
Breaking RSA Generically is Equivalent to Factoring∗

Divesh Aggarwal Ueli Maurer
Department of Computer Science

ETH Zurich

CH-8092 Zurich, Switzerland

{divesha,maurer}@inf.ethz.ch

Abstract

Let N be a random variable distributed according to some appropriate distribution
over the set of products of two primes, such that factoring N is believed to be hard.
The RSA assumption states that, given an a chosen uniformly at random from ZN
and an e ∈ N \ {1} , it is computationally hard to find an x ∈ ZN such that xe− a ≡ 0
(mod N).

When complexity-theoretic (relative) lower bounds for certain cryptographic prob-
lems in a general model of computation seem to elude discovery, a common practice
in cryptography is to give proofs of computational security in meaningful restricted
models of computation. An example of such a restricted model that is interesting in
cryptography is the generic group model that has been used for proving lower bounds
for the discrete logarithm problem and other related problems. A generic model cap-
tures the cases in which an algorithm does not exploit the bit representation of the
elements other than for testing equality.

In this paper, we prove that the problem of factoring N can be efficiently reduced
to solving the RSA problem on ZN in the generic ring model of computation, where
an algorithm can perform ring operations, inverse ring operations, and test equality.
This provides evidence towards the soundness of the RSA encryption and digital signa-
ture scheme, in particular showing that under the factoring assumption, they are not
vulnerable to certain kinds of cryptanalytic attacks.

Keywords: Generic Algorithms, Reductions, Factoring, RSA

∗A preliminary version of this paper appeared in the proceedings of EUROCRYPT 2009 [1].

1

1 Introduction

The two most fundamental reduction problems in number-theoretic cryptography are to
prove or disprove that breaking the RSA system [18] is as hard as factoring integers and
that breaking the Diffie-Hellman protocol [7] is as hard as computing discrete logarithms.
While the second problem has been solved to a large extent [13, 16, 3], not much is known
about the first for general models of computation. In this paper, we show that breaking
RSA generically is as hard as factoring the RSA modulus.

1.1 RSA and Factoring

In the RSA public key encryption scheme [18], the message x ∈ Zn , where n is a product
of two primes, is encrypted as xe (mod n), where e > 1 is an integer. The security of this
scheme relies on the assumption that, given a , it is hard to find x such that xe − a ≡ 0
(mod n).

Before we state the RSA assumption formally, we introduce the following notation. Let κ
denote the security parameter. Let Nκ be a κ-bit random variable chosen according to any
distribution from the set of products of two distinct primes, and let eκ > 1 be an integer,
whose length is bounded from above by a polynomial in κ . Our main result is a reduction
which works for all n = pq and all e . This is the reason we do not specify the distribution
of Nκ or the choice of eκ .1

We state some assumptions below whose relations we study in this paper:

• Factoring Assumption for (Nκ)κ∈N : There exists no probabilistic polynomial-time algo-
rithm that, given Nκ , finds a non-trivial factor of Nκ with non-negligible probability.2

• RSA Assumption for (Nκ, eκ)κ∈N : There exists no probabilistic polynomial-time al-
gorithm that, given the pair (Nκ, eκ) and an element a chosen uniformly at random
from ZNκ , computes x ∈ ZNκ such that xeκ − a ≡ 0 (mod Nκ) with non-negligible
probability.

The probability of success of the algorithm in the above definitions is taken over Nκ , a , and
the randomness of the algorithm.

It is easy to see that if the RSA assumption holds then the factoring assumption holds.
However it is a long-standing open problem whether the converse is true. Since no progress
has been made for general models of computation, it is interesting to investigate reasonable

1Note that in practice, for RSA, one usually generates e , possibly randomly, depending on the choice of
the modulus n . Even though we consider eκ to be independent of the distribution of Nκ , our result will
extend to the case where eκ is a random variable that depends on Nκ .

2A function f(κ) is considered a non-negligible function in κ if there exists c > 0 and k0 ∈ N such that
for all κ > k0 , |f(κ)| > 1

κc . The terms polynomial-time and negligible in the definitions of these assumptions
are with respect to the security parameter κ .

2

restricted models of computation and prove that in such a model factoring is equivalent to
the RSA problem. In a restricted model one assumes that only certain kinds of operations
are allowed. Shoup [19], based on the work of Nechaev [17], introduced the concept of generic
algorithms which are algorithms that do not exploit any property of the representation of
the elements. They proved lower bounds on the complexity of computing discrete logarithms
in cyclic groups in the context of generic algorithms. Maurer [14] provided a simpler and
more general model for analyzing representation-independent algorithms. In this work, we
consider the following assumption that breaking RSA is hard in the generic ring model.

• Generic RSA Assumption for (Nκ, eκ)κ∈N : There exists no probabilistic polynomial-
time generic ring algorithm (a class of algorithms that we will formally define later)
that, given the pair (Nκ, eκ) and an element a chosen uniformly at random from ZNκ ,
computes x ∈ ZNκ such that xeκ − a ≡ 0 (mod Nκ) with non-negligible probability.

The following is the main result of this paper.

Theorem 1 For all κ > 0, let Nκ be a random variable distributed over κ-bit integers that
are products of two primes. If the factoring assumption for (Nκ)κ∈N holds, then for all
integers eκ ∈ [2, 2poly(κ)], the generic RSA assumption holds for (Nκ, eκ)κ∈N .

1.2 The Generic Model of Computation

We give a brief description of the model of [14]. The model is characterized by a black-box
B which can store values from a certain set Z in internal state variables V0, V1, V2, · · · . The
initial state (the input of the problem to be solved) consists of the values of [V0 , . . . , V`] for
some positive integer ` , which are set according to some probability distribution (e.g., the
uniform distribution).

The black box B allows two types of operations:

• Computation operations. For a set Π of operations of some arities on Z , a computation
operation consists of selecting f ∈ Π (say t-ary) as well as the indices i1, . . . , it+1 of
t+1 state variables. B computes f(Vi1 , . . . , Vit) and stores the result in Vit+1 .

• Relation Queries. For a set Σ of relations (of some arities) on Z , a query consists of
selecting a relation ρ ∈ Σ (say t-ary) as well as the indices i1, . . . , it of t state variables.
The query is replied by the binary output ρ(Vi1 , . . . , Vit) that takes the value 1 if the
relation is satisfied, and 0 otherwise.

For this paper, we only consider the case t = 2 and the only relation queries we consider are
equality queries.

An algorithm in this model is characterized by its interactions with the black box B .
The algorithm inputs operations (computation operations and relation queries) to the black

3

box, and the replies to the relation queries are input to the algorithm. The complexity of an
algorithm for solving any problem can be measured by the number of operations it performs
on B.

For this paper, the set Z is ZN . Moreover, ` = 1, and V0 is always set to be the unit
element 1 of ZN , and V1 is the value a . A generic ring algorithm (GRA) is an algorithm
that is just allowed to perform the ring operations, i.e., addition and multiplication as well as
the inverse ring operations (subtraction and division), and to test for equality (i.e., make an
equality query). In this model, for example, GRAs on ZN correspond to Π = {+,−, ·, /} and
Σ = {eq} , where eq stands for equality queries. A straight-line program (SLP) on ZN , which
is a deterministic algorithm that is just allowed to perform ring operations, corresponds to
the case where Σ is the empty set, i.e., no equality tests are possible.

Some results like [11] in the literature are restricted in that they exclude the inverse
operations, but since these operations are easy3 to perform in ZN , they should be included
as otherwise the results are of relatively limited interest.

1.3 Discussion and Relevance of the Generic Model of Computation

Since Shoup’s result [19] on proving lower bounds for computing discrete logarithms and
some related problems in the generic group model (where the only allowed operations are
the group operations and equality queries), it has been a well accepted approach to give
proofs of hardness of problems relevant in cryptography in the generic group/ring model.

Three kinds of problems can be considered in the generic group/ring model: extraction
problems, computation problems and decision problems.

Extraction problems are problems where the task of the algorithm is to extract the input
x from the black-box. An example of this is the discrete logarithm problem, as has been
explained in [14]. Other examples of the extraction problem in related models have been
considered in [3, 15, 2].

Decision problems are problems of computing some predicate (function) of the input
which evaluates to either 0 or 1. In this case, a generic algorithm tries to guess the bit
based on its interactions with the blackbox. An example of this in the generic group model
is the Decisional Diffie Hellman problem.

The only possible way to guess the output of a decision problem is based on the result
of the relation queries. In the generic ring model described in Section 1.2, the only relation
queries allowed are equality queries. Thus, for the ring ZN , as we show in Lemma 5, if
the input is chosen uniformly at random from ZN , then if we can obtain any non-trivial
information from an equality query with non-negligible probability, then we can use this to
factor N . Therefore, under the assumption that factoring N is hard, there does not exist
any GRA for solving any decision problem on the ring ZN for an input chosen uniformly

3Division of an element a by b for a, b ∈ ZN can be performed easily by first computing b−1 using
Euclid’s algorithm and then computing a · b−1 in ZN .

4

at random from ZN . Thus, even problems as simple as computing the least significant bit
of a random input in ZN is hard with respect to generic ring algorithms. In particular,
computing the Jacobi symbol is an example of a problem that is easy to solve in general,
but is hard in the generic ring model as has also been pointed out in [9].

This may at first seem to suggest that a result showing the hardness of a certain problem
with respect to generic ring algorithms is of no significance. However, computation problems
still remain an interesting class of problems in the generic ring model of computation. The
computation problems are problems where the algorithm is required to compute a function
of the input that results in a set of elements of the underlying group/ring structure. The
algorithm is successful if it is able to compute this set of elements inside the black-box using
the allowed operations and relation queries. An example of a computation problem in the
generic group model is the Computational Diffie Hellman problem.

There exist (maybe inefficient) generic algorithms for solving almost all computation
problems. In particular, consider the RSA problem in the ring of integers modulo N = pq .
There is a trivial GRA that solves the RSA problem by computing xe for different values of
x from 2, 3, . . . until an x is obtained such that xe = a . Thus it is interesting to obtain a
result that shows the impossibility of getting an efficient GRA under a plausible assumption
like the assumption that factoring is hard.

A result in the generic model makes more sense than, for example, results in the monotone
circuit model in complexity theory where one is allowed only AND and OR but no NOT
gates, since there are instances where generic algorithms are the best known algorithms e.g.,
discrete logarithms problem over elliptic curves, while such instances do not exist for the
monotone circuit model. In particular, a result in this model rules out certain classes of
cryptanalytic attacks for breaking the corresponding cryptosystem.

Motivated by the fact that decision problems like the Jacobi symbol are hard in the
generic model and easy in general, one might want to consider a more general model than
the generic ring model of computation where one is, for example, given oracle access to the
Jacobi symbol. This can be modeled nicely by allowing another relation query corresponding
to whether the Jacobi symbol is 0 or 1.

1.4 Comparison with Related Work

Research on the relation between RSA and factoring comes in two flavours. There have been
results giving evidence against (e.g. [4, 10]) and in favour of (e.g. [5, 11]) the assumption
that breaking RSA is equivalent to factoring.

Boneh and Venkatesan [4] showed that any SLP that factors N by making at most
a logarithmic number of queries to an oracle solving the Low-Exponent RSA (LE-RSA)
problem (the RSA problem when the public exponent e is small) can be converted into a
real polynomial-time algorithm for factoring N . This means that if factoring is hard, then
there exists no straight-line reduction from factoring to LE-RSA that makes a small number
of queries to the LE-RSA oracle. Joux et al [10] showed that given access to an oracle that

5

computes e-th roots of numbers of the form x + c for a fixed c and any x , computing
arbitrary e-th roots modulo N is easier than factoring N .

Brown [5] showed that if factoring is hard then the LE-RSA problem is intractable for
SLPs with Π = {+,−, ·} . More precisely, he proved that an efficient SLP for breaking
LE-RSA can be transformed into an efficient factoring algorithm. Leander and Rupp [11]
generalized the result of [5] to GRAs which, as explained above, can test the equality of
elements. Again, division is excluded (Π = {+,−, ·}).

Another theoretical result about the hardness of the RSA problem is due to Damg̊ard and
Koprowski [6]. They studied the problem of root extraction in finite groups of unknown order
and proved that the RSA problem is intractable with respect to generic group algorithms.
This corresponds to excluding addition, subtraction and division from the set of operations
(Π = {·}).

Our results generalize the previous results in several ways. In fact, Theorem 1 appears
to be the most general statement about the equivalence of breaking RSA in a generic ring
model and factoring.

• First, compared to [5, 11], we consider the full-fledged RSA problem (not only LE-RSA)
with exponent e of arbitrary size, even with bit-size much larger than that of N .

• Second, compared to [6, 5, 11], we consider the unrestricted set of ring operations,
including division. This generalization is important since there are problems that
are easy to solve in our generic ring model but are provably hard to solve using the
model without division4. Actually, as has been pointed out in [5], computing the
multiplicative inverse of a random element in ZN generically is hard if Π = {+,−, ·} .

The problem we solve has been stated as an open problem in [6] and [5].

2 Preliminaries

2.1 Straight-Line Programs and Generic Ring Algorithms

In this section we define GRAs and SLPs (as a special case) as (syntactic) mathematical
objects. Then we define the semantics of the GRA (SLP) in terms of what is computed at
each step, and finally we define the partial function Zn → Zn computed by the GRA (SLP)
when it is run for the ring Zn .

An SLP (for rings) is a deterministic algorithm that performs a sequence of ring opera-
tions. Thus an SLP corresponds to Π = {+,−, ·, /} and Σ = {} in the model of [14]. More
precisely, an SLP is a sequence of operations, where the k -th operation is of the form (i, j, ◦)
for 0 ≤ i, j < k and ◦ ∈ {+,−, ·, /} . The result of the k -th step is defined as the result

4In [5], the author has mentioned and given justification for the fact that most results of his paper will
extend to SLPs with division.

6

of applying ◦ to the i-th and the j -th intermediate results. To be compatible with the
definition of a GRA, we define an SLP as a labeled path (a graph) rather than a sequence:

Definition 1 An L-step SLP S is a partially labeled path v0, . . . , vL where v0, v1 are unlabeled
and vk for k ∈ [2, L] carries a label of the form (vi, vj, ◦) for 0 ≤ i, j < k and ◦ ∈
{+,−, ·, /}.

A deterministic generic ring algorithm is a generalized SLP that also allows equality
queries. Hence a GRA corresponds to a labeled tree, where branches in the tree correspond
to equality queries, where the left [right] child of a branching vertex corresponds to the
equality test being [not] satisfied. An equality query must specify which two intermediate
results (i.e., which vertices in the graph) are to be compared. Formally:

Definition 2 An L-step deterministic GRA G is a depth-L partially vertex-labeled and
edge-labeled binary tree where the root vertex and its child are unlabeled and each has
one outgoing edge, and the remaining tree has two kind of vertices: branching vertices and
non-branching vertices. A branching vertex v has two outgoing edges labeled 0 (for left
edge) and 1 (for right edge), and v carries a label of the form (u,w), where u,w are some
non-branching vertices in the path from the root to v . A non-branching vertex v has one
outgoing edge and v has a label of the form (u,w, ◦), where u,w are some non-branching
vertices in the path from the root to v , and ◦ ∈ {+,−, ·, /} .

Note that an SLP can be seen as a special case of a GRA with no branching vertices.
Next, we define a randomized GRA as a further generalization of a deterministic GRA, where
the choice of the operation at each step is randomized.

Definition 3 A randomized GRA is a random variable whose values are deterministic GRAs.

A GRA (or SLP) without division operation can naturally be interpreted as computing
a polynomial in Z[x] at each non-branching vertex, where by definition the root and the
child of the root are labeled by polynimials 1 and x , respectively. (Here x stands for
the indeterminate of the polynomial. For a concrete argument a in the ring, x will be
thought of being set to a .) Note that these polynomials are defined over Z[x] , no matter
to which particular ring R (e.g. R = Zn) it is thought of as being applied. If the GRA
contains division operations, then each non-branching vertex corresponds naturally to a pair
of polynomials in Z[x] , the numerator and the denominator polynomial. Note that we do not
yet interpret this pair as a (rational) function and hence the possible problem of a division
by 0 does not arise at this point.

Definition 4 For a GRA G (or SLP S) and non-branching vertex v , the pair (PG
v (x), QG

v (x))
of polynomials in Z[x] associated with v is defined inductively, as follows:

1. The root has associated the pair (1, 1), and the child of the root the pair (x, 1).

7

2. For each non-branching vertex v , labeled with operation (u,w, ◦), we have

(
PG
v (x), QG

v (x)
)

=

(
PG
u (x) ·QG

w(x) + PG
w (x) ·QG

u (x), QG
u (x) ·QG

w(x)
)

if ◦ is +(
PG
u (x) ·QG

w(x)− PG
w (x) ·QG

u (x), QG
u (x) ·QG

w(x)
)

if ◦ is −(
PG
u (x) · PG

w (x), QG
u (x) ·QG

w(x)
)

if ◦ is ·(
PG
u (x) ·QG

w(x), QG
u (x) · PG

w (x)
)

if ◦ is /

If the GRA is an SLP S , then the final pair of polynomials (i.e., one that corresponding to
the last vertex) is unique and we call it (P S, QS).

It follows from the definitions that any L-step SLP S of length L can be “converted”
into an SLP S ′ of length at most 4L that computes both (P S, 1) and (QS, 1). A result
similar to this but with a factor of 6 instead of 4 has been proven independently in [8].

Lemma 1 For any L-step SLP S , there exists a 4L-step SLP S ′ and some indices r, t ≤ 4L
such that (P S′

vr , Q
S′
vr) = (P S

L , 1) and (P S′
vt , Q

S′
vt) = (QS

L, 1).

For a fixed (partially invertible) ring R , one can associate to every vertex v of a GRA
G the partial function fGv computed at that vertex, as explained in the definition below.
Moreover, executing a GRA for a given ring R and a given argument a ∈ R means to
compute along a path, starting at the root, where each equality test (comparing the values
computed at two previous vertices) determines which branch is taken in the corresponding
branching vertex. Such a computation ends in a leaf ` of the tree, where the leaf ` that is
reached depends on the argument a . For argument a , the value computed at the reached
leaf is defined as the function value fG(a) computed by the GRA. More formally:

Definition 5 For each non-branching vertex v in a GRA G with corresponding pair of poly-
nomials (PG

v (x), QG
v (x)), we associate the function

fGv : R→ R ∪ {⊥} : a 7→ PG
v (a)

QG
v (a)

,

where the function is undefined if QG
v (a) = 0, which is denoted as fGv (a) = ⊥ , and where

PG
v (a) and QG

v (a) are evaluated over R . Moreover, for an argument a ∈ R , the computation
path v0, v1, . . . , v` from the root v0(a) to a leaf v`(a) =: Λ(a) is defined by taking, for each
equality test of the form (u,w), the edge labeled 0 if fGu (a) = fGw (a), and the edge labeled
1 if fGu (a) 6= fGw (a). The partial function fG computed by G is defined as

fG : R→ R ∪ {⊥} : a 7→ fGΛ(a).

We only consider rings of the form R = Zn , and for this case the function computed by
GRA G will be denoted as fG,n : Zn → Zn .

8

2.2 Mathematical Preliminaries

In this section we introduce some notations and prove some results about the mathematical
structures used in this paper.

For any event E , we denote the probability of E by Pr(E). For any integer n , Zn[x]
denotes the ring of polynomials in x with coefficients in Zn . For h(x) ∈ Zn[x] , Zn[x]/(h(x))
denotes the quotient ring Zn[x] by a principal ideal generated by h(x).

Definition 6 For any integer n and any partial function f : Zn 7→ Zn ∪ {⊥} , we define the
following.

• Let ηn(f) denote the fraction of elements a in Zn such that f(a) has a non-trivial
greatest common divisor with n :

ηn(f) :=

∣∣{a ∈ Zn|f(a) 6= ⊥ ∧ gcd(f(a), n) /∈ {1, n}
}∣∣

n
.

• Let νn(f) denote the fraction of roots of f in Zn , i.e.,

νn(f) :=

∣∣{a ∈ Zn|f(a) = 0
}∣∣

n
.

• For any deterministic GRA G , and any function g : Zn 7→ Zn , let λn(G, g) be the
success probability of G in computing g , defined as:

λn(G, g) := νn
(
fG,n(x)− g(x)

)
,

where fG,n(x)− g(x) = ⊥ if fG,n(x) = ⊥ .

For n ∈ N and e > 1, such that gcd(e, φ(n)) = 1, we denote by x1/e : Zn 7→ Zn , the
function that maps a ∈ Zn to b ∈ Zn such that be = a .

We prove a few results that we will need later. These are similar to what was used
in [5, 11].

Lemma 2 Let n = pq be a product of two primes. For any P (x) ∈ Zn[x] and for any δ > 0,

if νn(P) ∈ [δ, 1− δ], then ηn(P) ≥ δ
3
2 .

Proof. We denote νp(P) and νq(P) by νp and νq , respectively. By the Chinese remainder
theorem, νn(P) = νp · νq and ηn(P) = νp(1− νq) + νq(1− νp). Using δ ≤ νp · νq ≤ 1− δ , we
obtain

ηn(P) = νp + νq − 2νp · νq
≥ 2

√
νp · νq − 2νp · νq

= 2
√
νp · νq(1−

√
νp · νq)

≥ 2
√
δ(1−

√
1− δ)

≥ 2
√
δ(1− (1− δ

2
))

= δ
3
2 .

ut

9

Lemma 3 Let p be a prime and d be a positive integer. A random monic polynomial f(x) ∈
Zp[x] of degree d is irreducible in Zp[x] with probability at least 1

2d
and has a root in Zp

with probability at least 1/2.

Proof. From the distribution theorem of monic polynomials (see, e.g., [12]) it follows that

the number of monic irreducible polynomials of degree d over Fp is at least pd

2d
. Therefore

f(x) is an irreducible polynomial over Zp with probability at least 1
2d

.

The number of monic polynomials over Zp with at least one root is:

d∑
l=1

(−1)l−1

(
p

l

)
pd−l.

This can be seen by applying the principle of inclusion and exclusion. The terms in this
summation are in decreasing order of their absolute value. So, taking the first two terms,

this sum is greater than
(
p
1

)
pd−1 −

(
p
2

)
pd−2 which is greater than pd

2
. Hence the probability

that f(x) has a root in Zp is at least 1/2.5 ut

3 The Main Reduction

In this section, we prove the following theorem.

Theorem 2 For all µ ∈ (0, 1), there exists a probabilistic algorithm A that takes as input an
integer n = pq that is a product of two primes, an integer e > 1, and an L-step randomized
GRA G , runs in time polynomial in log n, log e, L, and 1

µ
, such that whenever

EG[λn(G, x1/e)] ≥ µ ,

then A computes a factor of n with probability at least 1/2.

It is easy to see that Theorem 1 is an immediate corollary of Theorem 2.

Throughout this section, we write f(x) ≡ 0 (mod n) if f is the constant 0-function
modulo n , and for a (possibly partial) function f we write f(x) 6≡ 0 (mod n) otherwise.

In Section 3.1, we show that an SLP that computes e-th roots modulo n with non-
negligible probability can be used to factor n . Then, in Section 3.2, we show that from a
deterministic GRA that computes e-th roots, we can either obtain an SLP that computes e-
th roots, or directly obtain a factor of n . In Section 3.3, we combine the results of Section 3.1
and 3.2 to show that a randomized GRA that computes e-th roots can be used to factor n .

5Note that, by a careful analysis, it is possible to prove a better lower bound on the probability that f(x)
has a root in Zp but a lower bound of 1/2 is sufficient for our purpose.

10

3.1 The Proof for Straight-Line Programs

We first give an algorithm that factors n given access to an SLP that computes a non-trivial
polynomial that is 0 modulo n .

For b(x), c(x) ∈ Zn[x] , let gcdp(b(x), c(x)) and gcdq(b(x), c(x)) be the greatest common
divisor of the polynomials modulo p and q , respectively. The following proposition is easy
to see.

Proposition 1 Let b(x), c(x) ∈ Zn[x]. If deg(gcdp(b(x), c(x))) 6= deg(gcdq(b(x), c(x))), then
Euclid’s algorithm on Zn[x]6 with input b(x) and c(x) yields a non-trivial non-invertible
element of Zn .

We denote by H(b(x), c(x)) the non-trivial non-invertible element output when Euclid’s
algorithm is executed on Zn[x] with input b(x) and c(x).

Lemma 4 There exists a randomized algorithm (Algorithm 1) that takes as input n = pq ,
where p, q > 3 are primes, L ∈ N, and an L-step SLP S , runs in time O(L3 log2 n), and
does the following. If (P S(x), QS(x)) = (f(x), 1), and f(x) 6≡ 0 mod n, then Algorithm 1

returns a factor of n with probability at least νn(f)
8L

.

Proof. Consider Algorithm 1. By Proposition 1, if Euclid’s algorithm fails in step 5 or step
6, then we get a factor of n .

Now we compute the success probability of the algorithm. Without loss of generality, we
assume that f(x) 6≡ 0 mod q . By Lemma 3, the probability that h(x) is irreducible modulo
q and has a root modulo p is at least 1

2L
· 1

2
= 1

4L
. We assume that this is the case for the

rest of the proof and all subsequent probabilities are computed conditioned on this event.

Algorithm 1: Factoring Algorithm

Input: n , SLP S
Output: A factor of n

1 Choose a monic polynomial h(x) uniformly at random from all monic polynomials of
degree L in Zn[x] ;

2 Compute h′(x), the derivative of h(x) in Zn[x] ;
3 Choose a random element r(x) ∈ Zn[x]/(h(x));
4 Compute z(x) = f(r(x)) in Zn[x]/(h(x)) using the instructions of SLP S ;
5 Run Euclid’s algorithm in Zn[x] on h(x) and z(x). If this fails return

gcd(n,H(h(x), z(x)));
6 Run Euclid’s algorithm in Zn[x] on h(x) and h′(x). If this fails return

gcd(n,H(h(x), h′(x)));

Let this root of h(x) modulo p be s . Therefore (x − s) divides h(x) in Zp[x] . We
analyze two cases.

6Note that Zn[x] is not a Euclidean domain

11

• CASE 1: (x− s)2 divides h(x) in Zp[x] .

This implies that (x − s) divides gcdp(h(x), h′(x)). However, since h(x) is irre-
ducible in Zq[x] , the degree of gcdq(h(x), h′(x)) is 0. Therefore gcdp(h(x), h′(x)) and
gcdq(h(x), h′(x)) have different degree, which implies, by Proposition 1, that Euclid’s
algorithm on h(x) and h′(x) fails and hence step 6 yields a factor of n .

• CASE 2: (x− s)2 does not divide h(x) in Zp[x] .

Let h(x) = h1(x) · (x− s) in Zp[x] . Then:

Zn[x]/(h(x)) ∼= Zp[x]/(h(x))× Zq[x]/(h(x)) ∼= Zp[x]/(x− s)× Zp[x]/(h1(x))× FqL ,

because Zq[x]/(h(x)) ∼= FqL (the finite field containing qL elements) as h(x) is irre-
ducible in Zq[x] by our assumption.

We identify the elements in the quotient ring by the polynomial representing the cor-
responding element in the quotient ring.

Under this isomorphism, let r(x) and z(x) map to the triple

(r(s) mod p, u(x), rq(x)) and (z(s) mod p, v(x), zq(x)) ,

respectively, where rq(x) and zq(x) are the reductions of r(x) and z(x) modulo q .
Since r(x) is uniformly random in Zn[x]/(h(x)), r(s) is uniformly random in Zp[x]/(x−
s) ∼= Zp . This implies

Pr
(
z(s) ≡ 0 (mod p)

)
= Pr

(
f(r(s)) ≡ 0 (mod p)

)
≥ Pr

(
f(r(s)) ≡ 0 (mod n)

)
= νn(f) .

Therefore, with probability at least νn(f), (x − s) divides z(x) in Zp[x] , which im-
plies Pr((x − s) divides gcdp(z(x), h(x))) ≥ µ . Since r(x) is uniformly random in
Zn[x]/(h(x)), rq(x) is uniformly random in Zq[x]/(h(x)) ∼= FqL . A non-zero polyno-
mial over a finite field can have at most as many roots as the degree of the polynomial.
Therefore, for random x ,

Pr
(
zq(x) = 0

)
= Pr

(
f(rq(x)) = 0

)
≤ deg(f)

qL
≤ 2L

qL
≤ 1

2
,

for q > 3. We use the fact that deg(f) ≤ 2L . This is because, at each step of the SLP
which is either an addition, subtraction, or a multiplication operation of two previously
computed polynomials, the degree is bounded by the sum of the degrees of the two
polynomials. Thus, by induction, the degree is at most 2L after L steps of the SLP.
Hence, Pr(zq(x) 6≡ 0) ≥ 1

2
. The condition zq(x) 6≡ 0 implies that gcdq(z(x), h(x)) has

degree 0 because h(x) is irreducible modulo q .

12

Therefore the probability that Euclid’s algorithm run on h(x) and z(x) fails is at least
1

4L
· νn(f) · 1

2
= νn(f)

8L
.

Now we compute the time complexity of one run of the loop. Generating random h(x) and
r(x) and computing the derivative requires O(L log2 n) operations in Zn . Each operation
in Zn[x]/(h(x)) can be implemented by at most L2 log2 n operations in Zn . The function
f(r(x)) = z(x) can be computed in time O(L2 log2 n ·L) = O(L3 log2 n). Euclid’s algorithm
on z(x) and h(x) and on h(x) and h′(x) can be performed by O(L2 log2 n) operations.
Thus, the running time of the algorithm is O(L3 log2 n). ut

Corollary 1 There exists an algorithm that takes as input n = pq , where p, q > 3 are primes,
an integer e > 1, L ∈ N, and an L-step SLP S , runs in time O((L3 + log3 e) log2 n), and

returns a factor of n with probability at least
λn(S,x1/e)
32(L+log e)

.

Proof. Consider the polynomial f(x) = (P S(x))e − x · (QS(x))e . We claim that f(x) 6≡ 0
(mod n) if and only if QS(x) (and hence also P S(x) 6≡ 0 (mod n)). To see this, assume,
to the contrary, that QS(x) is non-zero but f(x) is zero modulo n . This implies P S(x) is
also non-zero modulo n . Let the leading terms of P S(x) and QS(x) be a0x

d0 and a1x
d1 ,

respectively, where a0, a1 are not zero modulo n . Note that d0 · e 6= d1 · e + 1 since e > 1.
Thus, the leading term of f(x) is either a0x

d0·e , or a1x
d1·e+1 , and hence is non-zero.

Also, note that for any a ∈ Zn , (fS,n(a))e − a = 0 if and only if f(a) = 0 and QS(a) 6=
0. Thus, we assume that QS(x) 6≡ 0 (mod n), since otherwise λn

(
S, x1/e

)
= 0, and the

result is vacuously true. This implies that f(x) is not the zero polynomial modulo n , and
λn(S, x1/e) = νn

(
(fS,n(x))e − x

)
≤ νn(f). Thus it suffices to obtain an algorithm that

returns a factor of n with probability νn(f)
32(L+log e)

.

From Lemma 1 we get that from any L-step SLP S , we can get a 4L-step SLP using only
operations {+,−, ·} that computes (P S, 1) and (QS, 1). Hence we can obtain a (4L+4 log e)-
step SLP that computes the pair ((P S(x))e− (QS(x))e · x, 1). Thus, using Lemma 4, we get
the result. ut

3.2 From Deterministic GRAs to SLPs

In this section we give an algorithm that, given access to a deterministic GRA that computes
e-th roots, outputs either a factor of n or an SLP that computes e-th roots.

Lemma 5 For all ε > 0 and any function g : Zn 7→ Zn , there exists a randomized algorithm
(Algorithm 2) that, given n, L ∈ N, and an L-step deterministic GRA G, runs in time

O
(
L7/2 log2 n

ε5/2

)
and, with probability 1− ε, either outputs a factor of n or an L-step SLP S

such that λn(S, g) ≥ λn,e(G, g)− ε
2

.

13

Proof. Let δ = ε
2L

. We classify the branching vertices in G into two kinds of vertices –
extreme and non-extreme vertices. For a branching vertex v labeled with (u,w), if

νn(PG
u ·QG

w − PG
w ·QG

u) ∈ [δ, 1− δ]

then we call v a non-extreme vertex and otherwise we call v an extreme vertex.

Let Gex be the tree obtained from G by truncating the sub-tree rooted at v for all
non-extreme vertices v . Therefore all non-extreme vertices present in Gex are at the leaves.
Also, we can assume, without loss of generality, that a leaf vertex of G is not a branching
vertex since that would be of no use. Hence the leaf vertices of Gex are either non-branching
or non-extreme branching vertices.

Let v? = v?(Gex) be the unique leaf vertex of Gex reached by traversing down starting
from the root and inputting, for all extreme vertices v labeled with (u,w), and going to the
right edge if νn(PG

u ·QG
w − PG

w ·QG
u) ∈ [0, δ) and to the left edge if νn(PG

v ·QG
v − PG

v ·QG
v) ∈

(1− δ, 1]. We call the path from the root to the vertex v? the dominating path because this
is the path that is most likely to be taken if G is run on a random input from Zn as we
make the most likely choice at each equality test (recall that δ is small). Let S? denote the
straight line program corresponding to this path.

Let M = d L3/2

(ε/2)5/2
e . Consider Algorithm 2.

Algorithm 2:

Input: GRA G , n
Output: A factor of n or an SLP S

1 Initialize S to be a path of length 1 with G.root,G.root.child ;
2 Let v be the grandchild of the root of G ;
3 while v.child 6= ⊥ do
4 if v is a non-branching vertex then Append v with its label to S ;
5 else
6 Let label of v be (u,w);
7 for i← 1 to M do
8 Generate a uniformly random element x ∈ Zn ;
9 Compute g as the gcd of PG

u (x) ·QG
w(x)− PG

w (x) ·QG
u (x) and n ;

10 if g /∈ {1, n} then return g ;

11 end
12 Generate a uniformly random element x′ ∈ Zn ;
13 if PG

u (x′) ·QG
w(x′)− PG

w (x′) ·QG
u (x′) = 0 then v = v.left ;

14 else v = v.right ;

15 end

16 end
17 Return S ;

The intuition is that when executing the GRA for a random element a ∈ Zn , either
all the equality test one encounters are irrelevant in the sense that the probability that the

14

outcome depends on a is very small, and hence the execution corrresponds to an SLP, or
the relevant equality test encountered during the execution can be used to factor.

At each equality query, it tries to find a factor of n using the two pairs of polynomials
that are compared. If it fails, it outputs the SLP S as the path from the root to a leaf of G
(excluding branching vertices). This path corresponds to a unique path in Gex . This path is
chosen by generating, for each equality query, a uniformly random element in Zn and then
testing the equality on this element, and choosing the subsequent vertex based on the result
of this equality test. Algorithm 2 is successful with high probability (as shown below) if this
path is the dominating path, i.e., if it reaches the vertex v? .

Let the leaf vertex of Gex in which this path S terminates be vS . Note that vS might
not be a leaf vertex of G .

If Algorithm 2 outputs S , then let (P S, QS) denote the pair of polynomials corresponding
to S .

Let E be the event that vS = v? , i.e., that the dominating path is found by Algorithm 2.
The event E does not occur if there exists an extreme vertex v with label (u,w) in the path
from the root of Gex to vS such that Algorithm 2 proceeds to the child corresponding to the
unlikely output, i.e., goes to left child and νn(PG

w · QG
u − PG

u · QG
w) ∈ [0, δ) or goes to right

child and νn(PG
w ·QG

u −PG
u ·QG

w) ∈ (1− δ, 1]. Note that this can happen with probability at
most δ at each extreme vertex v and there can be at most L such extreme vertices in the
path from the root of Gex to vS . Therefore,

Pr(E) = 1− Pr(E) ≥ 1− δ · L = 1− ε
2
.

Now we compute the success probability of the algorithm. There are two possible cases
depending on whether v? is a non-extreme vertex or corresponds to a computation operation.

• CASE 1: v? is a non-extreme vertex.

In this case we show that the factoring algorithm is successful with probability at least
1− ε .
Let E’ be the event that Algorithm 2 returns a factor of n . We compute Pr(E’|E).
If E holds, then vS is a non-extreme vertex. Therefore, by Lemma 2, a factor of
n is returned in one test in Step 10 at the equality query corresponding to vS with
probability at least δ3/2 . The total number of times step 10 is repeated for this equality
query is M . Therefore7,

Pr(E’|E) ≥ 1− (1− δ3/2)M ≥ 1− exp(−δ3/2M) = 1− exp(−2
ε
) ≥ 1− ε

2
.

This implies

Pr(E’) ≥ Pr(E’|E) · Pr(E) ≥ (1− ε
2
)2 ≥ 1− ε .

7We use the notation exp(·) to denote exponentiation to the natural base in order to avoid confusion
with the public exponent e .

15

• CASE 2: v? corresponds to a computation operation.

In this case, we show that if the factoring algorithm is not successful, then, with
probability 1− ε

2
, we have λn(S, g) ≥ λn(G, g)− ε

2
.8

The fraction of inputs a ∈ Zn such that when G is run on a , the corresponding path
taken on Gex does not terminate in v? is at most δ · L = ε

2
(because the number of

extreme vertices in any path from root to a leaf is at most L). This implies,

λn(S?, g) ≥ λn(G, g)− ε
2
.

So, if E occurs, then the following event occurs.

λn(S, g) ≥ λn(G, g)− ε
2
.

Hence,

Pr
(
λn(S, g) ≥ λn(G, g)− ε

2

)
≥ Pr(E) ≥ 1− ε

2
.

The running time of the algorithm is dominated by step 9 which involves evaluating
PG
u (x) · QG

w(x) − PG
w (x) · QG

u (x) for a random input x and then computing its gcd with n .
This step takes time O(L log2 n) and is executed at most O(LM) times. Therefore the time

complexity of the algorithm is O(L2 ·M · log2 n) = O
(
L7/2 log2 n

ε5/2

)
. ut

3.3 Proof of Theorem 2

Now, let g : Zn 7→ Zn be the function a 7→ a1/e . We combine Lemma 4 and Lemma 5 to get
the following result.

Corollary 2 For all ε ∈ (0, 1/2], there exists an algorithm that takes as input n = pq , where
p, q > 3 are primes, an integer e > 1, L ∈ N, and an L-step GRA G, runs in time

O(L
7/2 log2 n
ε5/2

+ log3 e log2 n) and returns a factor of n with probability at least λn(G,x1/e)−ε/2
64(L+log e)

.

Proof. We first execute Algorithm 2 with input n, e,G . If we obtain a factor of n , we
return this factor. Otherwise, we execute Algorithm 1 on the SLP output by Algorithm 2.

With probability 1− ε , Algorithm 2 either returns a factor of n or an L-step SLP that
succeeds with probability λn(G, x1/e)− ε/2. In the latter case, Algorithm 1 returns a factor

of n with probability λn(G,x1/e)−ε/2
32(L+log e)

. Thus, the success probability of the factoring algorithm
is at least

(1− ε) · λn(G, x1/e)− ε/2
32(L+ log e)

≥ λn(G, x1/e)− ε/2
64(L+ log e)

.

8Note that the straight line program S is a random variable depending on the random choices made by
the algorithm.

16

ut

Now we can conclude the proof of Theorem 2.

Proof. Consider Corollary 2. Let ε = µ
2
∈ (0, 1/2]. By linearity of expectation, we have

that the probability that the algorithm given in Corollary 2 with input G, n, e factors n is
at least

µ

64(L+ log e)
− ε/2

64(L+ log e)
≥ µ

100(L+ log e)
.

By repeating the algorithm O((L+ log e)/µ) times, the success probability can be increased
to 1/2. The running time of the algorithm is clearly polynomial in L, log n, log e , and
1
µ

. ut

References

[1] D. Aggarwal and U. Maurer. Breaking RSA generically is equivalent to factoring. In
EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages 36-53.

[2] K. Altmann, T. Jager and A. Rupp. On Black-Box Ring Extraction and Integer Factor-
ization. In ICALP (2), 2008, volume 5126 of Lecture Notes in Computer Science, pages
437-448.

[3] D. Boneh and R. Lipton. Black box fields and their application to cryptography. In
CRYPTO 1996, volume 1109 of Lecture Notes in Computer Science, pages 283-297.

[4] D. Boneh and R. Venkatesan. Breaking RSA may be easier than factoring. In EURO-
CRYPT 1998, volume 1403 of Lecture Notes in Computer Science, pages 59-71.

[5] D. R. L. Brown. Breaking RSA may be as difficult as factoring. In Cryptology ePrint
Archive, Report 205/380, 2006.

[6] I. Damg̊ard and M. Koprowski. Generic lower bounds for root extraction and signature
schemes in general groups. In EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 256-271.

[7] W. Diffie and M. Hellman. New directions in cryptography. In IEEE Transactions on
Information Theory, volume 22, no. 6, pages 644-654, 1976.

[8] T. Jager. Generic group algorithms. Master’s thesis, Ruhr Universität Bochum, 2007.

[9] T. Jager and J. Schwenk. On the analysis of cryptographic assumptions in the generic
ring model. In ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science,
pages 399-416.

[10] A. Joux, D. Naccache and E. Thom. When e-th roots become easier than factoring. In
ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 13-28.

17

[11] G. Leander and A. Rupp. On the equivalence of RSA and factoring regarding generic
ring algorithms. In ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer
Science, pages 241-251.

[12] R. Lidl and H. Niederreiter. In Introduction to finite fields and their applications. Cam-
bridge University Press, 1994.

[13] U. Maurer. Towards proving the equivalence of breaking the Diffie-Hellman protocol
and computing discrete logarithms. In CRYPTO 1994, volume 839 of Lecture Notes in
Computer Science, pages 271-281.

[14] U. Maurer. Abstract models of computation in cryptoraphy. In Cryptography and Coding
2005, volume 3796 of Lecture Notes in Computer Science, pages 1-12.

[15] U. Maurer and D. Raub. Black-Box Extension Fields and the Inexistence of Field-
Homomorphic One-Way Permutations. In ASIACRYPT 2007, volume 4833 of Lecture
Notes in Computer Science, pages 427-443.

[16] U. Maurer and S. Wolf. The relationship between breaking the Diffie-Hellman protocol
and computing discrete logarithms. In SIAM Journal of Computing, vol. 28, no. 5, pages
1689-1721, 1999.

[17] V. I. Nechaev. Complexity of a deterministic algorithm for the discrete logarithm. In
Mathematical Notes, volume 55, no. 2, pages 91-101, 1994.

[18] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public key cryptosystems. In Communications of the ACM, volume 21, pages 120-126,
1978.

[19] V. Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT
1997 volume 1233 of Lecture Notes in Computer Science, pages 256-266.

18

