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1 Introdution

Provable seurity of pratial eletroni signature shemes

1

remains one of

the most intriguing open problems in mathematial ryptography. Naor and

Yung [9℄ proved that existene of one-way permutations implies existene of

e-signature shemes that are seure against existential forgery with respet to

hosen-message attak. Rompel [11℄ showed that for suh a seurity arbitrary

one-way funtion suÆes. It is evident that existene of one-way funtions is

also a neessary ondition, therefore from the theoretial point of view the prob-

lem reahed its �nal solution. Namely, seure e-signature shemes exist i� there

exist one-way funtions.

However, e-signature shemes proposed in the papers ited above are far

from be pratial.

Proofs of seurity for pratial e-signature shemes are known in idealized

models only. There exist two suh models, with random orale and with generi

group. Random orale model omes bak to Fiat and Shamir [6℄ who noted

that seurity proof tehniques proposed for interative authentiation protools

ould be applied to e-signature shemes if a hash funtion is substituted by a

random funtion. Later this idea was formalized as a random orale model.

In this model any partiipant of a protool an query an orale for a value of

random funtion in any point of its range.

Most of the proposed so far e-signature shemes were shown to be seure

in the random orale model (the �rst suh proof is due to Pointeheval and

1

There exists ommonly used but somewhat misleading term digital signature. Note that

hand-written signature needs not be something like the signer's name. It an be any piture

instead, for instane a sequene of digits. We oin the term eletroni signature (e-signature

for short) whih emphasizes the fat that both the signature and the doument it is attahed

to exist in eletroni form only. This term is in the same line as e-mail, e-ash et. The

anient term digital is better be voided nowadays. The term eletroni signature should not

be misused for other primitives that exhibit ertain similarities with signatures. The key

property of a signature, both hand-written and eletroni, is that the signer intentionally

attahed it to a given doument to authorize it. This is not the ase, e. g. with �ngerprints.
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Stern [10℄). Moreover, random orale model was suessfully applied to rypto-

graphi protools of other types and nowadays a substantial amount of seurity

proofs is given in this model.

However the random orale model remains to be an idealization only. At-

tempts to instantiate random orale with ryptographi primitives resulted in

no suess. Moreover, Canetti et al. [4℄ onstruted an e-signature sheme seure

in the random orale model, but inseure when random orale is instantiated

with any eÆient funtion.

In the generi group model the group operation is available to adversary

only through alls to orale. This means that adversary an run only generi

algorithms. Brown [3℄ proved seurity of ECDSA in the generi group model.

This model is also an idealizations only. Dent [5℄ onstruted ryptographi

shemes seure in the generi group model but inseure when instantiated with

any eÆiently realizable group.

Another line of researh was initiated by Varnovsky [1℄ who studied tamper-

proof devie model. Instead of aess to random orale eah partiipant is

provided with a tamper-proof devie implementing a private-key ryptosystem.

In this model was demonstrated seurity of a somewhat modi�ed former GOST

2

e-signature sheme [2℄. In that variant of GOST they used a group of residues

modulo a prime. The seurity guarantee was based on three onjetures: om-

putational intratability of disrete logarithm problem, ollision resistane of a

hash funtion, and seurity of private-key ryptosystem. The last onjeture

was rather unusual.

In the present paper we study the urrent version of GOST e-signature

sheme with the following modi�ations:

� parameters of the sheme depend on a growing seurity parameter, i. e.

we onsider as is usual in mathematial ryptography an in�nite family of

shemes;

� hash value H(m) of a message m to be signed is submitted to tamper-

proof devie for enryption. In the signature generation algorithm one

uses enrypted hash value E

K

(H(m)), where K is a private key and E is

the enryption funtion.

For modi�ed this way GOST e-signature sheme we prove existential un-

forgeability with respet to hosen-message attak. The seurity guarantee is

based on the following assumptions:

� physial assumption on tamper-proof devie. Private key K is the same

for all the tamper-proof devies and supposed to be physially shielded;

� IND{CPA seurity of the private-key ryptosystem (indistinguishabilty

under hosen-plaintext attak);

2

Not to be onfused with ghost! In Russian GOST is just an aronym for National Stan-

dard.
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� ollision resistane of a hash funtion;

� intratability of disrete semi-logarithm problem.

Although the resulting e-signature sheme is not pratial its seurity guar-

antee does not use any idealized models. All the four assumptions are standard

for ryptography. For instane, suh ompanies as General Eletri and IBM use

in their bank systems tamper-proof devies (see e. g. [12℄). IND{CPA seurity

is ahievable even for probabilisti publi-key ryptosystems [7℄. The last two

assumptions are also neessary onditions for seurity of e-signature shemes.

Moreover, it is well known that IND{CPA seure private-key ryptosystems

exist i� there exist one-way funtions. Sine one-way funtions are neessary

for the existene of seure e-signature shemes the results of the present paper

ould be interpreted as follows. In our setting we prove modulo the physial

assumption a neessary and suÆient ondition for seurity of the e-signature

sheme.

Fiat{Shamir paradigm allows one to prove seurity of e-signature shemes

under assumption that hash funtion is \as seure as" a random funtion. We

take a moderate step towards pratie. In our paradigm an e-signature sheme

ould be shown seure if a hash funtion is "as seure as" an enryption funtion

of an IND{CPA seure private-key ryptosystem.

In setion 2 we speify a modi�ation of the GOST e-signature sheme to be

onsidered. Setions 3 to 5 are devoted to onjetures used to study its seurity.

In setion 6 we state a de�nition of seurity of an e-signature sheme and prove

the main result.

2 e-signature sheme

Let n be a seurity parameter whih is de�ned to be the binary length of a

private key.

For eah n there exists a �nite set of instantiations of an e-signature sheme.

Eah of these instantiations is de�ned by a ertain group hgi and a set X . We

use multipliative notation for the group hgi.

A private key x is drawn from uniform probability distribution over the set

X . A publi key is y = g

x

.

In the GOST e-signature sheme hgi is an order q yli subgroup of an

ellipti urve group, X being the set f1; : : : ; q�1g. Thus, the seurity parameter

is the binary length of a prime q.

The e-signature sheme makes use of two additional ryptographi primi-

tives, hash funtion H and enryption funtion E

K

(�) of a private-key ryp-

tosystem. Private key K of this ryptosystem is stored in tamper-proof devies

and is anavailable to all partiipants of the sheme.

To de�ne an e-signature sheme it suÆes to speify signature veri�ation

algorithm. In the modi�ed GOST sheme at hand this algorithm is as follows.

Let (r; s) be a purported signature for a message m.

1. Compute H(m).
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2. Hash value H(m) is submitted to the tamper-proof devie whih returns

an enrypted hash value h = E

K

(H(m)).

3. Enrypted hash value h and signature (r; s) are substituted into the

signature veri�ation relation r = g

sh

�1

y

�rh

�1

.

4. If the equality holds the signature is aepted (valid signature), otherwise

it is rejeted.

From now on the equality V (r; s;m) = 1 means that a pair (r; s) is a valid

signature for a message m.

To sign a message m the owner of a private key has to ompute enrypted

hash value h = E

K

(H(m)), hoose session private key k uniformly at random in

the set X , ompute session publi key r = g

k

and �nally ompute s = rx+ kh.

This desription uses ertain simplifying onventions. In the GOST e-

signature sheme session publi key r is an ellipti urve point. To use this value

in operations over the set X one needs a transformation mapping f : hgi ! X .

In the GOST sheme the transformation mapping f piks the �rst oordinate of

the point and redues it modulo q. To simplify notation we omit in what follows

any referenes to the transformation mapping f and all redutions modulo q.

3 Disrete semi-logarithm problem

De�nition 1. Disrete semi-logarithm of an element z 2 hgi is any pair (t; u)

suh that t = g

u

z

�t

.

Thus if one onsiders z as a publi key of an e-signature sheme then its

disrete semi-logarithm is a signature for a message m suh that H(m) = 1.

It is evident that the problem of �nding disrete semi-logarithms is not

harder than the disrete logarithm problem.

From now on PPT is a shorthand for probabilisti polynomial Turing ma-

hine.

Conjeture 1. Let z be a random element of the group hgi. Then for any

polynomial p, for any PPT A

PrfA(g; z) = (t; u) : t = g

u

z

�t

g < 1=p(n)

for all suÆiently large n.

The probability is over the random hoie of z, random hoies of algorithm

A and, in general, random hoie of a group hgi from the set of all groups

orresponding to a given seurity parameter n.

The next lemma shows that Conjeture 1 provides a neessary ondition for

seurity of e-signature sheme.

Lemma 1. Suppose Conjeture 1 does not hold, i. e. there exist a polynomial

p and a PPT A suh that

PrfA(g; z) = (t; u) : t = g

u

z

�t

g � 1=p(n)
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for in�nitely many n. Then there exists a PPT B suh that

PrfB(g; y;m) = (r; s) : V (r; s;m) = 1g � 1=p(n)

for in�nitely many n.

Proof. On input (g; y;m) the mahine B omputes h = E

K

(H(m)) and z =

y

h

�1

. Then it alls A as a subroutine feeding it with input (g; z). Sine y is a

random element of the group hgi, z is a random element of this group as well.

Therefore the pair (g; z) generated by B has the same probability distribution

as the pair of input values of A in the supposition of the lemma. By this

supposition A �nds for in�nitely many n a disrete semi-logarithm (t; u) of z

with probability at least 1=p(n).

Let (t; u) be a pair returned by A. The PPT B veri�es whether the equality

t = g

u

z

�t

holds and, if so, outputs (t; uh) and halts.

It is lear that B proeeds in polynomial time.

If (t; u) is a disrete semi-logarithm of z then

g

(uh)h

�1

y

�th

�1

= g

u

z

�t

= t;

i. e. the pair (t; uh) is a valid signature for the message m.

4 Hash funtion

Hash funtion H an be de�ned as a family of hash funtions fH

n

g where the

funtion H

n

maps messages of arbitrary length into the set f1; : : : ; 2

n

� 1g. An

index n is always lear from the ontext and therefore omitted for simpliity.

The required ryptographi properties of a hash funtion are stated in the

next onjeture.

Conjeture 2. For any PPT A, for any polynomial p and all suÆiently large

n

PrfA(1

n

) = (m;m

0

) : m 6= m

0

& H(m) = H(m

0

)g < 1=p(n):

This requirement is standard for ryptographi hash funtions. In math-

ematial ryptography it is formalized by the notion of a family of ollision-

intratable hash funtions. However this onjeture is the most problemati

one. Collision intratability seems to be too muh to require from individual

funtion. For instane, if one turns to non-uniform omputation model than the

set of hash funtions satisfying an analogous onjeture is evidently empty

The next lemma shows that for e-signature shemes based on individual

hash-funtions Conjeture 2 provides a neessary ondition for seurity. For

de�nition of existential unforgeability with respet to hosen-message attak

the reader is referred to setion 6.

Lemma 2. Suppose the Conjeture 2 does not hold, i. e. there exist a PPT A

and a polynomial p suh that

PrfA(1

n

) = (m;m

0

);m 6= m

0

& H(m) = H(m

0

)g � 1=p(n)
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for in�nitely many n. Then there exists a PPT B suh that

PrfB(g; y) = (m; r; s) : V (r; s;m) = 1g � 1=p(n)

for in�nitely many n.

The PPT B an mount a hosen-message attak on the e-signature sheme.

Proof. Mahine B an all A as a subroutine, get from it a ollision (m;m

0

) and

then obtain a signature (r; s) for the message m

0

using a hosen-message attak.

It is lear that the pair (r; s) is also a valid signature for the message m.

5 Tamper-proof devie

In the setting being onsidered eah partiipant of e-signature protool has in his

possession a tamper-proof devie implementing an enryption funtion E

K

(�) of

a private-key ryptosystem. The private key K is hosen at random by the key

generation algorithm and is the same for all tamper-proof devies.

Sine an adversary is assumed to have a tamper-proof devie in his possession

the ontents of this devie should be shielded. More preisely, an adversary is

supposed to be ignorant of the value of the private key K. In general there

are many ways to formalize this requirement. To obtain a seurity guarantee

for the e-signature sheme in question it suÆes to require that tamper-proof

devie shielding provides for the IND-CPA seurity of the ryptosystem.

In the ase an adversary manages to sueed in reverse-engineering and ob-

tains the private key, this would not lead to any fatal onsequenes. It is not

lear whether knowledge of the private key failitates signature forgering. In-

tuitively, it seems that signature forgering with known private key K is no eas-

ier than the same task for original (without tamper-proof devies) e-signature

sheme. However we were unable to justify this intuition and pose this as an

open problem.

An adversary having aess to a tamper-proof devie is able to mount a

hosen-plaintext attak on the ryptosystem. This means that an adversary

an hoose plaintexts m

1

; : : : ;m

t

and obtain the orresponding iphertexts



1

; : : : ; 

t

, where 

i

= E

K

(m

i

), i = 1; : : : ; t. An attak may be adaptive,

i. e. when hoosing a urrent plaintext m

i

an adversary knows iphertexts



1

; : : : ; 

i�1

.

We onsider iphertext distinguishability threat: an adversary hooses two

plaintexts m

0

, m

1

and gets a iphertext of one of them hosen at random. The

threat is that an adversary an distinguish iphertexts of plaintexts m

0

, m

1

of

her hoie. The following senario is allowed: after hoosing plaintexts m

0

, m

1

and obtaining a iphertext  an adversary proeeds with the hosen-plaintext

attak. But in any ase it is required that m

0

;m

1

6= m

i

for all i = 1; : : : ; t.

Formally, an adversary is an orale PPT A

E

. An input word to this mahine

is the seurity parameter n in unary. The orale E hooses a private keyK using

the ryptosystem key generation algorithm. PPT A an submit to the orale E

two kinds of queries:
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� regular queries of the form (1;m

i

). The orale answers to this query with

iphertext 

i

= E

K

(m

i

);

� speial query of the form (2;m

0

;m

1

). The orale hooses a random bit �

and returns a iphertext  = E

K

(m

�

).

Only one speial query is allowed and this an be issued at any time moment

of adversary's hoie. It is required that m

i

6= m

0

and m

i

6= m

1

for any i.

By A

E

(1

n

) = � we denote the following event: PPT A after getting a

iphertext  in return to its speial query outputs a bit b suh that b = � and

halts.

De�nition 2. A ryptosystem is IND{CPA seure if for any orale PPT A

E

,

for any polynomial p and any suÆiently large n

jPrfA

E

(1

n

) = �g � 1=2j < 1=p(n):

The probability is over random hoies of the algorithm A, and random

hoies of the private key K and bit �.

Conjeture 3. The ryptosystem implemented in tamper-proof devies is IND{

CPA seure.

6 Seurity of the e-signature sheme

We onsider seurity of e-signature sheme against existential forgery based on

(adaptive) hosen-message attak. For lassi�ation of attaks and threats that

an be de�ned for e-signature shemes the reader is referred to [8℄.

Formally a hosen-message attak is modelled by allowing an adversary to

aess an orale S. A query is de�ned to be a messagem and the orale responds

with a pair (r; s) suh that V (r; s;m) = 1.

An adversary is de�ned as an orale PPT A

S

. Input to this mahine is a pair

(g; y). The PPT A, also has aess to the orale E for the enryption funtion

implemented in a tamper-proof devie.

To simplify notation for mahines with two orales we sometimes omit one

of them in supersripts.

Let m

1

; : : : ;m

t

be the set of all messages submitted by A as queries to the

orale S. Parameter t = t(n) is a funtion upper bounded by a polynomial due

to the time omplexity of A.

De�nition 3. e-signature sheme is existentially unforgeable with respet to the

hosen message attak if for any orale PPT A

S;E

for any polynomial p and all

suÆiently large n

PrfA

S;E

(g; y) = (m; r; s) : m 6= m

i

; i = 1; : : : ; t & V (r; s;m) = 1g < 1=p(n):
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The probability is de�ned dy random hoies of parameters and keys of

e-signature sheme, random hoie of ryptosystem private key and random

hoies of algorithms A and S.

The next theorem addresses the e-signature sheme de�ned in setion 2 and

assumes that Conjetures 1{3 hold.

Theorem 1. The e-signature sheme is existentially unforgeable with respet to

the hosen-message attak.

Proof. Suppose to the ontrary that there exist an orale PPT A

S;E

and a

polynomial p suh that

PrfA

S;E

(g; y) = (m; r; s) : m 6= m

i

; i = 1; : : : ; t & V (r; s;m) = 1g � 1=p(n)

for in�nitely many n.

Let " = "(n) = 1=p(n). From now on in probability estimates we omit

additive negligible terms fot simpliity.

Suppose that h

1

; : : : ; h

t

is the set of all hash values signed during the hosen-

message attak, i. e. h

i

= E

K

(H(m

i

)), i = 1; : : : ; t.

It is lear that at least one of the following ases ours with probability at

least "=2 in�nitely often:

� there exists i 2 f1; : : : ; tg suh that h

i

= h, where h = E

K

(H(m));

� h

i

6= h for all i = 1; : : : ; t.

We handle these two ases separately.

1. For any given key K the funtion E

K

is one-to-one, therefore the equality

h

i

= h implies that H(m

i

) = H(m). Thus A an be used to �nd ollisions of the

hash-funtion H . To this end we onstrut a PPT B (hash-funtion adversary),

whih alls A as an orale.

The only minor tehnial problem is as follows. Mahine A has itself aess

to two orales S and E, therefore B should be able to interept and proess all

the queries to these orales.

Given an input 1

n

B generates publi parameters and keys of the e-signature

sheme aording to algorithms of this sheme, and generates private key K

using the key generation algorithm of the ryptosystem implemented in the

tamper-proof devie.

Then B alls A feeding it with input (g; y). It is evident that B is able to

answer all the queries of A to orales. Moreover, all the random variables will

have the same probability distributions as in the above supposition. Hene a

ollision will be found with probability at least "=2.

2. The ase when h is a ollision with none of the h

i

is further divided into

two subases:

� the PPT A in�nitely often with probability at least "=4 forges a signature

for a message m without querying the tamper-proof devie on the hash

value H(m);
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� the PPT A in�nitely often with probability at least "=4 forges a signature

for a message m for whih the enrypted hash value h = E

K

(H(m)) was

obtained as a result of a all to the tamper-proof devie.

2.1. The PPT A without querying the tamper-proof devie on the hash

value H(m) forged a signature for a message m, i. e. generated a pair (r; s) suh

that V (r; s;m) = 1. This an be used to onstrut an algorithm ontraditing

Conjeture 3 on the IND{CPA seurity of the ryptosystem.

De�ne a PPT B

1

(an adversary for the ryptosystem) as follows. Given an

input 1

n

mahine B

1

generates publi parameters and keys of the e-signature

sheme aording to algorithms of this sheme. Then B

1

alls A on input (g; y).

The PPT A has aess to two orales, S and E. Queries to these orales are

interepted by B

1

. All the queries to the orale E are answered using hosen-

plaintext attak, while all the queries to the orale S an be answered due to

the knowledge of a private key of the e-signature sheme.

When A outputs a message m and a orresponding signature (r; s) the PPT

B

1

produes a query (2; H(m

0

); H(m

1

)), where m

0

= m, m

1

is a random mes-

sage and submits this query to the orale. After reeiving the orale answer

h = E

K

(H(m

�

)), where � is a random bit, B

1

runs the signature veri�ation

algorithm using this value h to verify the signature (r; s). If the veri�ation

passes B outputs 0, otherwise it outputs 1 and in either ase halts.

It is lear that

PrfB

E

1

(1

n

) = �g � 1=2 � "=4:

2.2. Main ase. The PPT A forges a signature (r; s) for a message m suh

that the tamper-proof devie was queried on the hash value H(m). Now we

de�ne a PPT B

2

(algorithm for the disrete semi-logarithm problem) whose

existene would ontradit Conjeture 1. The key idea is to substitute h =

E

K

(H(m)) obtained by A as a result of a query by h

0

= E

K

(H(m

0

)) where m

0

is a random message.

If A generates a valid signature for h

0

with probability less than "=4 this an

be used to reah a ontradition with Conjeture 3.

In the opposite ase the PPT B

2

will be suessful with nonnegligible prob-

ability.

The PPT B

2

on input (g; z) generates private key K of the ryptosystem

using the key generation algorithm. Then B

2

hooses random � 2 f0; 1g

n

and

omputes e = E

K

(�). Next it omputes y = z

e

and alls A feeding it with input

(g; y).

Mahine A is provided aess to two orales, E and S, therefore B

2

should

proess queries to both. Queries to orale E (hosen plaintext attak on the

ryptosystem) are responded easily sine B

2

knows ryptosystem private key.

Queries to orale S (hosen message attak on the e-signature sheme) require

ability to generate valid signatures. Note that B

2

does not know private key

orresponding to the publi key y, i. e. its disrete logarithm.

To forge signatures B

2

uses the following trik. It hooses �; � 2

R

X and

omputes r = g

�

y

�

. Next it puts h = �r�

�1

and takes h as a substitute for
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enrypted hash value E

K

(H(m)) of a given message m. Then B

2

omputes

s = �h. It is evident that (r; s) is a valid signature for a message m

0

suh that

h = E

K

(H(m

0

)). Indeed,

g

sh

�1

y

�rh

�1

= g

��r�

�1

(�r�

�1

)

�1

y

r(r�

�1

)

�1

= g

�

y

�

= r:

Next we desribe how B

2

proesses queries of A to orales S and E. To

distinguish messages from plaintext the latters from now on will be denoted by

Greek letters.

The PPT B

2

maintains a list of replies to queries. Initially this list is empty.

Given a message m (a query to the orale S) or plaintext � (a query to the

orale E) B

2

heks whether the list of replies ontains an entry with suh a

value � where in the �rst ase � = H(m). If so, outputs either a pair (r; s)

(query to the orale S) or h (query to the orale E).

Otherwise B

2

hooses random �, �, omputes r, s and h as above and �xes

h as a substitute for E

K

(H(m)). Either a pair (r; s) (query to the orale S) or a

value h is returned to A. Then B

2

adds to its list of replies new entry (�; h; r; s),

where in the ase of a query to the orale S, � = H(m).

Thus B

2

responds to queries to the orale S by substituting true enrypted

hash value E

K

(H(m)) by a randomly generated value h. Now we show that on

these "false" values h A must exhibit virtually the same behavior as on true

ones.

Let p

1

= p

1

(n) be the probability that A forges a signature for whatever

message when having aess to orales E and S. We have supposed that p

1

�

"=4. Let p

2

= p

2

(n) be the probability of the same event in the ase when

orales E and S are emulated by B

2

as above.

Suppose that p

1

� p

2

> "=8. To show that this ontradits Conjeture 3 we

use well-known hybrid argument. Let t = t(n) be the total number of queries

to orales E and S issued by A. For eah i = 0; 1; : : : ; t onsider the i-th hybrid

G

i

. By de�nition, G

i

is the string of replies to queries of A to orales in the ase

when all the queries up to the i-th one are emulated by B

2

while the queries

i+ 1; : : : ; t are responded by orales E and S.

Let p

i

be the probability of suessful forgering when A's queries to orales

are responded with hybrid G

i

. It is lear that p

1

= p

t

, p

2

= p

0

. Therefore there

are two adjaent hybrids G

i

and G

i+1

suh that p

i+1

� p

i

� "=8t.

Now we onstrut a PPT B

3

(an adversary for the ryptosystem) whih alls

A as a subroutine. The PPT B

3

is provided aess to the orale E. On input 1

n

it generates keys and publi parameters of e-signature sheme. Then B

3

hooses

a random number i in the set f1; : : : ; t� 1g and responds to queries 1; : : : ; i of

A using aess to the orale E or keys of e-signature sheme as appropriate.

Starting with the (i + 1)-th query B

3

proeeds as desribed above for B

2

but

for the following modi�ation.

Proessing a urrent query of A to orale B

3

hooses � 2

R

f0; 1g

n

, omputes

h = E

K

(�) and heks whether h 2 X . If so B

3

hooses k 2

R

X , omputes

r = g

k

and �nds � and � from relations h = �r�

�1

and �+ x� = k. It is easy

to see that parameters �, � and the private key x have the same probability

10



distributions for PPT's B

2

and B

3

. Indeed, eah of these parameters is hosen

uniformly at random and independently in the set X . Probability that E

K

(�) 2

X for � 2

R

f0; 1g

n

is nonnegligible (for instane, it is � 1=2 for the GOST

sheme). Using well-known probability ampli�ation tehniques one an ensure

that after polynomially many attempts the probability of not hitting the set

X is exponentially vanishing. Therefore the probability distributions of triples

(r; s; h) generated by PPT's B

2

and B

3

are statistially lose.

To get a ontradition with Conjeture 3 take as plaintexts �

0

and �

1

for a

speial query the plaintext of i-th query of A and the value of � generated by B

3

when proessing the i-th query. Finally, B

3

outputs 1 if A forged a signature for

whatever message and outputs 0 otherwise. It is easy to see that B

3

distinguishes

iphertexts of plaintexts �

0

and �

1

with nonnegligible probability.

Now let p

2

� "=8. Then one an use B

2

to �nd disrete semi-logarithms.

On input (g; z) the PPT B

2

forged a signature (r; s) for a random message m.

Mahine PPT B

2

is modi�ed to pik a random j 2 f1; : : : ; tg and to respond

the j-th query to orale E with the value of e. Reall that y = z

e

. Then the

signature will be forged just for this enrypted hash value with probability at

least "=8t.

Let (r; s) be a signature for the enrypted hash value e. Then (r; se

�1

) is

the disrete semi-logarithm for (g; z). Indeed,

g

se

�1

y

�re

�1

= g

se

�1

z

�r

:
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