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Abstract: ID-based ring signcryption schemes (IDRSC) are usually derived from bilinear 

parings, a powerful but computationally expensive primitive. The number of paring 

computations of all existing ID-based ring signcryption schemes from bilinear pairings 

grows linearly with the group size, which makes the efficiency of ID-based schemes over 

traditional schemes questionable. In this paper, we present a new identity-based ring 

signcryption scheme, which only takes four pairing operations for any group size and the 

scheme is proven to be indistinguishable against adaptive chosen ciphertext ring attacks 

(IND-IDRSC-CCA2) and secure against an existential forgery for adaptive chosen 

messages attacks (EF-IDRSC-ACMA). 

Keywords: Identity-based cryptography, ring signcryption, bilinear pairing  

1. Introduction 

Shamir introduced the concept of identity-based cryptography in 1984[1]. The idea is that the 

public key of a user can be publicly computed from his identity (for example, from his / her name, 

an e-mail or an IP address). Then, the secret key is derived from the public key. In this way, digital 

certificates are not needed, because anyone can easily verify that public key. The concept of public 

key signcryption was proposed by Zheng[2]. The idea of this kind of primitives is to perform 

encryption and signature in a single logical step to obtain confidentiality, integrity, authentication 

and non-repudiation more efficiently than the sign-Then-encrypt approach. Several efficient 

signcryption schemes have been proposed since then, including [3, 4, 5, 6, 7]. A formal security 

proof of signcryption scheme was proposed in [8]. In 2005, Xinyi Huang proposed the concept of 

identity-based ring signcryption and give a scheme[9], in the scheme a user can anonymously 

signcrypts a message on behalf of a set of users including himself. The idea of ring signcryption 

comes from the ring signature, so, fully comprehending of ring signature is the base of truly 
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comprehending of ring signcryption, let us review the concept of ring signature firstly. 

2001, Rivest proposed a new type of signature which is called ring signature in the 

background of how to leak a secret [10]. The idea of ring signature is the following: a user wants to 

compute a signature on a message on behalf of a set (or ring) of users which includes himself. He 

wants the verifier of the signature to be convinced that the signer of the message is in effect some 

of the members of this ring. But he wants to remain completely anonymous. That is, nobody will 

know which member of the ring is the actual author of the signature. The ring signature can be 

seen as a special group signature, it has no trusted center and the course of building group, the 

signer is fully anonymous to the verifiers. Ring signature provides an artful method to leak secrets. 

This unconditioned anonymity of ring signature is very useful in the special circumstance which 

the information needs to be protected for a long time. Since the concept of ring signature was 

proposed, the researchers pay much attention to it. Fangguo Zhang constructed the first identity 

based ring signature scheme with bilinear parings in 2002[11]; in the same year, Emmanuel 

Bresson proposed the concept of threshold ring signature and applied it in the ad-hoc network[12]. 

Javier Herranz in 2003 presented the Forking lemma which makes the security proofs of ring 

signature schemes become easy[13]; and in the same year , FangguoZhang brought the concept of 

proxy signature into the ring signature and got the concept of proxy ring signature[14]. In 2004, 

Amit KAwasthi proposed an efficient identity based ring signature scheme and proxy ring 

signature scheme[15]; Tony K．Chan proposed the concept of blind ring signature scheme[16]; Javier 

Herranz proposed a new identity based ring signature[17]. In 2005, Chow S S M used a new 

technique to construct a new identity based signature scheme [18]which only takes two pairing 

operations for any group size, the generation of the signature involves no pairing computations at 

all, and the proposed scheme is proven to be existential unforgeable against adaptive chosen 

message-and identity attack under the random oracle model. In 2006, Yiqun Chen presented an 

identity based anonymous designated ring Signature scheme which is suitable for the P2P 

networks[19]. 

The development of identity based ring signcryption does not grow quickly like that of the 

identity based ring signature , the reason is that ID-based ring signcryption schemes are usually 

derived from bilinear pairings, a powerful but computationally expensive primitive , and we know 

that the number of pairing computations of all existing identity-based ring signcryption schemes in 

the literature from bilinear pairings grows linearly with the group size, which makes the efficiency 

of ID-based schemes over traditional schemes questionable. It is fair to say that devising an 

ID-based ring signcryption using sublinear numbers of pairing computation remains an important 

problem. We will settle this problem in this paper. we propose an efficient ID-based ring 



signcryption scheme which only takes four pairing operations for any group size, the proposed 

scheme is proven to be indistinguishable against adaptive chosen ciphertext ring attacks 

(IND-IDRSC-CCA2) and secure against an existential forgery for adaptive chosen messages 

attacks (EUF- IDRSC -ACMA) under the random oracle model. 

Roadmap: The paper is organized as follows: In section 2 we give some mathematical 

background which will be used in our scheme; The framework and the security notion of ID-based 

ring signcryption schemes are discussed in section 3; Then, we present our ID-based ring 

signcryption scheme in section 4; We prove the security of this scheme in the random oracle 

model in section 5, the underlying security model is based on the difficulties of Decisional 

Bilinear Diffie-Hellman problem (DBDHP) and Computational Diffie-Hellman problem (CDHP). 

2. Preliminaries 

2.1 Bilinear Pairings  

Bilinear pairing is an important primitive for many cryptographic schemes. In this section, we 

briefly review some preliminaries that will be used throughout this paper. 

Let 1G be an additive group of prime orderq , generated byp , and let 2G be a multiplicative 

group with the same order q. We assume that there is a bilinear mape from 211 GGG →× with the 

following properties:  

(1) Bilinearity: Which means that given elements 1 2 3 1, ,A A A G∈ , we have that 

1 2 3( , )e A A A e+ = 1 3 2 3( , ) ( , )A A e A A⋅ and 1 2 3 1 2 1 3( , ) ( , ) ( , )e A A A e A A e A A+ = ⋅ . In particular, 

for ( , )e aP bP ( , ) ( , ) ( , )abe P P e P abP e abP P= = = ; 

(2) Non-degeneracy: Which means that there exists1 2 1,A A G∈ such that
21 2( , ) 1Ge A A ≠ ;       

(3) Computability: Which means that there exists an efficient algorithm to compute 1 2( , )e A A  

1 2 1,A A G∀ ∈ .   

The typical way of obtaining such pairings is by deriving from Weil or Tate pairing on an 

elliptic curve over finite field. 

2.2 Related Complexity Assumptions 

We consider the following problems in the group1G of prime order q, generated byp . 

Definition 1. The Decisional Bilinear Diffie-Hellman problem (DBDHP) is, given a generatorp  

of a groupG , a tuple( , , )aP bP cP and an element 2h G∈ , to decide whether ( , )abch e P P= . 

Definition 2. Given a generatorp of a groupG and a tuple( , )aP bP , the Computational Diffie- 

Hellman problem (CDHP) is to computeabP . 



3. Formal Model of Identity based Ring Signcryption Schemes 

Definition 3, definition 4 and definition 5 come from the paper [9], here we use them directly. The 

definition 3 gives the formal model of ID-based ring signcryption schemes, the definition 4 and 

definition 5 are the security requirement for identity based ring signcryption schemes. The 

definition of the security of identity based ring signcryption schemes is a transmogrification of the 

first formal security definition of singcryption given by Baek et.al in [8]. 

Definition 3 . An identity based ring signcryption scheme consists of the following algorithms. 

Setup: given a security parameter k, a trusted private key center (PKG ) generates the system’s 

public parameters. 

Keygen: given an identityID , thePKG computes the corresponding private keyIDD and delivers 

it to the user via an authenticated channel. 

Signcryption: To send a messagem to receiver Bob whose identity is BID , Alice chooses some 

other users to form a groupU including herself and computes ( , , )BSigncrypt U ID m on the 

behalf of the groupU to obtain the ciphertextδ . 

Unsigncryption: when Bob receives the ciphertextδ , to get the plaintext he computes 

( , , )
BIDUnSigncrypt U D δ and obtains the plain textm or the symbol ⊥ if C was an invalid 

cipher text between the groupU and Bob. 

Consistency:An identity based ring signcryption scheme is said to be consistent iff 

Pr[ ( , , ), ( , , )] 1
BB IDsigncrypt U ID m m Unsigncrypt U Dδ δ← ← =  

Definition 4 .We say that an identity based ring signcryption (IDRSC) is indistinguishable against 

adaptive chosen ciphertext ring attacks (IND-IDRSC-CCA2) if there exists no polynomially 

bounded adversary has a non-negligible advantage in the following game: 

• The challenger runs the Setup algorithm with a security parameterk and sends the system 

parameters to the adversaryA . 

• The adversaryA performs a polynomially bounded number of requests: 

– Signcryption request:A produces a set of usersU , an identity jID and a plaintextm . The 

challenger randomly chooses useriU U∈ whose identity is iID and computes 

( )
iID iD Keygen ID= . Then the challenger acts as iU to Signcrypt( , , )jU ID m on the behalf of 

U and sends the result toA . 

– Unsigncryption request:A produces a set of usersU , an identityID , and a ciphertextδ . The 

challenger generates the private key ( )IDD Keygen ID= and sends the result of 

( , , )IDUnSigncrypt U D δ to A ( this result can be the“⊥”symbol ifδ is an invalid ciphertext ). 

– Key extraction request:A produces an identityID and receives the extracted private key 



( )IDD Keygen ID= . A can present his requests adaptively: every request may depend on the 

answers to the previous ones. 

• A chooses two plaintexts 0 1,m m M∈ , n users whose identities are 1 2{ , , }nID ID ID⋅ ⋅ ⋅ to 

form a users setU and an identity BID on which he wants to be challenged. He can not have asked 

the private key corresponding to any user in the groupU nor BID in the first stage. 

• The challenger takes a bit {0,1}Rb∈ and computes the ciphertext δ of bm which is sent to 

A  

• A asks again a polynomially bounded number of requests just like in the first stage. This time, 

he cannot make a key extraction request on any user in the groupU nor BID  and he can not ask 

the plaintext corresponding toδ . 

• Finally, A produces a bit *b and wins the game if*b b= . The adversary’s success probability 

is defined as 
1

( )
2

IND RSC CCA
ASucc k ε− − = + ,We require thatε to be negligible in k . 

Definition 5. An identity based ring signcryption scheme ( IDRSC ) is said to be secure against an 

existential forgery for adaptive chosen messages attacks ( EF-IDRSC-ACMA ) if no polynomially 

bounded adversary has a non-negligeable advantage in the following game: 

• The challenger runs the Setup algorithm with a security parameter k and gives the system 

parameters to the adversaryA . 

•The adversaryA performs a polynomial bounded number of requests as in the previous 

definition. 

• Finally, A produces a new triple ( , , )Signcrypt U ID mδ = ( i.e. a triple that was not produced 

by the signcryption oracle ), where the private keys of the users in the groupU and the receiver 

( whose identity isID ) were not asked in the second stage and wins the game if the result of the 

( , , )IDUnSigncrypt U D δ is not the⊥symbol. The advantage of A is defined as the probability 

that it wins. 

4. Our scheme 

We present our identity based ring signcryption scheme from bilinear pairing.  

Setup: Given security parameters k andL , a trusted private key generator (PKG ) chooses two 

groups 1G , 2G of prime order kq 2> , a bilinear mapê from 211 GGG →× , and a generatorp of 

1G . Next,PKG picks a random number *
qZs ∈ as its master key and computes its public key 

sPPpub = . Then it chooses some cryptographic hash functions described as follows: 
*
11 }1,0{: GH → ; lGH }1,0{: 22 → ; ;}1,0{}1,0{: 23

ll GH →× **
4 }1,0{: qZH → , the security 

analysis will view 1H , 2H , 3H , 4H as random oracles. The message space is lM }1,0{= . Finally, 



PKG publishes },,,,,,,ˆ,,{ 432121 qHHHHPPeGG Pub , but s is kept secret. 

Keygen:For a user whose identity information is iID , PKG computes )(1 iID IDHQ
i

= and 

calculates the user’s secret key as
i iID IDD sQ= where s is thePKG ’s master key and sends

iIDD  

to iID via a secure and authenticated channel. 

Signcryption: Let 1 2{ , ,..., }nU ID ID ID= be the set of all identities of n users. The actual 

signcrypter, indexed by SID , carries out the following steps to give an ID-based ring signcryption 

ciphertext on behalf of the group U and sends it to a receiver, Bob, Whose identity isBID . 

(1) Randomly chooses *
qR Zr ∈ , Mm R∈* and computes 0 ,R rP= ),(ˆ

BIDPub QPreR ⋅=′ ，

)(2 RHk ′= , kmc ⊕= *
1 , )( 0

*
32 RmHmc ⊕= . 

(2) Randomly chooses *
1GU Ri ∈ , 4 2( )i ih H c U= , }{\}...2,1{ Sni ∈∀ , Randomly chooses 

*
qR Zr ∈′ , }{

SS IDi
Si

iIDS QhUQrU ⋅+−⋅′= ∑
≠

, )( 24 SS UcHh = ,and
SIDS SrhV ⋅′+= )( . 

Define the ciphertext of messagem as: 

}},{,,,( 1210 VUccR i
n
i== ∪δ  

and sendsδ to Bob. 

Designcryption:Upon receiving the ciphertext }},{,,,( 1210 VUccR i
n
i== ∪δ , Bob designcrypts 

the ciphertext using his secret key
BIDD ： 

(1) For }...2,1{ ni ∈ , computes 4 2( )i ih H c U= . 

(2)Checking whether 
1

ˆ ˆ( , ( )) ( , )
S

n

Pub i i IDi
e P U h Q e P V

=
+ ⋅ =∑ , if so, Computes 

2 0ˆ( ) ( ( , ))
BIDk H R H e R D′ ′= = ， recoveries kcm ′⊕= 1

* , )( 0
*

32 RmHcm ⊕=′ , and 

accepts m′as an valid message. Otherwise, Bob rejects the ciphertext. 

5. Security Analysis 

In this section, we will provide two formal proofs that our scheme is IND-IDRSC-CCA2 

assuming the Decisional Bilinear Diffle-Hellman problem (DBDHP) is hard and EF-IDRSC     

-ACMA assuming the Diffie-Hellman problem (CDHP) is hard. 

Theorem 1. In the random oracle model, we assume an adaptive chosen ciphertext attacks 

adversaryA that can distinguish ciphertexts from the users set U during the game of definition 4 

with an advantageε when running in a time t and asking at most
1Hq identity hashing requests, at 

most 
2Hq 2H  requests, 

3Hq 3H requests, 
4Hq 4H  requests, at mostEq Key extraction requests, 

Sq Signcryption requests andUq Unsigncryption requests. Then there exists a distinguisher B that 

can solve the Decisional Bilinear Diffle-Hellman problem（DBDHP）with an advantage: 

1

2
E

U
k

n q
H

q

q e

ε
+

−
⋅  



Proof of the Theorem 1. The distinguisher B receives a random instance ),,,,( hcPbPaPP of the 

Decisional Bilinear Diffie-Hellman Problem, and his goal is to decide whether abcPPeh ),(ˆ= or 

not. B will runA as a subroutine and act asA ’s challenger in the IND-IDRSC-CCA2 game. B 

needs to maintain lists1L , 2L , 3L , 4L that are initially empty and are used to keep track of answers 

to queries asked byA to oracles 1H , 2H , 3H , 4H respectively. We assume that any Signcryption 

or Designcryption request between a groupU and an identityID  happens afterA asked the 

hashing 1H of this ID and the identities in the groupU . Any key extraction query on the identity 

is also preceded by a hash query on the same identity. We also assume thatA never makes a 

Designcryption query on a ciphertext obtained from the signcryption oracle, and he only makes 

Designcryption queries for observed ciphertext. 

At the beginning of the game, B runs the Setup program with the parameterk , and 

givesA the system parameters },,,,,,,ˆ,,{ 432121 qHHHHPPeGG Pub with ,cPPPub = 1H , 2H , 

3H , 4H are random oracles described as follows： 

1H requests: At any time, A can ask a polynomially bounded number of1H requests on 

identities of his choice. To respond these queries, B maintains the list1L of tuple( )IDID,Q , ,b c . 

The list is initially empty. WhenA queries the oracle 1H , B responds as follows: 

·At the 
thj 1H request, B answers by1( )jH ID bP=  ,and let 0jc =  (We assume that before 

the thj  1H requests, there is no tuple ( )jj IDID ,Q , ,j jb c  in the list 1L ). 

• Fori j≠ , B responds as follows: 

– If the iID  already appears on the1L in the tuple( )
ii IDID ,Q , ,i ib c , then B responds with 

1( )
ii IDH ID Q= . 

– Otherwise, B generates a random {0,1}coin ∈ so that [ ]Pr 1coin η= = , for some η  that 

will be determined later. Letic coin= . 

• B picks a random *
i qb Z∈ , computes 

iID iQ b P= . 

• B adds the tuple( )
ii IDID ,Q , ,i ib c to the list 1L , and responds toA with 1( )

ii IDH ID Q= . 

2H requests : At any time, A can ask a polynomially bounded number of2H requests of his 

choice. To respond these queries, B maintains the list 2L of tuples( , )i iR k . The list is initially 

empty. When A queries the oracle 2H  of the request 2( )iH R , B first searches a pair( , )i iR k  in 

list 2L . If such a pair is found, B answers byik . Otherwise he answersA by a random binary 

Sequence {0,1} l
ik ∈ such that no entry( , )ik⋅ appears in 2L (in order to avoid collisions on 2H ) 

and adds the pair( , )i iR k to 2L .  

3H requests: At any time, A can ask a polynomially bounded number of3H requests of his 

choice. To respond these queries, B maintains the list 3L of tuples *( , , )x x xm R y . The list is initially 

empty. WhenA queries the oracle 3H of the request *
3( , )x xH m R , B first searches *( , , )x x xm R y in 



list 3L . If such a pair is found, B answers byxy . Otherwise, he answersA by a random binary 

sequence {0,1} l
xy ∈ such that no entry *( , , )x x xm R y appears in 3L (in order to avoid collisions 

on 3H ) and adds the pair *( , , )x x xm R y to 3L .  

4H requests: At any time, A can ask a polynomially bounded number of4H requests of his 

choice. To respond these queries, B maintains the list 4L of tuples , , )i iU x2(c . The list is initially 

empty. When A queries the oracle4H of the request , )iH U4 2(c , B searches a pair , , )i iU x2(c in 

list 4L . If such a pair is found, B answers byix . Otherwise he answersA by a random binary 

sequence *
R Zi qx ∈  ∈R such that no entry , , )i iU x2(c appears in 4L (in order to avoid collisions 

on 4H ) and adds the pair , , )i iU xi(c to 4L . 

Key Extraction requests: At any time, A can ask a polynomially bounded number of key 

extraction  requests of his choice. When A asks a query ( )iKeygen ID , B first finds the 

corresponding tuple( , , , )
ii ID i iID Q b c in 1L (From the assumption we know that there must be such 

a tuple in 1L ). If 0ic = , B fails and stops. Otherwise if 1ic = , B computes the secret key 

i iID i Pub IDD b P c Q= ⋅ = ⋅ , and then B returns
iIDD to A . 

Signcryption requests: At any time, A can perform a signcryption request for a plaintextm , 

a user groupU and a designated receiver with identityID . B randomaly chooses a user AU  in 

the groupU whose identity is AID and not jID ( in this case, B can computesAU ’s secret key 

A A PubID b P= ⋅  where Ab is in the corresponding tuple( , , , )
AA ID A AID Q b c in the list 1L ). Then 

B uses AU ’s secret key and runs ( , , )Signcryption U ID m to signcrypt the message on the behalf 

of the groupU . At last, B returns the result ciphertextδ to A . 

Unsigncryption requests: At any time, A can perform an unsigncryption request for a 

ciphertext }},{,,,( 1210 VUccR i
n
i== ∪δ between the groupU and receiver whose identity isID . 

In other case while the receiver’s identity is notjID , For }...2,1{ ni ∈ , B checks whether: 

1
ˆ ˆ( , ( )) ( , )

S

n

Pub i i IDi
e P U h Q e P V

=
+ ⋅ =∑ ， 4 2( )i ih H c U=  

if so, Compute 2 0ˆ( ) ( ( , ))IDk H R H e R D′ ′= = ， kcm ′⊕= 1
* , )( 0

*
32 RmHcm ⊕=′ and 

accepts m′as an valid message. Otherwise, Bob rejects the ciphertext. If jID ID= , B always 

notifiesA that the ciphertext is invalid (because B does not know the secret key of the user whose 

identity is jID ). If this ciphertextδ is a valid one, the probability thatA will find is no more 

than 1
2k . 

Challenge: After a polynomially bounded number of queries, A chooses two messages 

0 1,m m M∈ ， n  users whose identities are 1 2{ , , }nID ID ID⋅ ⋅ ⋅ to form a users setU and another 

user whose identity isID .If jID ID≠ , B fails and stops. ∀ {1,2, , }i n∈ ⋅⋅⋅ , if 1ic = in the 



corresponding tuple( , , , )
ii ID i iID Q b c in 1L , B also fails and stops. If such U and the receiver are 

admissible, B chooses {0,1}Rb∈  ,let 0R aP= , R h′ = , 2( )k H h= , randomly chooses 

Mm R∈* ,computes kmc ⊕= *
1  ，

*
2 3( )bc m H m aP= ⊕ ; randomly chooses *

1GU Ri ∈ , 

computes 4 2( )i ih H c U= , }{\}...2,1{ Sni ∈∀ ; and randomly chooses *
qR Zr ∈′ , computes 

}{
SS IDi

Si
iIDS QhUQrU ⋅+−⋅′= ∑

≠

, )( 24 SS UcHh = ,
SIDS SrhV ⋅′+= )( .Define the 

ciphertext of messagebm as: 

1 2 1( , , , { }, }n
i iaP c c U Vδ == ∪  

and sendsδ to Bob. 

then B signcrypts the messagebm  as described in the signcryption request and sends the 

ciphertextδ to A . 

A asks again a polynomially bounded number of requests just like in the first stage. This time, 

he cannot know the secret key of any user in the groupU nor jID and he cannot ask the plaintext 

corresponding to the ciphertextδ . At the end of the simulation, he produces a bit *b for which he 

believes the relation *( , , )j b
Signcrypt U ID mδ = holds and sends*b to B . At this moment, if 

*b b= , B then answers 1 as a result because his selection h allowed him to produce a ciphertext 

C that appeared to A as a valid signcrypted text of bm . If *b b≠ , B then answers 0. The 

analysis of B’s probability of success is as follows: 

The probability that B does not fail during the key extraction requests is Eqη , during the challenge 

process , the probability that B does not fail is 
1

(1 )n

Hq
η− , the probability that B does not fail is  

1

(1 )Eq n

Hq
η η− , the value of probability get its maximum at the point 1

( )E

n

q n
η = −

+
, which is 

1

1 1( )( ) En q

Hq e
+ , adding the false answers during the Unsigncryption process. We first let 

* 1
Pr [ ( , , )]

2j bP b b Signcrypt U ID mδ ε= = = = +  
*

0 2

1
[ ] , 0,1

2RP P b i h G i= = ∈ = =  

2, , ,( ) [1 ( , , )] [1 ( , , , ( , ) )]
R q R R q

abc
a b F h G a b FAdv B P B aP bP cP P B aP bP cP e P P∈ ∈ ∈= ← − ←  

11 1

1 0 2 2
EE E

U
Uk

k

n qn q n q
HH H

q q
P P

q eq e q e

ε ε
++ +

− −−
≥ = = ⋅⋅ ⋅

 

Theorem 2. In the random oracle model (the hash functions are modeled as random oracles), if 

there is an algorithm A that can win the EF-IDRSC-CMIA  game with non-negligible probability 

by making a valid ring signcryption of group size n, in polynomial time with probabilityε when 



running in a time t and asking at most
1Hq identity hashing requests, at most 

2Hq 2H  Requests, 

3Hq 3H requests, 
4Hq 4H  requests, at mostEq Key extraction requests, Sq Signcryption 

requests andUq Unsigncryption requests. Then there exists a challengerC that can solve the 

computional Diffle-Hellman problem( )CDHP with an advantage 

1

2 1
(1 ) ( )

266
U

H

q n
C q k

En

n

e qC

εε ≥ ⋅ − ⋅
⋅

. 

Proof of the Theorem 2: Suppose the challenger C receives a random instance( , , )P aP bP of 

theCDHP and has to compute the value ofabP , C will run A as a subroutine and act as A ’s 

challenger in the EUF-IDRS-CMIA game. During the game, A  will consult C for answers to the 

random oracles 1H , 2H , 3H , 4H respectively. Roughly speaking, these answers are randomly 

generated, but to maintain the consistency and to avoid collision, C  keeps four lists to store the 

answers used. We assume that any Signcryption or Designcryption request between a group U  

and an identityID happens afterA asked the hashing1H of thisID and the identities in the group 

U . Any key extraction query on the identity is also preceded by a hash query on the same identity. 

We also assume that A never makes a Designcryption query on a ciphertext obtained from the 

signcryption oracle. He only makes Designcryption queries for observed ciphertext .C givesA the 

system parameters with ,PubP bP=  the valueb is unknown toC . 

1H requests:We embed part of the challengeaP in the answer of many 1H queries. When 

A asks queries on the hash value of identityID ,C picks *
i R qY Z∈  and repeats the process untiliY  

is not in the list 1L .C then flips a coin {0,1}W ∈ that yields 0 with probabilityη and 1 with 

probability 1 η− (η will be determined later.). If 0W = then the hash value1( )H ID is defined 

as iY P ; else if 1W =  then returns 1( ) ( )iH ID Y aP= . In either case,C stores( , , )iID Y W in the 

list 1L . 

2H requests : At any time, A can ask a polynomially bounded number of2H requests of his 

choice. To respond these queries, C maintains the list 2L of tuples( , )i iR k . The list is initially 

empty. When A queries the oracle2H of the request 2( )iH R ,C first searches a pair( , )i iR k  in 

list 2L . If such a pair is found, B answers byik . Otherwise he answers A by a random binary 

Sequence {0,1} l
ik ∈ such that no entry( , )ik⋅ appears in 2L (in order to avoid collisions on 2H ) 

and adds the pair( , )i iR k to 2L .  

3H requests: At any time, A can ask a polynomially bounded number of3H requests of his 

choice. To respond these queries, C maintains the list 3L of tuples *( , , )x x xm R y . The list is 

initially empty. When A queries the oracle3H of the request *
3( , )x xH m R , C first searches a 

pair *( , , )x x xm R y in list 3L . If such a pair is found, C answers by xy . Otherwise, he answers A  

by a random binary sequence {0,1} l
xy ∈ such that no entry *( , , )x x xm R y appears in 3L (in order to 



avoid collisions on 3H ) and adds the pair *( , , )x x xm R y in 3L .  

4H requests: At any time, A can ask a polynomially bounded number of4H requests of his 

choice. To respond these queries, C maintains the list 4L of tuples , , )i iU x2(c . The list is initially 

empty. WhenA queries the oracle 4H of the request , )iU4 2H (c , C searches a pair , , )i iU x2(c in 

list 4L . If such a pair is found, B answers byix . Otherwise he answers A by a random binary 

sequence *
R Zi qx ∈  ∈R such that no entry , , )i iU x2(c appears in 4L (in order to avoid collisions 

on 4H ) and adds the pair , , )i iU xi(c in 4L .  

Key Extraction requests: At any time, A can ask a polynomially bounded number of key 

extraction  requests of his choice. When A asks a query ( )iKeygen ID , C first finds the 

corresponding tuple( , , )iID Y W in 1L (From the assumption we know that there must be such a 

tuple in 1L ). If 1W = , B fails and stops. Otherwise if 0W = , C computes the secret key 

( )iY bP , thenC returns ( )iY bP to A . 

Signcryption requests: A chooses a group of n users’ identities 1 2{ , , }nU ID ID ID= ⋅⋅⋅  

where 1 i n≤ ≤ , another user whose identity isID and any message Rm M∈ . On input of 

( , , )U ID m , C outputs an ID-based ring signcryptionδ send it to the receiver, Bob, Whose 

identity is BID as follows. 

1.Randomly chooses *
qR Zr ∈ , Mm R∈* and computes 0 ,R rP= ),(ˆ

BIDPub QPreR ⋅=′ ，

)(2 RHk ′= ， kmc ⊕= *
1  ， )( 0

*
32 RmHmc ⊕= ; 

2. Chooses an index {1,2, }RS n∈ ⋅⋅⋅ ; 

3. Randomly chooses *
1GU Ri ∈  and compute 4 2( )i ih H c U= , }{\}...2,1{ Sni ∈∀ ; 

4. Chooses *
S R qh Z∈ and *

qR Zr ∈′  and computes { }
S iS S ID i i IDi S

U r P h Q U h Q
≠

′= − − +∑ ;  

5. Stores the relationship , , )i i SU x h=4 2H (c  to the list 4L and computes ( )V r bP′= , repeats the 

Step 4 in case collision occurs; 

6. the ciphertext of messagem as: 

}},{,,,( 1210 VUccR i
n
i== ∪δ  

and sendsδ to A . 

Unsigncryption requests: At any time, A can perform an unsigncryption request for a 

ciphertext }},{,,,( 1210 VUccR i
n
i== ∪δ between the groupU and receiver whose identity isID . 

In other case where the receiver’s identity is notjID , For }...2,1{ ni ∈ , B checks whether: 

4 2( )i ih H c U= ,
1

ˆ ˆ( , ( )) ( , )
S

n

Pub i i IDi
e P U h Q e P V

=
+ ⋅ =∑  

if so, Computes 2 0ˆ( ) ( ( , ))IDk H R H e R D′ ′= = , kcm ′⊕= 1
* , )( 0

*
32 RmHcm ⊕=′ and 

accepts m′as an valid message. Otherwise, Bob rejects the ciphertext. If jID ID=  , B always 

notifies A that the ciphertext is invalid (because B does not know the secret key of the user 



whose identity is jID ). If this ciphertextδ is a valid one, the probability thatA will find is no 

more than1
2k . 

A asks again a polynomially bounded number of requests just like in the first stage. This 

time, he cannot know the secret key of any user in the groupU nor jID and he can not ask the 

plaintext corresponding to the ciphertext. 

Finally, A outputs a forged ciphertext }},{,,,( 1210 VUccR i
n
i== ∪δ that is signcrypted by a 

certain member in the group 1 2{ , , }nU ID ID ID= ⋅⋅⋅ where 1( ) ( )
iID i iQ H ID Y aP= = ,∀

{1,2, , }i n∈ ⋅⋅⋅ , i.e. A has not requested for any one of the private keys of members in the group. 

Solving CDHP: It follows from the forking lemma for generic ring signature schemes [12] that if 

7
2

Hq
n

kC
Cε ≥ , andA can give a valid forged signature within timeAT in the above interaction, 

then we can construct another algorithmA′ that outputs within time2 AT two signed messages with 

at least
2

66 H

C
q
nC

ε
probability. For the resemble construction we can get the same result in our 

scheme, Suppose 4 2( )i ih H c U= and 4 2( )i ih H c U′ = for all }...2,1{ ni ∈ , we have i ih h′ = for 

all {1,2, , } \ { }i n S∈ ⋅⋅⋅ . GivenA′ derived from A , we can solve the CDHP by computing 

1 1( ) ( )S S SabP Y h h V V− −′ ′= − − , where SY can be found by looking for SID in the list 1L . 

Probability of success: Now we determine the value ofη . The probability thatC does not fail in 

all the Eq private key extraction queries isEqη , and the probabilitytthatA forged a signature 

thatC does not know all the corresponding private keys involved in the signcrypt ciphertext 

is (1 )nη ′− . So the combined probability is (1 )Eq nη η− . the value ofη that maximize this 

probability is E

E

q
q n+ , the maximized probability is(1 ) ( )Eq n n

E E

nn
q n q n

+− + +  . For 

enough largeEq : 

(1 ) 11(1 ) ( ) (1 ) ( ) ( )
(1 ) 1

E

E

q
nq n n n nn

E E EE E

n nn
q n q qq n e q

n n

⋅ ++− = − =+ + ⋅+ +
. 

The probability forC not to fail in all the signcryption queries is
1

(1 ) ( )
2

Uq n
k

E

n

e q
− ⋅

⋅
, if the 

attackerA can succeed with the probabilityε , the probability for C to succeed is 

1

2 1
(1 ) ( )

266
U

H

q n
C q k

En

n

e qC

εε ≥ ⋅ − ⋅
⋅

 



6. conclusion 

We present a new identity-based ring signcryption scheme, which only takes four pairing 

operations for any group size while the number of paring computations of all existing ID-based 

ring signcryption from bilinear pairing grows linearly with the group size, the reason why our 

scheme can use four paring computations for any group size is that the scheme does not take the 

method of choosing random numbers and applying them to the paring computations to get a part 

of ciphertext in the signcryption procedure; we also notice that if we use the character of bilinear 

paring to verify the validity of the ciphertext , the number is the least. The scheme is proven to be 

indistinguishable against adaptive chosen ciphertext ring attacks (IND-IDRSC-CCA2) and secure 

against an existential forgery for adaptive chosen messages attacks (EF-IDRSC-ACMA). 
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