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1 Introduction

Provable security of practical electronic signature schemes' remains one of
the most intriguing open problems in mathematical cryptography. Naor and
Yung [9] proved that existence of one-way permutations implies existence of
e-signature schemes that are secure against existential forgery with respect to
chosen-message attack. Rompel [11] showed that for such a security arbitrary
one-way function suffices. It is evident that existence of one-way functions is
also a necessary condition, therefore from the theoretical point of view the prob-
lem reached its final solution. Namely, secure e-signature schemes exist iff there
exist one-way functions.

However, e-signature schemes proposed in the papers cited above are far
from be practical.

Proofs of security for practical e-signature schemes are known in idealized
models only. There exist two such models, with random oracle and with generic
group. Random oracle model comes back to Fiat and Shamir [6] who noted
that security proof techniques proposed for interactive authentication protocols
could be applied to e-signature schemes if a hash function is substituted by a
random function. Later this idea was formalized as a random oracle model.
In this model any participant of a protocol can query an oracle for a value of
random function in any point of its range.

Most of the proposed so far e-signature schemes were shown to be secure
in the random oracle model (the first such proof is due to Pointecheval and

IThere exists commonly used but somewhat misleading term digital signature. Note that
hand-written signature needs not be something like the signer’s name. It can be any picture
instead, for instance a sequence of digits. We coin the term electronic signature (e-signature
for short) which emphasizes the fact that both the signature and the document it is attached
to exist in electronic form only. This term is in the same line as e-mail, e-cash etc. The
ancient term digital is better be voided nowadays. The term electronic signature should not
be misused for other primitives that exhibit certain similarities with signatures. The key
property of a signature, both hand-written and electronic, is that the signer intentionally
attached it to a given document to authorize it. This is not the case, e. g. with fingerprints.



Stern [10]). Moreover, random oracle model was successfully applied to crypto-
graphic protocols of other types and nowadays a substantial amount of security
proofs is given in this model.

However the random oracle model remains to be an idealization only. At-
tempts to instantiate random oracle with cryptographic primitives resulted in
no success. Moreover, Canetti et al. [4] constructed an e-signature scheme secure
in the random oracle model, but insecure when random oracle is instantiated
with any efficient function.

In the generic group model the group operation is available to adversary
only through calls to oracle. This means that adversary can run only generic
algorithms. Brown [3] proved security of ECDSA in the generic group model.
This model is also an idealizations only. Dent [5] constructed cryptographic
schemes secure in the generic group model but insecure when instantiated with
any efficiently realizable group.

Another line of research was initiated by Varnovsky [1] who studied tamper-
proof device model. Instead of access to random oracle each participant is
provided with a tamper-proof device implementing a private-key cryptosystem.
In this model was demonstrated security of a somewhat modified former GOST?
e-signature scheme [2]. In that variant of GOST they used a group of residues
modulo a prime. The security guarantee was based on three conjectures: com-
putational intractability of discrete logarithm problem, collision resistance of a
hash function, and security of private-key cryptosystem. The last conjecture
was rather unusual.

In the present paper we study the current version of GOST e-signature
scheme with the following modifications:

e parameters of the scheme depend on a growing security parameter, i. e.
we consider as is usual in mathematical cryptography an infinite family of
schemes;

e hash value H(m) of a message m to be signed is submitted to tamper-
proof device for encryption. In the signature generation algorithm one
uses encrypted hash value Ex (H(m)), where K is a private key and E is
the encryption function.

For modified this way GOST e-signature scheme we prove existential un-
forgeability with respect to chosen-message attack. The security guarantee is
based on the following assumptions:

e physical assumption on tamper-proof device. Private key K is the same
for all the tamper-proof devices and supposed to be physically shielded;

e IND-CPA security of the private-key cryptosystem (indistinguishabilty
under chosen-plaintext attack);

2Not to be confused with ghost! In Russian GOST is just an acronym for National Stan-
dard.



e collision resistance of a hash function;

e intractability of discrete semi-logarithm problem.

Although the resulting e-signature scheme is not practical its security guar-
antee does not use any idealized models. All the four assumptions are standard
for cryptography. For instance, such companies as General Electric and IBM use
in their bank systems tamper-proof devices (see e. g. [12]). IND-CPA security
is achievable even for probabilistic public-key cryptosystems [7]. The last two
assumptions are also necessary conditions for security of e-signature schemes.

Moreover, it is well known that IND—CPA secure private-key cryptosystems
exist iff there exist one-way functions. Since one-way functions are necessary
for the existence of secure e-signature schemes the results of the present paper
could be interpreted as follows. In our setting we prove modulo the physical
assumption a necessary and sufficient condition for security of the e-signature
scheme.

Fiat—Shamir paradigm allows one to prove security of e-signature schemes
under assumption that hash function is “as secure as” a random function. We
take a moderate step towards practice. In our paradigm an e-signature scheme
could be shown secure if a hash function is ”as secure as” an encryption function
of an IND-CPA secure private-key cryptosystem.

In section 2 we specify a modification of the GOST e-signature scheme to be
considered. Sections 3 to 5 are devoted to conjectures used to study its security.
In section 6 we state a definition of security of an e-signature scheme and prove
the main result.

2 e-signature scheme

Let n be a security parameter which is defined to be the binary length of a
private key.

For each n there exists a finite set of instantiations of an e-signature scheme.
Each of these instantiations is defined by a certain group (g) and a set X. We
use multiplicative notation for the group (g).

A private key x is drawn from uniform probability distribution over the set
X. A public key is y = g*.

In the GOST e-signature scheme (g) is an order ¢ cyclic subgroup of an
elliptic curve group, X being the set {1,...,¢g—1}. Thus, the security parameter
is the binary length of a prime gq.

The e-signature scheme makes use of two additional cryptographic primi-
tives, hash function H and encryption function Ek(-) of a private-key cryp-
tosystem. Private key K of this cryptosystem is stored in tamper-proof devices
and is anavailable to all participants of the scheme.

To define an e-signature scheme it suffices to specify signature verification
algorithm. In the modified GOST scheme at hand this algorithm is as follows.

Let (r,s) be a purported signature for a message m.

1. Compute H(m).



2. Hash value H(m) is submitted to the tamper-proof device which returns
an encrypted hash value h = Ex (H(m)).

3. Encrypted hash value h and signature (r,s) are substituted into the
signature verification relation r = gsh y=rh "

4. If the equality holds the signature is accepted (valid signature), otherwise
it is rejected.

From now on the equality V' (r,s,m) = 1 means that a pair (r,s) is a valid
signature for a message m.

To sign a message m the owner of a private key has to compute encrypted
hash value h = Ex (H(m)), choose session private key k uniformly at random in
the set X, compute session public key r = ¢* and finally compute s = rz + kh.

This description uses certain simplifying conventions. In the GOST e-
signature scheme session public key r is an elliptic curve point. To use this value
in operations over the set X one needs a transformation mapping f : (g) — X.
In the GOST scheme the transformation mapping f picks the first coordinate of
the point and reduces it modulo g. To simplify notation we omit in what follows
any references to the transformation mapping f and all reductions modulo g.

3 Discrete semi-logarithm problem

Definition 1. Discrete semi-logarithm of an element z € (g) is any pair (t,u)
such that t = g¥z~t.

Thus if one considers z as a public key of an e-signature scheme then its
discrete semi-logarithm is a signature for a message m such that H(m) = 1.

It is evident that the problem of finding discrete semi-logarithms is not
harder than the discrete logarithm problem.

From now on PPT is a shorthand for probabilistic polynomial Turing ma-
chine.

Conjecture 1. Let z be a random element of the group (g). Then for any
polynomial p, for any PPT A

Pr{A(g,2) = (t,u) : t = g"2~"} < 1/p(n)
for all sufficiently large n.

The probability is over the random choice of z, random choices of algorithm
A and, in general, random choice of a group (g) from the set of all groups
corresponding to a given security parameter n.

The next lemma shows that Conjecture 1 provides a necessary condition for
security of e-signature scheme.

Lemma 1. Suppose Conjecture 1 does not hold, i. e. there exist a polynomial
p and a PPT A such that

Pr{A(g,2) = (t,u) : t = g"2~"} > 1/p(n)



for infinitely many n. Then there exists a PPT B such that
Pr{B(g,y,m) = (r,s) : V(r,s,m) = 1} > 1/p(n)
for infinitely many n.

Proof. On input (g,y,m) the machine B computes h = Ex(H(m)) and z =
y"~". Then it calls A as a subroutine feeding it with input (g,2). Since y is a
random element of the group (g), z is a random element of this group as well.
Therefore the pair (g,z) generated by B has the same probability distribution
as the pair of input values of A in the supposition of the lemma. By this
supposition A finds for infinitely many n a discrete semi-logarithm (¢,u) of z
with probability at least 1/p(n).

Let (¢,u) be a pair returned by A. The PPT B verifies whether the equality
t = g%z~ holds and, if so, outputs (¢,uh) and halts.

It is clear that B proceeds in polynomial time.

If (t,u) is a discrete semi-logarithm of z then

(uh)h_lyfth_l t

g =g"z" " =t,

i. e. the pair (¢,uh) is a valid signature for the message m. O

4 Hash function

Hash function H can be defined as a family of hash functions {H,} where the
function H, maps messages of arbitrary length into the set {1,...,2" —1}. An
index n is always clear from the context and therefore omitted for simplicity.

The required cryptographic properties of a hash function are stated in the
next conjecture.

Conjecture 2. For any PPT A, for any polynomial p and all sufficiently large
n
Pr{A(1™) = (m,m') :m #m' & H(m)= H(m')} < 1/p(n).

This requirement is standard for cryptographic hash functions. In math-
ematical cryptography it is formalized by the notion of a family of collision-
intractable hash functions. However this conjecture is the most problematic
one. Collision intractability seems to be too much to require from individual
function. For instance, if one turns to non-uniform computation model than the
set of hash functions satisfying an analogous conjecture is evidently empty

The next lemma shows that for e-signature schemes based on individual
hash-functions Conjecture 2 provides a necessary condition for security. For
definition of existential unforgeability with respect to chosen-message attack
the reader is referred to section 6.

Lemma 2. Suppose the Conjecture 2 does not hold, i. e. there exist a PPT A
and a polynomial p such that

Pr{A(1") = (m,m/),m #m' & H(m) = H(m')} > 1/p(n)



for infinitely many n. Then there exists a PPT B such that
Pr{B(g,y) = (m,r,s): V(r,s,m) =1} > 1/p(n)
for infinitely many n.
The PPT B can mount a chosen-message attack on the e-signature scheme.

Proof. Machine B can call A as a subroutine, get from it a collision (m,m') and
then obtain a signature (r, s) for the message m' using a chosen-message attack.
It is clear that the pair (r, s) is also a valid signature for the message m. (]

5 Tamper-proof device

In the setting being considered each participant of e-signature protocol has in his
possession a tamper-proof device implementing an encryption function Ex(-) of
a private-key cryptosystem. The private key K is chosen at random by the key
generation algorithm and is the same for all tamper-proof devices.

Since an adversary is assumed to have a tamper-proof device in his possession
the contents of this device should be shielded. More precisely, an adversary is
supposed to be ignorant of the value of the private key K. In general there
are many ways to formalize this requirement. To obtain a security guarantee
for the e-signature scheme in question it suffices to require that tamper-proof
device shielding provides for the IND-CPA security of the cryptosystem.

In the case an adversary manages to succeed in reverse-engineering and ob-
tains the private key, this would not lead to any fatal consequences. It is not
clear whether knowledge of the private key facilitates signature forgering. In-
tuitively, it seems that signature forgering with known private key K is no eas-
ier than the same task for original (without tamper-proof devices) e-signature
scheme. However we were unable to justify this intuition and pose this as an
open problem.

An adversary having access to a tamper-proof device is able to mount a
chosen-plaintext attack on the cryptosystem. This means that an adversary
can choose plaintexts mi,...,m; and obtain the corresponding ciphertexts
Cly...,¢t, where ¢; = Eg(m;), i = 1,...,t. An attack may be adaptive,
i. e. when choosing a current plaintext m; an adversary knows ciphertexts
Cly---,Ci—1-

We consider ciphertext distinguishability threat: an adversary chooses two
plaintexts m®, m' and gets a ciphertext of one of them chosen at random. The
threat is that an adversary can distinguish ciphertexts of plaintexts m®, m! of
her choice. The following scenario is allowed: after choosing plaintexts m?, m'
and obtaining a ciphertext ¢ an adversary proceeds with the chosen-plaintext
attack. But in any case it is required that m®,m! # m; foralli =1,...,t.

Formally, an adversary is an oracle PPT AP. An input word to this machine
is the security parameter n in unary. The oracle E chooses a private key K using
the cryptosystem key generation algorithm. PPT A can submit to the oracle E
two kinds of queries:



e regular queries of the form (1,m;). The oracle answers to this query with
ciphertext ¢; = Ex(m;);

e special query of the form (2,m° m?!). The oracle chooses a random bit o
and returns a ciphertext ¢ = Ex(m?).

Only one special query is allowed and this can be issued at any time moment
of adversary’s choice. It is required that m; # m® and m; # m! for any i.

By AP(1") = o we denote the following event: PPT A after getting a
ciphertext ¢ in return to its special query outputs a bit b such that b = ¢ and
halts.

Definition 2. A cryptosystem is IND-CPA secure if for any oracle PPT AF,
for any polynomial p and any sufficiently large n

[Pr{A”(1") = 0} — 1/2] < 1/p(n).

The probability is over random choices of the algorithm A, and random
choices of the private key K and bit o.

Conjecture 3. The cryptosystem implemented in tamper-proof devices is IND—
CPA secure.

6 Security of the e-signature scheme

We consider security of e-signature scheme against existential forgery based on
(adaptive) chosen-message attack. For classification of attacks and threats that
can be defined for e-signature schemes the reader is referred to [8].

Formally a chosen-message attack is modelled by allowing an adversary to
access an oracle S. A query is defined to be a message m and the oracle responds
with a pair (r,s) such that V(r,s,m) = 1.

An adversary is defined as an oracle PPT A°. Input to this machine is a pair
(9,y)- The PPT A, also has access to the oracle E for the encryption function
implemented in a tamper-proof device.

To simplify notation for machines with two oracles we sometimes omit one
of them in superscripts.

Let myq,...,m; be the set of all messages submitted by A as queries to the
oracle S. Parameter ¢t = t(n) is a function upper bounded by a polynomial due
to the time complexity of A.

Definition 3. e-signature scheme is existentially unforgeable with respect to the
chosen message attack if for any oracle PPT ASE for any polynomial p and all
sufficiently large n

Pr{ASF(g,y) = (m,r,s) :m #mi=1,....t & V(r,s,m) =1} < 1/p(n).



The probability is defined dy random choices of parameters and keys of
e-signature scheme, random choice of cryptosystem private key and random
choices of algorithms A and S.

The next theorem addresses the e-signature scheme defined in section 2 and
assumes that Conjectures 1-3 hold.

Theorem 1. The e-signature scheme is existentially unforgeable with respect to
the chosen-message attack.

Proof. Suppose to the contrary that there exist an oracle PPT A%F and a
polynomial p such that

Pr{ASE(g,y) = (m,7,8) :m £ miyi = 1,...,t & V(r,5,m) =1} > 1/p(n)

for infinitely many n.

Let ¢ = e(n) = 1/p(n). From now on in probability estimates we omit
additive negligible terms fot simplicity.

Suppose that hq, ..., h; is the set of all hash values signed during the chosen-
message attack, i. e. h; = Ex(H(m;)),i=1,...,t.

It is clear that at least one of the following cases occurs with probability at
least, /2 infinitely often:

e there exists ¢ € {1,...,t} such that h; = h, where h = Ex(H(m));
e hy#Ahforalli=1,...,t.

We handle these two cases separately.

1. For any given key K the function Ef is one-to-one, therefore the equality
h; = h implies that H(m;) = H(m). Thus A can be used to find collisions of the
hash-function H. To this end we construct a PPT B (hash-function adversary),
which calls A as an oracle.

The only minor technical problem is as follows. Machine A has itself access
to two oracles S and E, therefore B should be able to intercept and process all
the queries to these oracles.

Given an input 1™ B generates public parameters and keys of the e-signature
scheme according to algorithms of this scheme, and generates private key K
using the key generation algorithm of the cryptosystem implemented in the
tamper-proof device.

Then B calls A feeding it with input (g,y). It is evident that B is able to
answer all the queries of A to oracles. Moreover, all the random variables will
have the same probability distributions as in the above supposition. Hence a
collision will be found with probability at least /2.

2. The case when h is a collision with none of the h; is further divided into
two subcases:

e the PPT A infinitely often with probability at least £/4 forges a signature
for a message m without querying the tamper-proof device on the hash
value H(m);



e the PPT A infinitely often with probability at least /4 forges a signature
for a message m for which the encrypted hash value h = Ex (H(m)) was
obtained as a result of a call to the tamper-proof device.

2.1. The PPT A without querying the tamper-proof device on the hash
value H(m) forged a signature for a message m, i. e. generated a pair (r, s) such
that V(r,s,m) = 1. This can be used to construct an algorithm contradicting
Conjecture 3 on the IND-CPA security of the cryptosystem.

Define a PPT B; (an adversary for the cryptosystem) as follows. Given an
input 1™ machine By generates public parameters and keys of the e-signature
scheme according to algorithms of this scheme. Then B; calls A on input (g,y).
The PPT A has access to two oracles, S and E. Queries to these oracles are
intercepted by Bj. All the queries to the oracle E are answered using chosen-
plaintext attack, while all the queries to the oracle S can be answered due to
the knowledge of a private key of the e-signature scheme.

When A outputs a message m and a corresponding signature (r, s) the PPT
By produces a query (2, H(mP°), H(m!)), where m® = m, m! is a random mes-
sage and submits this query to the oracle. After receiving the oracle answer
h = Ex(H(m?%)), where o is a random bit, By runs the signature verification
algorithm using this value h to verify the signature (r,s). If the verification
passes B outputs 0, otherwise it outputs 1 and in either case halts.

It is clear that

Pr{BF(1") =0} —1/2 > ¢/4.

2.2. Main case. The PPT A forges a signature (r, s) for a message m such
that the tamper-proof device was queried on the hash value H(m). Now we
define a PPT B. (algorithm for the discrete semi-logarithm problem) whose
existence would contradict Conjecture 1. The key idea is to substitute h =
Ex(H(m)) obtained by A as a result of a query by h' = Ex(H(m')) where m'
is a random message.

If A generates a valid signature for A’ with probability less than /4 this can
be used to reach a contradiction with Conjecture 3.

In the opposite case the PPT By will be successful with nonnegligible prob-
ability.

The PPT By on input (g,z) generates private key K of the cryptosystem
using the key generation algorithm. Then By chooses random a € {0,1}" and
computes e = Ex (). Next it computes y = 2¢ and calls A feeding it with input
(9,9)-

Machine A is provided access to two oracles, E and S, therefore By should
process queries to both. Queries to oracle E (chosen plaintext attack on the
cryptosystem) are responded easily since By knows cryptosystem private key.
Queries to oracle S (chosen message attack on the e-signature scheme) require
ability to generate valid signatures. Note that By does not know private key
corresponding to the public key y, i. e. its discrete logarithm.

To forge signatures By uses the following trick. It chooses A,y €r X and
computes r = g y#. Next it puts h = —rp~" and takes h as a substitute for



encrypted hash value Ex(H(m)) of a given message m. Then By computes
s = Ah. It is evident that (r,s) is a valid signature for a message m’ such that
h = Er(H(m')). Indeed,

gsh_lyfrh_1 — gf)\ru_l(fru_l)_lyr(ru_l)_l — g)\yu —

Next we describe how Bs processes queries of A to oracles S and E. To
distinguish messages from plaintext the latters from now on will be denoted by
Greek letters.

The PPT B maintains a list of replies to queries. Initially this list is empty.

Given a message m (a query to the oracle S) or plaintext o (a query to the
oracle F) By checks whether the list of replies contains an entry with such a
value a where in the first case « = H(m). If so, outputs either a pair (r,s)
(query to the oracle S) or h (query to the oracle E).

Otherwise By chooses random A, p, computes r, s and h as above and fixes
h as a substitute for Ex (H(m)). Either a pair (r, s) (query to the oracle S) or a
value h is returned to A. Then Bs adds to its list of replies new entry («, h,r, s),
where in the case of a query to the oracle S, a = H(m).

Thus B> responds to queries to the oracle S by substituting true encrypted
hash value Ex (H(m)) by a randomly generated value h. Now we show that on
these "false” values h A must exhibit virtually the same behavior as on true
ones.

Let p1 = pi(n) be the probability that A forges a signature for whatever
message when having access to oracles £ and S. We have supposed that p; >
e/4. Let po = p2(n) be the probability of the same event in the case when
oracles E and S are emulated by By as above.

Suppose that p; — p2 > /8. To show that this contradicts Conjecture 3 we
use well-known hybrid argument. Let ¢ = ¢(n) be the total number of queries
to oracles E and S issued by A. For each i =0,1,...,¢ consider the i-th hybrid
G;. By definition, G; is the string of replies to queries of A to oracles in the case
when all the queries up to the i-th one are emulated by Bs while the queries
i+ 1,...,t are responded by oracles E and S.

Let p’ be the probability of successful forgering when A’s queries to oracles
are responded with hybrid G;. It is clear that p; = p?, po = p°. Therefore there
are two adjacent hybrids G; and G4 such that p'*t —pi > £/8t.

Now we construct a PPT Bjs (an adversary for the cryptosystem) which calls
A as a subroutine. The PPT Bj is provided access to the oracle E. On input 1™
it generates keys and public parameters of e-signature scheme. Then Bj chooses
a random number 7 in the set {1,...,¢t — 1} and responds to queries 1,...,i of
A using access to the oracle E or keys of e-signature scheme as appropriate.
Starting with the (i + 1)-th query Bs proceeds as described above for Bs but
for the following modification.

Processing a current query of A to oracle Bz chooses a € {0, 1}", computes
h = Ek(a) and checks whether h € X. If so Bs chooses k €g X, computes
r = ¢* and finds p and X from relations h = —rp~"' and A\ 4+ zp = k. It is easy
to see that parameters A, p and the private key x have the same probability

10



distributions for PPT’s By and Bjs. Indeed, each of these parameters is chosen
uniformly at random and independently in the set X. Probability that Ex (a) €
X for a €r {0,1}" is nonnegligible (for instance, it is > 1/2 for the GOST
scheme). Using well-known probability amplification techniques one can ensure
that after polynomially many attempts the probability of not hitting the set
X is exponentially vanishing. Therefore the probability distributions of triples
(r,s,h) generated by PPT’s By, and Bs are statistically close.

To get a contradiction with Conjecture 3 take as plaintexts a® and o' for a
special query the plaintext of i-th query of A and the value of « generated by B3
when processing the i-th query. Finally, Bs outputs 1 if A forged a signature for
whatever message and outputs 0 otherwise. It is easy to see that Bs distinguishes
ciphertexts of plaintexts a® and o' with nonnegligible probability.

Now let ps > /8. Then one can use B, to find discrete semi-logarithms.
On input (g,z) the PPT B, forged a signature (r, s) for a random message m.
Machine PPT B, is modified to pick a random j € {1,...,t} and to respond
the j-th query to oracle E with the value of e. Recall that y = 2¢. Then the
signature will be forged just for this encrypted hash value with probability at
least €/8t.

Let (r,s) be a signature for the encrypted hash value e. Then (r,se™!) is
the discrete semi-logarithm for (g, z). Indeed,
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