈ {∞+,∞−}.

Let Pi = (xi, yi) for i ∈ {1, 2}. Mumford’s representation is a pair of polynomials
(u(x), v(x)), where u(x) = (x−x1)(x−x2) and where v(x) satisfies v(x)2−F (x) ≡
0 mod u(x). This last condition implies that yi = v(xi). The polynomial v is
only determined modulo u; if a canonical representative is needed, the unique
representative with deg v < deg u can be used.

We will denote the divisor D = P1 + P2 − D∞ associated to the pair of
polynomials (u, v) as D = div(u, v). Traditionally this notation has been used
to denote the affine divisor P1 + P2 but we will extend it since there is no risk
of confusion.

Let D1 = P1 +P2−D∞ and D2 = P3 +P4−D∞ be two divisors. An explicit
interpretation of the results of [5] in the case of a genus 2 curve implies that if p(x)
denotes the unique polynomial of degree at most 3 passing through P1, P2, P3

and P4, and we let P5, P6 be the remaining intersection points of y − p(x) with
C, then

div(y − p(x)) =
6∑
i=1

Pi − 3D∞. (1)

If we write D3 = P̄5 + P̄6 −D∞, equation (1) can be rewritten as

[D1] + [D2] = [D3].

If u3 is the first polynomial in the Mumford representation of D3, the function

gD1,D2 =
y − p(x)
u3

(2)

has associated divisor D1 +D2−D3. This will be used later to compute pairings.
In our pairing implementation we will use the addition formulae presented

in [3], which we include in an appendix for completeness. The polynomial p(x)
in equation (1) can be easily computed from the intermediate results in the
addition formulae from [3] and presented in the Appendix.

3

When the divisor at infinity used is the traditional D∞ = 2∞+, the func-
tion gD1,D2 with divisor D1 + D2 −D3 has the form gD1,D2 = (y − p1(x))(y −
p2(x))/(u3(x)u4(x)), where again p1(x) and p2(x) are cubic polynomials and
u3(x), u4(x) are quadratic polynomials. Since the bottleneck of pairing calcu-
lations is precisely the evaluation of this function, the speed-up obtained from
using the representation of Cl0(C) described in [5] goes beyond the operations
saved in the addition algorithm.

2.2 Hyperelliptic curves with embedding degree 6

In this section we will substitute the notation Cl0(C) we had been using for
the more geometric (and equivalent) Jac(C), better suited when dealing with
endomorphism rings.

In [6, Section 7], the authors present a family of genus 2 curves with em-
bedding degree 6 and generators of a subring R of the endomorphism ring of
Jac(C), such that R contains a distortion map for any non-trivial pair (D1, D2)
of divisors.

The curves in this family will have 2 points at infinity and our addition
algorithm is well-suited to perform efficient arithmetic on them. We now briefly
describe the construction of the curves given in [6, Section 7].

Let p 6= 2 a prime such that p ≡ 2 (mod 3). Denote by ζ6 a root of x2−x+1
and by ζ3 = ζ2

6 , let γ ∈ Fp6 be such that γp
2−1 = ζ3. An equation of C will then

be
C : y2 = (ax+ b)6 + (cx+ d)6,

where a = γp, b = ζ2
3γ

p, c = γ and d = ζ3γ.
In this case, the coefficient of the x6 term in the equation of C is a6 + cc,

which is a non-zero Fp-rational element. If it is not a square, we can take two
rational points on C and move them to the line at infinity, and get a curve
isomorphic to C given by a monic polynomial. This will let us use the addition
formulae presented in [3], which only work on curves given by an equation of the
form y2 = x6 + f4x

4 + f3x
3 + f2x

2 + f1x+ f0.

Lemma 1. The model of the curve C defined above has 2 points at infinity.

Proof. Let C be given by y2 = F (x) and denote the leading coefficient of F as
F6. Notice that

F6 = a6 + c6 = γ6p + γ6.

To prove the lemma we only need to prove that F6 6= 0. Since p2 − 1 is a
multiple of 3 and γp

2−1 = ζ3 the multiplicative order of γ is a multiple of 9. So
F6 = γ6(γ6p−6 + 1) cannot be zero as this would imply that γ12p−12 = 1, but
12p− 12 is not a multiple of 9 as p ≡ 2 (mod 3). ut

The characteristic polynomial of Frobenius on C is T 4− pT 2 + p2, so Jac(C)
will have p2 − p + 1 elements. This implies that if r is a prime that divides
p2 − p + 1, the embedding degree of C with respect to r is 6. Note that if C ′

4

is the curve C ′ : y2 = x6 + 1, then C is a twist of C ′ by the automorphism
u : (x, y) 7→ (ζ3x ,

y
x3). Furthermore, there is an isomorphism φ : C −→ C ′ given

by

φ(x, y) =
(
ax+ b

cx+ d
,

y

(cx+ d)3

)
The authors of [6] then define the following endomorphisms of C ′:

π(x, y) = (xp, yp)

χ(x, y) =
(

1
x
,
y

x3

)
ζ6(x, y) = (ζ6x, y).

We will abuse notation and extend these endomorphisms to Jac(C ′). These
endomorphisms are enough to find a distortion map on Jac(C) (see Definition 3),
as the following result shows.

Theorem 1 (Theorem 7.2 in [6]). Let r be a prime different from 2 and p.
Then for all pairs of divisors D1 and D2 on C of order r, there exists a distortion
map in the ring φ−1Z[π, χ, ζ6]φ.

It is well known that if the first coordinate of the Mumford representation of
a divisor lies in a proper subfield of Fp6 , then the function gD1,D2 in equation
(2) can be substituted by y − p(x) (p as in equation (2)) in the Miller loop of
the pairing computation. The following Lemma shows that the automorphisms
χ and ζ6 can be used to this end.

Lemma 2. Let P ∈ C be a point with a Fp-rational x-coordinate. Then:

– The x-coordinate of (φ−1 ◦ ζ6 ◦ φ)(P) is Fp-rational.
– The x-coordinate of (φ−1 ◦ χ ◦ φ)(P) is Fp3-rational.

Proof. Let P = (x, y) be the coordinates of P . A tedious but simple calculation
shows that the x-coordinate of (φ−1 ◦ ζ6 ◦ φ)(x, y) is given by

−x− 1
x− 2

,

which is Fp-rational whenever x is an element of Fp.
The x-coordinate of (φ−1 ◦ χ ◦ φ)(x, y) is given by

xχ =
(ζ3γ2 − ζ2

3γ
2p)x+ (ζ2

3γ
2 − ζ3γ2p)

(γ2p − γ2)x+ (ζ2
3γ

2p − ζ3γ2)
,

and again, it is straightforward to prove that xp
3

χ = xχ. ut

The previous Lemma shows that using χ and ζ6 as distortion maps (see
Definition 3) makes it possible to use denominator elimination. We will now
prove that the image of Fp-rational divisors under the distortion map (φ−1 ◦χ ◦
ζ6 ◦ φ) lies in the p-eigenspace, thus allowing us to directly use loop-shortening
techniques.

5

Theorem 2. Let D1 ∈ Cl0(C)[r] be a Fp-rational divisor. Then its image D2 =
(φ−1◦χ◦ζ6◦φ)(D1) under the distortion map lies in the p-eigenspace of Cl0(C)[r].

Proof. The r-torsion subgroup Cl0(C)[r] can be decomposed as the direct sum
of four 1-dimensional eigenspaces with respect to Frobenius πp, with eigenvalues
1,−1, p and −p. The polynomial T 2−T+1 is divisible by T−p mod r, hence the
endomorphism (π2

p−πp+ 1) annihilates the p-eigenspace, and is invertible when
restricted to the other eigenspaces. It follows that D2 lies in the p-eigenspace if
and only if (π2

p − πp + 1)(D2) = 0.
To prove that this is the case, it suffices to show that the unique cubic

polynomial passing through the four points in the affine support of D2 and
π2
p(D2) also passes through the points in the affine support of πp(D2). This can

be proven symbolically simply by defining formal variables γ and γp over Q(ζ6),
and formally defining the action of Frobenius as πp(γ) = γp, πp(γp) = ζ2

6γ and
πp(ζ6) = ζ5

6 . The verification of our claim boils down to a trivial, albeit tedious
calculation, which we performed using Magma [2]. ut

2.3 Elliptic curves with embedding degree 3

In this subsection we describe the construction of elliptic curves with embedding
degree k = 3 given in [15]. We will report our pairing implementation results on
these curves in later sections.

Let p be a prime, p ≡ 5 mod 6, let E be an elliptic curve defined over Fp2
by y2 = x3 + ρ2, where ρ ∈ Fp2 is an element such that ρ2 is not a cube in Fp2 .
The number of Fp2 rational points of E is p2 − p+ 1 (see Lemma 7 of [7] for a
proof). Let r be the largest prime dividing p2 − p + 1, then E has embedding
degree k = 3 with respect to r. Define the following map:

φE : E(Fp2)→ E(Fp6)
(x, y)→ (aβxp, byp)

where a = ρ−(2p−1)/3, b = ρ−(p−1), and β is a cubic root of ρ in Fp6 . If we
let (x′, y′) = φE(x, y), it is not hard to see that x′ ∈ Fp6 and y′ ∈ Fp2 . The
endomorphism φE will be used as a distortion map in our pairing implementation
(see Definition 3).

3 Pairings

3.1 Background on the Tate pairing

We will briefly recall the definition of the Tate pairing (see [4] for a more detailed
description) and describe the applications of the results in [5] to the computation
of pairings on hyperelliptic curves given by a real model. Let Fq be a finite field
with q = pn elements and let C be a smooth, irreducible curve over Fq. Denote
the degree zero divisor class group of C by Cl0Fq

(C). Let r be an integer such

6

that r | # Cl0Fq
(C) and denote by Cl0Fq

(C)[r] the group of divisor classes of order
dividing r.

Let k be the smallest integer such that r | (qk − 1). We say that k is the
embedding degree of C.

Let D1 ∈ Cl0Fq
(C)[r] and D2 ∈ Cl0F

qk
(C) be two divisors. Since rD1 is prin-

cipal, there is a function fr,D1 defined over Fq such that div(fr,D1) = rD1. The
Tate pairing is defined as

〈D1, D2〉r = fr,D1(D2),

and one can prove that it is a non-degenerate, bilinear pairing:

Cl0F
qk

(C)[r]× Cl0F
qk

(C)/rCl0F
qk

(C) −→ F∗qk/(F∗qk)r.

The result is only defined up to an r-th power, hence to obtain a unique repre-
sentative, one defines the reduced Tate pairing as

e(D1, D2) = 〈D1, D2〉(q
k−1)/r

r = f
(qk−1)/r
r,D1

(D2).

In practice to compute the Tate pairing one uses Miller’s algorithm, which
we now describe.

Definition 2. Let C be a curve for which there exists a way to select a canonical
representative for every element of Cl0F

qk
(C). Given a degree 0 divisor D on C

and an integer n, let Dn be the canonical representative of the class [nD]. We
will denote the unique function (up to scalar multiples) with associated divisor
nD −Dn as fn,D.

By definition, given two degree 0 divisors D1, D2 on C, if D3 is the canonical
representative of [D1 +D2], there is a function whose associated divisor is D1 +
D2 − D3. Denote this function as gD1,D2 . Miller’s fundamental observation is
that

fn1+n2,D = fn1,D · fn2,D · gn1D,n2D, (3)

which allows us to compute fr,D (and hence the Tate-pairing) using a square
and multiply calculation with O(log r) steps. Note that in the case of a genus
2 hyperelliptic curve, gn1D,n2D is given by equation (2). We will refer to the
process of calculating fn1+n2,D from fn1,D and fn2,D as a Miller step.

Definition 3. Let e : G1 × G2 −→ GT be a non-degenerate bilinear pair-
ing. A morphism ψ : G1 −→ G2 is called a distortion map for D1 ∈ G1 if
e(D1, ψ(D1)) 6= 1.

Several techniques have been developed to reduce the length of the Miller
loop in pairing computations. We will now describe these techniques for elliptic
and hyperelliptic curves.

7

3.2 Elliptic twisted Ate pairing

Let E be an elliptic curve defined over the finite field Fq, with #E(Fq) = q−t+1,
where t is the trace of Frobenius. Let T = t− 1, and

G1 = E[r] ∩Ker(πq − id), and G2 = E[r] ∩Ker(πq − q).

In [9, Section 6], Hess, Smart and Vercauteren prove that if E has a twist of
degree d, embedding degree k, and we set m = gcd(d, k) and e = k/m, then the
function

e(P,Q) = fT e,P (Q)(q
k−1)/r, (4)

defines a bilinear function on G1 ×G2, called the twisted Ate pairing.
We know that the elliptic curve E constructed in Subsection 2.3 accepts a

twist of degree 3, has embedding degree k = 3 and T = p − 1. Using equation
(4), the function

e(P,Q) = fp−1,P (Q)(q
k−1)/r

defines a bilinear function on G1 ×G2.
Since k = 3, the denominator elimination method of [1] does not apply. We

now describe a way to replace the denominator with a few multiplications.
When executing Miller’s algorithm to compute pairings on an elliptic curve,

the denominator of the function gn1,n2,D in equation (3) has the form (xR−xQ),
where R and Q are points on the elliptic curve. Note that xR ∈ Fp2 and xQ ∈
Fp6 . We replace

1
xR − xQ

=
xR(xR + xQ) + x2

Q

y2
R − y2

Q

,

and since y2
R− y2

Q lies in the proper subfield Fp2 of Fp6 , we can discard its value
as it will become 1 after the final exponentiation.

So the function gn1,n2,D in equation (3) can be substituted by

lR,P (Q) · (xR(xR + xQ) + x2
Q), (5)

where lR,P denotes the line passing through the points P and R. If x2
Q is pre-

computed then the saving compared with the standard method (i.e., writing the
Miller variable f as a numerator and a denominator) is to replace a squaring in
Fp6 by a multiplication of an element in Fp2 with an element in Fp6 .

3.3 Hyperelliptic Ate pairings

We have seen that in some cases it is possible to compute pairings using a
function fn,D where n is much smaller than required for the Tate-pairing. We
will revisit some of these techniques in the case of hyperelliptic curves.

Let C be a hyperelliptic curve defined over a finite field Fq. Denote the
Frobenius automorphism of C as πq, and extend this notation to Cl0F

qk
(C). Let

G1 = Cl0F
qk

(C)[r] ∩Ker(πq − id) and G2 = Cl0F
qk

(C)[r] ∩Ker(πq − q),

8

denote the 1- and q-eigenspaces of πq in the r-torsion subgroup of Cl0F
qk

(C). If
D1 ∈ G1 and D2 ∈ G2 are divisors on C, the authors of [8] proved:

Theorem 3. The function eq : G1 ×G2 −→ µr, given by

eq(D1, D2) = fq,D1(D2)(q
k−1)/r,

defines a non-degenerate bilinear pairing on G1 ×G2.

3.4 R-ate pairings

Let G1 and G2 be subgroups of the class group of a curve C. If D1 ∈ G1 and
D2 ∈ G2, Lee, Lee and Park prove in [11] the following:

Theorem 4. [Theorem 3.2 in [11]] Let A,B, a, b be integers such that A =
aB + b, where the functions fA,D and fB,D define bilinear maps in G1 ×G2.
Then the function

fa,BD(E) · fb,D(E) · gaBD,bD(E),

defines a bilinear map in G1 ×G2.

Note that if B is the order of D, then the functions fa,BD and gaBD,bD are
constant, so the function fb,D(E) will define a bilinear map.

For the elliptic curve E constructed in Subsection 2.3, if P is a Fp2 -rational
point, both fp−1,P and fr,P define bilinear maps on appropriate subgroups of
E[r]. Similarly, if D1 is a r-torsion, Fp-rational divisor on the curve C defined
in Subsection 2.2, then the functions fp,D1 and fr,D1 define bilinear maps on
appropriate subgroups of Cl0(C)[r].

Remark 1. Letting B = r, AE = p − 1 for E,AC = p for C, and choosing a, b
such that p = a · r + b, using Theorem 4, it follows that the function fb−1,P

defines a bilinear map on (subgroups of) E[r] and fb,D1 defines a bilinear map
on (subgroups of) Cl0(C)[r]. Choosing an appropriate b could greatly improve
the pairing computations, we show how to do this in the following section.

4 Pairing implementation and efficiency analysis

In this section, we describe some optimizations of the pairing implementation on
the hyperelliptic curves given above, including the generation of parameters to
shorten the Miller loop, denominator elimination, and the finite field construc-
tion.

9

4.1 Efficient generation of parameters

In this subsection, we describe a method to generate parameters for the curves
constructed in Subsections 2.2 and 2.3, which will shorten the Miller loop to half
the bit-length of the subgroup order r.

Using Remark 1, if b ≡ p mod r, then the functions fb,D1 and fb−1,P give
bilinear functions on the appropriate subgroups of Cl0(C)[r] and E[r] respec-
tively.

In both cases, considering the current security level (AES 80), r is about the
same size of p. Algorithm 1 shows how to choose p, r and b efficiently. As can
be seen from the algorithm, b can be chosen to have very low hamming weight
and half the bit-length of r.

Algorithm 1 Parameter Generation
Input: Integers n, kmax.
Output: Integers b, r and a prime p such that r|p2 − p + 1, p ≡ b mod r .
1: repeat
2: Choose b of size n bits and low hamming weight.
3: Let r = b2 − b + 1.
4: until r is prime or nearly prime.
5: for k from 1 to kmax. do
6: let p = k · r + b.
7: if p is a prime and p ≡ 11 mod 12. then
8: Break.
9: end if

10: end for
11: if k = kmax, goto step 1.
12: return p, r, b.

The following is a set of parameters generated by Algorithm 1, using n = 80.
These are the parameters used in our implementation, which will be described
in the following section.

Example 1. A set of parameters for AES 80 security

– p =B000000000000000011260000000000000006AEFB
– r =10000000000000000018F00000000000000009B79
– b =1000000000000000000C8

Remark 2. Algorithm 1 can be generalized to find parameters for many other
types of curves. For example, a similar algorithm can be used to generate parame-
ters for supersingular genus 2 curves given by an equation of the form y2 = x5+a,
where a ∈ F∗p, p ≡ 2, 3 mod 5. Ó hÉigeartaigh and M. Scott efficiently imple-
mented pairings on these curves in [13], achieving some of the fastest pairing
computations on genus 2 curves. Using a parameter selection algorithm similar
to Algorithm 1 could further improve their results.

10

4.2 Finite field construction and arithmetic

The following field construction was presented by Hu et al. in [10].
We restrict to p ≡ 3 mod 4 so that −1 is not a quadratic residue modulo p.

In other words, we require p ≡ 11 mod 12. The finite fields are represented as
follows:

Fp2 = Fp[x]/(α2 + 1) = {uα+ v|u, v ∈ Fp} = {a1 + a2β
3|a1, a2 ∈ Fp}.

Fp6 = Fp2 [y]/(β3 − ρ) = {b0 + b1β + b2β
2 + b3β

3 + b4β
4 + b5β

5|bi ∈ Fp}
= {c0 + c1β + c2β

2|ci ∈ Fp2}

where ρ = α + u0 and u0 is a small integer such that x3 − ρ is irreducible over
Fp2 .

Let eij ∈ Fp be defined by βip = ei0 + ei1β+ · · ·+ ei5β
5. We have that βip =

β2iρi(p−2)/3. Since β3 = ρ and ρ ∈ Fp2 , there are at most two non-zero terms in
the coefficients vector (ei0, ei1, · · · ei5). Specifically, we have (e30, e31, · · · e35) =
(2u0, 0, 0,−1, 0, 0).

So that raising a random element to the pth power is given by

(b0 + b1β + b2β
2 + b3β

3 + b4β
4 + b5β

5)p = b0 +
5∑
i=1

bi(ei0 + ei1β + · · ·+ ei5β
5).

This computation costs only 8Fp−multiplications (remember u0 is a small
integer).

The final exponentiation is often computed through base p expansion. In the
cases k = 6, the final exponentiation can be represented as

p6 − 1
r

= (p3 − 1)(p+ 1)
p2 − p+ 1

r
= (p3 − 1)(p+ 1)(k1p+ k0)

where k1 is small. Thus, the construction above allows for very fast exponentia-
tion.

4.3 Optimized pairing computation

The cost of Miller’s algorithm to compute pairings is determined by the length
of the Miller loop, the cost of the calculations inside the loop, and the final
exponentiation. To compute pairings on hyperelliptic genus 2 curves given by a
real model, we used the techniques described above to speed up the computation,
that is:

– Algorithm 1 generates suitable parameters to get a short, low Hamming
weight Miller loop.

– Use D∞ = ∞+ +∞− to represent elements of Cl0(C) to get fast addition
and a simple Miller funciton.

– The distortion map (φ−1 ◦ χ ◦ ζ6 ◦ φ) described in Theorem 2 allows for
denominator elimination while using the R-ate pairing [11] technique.

– The field construction in Subsection 4.2 provides the arithmetic for a very
efficient final exponentiation.

11

5 Efficiency analysis and implementation results

The optimization techniques described above make the computation of pairings
on hyperelliptic genus 2 curves practical and efficient. In this section we analyse
the efficiency, and compare it with pairing implementations on elliptic curves
with similar characteristics.

5.1 Comparision with elliptic curves with k = 3

As mentioned in the introduction, the curves constructed in Subsections 2.2 and
2.3 have very similiar characteristics, so implementation results on the embed-
ding degree 3 elliptic curve provide a useful benchmark to analyse our pairing
implementation on hyperelliptic curves given by a real model.

As mentioned before, (the class groups of) both curves have the same number
of Fp-rational points, and the embedding field for both curves is the same, as
is the bandwith requirement. A point P = (x, y) ∈ E(Fp2) is represented by 4
elements of Fp, which is the same number of coefficients required to represent
a divisor D = (x + u1x + u0, x

3 + v1x + v0). Since the target field is the same,
both pairing values can be compressed at the same rate by using the technique
of the XTR public key cryptosystem [12].

In the notation of Theorem 4, we need to calculate fb,D. Since b is an integer
calculated using Algorithm 1, it will have very low Hamming weight and we will
only analyse the cost of the doubling steps in the Miller loop.

In our implementation, the second argument of the pairing in hyperelliptic
curves is a divisor D2 = (R1) + (R2)−D∞, with R1 and R2 known points with
Fq3 -rational x-coordinates. The divisor D2 is calculated as the image under the
distortion map of a divisor P1+P2−D∞, where P1 and P2 are Fp-rational points.
Theorem 2 proves that D2 lies in the p-eigenspace, and hence R-ate pairings can
be used at no extra cost. The Miller functions are evaluated on each point in the
affine support of D2.

To compare the efficiency of our pairing implementations on elliptic and
hyperelliptic curves, we first estimate the cost of each doubling step. We will let
f denote the intermediate value in the Miller loop. The update of f is similar
to that used in other standard implementations of Miller’s algorithm, such as
Algorithm 1 in Section 2 of [8], except that the denominator of gn1D,n2D in
equation (3) can be removed as described by equation (5) in the elliptic curve
case, and by Lemma 2 in the hyperelliptic curve case.

elliptic : f ← f2 · lR,P (Q) · (xR(xR + xQ) + x2
Q) and R← 2R

hyperelliptic: f ← f2 · (y1 − p(x1)) · (y2 − p(x2)) and D1 ← 2D1.

Here lR,P is the line through R and P , and y − p(x) is as in equation (1).
Note that p(x) will be a cubic polynomial with coefficients in Fp.

We will consider the relative cost of arithmetic operations as described in
Section 7 of [9]. Let Mk and Ik denote the cost of multiplication and inversion in
Fpk . We will assume that M6 = 15M1, M3 = 5M1, 1I1 = 10M1, and M1 = S1 [9].

12

We will assume that 1I1 = 10M1, M1 = S1.
In the elliptic case, the total cost of each doubling Miller step is 83M1. In the

hyperelliptic case, doubling a divisor costs about 1I1 + 32M1 = 42M1 [5], which
makes the cost of each Miller step 105M1. There are a total of 84 doubling steps
using the parameters given in Example 1. So the costs of the Miller loops are
6972M1 and 8820M1 respectively.

The final exponentiation step is identical in both cases, and costs about
1621M1.

This shows that pairings on real hyperelliptic genus 2 curves with k = 6 are
competitive to parings on elliptic curves with k = 3.

5.2 Theoretical comparision with imaginary hyperelliptic curves
with k = 4

To complement our efficiency analysis, we will also make an abstract comparison
of our implementation results with those reported in [13], using genus 2 hyper-
elliptic curves with embedding degree k = 4. The implementation results in [13]
are amongst the best reported in the literature.

In curves with embedding degree k = 4, the underlying prime field needs
to be 96 bits larger than our implementation to achieve an equivalent level of
security. The representation of each divisor will then need 384 more bits.

The estimated cost of a pairing computation on a degenerate divisor reported
in Section 4.9 of [13] is of about 162I1 + 10375M1 + 645S1 (excluding the cost
of the final exponentiation). This estimate is a bit slower than the estimate for
hyperelliptic pairings considered in this paper. Although, as mentioned in Re-
mark 2, the use of an algorithm similar to Algorithm 1 to find curve parameters
could improve the results of [13]. However, we expect that a R-ate pairing on
this curve for general divisors will not be faster than our case.

We can see that pairings on hyperelliptic curves given by a real model are
competitive with pairings on curves given by an imaginary model, in terms of
bandwidth and computation requirements.

5.3 Implementation results

This section reports some implementation results. The implementation uses the
parameters given in Example 1. The timings are obtained using the Magma
Online Platform [2].

The following table summarizes the results. The first row shows our imple-
mentation results for hyperelliptic curves, and the second row shows our imple-
mentation results for elliptic curves.

6 Conclusion

In this article we presented several techniques to speed-up the calculation of
pairings on hyperelliptic curves given by a real model. We showed that computing

13

Table 1. Efficiency Comparision with an AES 80 Security Level

Curve size of p Operation Count time(ms)

C(Fp) k = 6 160 10441M1 21.6

E(Fp2) k = 3 160 8593M1 15.3

pairings on real genus 2 curves is practical. The implementation results are
comparable to existing results in the literature for similar settings. We compared
the efficiency of two similar elliptic and hyperelliptic curves, and conclude that
pairings on elliptic curves with k = 3 require 21% less field multiplications than
pairings on real hyperelliptic genus 2 curves with k = 6. The timing difference in
our implementation was that elliptic curves are 28% faster than genus 2 curves.

A Appendix: Addition Formulae

We now present the formulae from [3], which are explicit formulae for the sub-
algorithms used in [5] to build an efficient algorithm for divisor arithmetic on
hyperelliptic curves with two points at infinity. These formulae require that the
curve have model of the form

y2 = x6 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0.

To make the polynomial monic one takes a random pair of Fp-rational points
(x,±y) on the curve, moves them to infinity, and absorbs the square root of the
leading coefficient into y. Since we are working in large characteristic there is no
problem setting f5 = 0.

To be compatible with the divisor representation used in [3] the second poly-
nomial in the Mumford representation is the unique polynomial v′ ≡ v mod u
of the form v′ = x3 + v1x + v0. Notice that v′ can be represented only by 2
coefficients even though it has degree 3.

When adding divisors D1 and D2, the cubic polynomial p(x) given by equa-
tion (1) can be calculated as p(x) = v2(x) + u2(x)s(x), where s(x) = s1x+ s0 in
Algorithm 2.

The cubic polynomial from equation (1) used in Miller’s algorithm when
doubling a divisor D is given by p(x) = v(x) + u(x)s(x), where s(x) = s1x+ s0
in Algorithm 3.

Acknowledgments

X. Lin thanks the Chinese Scholarship Council. D. Mireles thanks CONACyT
for its financial support.

14

Algorithm 2 Addition Formulae
Input: Divisors D1 = div(u1, v1) and D2 = div(u2, v2) .
1: z0 = u10 − u20, z1 = u11 − u21.
2: z2 = u11 · z1 − z0, z3 = u10 · z1.
3: r = z1 · z3 − z0 · z2.
4: w0 = v10 − v20, w1 = v11 − v21.
5: s′1 = w0 · z1 − w1 · z0, s

′
0 = w0 · z2 − w1 · z3.

6: k2 = f4 − 2v21.
7: r2 = r2, ŵ0 = r2 − (s′1 + r)2, ŵ1 = (r · ŵ−1).
8: ŵ2 = ŵ0 · ŵ1, ŵ3 = r · r2 · w1.
9: s1 = s′1 · ŵ2, s0 = s′0ŵ2.

10: w̃0s0 · u20, w̃1 = s1 · u21, l2 = s0 + w̃1.
11: l1 = (s0 + s1)(u21 + u20)− w̃1 − w̃0, l0 = w̃0.
12: m′3 = ŵ3 · (−s1 · (s0 + l2)− 2s0).
13: m′2 = ŵ3 · (k2 − s1 · (l1 + 2v21)− s0l2).
14: u′1 = m′3 − u11, u

′
0 = m′2 − u10 − u11 · u′1.

15: w1 = u′1 · (s1 + 2), w0 = u′0 · (l2 − w1).
16: v′1 = (u′0 + u′1) · (s1 +−w1 + l2)− v21 − l1 − w0 − w1.
17: v′0 = w0 − v20 − l0.

Algorithm 3 Doubling Formulae
Input: D = div(u, v) .
1: w1 = u2

1, ṽ1 = 2(v1 + w1 − u0), ṽ0 = 2(v0 + u0 · u1).
2: w2 = u0 · ṽ1, w3 = u1 · ṽ1.
3: inv1 = ṽ1, inv0 = w3 − ṽ0.
4: r = ṽ0 · inv0−w2 · ṽ1.
5: k′2 = f4 − 2v1

6: k′1 = f3 − 2v0 − 2k′2 · u1.
7: k′0 = f2 − v2

1 − k′1 · u1 − k′2(w1 + 2u0).
8: s′1 = inv1 ·k′0 − ṽ0 · k′1, s′0 = inv0 ·k′0 − w2 · k′1.
9: r2 = r2, ŵ0 = (s′1 + r)2 − r2, ŵ1 = (r · ŵ0)−1.

10: ŵ2 = ŵ0 · ŵ1, ŵ3 = r · r2 · ŵ1.
11: s1 = ŵ2 · s′1, s0 = ŵ2 · s′0.
12: u′1 = 2ŵ3 · ((s0 − u1) · s1 + s0).
13: u′0 = ŵ3 · ((s02u1) · s0 + ṽ1 · s1 − k′2).
14: z0 = u′0 − u0, z1 = u′1 − u1.
15: w0 = z0 · s0, w1 = z1 · s1.
16: v′1 = 2u′0 − v1 + (s0 + s1) · (z0 + z1)− w0 − w1 − u′1 · (2u′1 + w1).
17: v′0 = w0 − v0 − u′0 · (2u′1 + w1).

15

References

1. Barreto, P. S. L. M., Kim, H. Y., Lynn, B., and Scott, M. Efficient al-
gorithms for pairing-based cryptosystems. In CRYPTO (2002), M. Yung, Ed.,
vol. 2442 of Lecture Notes in Computer Science, Springer, pp. 354–368.

2. Bosma, W., Cannon, J., and Playoust, C. The Magma algebra system. I.
The user language. J. Symbolic Comput. 24, 3-4 (1997), 235–265. Computational
algebra and number theory (London, 1993).

3. Erickson, S., Jacobson, M. J., Shang, N., Shen, S., and Stein, A. Explicit
formulas for real hyperelliptic curves of genus 2 in affine representation. In WAIFI
(2007), C. Carlet and B. Sunar, Eds., vol. 4547 of Lecture Notes in Computer
Science, Springer, pp. 202–218.

4. Frey, G., and Rück, H.-G. A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves. Math. Comp. 62, 206 (1994), 865–
874.

5. Galbraith, S. D., Harrison, M., and Mireles Morales, D. J. Efficient
hyperelliptic arithmetic using balanced representation for divisors. ANTS 2008
procceedings (2008). to appear.

6. Galbraith, S. D., Pujolas, J., Ritzenthaler, C., and Smith, B. Distortion
maps for genus two curves, 2006.

7. Galbraith, S. D., and Verheul, E. R. An analysis of the vector decomposition
problem. In Public Key Cryptography (2008), R. Cramer, Ed., vol. 4939 of Lecture
Notes in Computer Science, Springer, pp. 308–327.

8. Granger, R., Hess, F., Oyono, R., Thériault, N., and Vercauteren, F. Ate
pairing on hyperelliptic curves. In EUROCRYPT (2007), M. Naor, Ed., vol. 4515
of Lecture Notes in Computer Science, Springer, pp. 430–447.

9. Hess, F., Smart, N. P., and Vercauteren, F. The eta pairing revisited. IEEE
Transactions on Information Theory 52, 10 (2006), 4595–4602.

10. Hu, L., Dong, J.-W., and Pei, D. Implementation of cryptosystems based on
tate pairing. J. Comput. Sci. Technol. 20, 2 (2005), 264–269.

11. Lee, E., Lee, H.-S., and Park, C.-M. Efficient and generalized pairing com-
putation on abelian varieties. Cryptology ePrint Archive, Report 2008/040, 2008.
http://eprint.iacr.org/.

12. Lenstra, A. K., and Verheul, E. R. The xtr public key system. In CRYPTO
(2000), M. Bellare, Ed., vol. 1880 of Lecture Notes in Computer Science, Springer,
pp. 1–19.

13. O’Eigeartaigh, C., and Scott, M. Pairing calculation on supersingular genus
2 curves. In Selected Areas in Cryptography (2006), E. Biham and A. M. Youssef,
Eds., vol. 4356 of Lecture Notes in Computer Science, Springer, pp. 302–316.

14. Paulus, S., and Rück, H.-G. Real and imaginary quadratic representations of
hyperelliptic function fields. Math. Comp. 68, 227 (1999), 1233–1241.

15. Verheul, E. R. Evidence that xtr is more secure than supersingular elliptic curve
cryptosystems. J. Cryptology 17, 4 (2004), 277–296.

16

