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Abstract 
Secure group communication is significant for wireless and mobile computing. Overheads can be reduced 
efficiently  when a sender sends multiple messages to multiple recipients using multi-recipient 
signcryption schemes. In this paper, we proposed the formal definition and security model of multi-
recipient signcryption, presented the definition of reproducible signcryption and proposed security 
theorems for randomness reusing based multi-recipient signcryption schemes. We found that a secure 
reproducible signcryption scheme can be used to construct an efficient multi-recipient signcryption 
scheme which has the same security level as the underlying base signcryption scheme. We constructed a 
multi-recipient scheme which is provable secure in random oracle model assuming that the GDH problem 
is hard, based on a new BLS -type signcryption scheme. Overheads of the new scheme are only (n+1)/2n 
times of traditional ways when a sender sends different messages to n distinct recipients. It is more 
efficient than other known schemes. It creates a possibility for the practice of the public key cryptosystem 
in ubiquitous computing. 
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1. Introduction 

Security problem is significant for wireless and 
mobile communication systems . Data privacy and 
integrity, source authenticity are the main tasks to 
strengthen information systems. To achieve 
confidentiality and authenticity simultaneously, 
encryption and signature (message authenticated 
code) are often combined in sequence. The 
traditional way is infeasible with the disadvantages: 
(1) heavy overheads; (2) lack of security. Zheng 
proposed a novel conception named signcryption to 
perform the encryption and signature in a single 
primitive [1]. It fixed the above problems . It is an 
active and fruitful area in the past years. Bao and 
Deng improved it and gave a signcryption that can be 
verified publicly in 1998 [2]. DSA (Digital Signature 
Algorithm)  based signcryption scheme SC-DSA [3],  
RSA based signcryption scheme RSA-TBOS (two 
birds one stone) [4], ECDSA  based signcryption 
scheme [5] and Identity-based signcryption [6] were  
proposed in the past years. At the same times, some 
generic structures for signcryption and secure model 
were presented also [7,8]. We proposed generalized 
signcryption to achieve more functions with one 
primitive [9]. However, Zheng’s conception is 

unpractical for increasingly popular ubiquitous 
communications.   

In common scenario, message is delivered 
between a single sender and a single recipient. Users 
may encrypt (sign) the message to protect it. When 
message will be delivery to several recipients, a 
message will be encrypted for several times 
independently using an encryption algorithm with 
different parameters (recipients’ public key will be 
also included in public key setting). As a matter of 
fact, most of the messages are communicated in 
multiple users setting. Especially, applications in 
wireless and mobile computing need multi-user 
communication, such as secure routing, data 
aggregation, multi-cast in WSN (wireless sensor 
networks), manet (mobile ad hoc networks), overlay 
networks and so on. The naïve method is that sender 
produces and issues messages one by one, which is 
inefficient and insecure, especially in wireless and 
energy constrained networks. Broadcasted message 
will awake idle nodes and consume their power. The 
expensive computation and data sending will exhaust 
sender nodes ’ energy quickly. To enhance the totally 
performance, we should resolve the following 
problems. (1) Reducing broadcast. (2) Reducing the 
data amount. (3) Reducing the computational 
overheads on sender nodes. So, signcryption have to 
be extended to the multi-user setting in order to 
enhance the performance. 
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Our work is motivated by above problems.  Our 
goal is to provide a theoretic model and a feasible 
scheme for secure group communications in wireless 
and mobile computing. The remainder of the paper is 
organized as follows. We reviewed the related works 
and preliminary in section 2 and section 3. In section 
4, we proposed the definition and model of multi-
recipient signcryption. Two security theorems  about 
multi-recipient signcryption by randomness reusing 
were proposed and proved. What’s more, we 
constructed an efficient multi-recipient signcryption 
scheme based on bilinear paring in section 5. This 
scheme is semantic secure and unforgeable, which is 
more efficient than others. It is the unique one that 
can send multiple messages to distinct recipients.  We 
conclude the whole paper in section 6. 

2. The state-of-art Research 

2.1. Multi-recipient Encryption 

How to produce and transfer messages to multiple 
recipients is the task of MRES (multi-recipient 
encryption scheme). In SM-MR (single message-
multi-recipient) scheme, a sender sends a single 
message to different receivers. While in MM-MR 
(multi-message-multi-recipient) schemes, a sender 
sends different messages to different receivers. 
Obviously, SM-MR is a special case of MM-MR. In 
a MRES, overheads are from computation and 
communication. The totally computational overheads 
include encryption operation of sender and 
decryption operations of multiple receivers. While, 
the totally communication overheads include the 
broadcasted ciphertext . So, an efficient MRES is a 
scheme with low computational cost and shortened 
broadcast message. 

To send encrypted message to multiple receivers, 
the natural way is trivial n-recipient which produces 
and sends a ciphertext for each one. Because that 
some schemes are not secure in multi-user setting, 
trivial n-recipient scheme is simple but infeasible, for 
example , Håstad have found that RSA may leak 
message[10]. In 2000, Baudron et al. [11] and Bellare 
et al.[12] independently proved the secure condition 
for MRES. They found that the trivial n-recipient 
scheme is secure (in the sense of indistinguishability) 
if the base scheme is secure (in the sense of 
indistinguishability). The nice result can be used to 
test the security of some encryption schemes. But the 
secure trivial n -recipient schemes have n times 
overheads more than that of underlying base scheme. 
Kurosawa  [13] presented a technology called 
randomness reusing to enhance the efficiency of 
multi-recipient encryption schemes based on 
ElGamal [14] and Cramer-Shoup[15]. The length of 
resulted ciphertext is half of the trivial n-recipient 
scheme. In general, randomness reusing will cause 

serious secure problems. But Kurosawa’s result 
showed that randomness can be reused without 
sacrificing security in some cases. Bellare et al.[16] 
[17] investigated the property of randomness reusing 
schemes and presented the reproducibility theorem to 
verify the security. 

2.2. Multi-recipient signcryption 

In one-to-many scenarios, such as secure 
broadcast/mu lticast, privacy and authenticity can be 
achieved with signcryption simultaneously. But the 
trivial n-recipient signcryption is unpractical. We 
should extend signcryption to many users setting to 
enhance its efficiency, and evaluate its security 
accurately. 

In the last few years, some SM-MR schemes 
were proposed. These schemes can send a single 
message to different recipients. Firstly, Zheng 
designed a scheme for multiple receivers [1]. It 
encrypts message with a random number k  which is 
signcrypted to receivers by trivial n-recipient method. 
The totally overheads are about n+1 times than base 
scheme. This scheme is inefficient even if it is secure. 
We also designed a similar scheme for generalized 
signcrypiton [9]. In 2003, Boyen designed a 
multipurpose identity-based signcryption scheme 
which can be used in multiple receivers setting [18]. 
His method is carry out the sign operation once, and 
then performs the encrypt operation independently 
for each receiver, based on the output from sign 
operation. The n bilinear paring computations made 
the scheme very slow. In 2006, Duan et al. proposed 
a multi-receiver identity-based signcryption scheme 
which includes 1 paring operation in signcryption and 
4n paring in designcryption [19]. In 2007, the scheme 
of Yu et al. [20], which includes 3n paring in 
designcryption, is on the basis of Chen and Malone-
Lee’s identity based signcryption [7]. In 2008, using 
a different way, Li et al. proposed a similar one 
which reduces the communication overheads slightly 
[21].  

It is easy to see, MM-MR is more useful than SM-
MR in wireless and mobile networks. It is used not 
only to broadcast messages, but also to communicate 
with distinct users simultaneously. For example, in 
data aggregation, the sink node often communicates 
with distinct sense nodes . Unfortunately, there are  
neither theoretic achievements including the model, 
definition and secure notions, nor practical scheme. 
To sum up, researches are imperfect, without general 
definition and secure model. Moreover, there is no 
theoretic basis for how to construct efficient and 
secure scheme,  which hold back the efficiency of 
group communications. 

3. Preliminary 
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3.1. Signcryption 

Signcryption is a logical combination of encryption 
and signature. A common signcryption scheme is a 
two-party cryptographic protocol. The syntax is 
presented as follows [22]. 

Definition 1 (Signcryption). A signcryption scheme 
Σ=(Gen, SC, DSC) consists of three algorithms . Gen, 
the randomized keys generation algorithm, takes 
input a security parameter λ and generates a pair of 
keys for user U. We write (SDKU, VEKU) ← Gen(U, 
1λ). SDK is a secret key. VEK is a public key. 
Signcryption algorithm SC is a probabilistic 
algorithm. It takes the private key of the sender A, the 
public key of the recipient B and a message m∈M to 
return a signcrypted text w. We write w← SC(m, 
SDKA, VEKB). Decryption algorithm DSC is a 
deterministic algorithm. It takes the public key of the 
sender A, the private key of the recipient B, and a 
signcryption text  w, to return the message m or a 
invalid notation ⊥ . We write m∪{⊥} ←DSC(w, 
SDKB, VEKA). For a fixed message m∈M , we say 
that the signcryption scheme Σ=(Gen, SC, DSC) is 
correct if and only if DSC(SC(m, SDKS, VEKR), 
SDKR, VEKS)=m. 

The security notions of signcryption were 
presented by Zheng firstly [1]. But for a verifiable 
publicly signcryption scheme, we say that it is secure 
if the following conditions are satisfied [9]: 

Unforgeability. It is computationally infeasible for 
an adaptive foreger, who may be a dishonest Bob and 
allowed to query Alice’s signcryption algorithm, to 
masquerade Alice in creating an authentic 
signcrypted text. 

Confidentiality. It is computationally infeasible for 
an adaptive attacker to gain any partial information 
on the contents of a signcrypted text. The adaptive 
attacker may be any party other than Alice and Bob.  

Now, we give the formal version of the above 
secure notions. 

Definition 2 (Confidentiality). A signcryption 
scheme Σ=(Gen, SC, DSC) is semantic secure against 
IND-CCA2 (indistinguishability against adaptive 
chosen ciphertext attacks), if there is no probabilistic  
polynomial time attacker A can perform the attack 
experiment CCAExp with non-negligible advantage. 
For secure parameter k∈N, we consider the 
experiment CCAExp as follows. 

Experiment )(kcca2-ind
A,CCAExp∑  

(1) I ← G (1k); (st) ←A(select, I)  
(2) (VEKS, SDKS) ← K (I) 
(3) (VEKR, SDKR) ← K (I) 
(4) (m0, m1, st)←ASC(.), RO(.), DSC(find, 

st),  (|m0|=|m1|) 
(5) b ← {0, 1}; w←SC(mb) 

(6) d←ASC(.), RO(.), DSC(.) (guess, w, st) 
(7) If d← b, and w was never queried to DSC(.), 

then return  1 
   Else return 0. 

In the random oracle model [23] with secure 
parameter k , an adversary A runs in time t and 
performs qSC signcryption queries, qDSC de-
signcryption queries and qH queries to oracle  RO(.), 
has the advantage 

]}0)(Pr[

]0)(max{Pr[)(
1

0

=−

==
−

∑

−
∑∑

k

kk
cca2-ind

 A,

cca2-ind
 A,

cca2-ind
 A,

CCAExp

CCAExpAdv . 

Notes. A  is an adaptive attacker and runs in three 
stages. In the selecting stage, the attacker is given 
some initial information and outputs a state 
information st. In the finding stage, A selects two 
messages with equal length and submits to 
signcryption subroutine after querying to RO(.), SC(.) 
and DSC(.). In the guessing stage,  A continues to get 
the help from these oracles. 

Definition 3 (Unforgeability). A signcryption 
scheme Σ=(Gen, SC, DSC) is existentially 
unforgeable against adaptive insider CMA (chosen 
message attacks), if there is no probabilistic  
polynomial time forger E can perform the forge 
experiment ForgeExp with non-negligible advantage. 
For secure parameter k∈N, we consider the 
experiment ForgeExp as follows. 

Experiment )(kcma
E,ForgeExp∑  

(1) I ← G (1k); (st) ←E(select, I)  
(2) (VEKS, SDKS) ← K (I) 
(3) (VEKR, SDKR) ← K (I) 
(4) If ESC(.)RO(.)(VEKS,VEKR, SDKR) outputs (m, 

w) such that 
(a) DSC RO(.) (w, SDKR, VEKS) = m 

(b) m was never queried to SC(.) 
Return 1 else return 0. 
The forger E runs in time t and performs qSC 

signcryption queries and qH queries to oracle  RO(.), 
has the advantage ]}1)(max{Pr[)( == ∑∑ kk cma

E ,
cma

E , ForgeExpAdv . 

3.2. Bilinear Pairings and GDH Problem 

Definition 4 (Bilinear Pairings). Let k  be a security 
parameter and q be a k  bit prime number. We consider 
groups G1 and G2 of the same prime order q. A 
bilinear map e : G1× G1→ G2 satisfies the following 
properties. 

1. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P, Q∈G1, 
a, b∈Zq. 

2. Non-degeneracy: e(P,Q)≠1 for any P, Q∈G1. 
3. Computability: it is feasible to compute e(P,Q), 

P, Q∈G1. 

Definition 5 (GDH, the Gap Diffie-Hellman 
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problem). The GDH problem is to solve a given 
instance (P, aP, bP) of the CDH (Computational 
Diffie-Hellman) problem with the help of a DDH 
(Decisional Diffie -Hellman) problem oracle, that is 
able to decide whether (P , aP, bP, cP) is such that c = 
ab (mod q) by checking the equation e(P, cP) = e(aP, 
bP). Where, the CDH problem is given (P, aP , bP) to 
compute abP∈G1 for unknown a, b∈Zq. The DDH in 
G1 is given (P, aP, bP, cP) to decide whether ab≡c 
(mod q) for unknown a, b,c∈Zq. 

Assumption 1  (GDH assumption).  For the secure 
parameter k∈N, a probabilistic polynomial time 
attacker A will resolve the GDH problem on G1 with 
order q and generator P.  His advantage 

]},,),,max{Pr[)( *
qZbaabPbPaPPk ∈== A(Adv AGDH,

 is 

negligible .  

4. MM-MR Signcryption 

As mentioned above, MM-MR is a secure primitive 
with potential practice in ubiquitous computing. In 
this section, we will propose the theoretic basis for 
MM-MR. 

4.1. Model 

Our model considers the MM-MR scenario. A sender 
issues several different messages m1,… ,mt to several 
receivers Pi, i=1…  t simultaneously. The receiver 
takes and designcrypts his signcryption text from the 
broadcasted message. MM-MR is a generic primitive 
of multi-recipient signcryption. Base signcryption 
scheme and SM-MR are both of special cases of 
MM-MR. We can easily find that, MM-MR 
signcryption scheme will become a SM -MR scheme 
when m1=… = mt =m, and will become a base 
signcryption scheme when t=1. A formal definition 
of MM-MR signcryption scheme as follows. 

Definition 6(Multi-recipient). A multi-recipient 
signcryption scheme MΣ=(Gen, MSC, DSC) consists 
of three algorithms . Gen is a keys generation 
algorithm as above. Signcryption algorithm MSC is a 
probabilistic algorithm. It takes the private key of the 
sender A, the public keys VEKP ={VEKPi, i=1,… , t} 
of the recipient P={Pi, i=1…  t} and messages M={mi, 
i=1,… , t, mi∈M} to return a signcryption text 
W←MSC(M, SDKS,VEKP). DSC is a deterministic 
algorithm. It takes the public key of the sender A, the 
private key of the recipient Pi and a ciphertext  wi, to 
return the message mi or ⊥ . We write 
mi∪{⊥}←DSC(wi, SDKPi, VEKA). For a fixed 
message M∈M, we say that the multi-recipient 
signcryption scheme MΣ=(Gen, MSC, DSC) is 
correct if and only if DSC(SC(M , SDKS, VEKP), 
SDKP, VEKS)= M. 

4.2. Security notions 

Signcryption aims to establish secure and authorized 
communication. Zheng pointed out that a secure 
signcryption scheme should achieve confidentiality, 
unforgeability and non-repudiation [1]. But for any 
verifiable  signcryption scheme, the unforgeability 
implies the non-repudiation. So, confidentiality and 
unforgeability are sufficient for a verifiable scheme. 
Now, we give the definitions of confidentiality and 
unforgeability for a multi-recipient signcryption 
scheme. 

4.2.1. Confidentiality 
For a multi-recipient signcryption scheme, 
confidentiality means that information of any 
plaintext could not be leaked to any others. In a SM-
MR signcryption scheme, only outsider adversary 
wants to get the underlying message, since all of the 
receivers have the same one. While in a MM-MR 
signcryption scheme, recipients who want to get 
messages for any others are potential adversaries, 
because each recipient receives the different message. 
So, we take into account a scenario called insider 
attacks. We adapt the attacker model similar to 
insider attacker in [17]. Besides his own key pairs, 
the adversary has the ability to corrupt some fraction 
of other users and possession of their secret keys. We 
assume that adversary B attacking MΣ has corrupted 
n-l receivers.  Uncorrupted users are numbered as 
1,… , l. B runs in three stages: (1) in selecting stage, B 
is given the number of users n and outputs state 
information st and a integer l, (1≤l≤n); (2) in finding 
stage, B is given a common parameter I, state 
information st and public keys of l uncorrupted users 
{VEK1 , … , VEKl}, outputs two l-victors M0, M1 of 
messages ; (3) in guessing stage, B returns a bit d as 
his guess of the challenge bit b. In all of the stages, 
signcryption oracle MSC(.) signcrypts all of message 
submitted by B except for the challenge message 
vector M*. At the same time , designcryption oracle 
DSC(.) designcrypts all of signcryption text submitted 
by B except for the challenge text vector W*. 

Definition 7 (confidentiality). Let MΣ=(Gen, MSC, 
DSC) be a MM-MR signcryption scheme. Let B be 
an adaptive adversary which runs in three stages. For 
atk∈{cpa, cca}, b∈{0, 1}, k∈N. Consider following 
experiment. 

Experiment  )(kb-atk-mr
n(.)B,,MExp ∑

 

(1) I ← G (1k); (1l, st) ←B(select, n, I)  (1≤l≤n) 
(2) (VEKS, SDKS) ← K (I) 
(2) For i=1,… , l   do (VEKi, SDKi) ← K (I)  

EndFor 
(3) (M0, M1, M, coins, st)←BMSC(.), RO(.), O1(.), … , 

Ol(.)(find, pk , st) 
|M0|=|M1|=l; |M|=n-l; |VEK|=l; |coins|=  n(k)-l 
(4) For i=l+1,… , n   do (VEKi', SDKi') ←  K (I, 
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coinsi) EndFor 
(5) VEKP ←(VEK1, … , VEKl, VEKl+1', … , 

VEKn') 
(6) M*←(mb1,… , mbl, m1,… , mn-l) 
(7) W*=MSC(M*, SDKS,VEKP) 
(8) d←BMSC(.), RO(.), O1(.), … , Ol(.)(guess, W*, st) 
(9) Return d 

The advantage of an attacker for ind-atk is  defined 
as follows: 

]}0)(ExpPr[]0)(Expmax{Pr[

),,,,(Adv
1atkm r
n B, ,M

0atkm r
n B, ,M

atkm r
n B, ,M

=−=

=
−−

∑
−−

∑

−
∑

kk

qqqtk DSCMSCRO . 

The MM-MR signcryption scheme MΣ  is said to 
be IND-CPA (indistinguishability against chosen 
plaintext attacks) secure (or IND-CCA secure) if the 
function 

),,,,(Adv cpam r
n B, ,M DSCMSCRO qqqtk−

∑
(or

),,,,( DSCMSCRO qqqtkccamr
n B, ,MAdv −

∑
)is negligible for any 

probabilistic  polynomial time attacker B who runs in 
time t, using qRO queries to its  random oracles, qMSC 
queries to its signcryption oracle  and qDSC queries to 
its designcryption oracle.  

4.2.2. Unforgeability 
For a multi-recipient signcryption scheme, 
unforgeability means that any users have no ability to 
forge a signcrypted text from the sender (who is a 
signer also). Outsider adversary has to forge a 
signcrypted text to pass the verifying operation. 
While, the legitimate recipient has more powerful 
ability to win the forge attacks. He can forge a valid 
signcryption text as long as he forges a signature of 
sender. We adapt the forger model including insider 
attacker. Moreover, there is no need for any forger to 
forger signcryption text W on M, but w on any m. A 
scheme is secure against any forger, if it is secure 
against insider forger.  

Definition 8 (unforgeability). Let MΣ=(Gen, MSC, 
DSC) be a multi-recipient MM-MR signcryption 
scheme, and F be a forger. For any k∈N, consider the 
following experiment:  

Experiment  )(ForgeExp cma-mr
nF,,M k∑  

Experiment )(kcma-mr
nF,,MForgeExp ∑

 

(1) I ← G (1k); (st) ←F(select, n, I)  
(2) (VEKS, SDKS) ← K (I) 
(3) For i=1,… , n  do (VEKi, SDKi) ← K (I, 

coinsi)  EndFor 
(4) If FMSC(.)RO(.) outputs (mi, wi), mi∈M, wi∈W  

(a) DSC RO(.) (w, SDKPi, VEKS) = mi  

(b) mi is never queried to MSC 
Return 1 else return 0. 
The advantage of a forger is  defined as follows: 

]}1)(  ForgeExpmax{Pr[

),,,(Adv
cma

n F, ,M

cma
n(.) F, ,M

== ∑

∑

k

qqtk MSCRO  

The MM-MR signcryption scheme MΣ is said to 
be strongly existentially unforgeable against chosen-
message attacks (SC-SUF-CMA) if the function 

),,,(Advcma
n(.) F, ,M MSCRO qqtk∑ is negligible for any 

random polynomial time forger F who runs in time  t, 
using qRO queries to its  random oracles, qMSC queries 
to its signcryption oracle.  

4.3. Randomness Reusing and 
Reproducible Signcryption Scheme 

RR (randomness reusing) is a novel technology to 
improve efficiency of MRES. Generally, randomness 
reusing may cause serious problem for some 
encryption schemes. Kurosawa’s result [13] shows 
that some encryption schemes with randomness 
reusing is secure for multiple recipients setting, while 
keeping lower communication overheads. The 
schemes based randomness reusing can be marked as 
RR-MRES. Not all of RR-MRES  are secure, even 
they are efficient. Bellare et al. pointed out that some 
RR-MRES keep high security for the differences of 
the distinct recipient’s public keys [17]. They 
proposed a condition for secure RR-MRES: if the 
base scheme is reproducible, then the corresponding 
RR-MRES is secure too.  

Though signcryption is a type of public key 
primitive, it still differs to public key encryption. The 
signcryption algorithm takes as input a secret key of 
sender, a public key of receiver and a message to be 
transmitted. The designcryption algorithm takes as 
input a public key of sender, a secret key of receiver 
and a signcryption text. While, public encryption 
algorithm takes receiver’s public key and a message, 
decryption algorithm takes receiver’s secret key and 
ciphertext. The reproducibility of signcryption 
scheme is different to that of public key encryption 
scheme. We present the definition of reproducible 
signcryption scheme as follows. 

Definition 9 (Reproducible Signcryption Scheme). 
Fix a signcryption S=(Gen, SC, DSC). Let R be an 
randomized polynomial-time algorithm that takes as 
input a secret key of sender, a public key of receiver, 
signcryption text of a random message, another secret 
key of sender, a pair of keys of receiver, and another 
random message, returns a signcryption text. We say 
that S is reproducible if exists a R such that SC (m', 
SDKS', VEKR', v)=R(I, VEKR, SDKS, w, m', VEKR', 
SDKR', SDKS'). 

Multi-recipient signcryption scheme can be 
constructed with randomness reusing to achieve 
computation and communication savings. In the 
sense of privacy, if underlying base signcryption 
scheme is reproducible and IND-CPA (IND-CCA) 
secure, then the associated multi-recipient 
signcryption scheme is RR-IND-CPA (RR-IND-
CCA) secure also.  
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Theorem 1. Fix a signcryption scheme S=(Gen, SC, 
DSC) and a integrity n,  MS=(Gen, MSC, DSC) is 
associated randomness reusing multi-recipient 
scheme. If S is reproducible, then for any randomized 
polynomial time attacker Batk, there exists a 
randomized polynomial time  attacker Aatk, atk ∈{cpa, 
cca}, such that for any k )()( knk atk

A,
atkmr

nB,M atkatk,
AdvAdv Σ

−
∑ ⋅≤ . 

Proof. 
We consider a hybrid experiment [17] and 

attackers described in definition 4 and definition 7. 
For confidentiality of a signcryption scheme, IND-

CCA2 is the strongest secure notion. A scheme 
semantic secure against IND-CCA2, implies IND-
CCA and IND-CPA. We only consider the case of 
IND-CCA2. 

Experiment HybirdEXP H j(k)=0 (0≤j≤n) 
(1) I ← G (1k); (1l, st) ←B(select, n, I)  (1≤l≤n) 
(2) (VEKS, SDKS) ← K (I) 
(3) For i=1,… , l   do (VEKi, SDKi) ← K (I)  

EndFor 
(4) (M0, M1, M , coins, st)←BMSC(.), RO(.), DSC1(.), … , 

DSC l(.)(find, st) 
(5) For i=l+1,… , n   do (VEKi', SDKi') ←  K (I, 

coinsi)  EndFor 
(6) VEKP←(VEK1,… ,VEKl,VEKl+1', …,VEKn') 
(7) If j≤l  then  M*←(m01,… , m0j, m1j+1, m1l, 

m1,… , mn-l)  
else M*←(m01,… , m0l, m1,… , mn-l) 

(8) W*=MSC(M*, SDKS,VEKP) 
(9) d←BMSC(.), RO(.), DSC1(.), … , DSC l(.)(guess, W*, st) 
(10) Return d 
Let  pj=Pr[Hj(k)=0]. We claim that 

npk ==−−
∑ ]0)(Pr[ 0ccamr

n B, ,MExp  and 
0

1 ]0)(Pr[ pk ==−−
∑

ccamr
n B, ,MExp . 

We can get 
0)( ppk n −=−

∑
ccamr

nB,,MAdv . 

Then，We construct an attacker A which runs B 
as a subroutine, against the base scheme Σ.  A  runs 
three stages too. In each stage, A gets information 
from B’s outputs.  

A (select, I) 
(1) I ←  G (1k); (1l, st') ←B(select, n, I) (1≤l≤n); 

j ←  {1,… , l} 
(2) st ←( st', l , j) 
(3) Return st 

A (find, I, VEKR) 
(1) (VEKS, SDKS) ← K (I) 
(2) If j≤l then For i=1,… , j-1,j+1,… ,l   do (VEKi, 

SDKi) ← K (I); VEKj = VEKR  EndFor 
else For i=1,… ,l   do (VEKi, SDKi) ← K (I)  

EndFor 
(3) (M0, M1, M, coins, st')←BMSC(.), RO(.), DSC1(.), … , 

DSC l(.)(find, st') 
(4) For i=l+1,… , n   do (VEKi', SDKi') ←  K (I, 

coinsi)  EndFor 
(5) VEKP←(VEK1,… ,VEKl,VEKl+1', …,VEKn') 
(6) If j > l then m0j=mj; m1j=mj 

(7) st ←( st', l , j M0, M1, M , VEKP) 

(8) Return (m0j, m1j, st) 
A (guess, w, st) 

(1) For i=1,… , j-1,j+1,… ,n   do 
If  i=l+1,… , n  then  m'←  mi 

If  i≤j then m'← m0i  
Else m'← m1i  

wi←RP(I, VEKR, SDKS, w, m' , VEKi, SDKi, 
SDKS) 

EndFor 
(2)W'←{ w1,… ,wj-1, w, wj+1,… ,mn} 
(3) d←BMSC(.), RO(.), DSC1(.), … , DSC l(.)(guess, W', st') 
(4)Return d 

We claim that 
n
p

p
n

k n
n

i
i === ∑

=

−
∑

1

0 1
]0)(Pr[ cca

 A,Exp  and 

n
p

p
n

k
n

i
i

0

1
1

1 1
]0)(Pr[ === ∑

=
−

−
∑
cca

 A,Exp . 

Then, we can get 
)(

1
]0)(Pr[]0)(Pr[)( 0

10 pp
n

kkk n −==−== −
∑

−
∑Σ

cca
 A,

cca
 A,

atk
A, ExpExpAdv . 

By taking the maximum, we obtain 
that )()( knk atk

A,
atkmr

nB,M atkatk,
AdvAdv Σ

−
∑ ⋅≤ . 

The overheads of A include B’s overheads, picking 
the random number j, producing n-1 key pairs and 
RP’s overheads.                                                    □ 

Theorem 2. Fix a signcryption scheme S=(Gen, SC, 
DSC) and a integrity n,  MS=(Gen, MSC, DSC) is 
corresponding randomness reusing multi-recipient 
scheme. If S is reproducible, then for any randomized 
polynomial time forger F, there exists a randomized 
polynomial time attacker E. For any k : 

)()( knk cma
E,

cmamr
nF,,M AdvAdv Σ

−
∑ ⋅≤  

Proof. 
We construct a forger E  to forge a base 

signcryption scheme running F as a subroutine. E 
attacks the signcryption scheme with sender S and 
recipient R . In F’s experiment, R is Pj, for j∈ {1,… , 
n}. 

ESC(.)RO (VEKS,VEKR, SDKR) 
(1) I ← G (1k); (st) ←F(select, I); j ← {1,… , n} 
(2) (VEKS, SDKS) ← K (I) 
(3) For i=1,… , j-1, j+1,… , n  do  

(VEKi, SDKi) ←  K (I, coinsi); (VEKj, SDKj)= 
(VEKR, SDKR) 

EndFor  
(4) If (mi, wi) ←FMSC(.)RO(.)(VEKS,VEKP, SDKP) 

such that 
(a)  DSC RO(.) (wi, SDKi, VEKS) = mi 

(b) mi was never queried on MSC(.) 
then  wj←RP(I, VEKR, SDKS, wi, mj, VEKR, 

SDKR, SDKS) 
Return (mj, wj) 

 
Forger E has to forge a signcryption text that can 

be verified by receiver Pj(R) to win the experiment. 
While, forger F can win the experiment by forging a 
signcryption text that can be verified by any receiver. 
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After wining, F produces the signcryption text 
associated with receiver Pj using reproducing 
algorithm RP. It is easy to see that (mj, wj) is a valid 
message-signcryption text as well as (mi, wi). 

In experiment )(kcma
E, i

ForgeExp∑
, E attacks the base 

signcryption scheme with sender S and recipient Pj.    
Thus, 

)(ForgeExp)(ForgeExp...

)(ForgeExp)(ForgeExp
cma

E,
cma

E,

cma
E,

cma
E,

n

21

kk

kk

∑∑

∑∑

==

= . 

Obviously, 

 
∑

=
∑

∑

==

=
n

i

k

k

1

,

]1)(Pr[

]1)(Pr[

cma
E ,

cma-mr
F,n M

i
ForgeExp

ForgeExp
. 

By taking the maximum, we obtain that 
)()( knk cma

E,
cmamr
F,n,M AdvAdv Σ

−
∑ ⋅≤ . 

The overheads of E include the running times of F, 
RP, picking the random number j and producing n-1 
key pairs.                                                              □ 

5.  An Efficient MM-MR 
Signcryption Scheme 

5.1. SC-BLS: An Improved Signcyption 
Scheme based on BLS Signature 

In this subsection, we will construct a signcryption 
scheme based on BLS signature scheme which was 
presented by Boneh, Lynn and Shacham in 2001 [24]. 
It is an efficient scheme based on any GDH group 
and be used broadly for its simplicity and low 
overheadss. In 2004, Libert and Quisquater proposed 
a signcryption scheme [35] based on BLS. The 
scheme wraps up the message and sender’s public 
key. So receiver could perform designcryption 
operation without getting sender’s public key 
beforehand. But the scheme is not secure since 
signature couldn’t include receiver’s private 
information and attackers have chance to forge a 
signcryption text that could be passed the verifying 
operation. In 2005, Tan pointed out that the scheme is 
neither semantic secure against chosen cipher attack 
nor key privacy [26]. At the same time, Yang et al. 
also found the problem and improved it  [27]. Their 
improvement failed to grasp the essence and was 
broken by Tan [28]. Li et al. [29] presented another 
improved scheme which is secure against Tan’s 
attack. In order to keep the sender’s public key 
privacy, these schemes encrypted it together with 
message. In fact, public key privacy is not necessary 
for general applications. Recipient could get sender’s 
identity information from network protocols directly. 
So, it is not practical to obtain the property while 
reducing communication bandwidth. Motivated by 
the base secure demand, we improved Li’s scheme in 
this section. For a z-bits message, Li’s scheme [29] 

produces z+3l bits signcryption text which could be 
reduced to z+2l bits in our scheme. We name the new 
scheme SC-BLS. 

Let k  be secure parameter, q is a k-bits prime, and 
G1 is a bilinear group with order q. P is a generator. l 
is the length of elements on G1. H1: {0, 
1}z×G1→G1and H2: G1

2→{0, 1}z+l are two hash 
functions that can be regarded as random oracle. 
Notation ? R means random selection. SC-BLS 
consists of three algorithm: KeyGen, SC and DSC. 

Algorithm KeyGen. User U picks a random 
xu←RZq and sets his public key to Yu=xuP∈G1. His 
private key is xu. We will denote the sender and the 
receiver respectively by U = S and U=R  and their key 
pair by (xS, YS) and (xR, YR). 

Algorithm SC. to signcrypt a plaintext m∈{0, 1}z 
intended to R, the sender S uses the following 
procedure: 

1. Pick a random r←RZq and compute U =rP∈G1. 
2. Compute V = xSH1(m, rYR)∈G1. 
3. Compute Z = (m||V)⊕H2(U, YR, rYR)∈{0, 1}z+l. 
The ciphertext is given by w = (U, Z)∈G1×{0, 1} 

z+l. 
Algorithm DSC. when receiving a ciphertext  w = 

(U, Z), the receiver R has to perform the steps below: 
1. Compute H2 (U, xRU)∈{0, 1} n+l. 
2. Compute (m||V)=Z ⊕H2(U, YR, xRU).  
3. Compute H = H1(m, xRU)∈G1 and then check if 

e(YS, h)= e(P , V). If this condition does not hold, 
reject the ciphertext. 

Correctness. If w = (U, Z) is a valid signcryption 
text, it is easy to see that xRU= rYR = xRrP and (m||V) 
is decrypted correctly. Thus e(P, V) =e(P , xSh) 
=e(xSP, h)= e(YS, h) is hold.  

5.2. Multi-recipient Signcyrption Scheme 

In this subsection, we will construct a multi-recipient 
scheme called MSC-BLS based on SC-BLS with 
randomness reusing. In this scheme, a sender S 
signcrypts messages M={mi|mi∈{0, 1}z, i=1, … , n } 
for n  distinct receiver Ri, i=1, … , n, then broadcasts 
signcryption text. A receiver Ri gets his signcryption 
text and designcrypts it using base designcryption 
algorithm. MSC-BLS also consists of three 
algorithms: KeyGen, MSC and DSC. 

Algorithm KeyGen: For a sender, his key pair is 
(xS, YS), xS←RZq,YS=xSP∈G1. For a receiver Pi, 
i=1, … , n, his key pair is (xRi, YRi), xRi←RZq, YRi= 
xRiP∈G1. 

Algorithm MSC: To signcrypt messages 
M={mi|mi∈{0, 1}z, i=1, … , n}, S performs following 
operations. 

1. Pick a random r←R Zq and compute U =rP∈G1. 
2. For i=1,… ,n 

(a) Compute Vi = xSH1(mi, rYRi)∈G1. 
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(b) Compute Zi = (mi||Vi)⊕H2(U, YRi, rYRi)∈{0, 
1}z+l. 

EndFor 
3. The ciphertext is given by W = (U, Zi) ∈G1×{0, 

1}n+l. W = (U, Z1,… , Zn) 
Algorithm DSC: When receiving W, the receiver 

Ri get his signcryption text wi=(U, Zi) and performs 
the steps below. 

1. Compute H2 (U, xRiU)∈{0, 1} z+l. 
2. Compute (mi||Vi)=Z ⊕H2(U, YRi, xRiU).  
3. Compute hi = H1(mi, xRiU)∈G1 and then check if 

e(YS, hi)= e(P, Vi). If this condition does not hold, 
reject the ciphertext. 

Correctness. If wi=(U, Zi) is a valid signcryption 
text, it is easy to see that xRiU= rYRi = xRirP and 
(mi||Vi) is decrypted correctly. Thus e(P, Vi) =e(P, 
xShi) =e(xSP, hi)= e(YS, hi) is hold.  

 
According to the definition in subsection 3.1, 

MSC-BLS is  a general scheme. When m1=, … ,= mn = 
m, MSC-BLS will become a SM -MR scheme. When 
n=1, it will become SC-BLS. It has the same KeyGen 
algorithm and DSC algorithm as that of  SC-BLS. 

5.3. Security Analysis 

5.3.1. Reproducibility of SC-BLS 

Lemma 1. Base signcryption scheme SC-
BLS=(Gen, SC, DSC) is a reproducible scheme. 
Proof. 

Firstly, we run signcrytion SC (m', SDKS', VEKR', 
r), for given random coins r, a sender S' and a 
recipient R' on the message m'. 

Algorithm SC (m', SDKS', VEKR', r) 
1. Compute U =rP∈G1. 
2. Compute V' = xS'H1(m', rYR')∈G1. 
3. Compute Z'= (m'||V')⊕H2(U, rYR')∈{0, 1}n+l. 
4. Return w' = (U, Z')∈G1×{0, 1} n+l as cipher 

text. 
Then, we run a polynomial time reproducing 

algorithm RP, which takes common parameters, a 
public key of recipient R , secret key of a sender S, 
signcryption text w=(U, Z)of a message m, another 
message m', key pair of another recipient R', and 
secret key of another sender S', outputs the 
corresponding signcryption text.  

Algorithm RP(I, VEKR, SDKS, w, m', VEKR', 
SDKR', SDKS') 

1. Compute V' = xS'H1(m', rYR')∈G1. 
2. Compute Z'= (m'||V')⊕H2(U, rYR')∈{0, 1}n+l. 
3. Return w' = (U, Z')∈G1×{0, 1} n+l as cipher 

text. 
Obviously, SC (m', SDKS', VEKR', r)=RP(I, VEKR, 

SDKS, w, m', VEKR', SDKR', SDKS').  

So, the base signcryption scheme  is a reproducible 
scheme.                                                                □ 

5.3.2. Security of SC-BLS 
In the random oracle model assuming that GDH 
problem is hard.  

Lemma 2. In the random oracle model with secure 
parameter k , if an adversary A has non-negligible 
advantage ε against the IND-CCA2 security of SC-
BLS when running in time t and performing qSC 
signcryption queries, qDSC de-signcryption queries 
and qHi queries to oracles  Hi, i=1,2, then there is an 
algorithm B that solves the GDH problem in G1 with 
probability ε'≥ ε - qDSC(qH1 / 2

k+qH2 / 2
z+l) and within 

running time t'=t+(4qDSC +2qH2)tb+ qH2te. Where tb 
denotes the time required for one pairing evaluation, 
te denotes the time required for exponention. 
 Proof.  

For contradiction, we assume that an attacker A  
breaks IND-CCA2 of SC-BLS with probability 
greater than ε that within time t. We show that using 
A, one can construct an attacker B for solving the 
GDH problem with the help of a DDH solver due to 
the bilinear pairing. 

Suppose that B is given (P, aP, bP) as an instance 
of CDH. B  runs A as a subroutine to find the solution 
of abP. A then adaptively performs hash queries, 
signcryption queries and de-signcryption queries. 
Firstly, YU = bP∈G1 is given to B as a challenge 
public key. To handle A’s queries, B maintains two 
lists L1 and L2 to keep track of the answers given to 
oracle queries on H1 and H2.  

Hash queries are simulated as follows.  
H1 simulation. When a hash query H1 (m, P1) is 

received, B checks if the query tuple (m, P1, h) is 
already in L1. If it exists, the result of hP is returned. 
Else, B picks a random number h∈Zq, inserts the 
tuple (m, P1, h) into list L1 and returns the result of 
hP. 

H2 simulation. When a hash query H2(P1, P2, P3) is 
received, B checks if the query tuple (P1, P2, P3, v) is 
already in L2. If it exists, the existing result of v is 
returned. If it does not exist but e(P1, P2)= e(P , P3), B  
picks a random number v∈{0, 1} z+l，inserts the tuple 
(P1, P2, P3, v) into list L2 and returns the number v. If 
(P1, P2, ⋅, t) exists in L2, and e(P1, P2)= e(P , P3)，  
then replace the “⋅” with P3, and returns v, where “⋅” 
is a symbol to denote blank. Else, B  picks v∈{0, 1} z+l 
randomly and returns it. 

Signcryption and de-signcryption queries are 
simulated as follows. 

SC simulation. For a signcryption query on (m, YR) 
choosed by A，B checks if YR∉G1or YR=YU, rejects it. 
Otherwise, B picks r∈Zq randomly, computes the 
result of U =rP . Then B simulates H1 (m, rYR) to 
obtain the returned value of hP. If (m, rYR) does not 
exist, B picks a random number h∈Zq , inserts the 
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tuple (m, rYR, h) into the list, and computes the result 
of V = hYU = h (bP). B simulates H2 (U, YR, rYR) and 
computes the result of Z = (m||bhP)⊕H2(U, YR, rYR), 
and returns w=(U, Z) as the signcryption text on a 
message m with the receiver’s public key YR and the 
sender’s public key YU. 

DSC simulation. For a signcryption text (U, Z) 
choosed by A, B checks if (U, YU, Qi, vi) exists in L2, 
0≤ i ≤qh2, such that (mi||Vi)= Z⊕  vi, for the 
corresponding elements (mi, Qi, hi) in L1 is such that 
Vi=hibP, then records the tuple (mi, U, YU, Vi, Qi, hi). 
If one of them satisfies e(P, Qi)= e(U, YU) and e(YSi, 
hi)= e(P , Vi), then returns (mi, U, Vi) to A  as a 
signature pair with then sender’s public key YSi. Else 
returns with 0. 

After completing the first stage, A  chooses two z-
bits messages m0 and m1 together with an arbitrary 
sender’s private xS, asks a challenge signcryption text 
produced by B under receiver’s public key YU. B sets 
the challenge signcryption text as w=(U, Z), where 
U=aP, Z is selected from {0, 1} z+l randomly. Then B 
picks b∈{0, 1}randomly, adds the tuple (mb, ⋅) into 
L1, picks h∈Zq randomly, produdces and records hP 
as the result of H1 (mb, ⋅). Then, B produces and 
records v=Z⊕ (mb || hbP) in the list as the result of H2 
(U, YU, ⋅), sets V= hbP. Where “⋅” is symble to denote 
blank, it will be replaced by T if A  queries H2 (U, YU, 
T) later. At the same time, the conrrespoding value in 
L1 will also be replaced. B  returns w=(U, Z) to A. A  
couldn’t determine that w is not a valid signcryption 
text unless he have asked the value of H2 (aP , bP, 
abP). 

A outputs b'∈{0, 1} as his guess of b after 
performing new queries as above. A has privelege to 
query all of messages accept w. B looks for (aP, bP, 
T) in the list L2, such that e(P, T)= e(aP , bP). If B  
could find a proper (aP, bP, T), he returns T as the 
solution of CDH problem. Otherwise, B stops and 
returns 0. 

Analysis. If the simulated attack is computationally 
indistinguishable form a real attack, we say that B’s 
simulation of B H1, H2, SC and DSC are perfect. Let 
E be the event that abP is queried on H2 by A. In a 
real attack game, the probability of A wins will be 
Pr[b=b '] ≤ Pr[b=b'|¬E]+Pr[E] = 1/2+1/2Pr[E], 
namely ε = 2Pr[b = b' ]-1≤ Pr[E].  

The only event that causes the simulation is not 
peferct is that a valid signcryption text be rejected in 
designcryption query stage. It is the result of 
simulation of H1 and H2. For the queries on H1, the 
probability is no more than qH1 / 2

k. For the queries on  
H2 , the probability is no more than qH2 / 2 z+l. The 
totally probability is no more than qDSC(qH1 / 2

k + qH2 

/ 2z+l) for qDSC designcryption queries. Hence, the 
probability of B wins is ε'≥ ε - qDSC(qH1 / 2k + qH2 / 
2z+l). 

Then we evaluate the running time of B . We only 
consider the expensive operations, such as pairing 
evaluation and exponention. The running time of B  

includes that of A, 4 pairing evaluations in each 
designcryption query, 2 pairing evaluations and 2 
exponentions in each signcryption query. It is easy to 
see, the running time of B  is t'=t+(4qDSC +2qH2)tb+ 
qH2te.  Where tb denotes the time required for one 
pairing evaluation, te denotes the time required for 
exponention.                              □ 

Lemma 3. In the random oracle model with secure 
parameter k , if there exists a forger F has non-
negligible advantage ρ to forge a valid SC-BLS 
signcryption text when running in time t and 
performing qSC signcryption queries and qHi queries to 
oracles  Hi, i=1,2, then there is an algorithm E that 
solves the GDH problem in G1 with probability ρ ' ≥ ρ 
- (qH1qSC + 1)/2k in time t'=t + 2qSCqH2tb+ (2qSC + 
2qSCqH1) te Where tb denotes the time required for one 
pairing evaluation, te denotes the time required for 
exponention. 
Proof.  

We assume that a forger F could forge a valid SC-
BLS signcryption text with probability greater than ρ 
that within time t. We can construct an attacker E 
could solve the GDH problem. Suppose that E is 
given (P, aP, bP) as an instance of CDH. E  runs F as 
a subroutine to find the solution of abP. F then 
adaptively performs hash queries, signcryption 
queries. To handle F’s queries, E maintains two lists 
L1 and L2 to keep track of the answers given to oracle 
queries on H1 and H2.  

Hash queries are simulated as follows.  
H1 simulation. When a hash query H1 (m, P1) is 

received, E checks if the query tuple (m, P1, h) is 
already in L1. If it exists, the result of hP is returned. 
Else, E picks a random number h∈Zq, inserts the 
tuple (m, P1, h) into list L1 and returns the result of 
haP. 

Hash oracle H2 is simulated as in the proof of 
lemma 2.  

Signcryption is simulated as follows. 
SC simulation. For a signcryption query on (m, YR) 

choosed by F，E checks if YR∉G1or YR=YU, rejects it. 
Otherwise, E picks r∈Zq randomly, computes U =rP. 
Then E simulates H1 (m, rYR). If (m, rYR) is aleady in 
L1, E stops and outputs 0. Otherwise, E picks h∈Zq 

randomly, and sets the result of H1 (m, rYR) as hP. E 
simulates H2 (U, YR, rYR), computes the results of V = 
hYS, Z = (m||V)⊕H2(U, YR, rYR), and returns w=(U, Z) 
as the signcryption text on a message m with the 
receiver’s public key YR and the sender’s public key 
YU. 

After completing the first stage, F produces a 
signcryption text w'=(U', Z') and a pair of receipient’s 
keys.  

E performs the designcryption operation with 
secret key xR. If w' is valid, E can recover the 
signature V', such that e(P, V')=e(bP, haP). If F never 
query on the value of H1 (m', rYR) in the simulation 
process, namely (m', rYR) is not in the lis t L1, E 
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outputs 0 and stops. Otherwise, H1 (m', rYR, h) must 
exists in  L1, and be set as haP. It is easy to see 
V'=tabP. E can compute abP=t-1V. E outputs abP and 
stops. Thus, E resolves the CDH problem. 

Now we assess  the probability of E’s success. In 
signcryption query stage, the probability of E fails to 
responde is no more than qH1qSC/2k, because each qSC 
signcryption query includes qH1 queries. In 
designcryption stage, E has no chance to reject a 
valid signcrypiton text, because he performs a real 
designcryption operation. The probability of F  
produces a valid signcryption text without query is 
1/2k. To sum up, the taltally probability of E solves 
abP is ρ '≥ ρ - (qH1qSC +1)/2k. 

The running time of E includes that of F, 2 
exponentions in each signcryption query, 2 
exponentions in H1 query, 2 pairing evaluations in 
each H2 query. Thus, the running time of E is 
t'=t+2qSCqH2tb+ (2qSC+2qSCqH1)te. Where tb denotes 
the time required for one pairing evaluation, te 

denotes the time required for exponention.     □ 

5.3.3. Security of MSC-BLS 

Theorem 4. In the random oracle model with secure 
parameter k , if an adversary B has non-negligible 
advantage against the IND-CCA2 security of n-
recipient scheme MSC-BLS when running in time t 
and performing qSC signcryption queries, qDSC de-
signcryption queries and qHi queries to oracles  Hi, 
i=1,2, then there is an algorithm D that solves the 
GDH problem in G1 with non-negligible probability. 
The advantage functions as follows. 

)
22
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1 lz
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−
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atk,

 

Theorem 4 can be proof by theorem1, lemma 1and 
lemma 2 easyly. Namely, MSC-BLS is semantic 
secure against IND-CCA2 in random oracle with 
assuming that the GDH problem is computational 
infeasible.  

Theorem 5. In the random oracle model with secure 
parameter k , if there exists a forger F has non-
negligible advantage to forge a valid SC-BLS 
signcryption text when running in time t and 
performing qSC signcryption queries and qHi queries to 
oracles  Hi, i=1,2, then there is an algorithm E that 
solves the GDH problem in G1 with non-negligible 
probability. The advantage functions as follows. 
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Theorem 5 can be proof by theorem 2, lemma 1 
and lemma 3 directly. Namely, MSC-BLS is 
unforgeable against CMA in the random oracle with 
assuming that the GDH problem is computational 
infeasible. 

5.4. Performance Analysis 

The major advantage of multi-recipient 
signcryption scheme is cost(MΣ)<<ncost(Σ). Namely, 
it can reduce overheads efficiently, while keeping 
high level security.  

We compared the major computational overheads 
and transmission overheads with other known 
schemes. In section 2.2, some known schemes are 
listed. All of them are SM -MR schemes. We 
evaluated the following schemes: Boyen’s 
multipurpose identity-based signcryption [18] 

(denoted by Boyen), Duan and Cao’s multi-receiver 
identity-based signcryption [19] (denoted by DC), 
Yu’s  identity-based signcryption [20] (denoted by 
YYHZ), Li’s  identity-based broadcast signcryption 
[21] (denoted by LXH). There are two MM-MR 
schemes as follows: trivial n-recipient scheme which 
runs SC-BLS repeatedly (denoted by n SC-BLS), and 
MSC-BLS. MM-MR schemes can also be used as 
SM-MR. We consider the costly operations which 
include pairing operation, exponentiation and inverse. 
Performances of above schemes sending 1 message 
to n recipients is  listed in Table 1 and Table 2.  

SM-MR has to perform n times when sending n 
different messages to n recipients. While, MM-MR 
just needs one time. Performances of above schemes 
sending n message to n recipients is  listed in Table 3 
and Table 4. 

 
Table 1 Computational overheads comparison 

 (1message-n recipients) 
Paring Exp Inv Schemes 

SC DSC SC DSC SC DSC 
Boyen[18] n2 4n2 2n +2n2 2n2 0 n2 
DC[19] n 4n2 n2+5n n2 0 2n2 
YYHZ[20] n 3n2 n2+5n n2 0 n2 
LXH[21] n 3n2 n2+3n 2n2 0 0 
n SC-BLS 0 2n 2n n 0 0 
MSC-BLS  0 2n n+1 n 0 0 

 
Table 2 Communication overheads comparison 

 (1message-n recipients) 

Schemes Communication  overheads 

Boyen[18] 2n|G1|+|m|+|ID| 
DC[19] (n+3)|G1|+|m|+|ID| 
YYHZ[20] (n+3)|G1|+|m|+|ID| 
LXH[21] (n+2)|G1|+|m|+|ID| 
n SC-BLS n(|m|+2|G1|) 
MSC-BLS (n+1)|G1|+|m| 

 
Table 3 Computational overheads comparison 

 (n message-n recipients) 
Paring Exp Inv Schemes SC DSC SC DSC SC DSC 

Boyen[18] n 4n 2+2n 2n 0 n 
DC[19] 1 4n n+5 n 0 2n 
YYHZ[20] 1 3n n+5 n 0 n 
LXH[21] 1 3n n+3 2n 0 0 
n SC-BLS 0 2n 2n n 0 0 
MSC-BLS 0 2n n+1 n 0 0 



 11 

 
 

Table 4 Communication overheads comparison 
(n message-n recipients) 

Schemes Communication  overheads 

Boyen[18] n[2n|G1|+|m|+|ID|] 
DC[19] n[(n+3)|G1|+|m|+|ID|] 
YYHZ[20] n[(n+3)|G1|+|m|+|ID|] 
LXH[21] n[(n+2)|G1|+|m|+|ID|] 
n SC-BLS n(|m|+2|G1|) 
MSC-BLS (n+1)|G1|+|m| 

 
Notes: 1. Paring denotes pairing operation, Exp  denotes 
exponentiation, Inv denotes inverse, SC denotes 
signcryption operation, DSC denotes designcryption 
operation. 2. |G1| denotes the length of elements in G1, |m| 
denotes the length of message, |ID| denotes the length of 
identity. 3. In EEH scheme, |KH| denotes the length of hash 
function KH, the length of block cipher is equal to |m|. 

Remark 1. MSC-BLS compared with n SC-BLS. 
Overheads of MSC-BLS are reduced efficiently as n 
growing. In signcryption operation, computation 
overheads of MSC-BLS are  half of that of n SC-BLS, 
communication overheads of MSC-BLS are  2/3 of 
that of n SC-BLS. The two schemes have the same 
totally computational overheads in designcryption 
operation. The two schemes have the same 
computational overheads and communication 
overheads as the underlying base signcryption 
scheme when n=1. 

Remark 2. MSC-BLS compared with other 
identity-based schemes. In above schemes, Boyen, 
DC, LL, YYHZ and LXH are identity-based 
signcryption schemes which include plenty of paring 
operations. Obviously, MSC-BLS has few pairing 
operations, exponentiation and inverse operations. 
Thus, MSC-BLS is more efficient than others. When 
sending 1 message to n recipients, the communication 
overheads of MSC-BLS are slightly greater than 
others. But, when sending n messages, overheads of 
other schemes are n times than that of the schemes 
when sending 1 message. MSC-BLS has the same 
overheads when sending 1 message or n messages . 

To sum up, MSC-BLS is the most efficient scheme  
as we known, especially used in the applications that 
sends different messages to distinct recipients.  

6. Conclusion 

In this paper, we investigated the efficiency and 
security of secure group communication. We present 
the result which provides a simple and reliable 
method to construct an efficient group 
communication scheme. If underlying base 
signcryption scheme is reproducible and semantic 
secure and unforgeable, then the corresponding 
randomness reusing multi-recipient signcryption 
scheme is secure too.  

MSC-BLS proposed in this paper is  a good scheme 
of MM-MR. It creates a possibility for the practice of 
the public key cryptosystem in ubiquitous computing. 
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