
The Hidden Root Problem

F. Vercauteren⋆

Department of Electrical Engineering, University of Leuven
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

frederik.vercauteren@esat.kuleuven.be

Abstract. In this paper we study a novel computational problem called
the Hidden Root Problem, which appears naturally when considering
fault attacks on pairing based cryptosystems. Furthermore, a variant of
this problem is one of the main obstacles for efficient pairing inversion.
We present an algorithm to solve this problem over extension fields and
investigate for which parameters the algorithm becomes practical. 1

Keywords: finite fields, subgroups, hidden root problem, pairing inversion

1 Introduction

All known public key cryptosystems are based on a presumed hard mathematical
problem, such as problems related to discrete logarithms [6], factoring [13] or
finding short vectors in a lattice [11]. The security of the cryptographic protocol
should ideally be implied directly by the hardness of the mathematical problem
and the precise relation should be captured in a proof of security.

Since the inception of pairing based cryptography, a plethora of new sup-
posedly hard problems has been introduced, but the main hard problem un-
doubtedly is pairing inversion [7], which has far-reaching implications [15, 16]. In
this paper we formally define a new computational problem called the Hidden
Root Problem (HRP), which arises naturally as a cryptanalytic problem when
studying pairing inversion [7] and side-channel or fault attacks on pairing imple-
mentations [10, 17, 18]. The problem resembles the well-known Hidden Number
Problem [2, 3, 14], but is of a more algebraic nature, since the information re-
turned about the hidden root consist of a projection into a subgroup of the
multiplicative group of a finite field.

The remainder of this paper is organized as follows: Section 2 formally defines
several variants of the HRP and points out the similarities with the Hidden
Number Problem. Section 3 provides the motivation for studying this problem

⋆ Postdoctoral Fellow of the Research Foundation - Flanders (FWO)
1 The work described in this paper has been supported in part by the European Com-

mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability



and in Section 4 we describe an algorithm to solve the HRP over extension fields.
In Section 5 we study the practicality of this algorithm for the linear version
of the HRP by considering projection onto algebraic tori. Finally, Section 6
concludes the paper.

2 The Hidden Root Problem

In this section we define various versions of the Hidden Root Problem (HRP)
over finite fields. We assume that the oracles appearing in the definitions are
perfect, i.e. they always return the correct result. The following problem was
first formulated in [7].

Definition 1 (Linear Hidden Root Problem). Let Fq be a finite field with
q = pn elements, where p is prime and let e be a positive integer with e|(q − 1).
Let Ox(·, ·) denote an oracle that on input (a, b) ∈ F2

q returns

ξa,b = (ax+ b)e

for a fixed secret x ∈ Fq. The Linear Hidden Root Problem (LHRP) is to recover
x in expected polynomial time in log q by querying the oracle repeatedly with
chosen pairs (ai, bi).

The restriction e|(q − 1) can be explained as follows: let e′ be a positive
integer with gcd(e′, q − 1) = 1, then e′-powering defines a permutation on Fq

with inverse (e′−1 mod (q−1))-powering. The LHRP formulated for e′ therefore
is trivial to solve using only one query by computing

x = (ξ
e′−1 mod (q−1)
a,b − b)/a .

Similarly, if d = gcd(e′, q − 1), then (e′/d)-powering is a permutation which can
easily be inverted, so the problem reduces to the LHRP with e = d and thus
e|(q − 1). In the remainder of this paper we will use the notation h = (q − 1)/e,
i.e. the cofactor of e.

Note that in the definition of the LHRP, the querying party can choose
the pairs (ai, bi) himself. It would be possible to define a randomized version,
where we are simply given a list of random pairs (ai, bi) with the corresponding
responses Ox(ai, bi) = ξai,bi

. Clearly, this randomized version cannot be easier
than the LHRP as defined above, but the algorithms described in Section 4 work
equally well in the randomized case. In fact, most cryptanalytic applications
correspond to the randomized version, since the adversary does not control a, b
directly. For instance, a, b could be related to the coordinates of a point R on
an elliptic curve with R = [m]P , where the adversary is given P and can only
choose m.

Obvious generalizations would be to allow degree d polynomials in x instead
of a linear polynomial, or in fact any function in x of specified form, such as
fractions of polynomials. Further, one can also replace x by any unknown quan-
tity such as a vector of unknowns. This brings us to the following more general
definition.

2



Definition 2 (Hidden Root Problem). Let Fq be a finite field with q = pn

elements, where p is prime and let e be a positive integer with e|(q − 1). Let
fx(·) : D(Fq) → Fq be a specified map, i.e. the precise description of which is
given, depending on x from a domain D to Fq. Let Ox(·) denote an oracle that
on input α ∈ D returns

ξα = fx(α)e

for a fixed secret x ∈ Fq. The Hidden Root Problem is to recover x in expected
polynomial time in log q by querying the oracle repeatedly for chosen αi ∈ D(Fq).

An even further generalization would be to replace the multiplicative group F∗
q

by any group G and the e-th powering by a projection into a proper subgroup
of G.

The name “Hidden Root Problem” was chosen to point out the resemblance
with the Hidden Number Problem [2, 3] and its generalizations as described
in [14]. Recall that the Fp-Hidden Number Problem (HNP) is defined as: for a
secret x ∈ Fp, we are given the k pairs

(ti,MSBl,p(xti)) i = 1, . . . , k

for k elements t1, . . . , tk ∈ F∗
p, chosen independently and uniformly at random,

and for some l > 0, where MSBl,p denotes (roughly speaking) the l most signif-
icant bits. The problem then is to recover x.

Note that in the LHRP, for each query we obtain roughly log2 h bits of
information about x, so in this sense the HRP is similar to the HNP. Heuristically,
we therefore expect a unique solution to the LHRP after roughly logh q queries.
The main difference with the HNP are the following two facts: firstly, the HNP
is randomized, i.e. the querying party cannot choose the ti for i = 1, . . . , k and
secondly, hiding the information about x in the HRP corresponds to an algebraic
operation, namely e-th powering.

Finally, a last version of the HRP is the subfield HRP, i.e. the HRP with
the restriction that the secret x lies in a strict subfield of Fpd ( Fq for d|n.

3 Applications in Pairing Based Cryptography

The main motivation for our study of the Hidden Root Problem is undoubtedly
cryptanalysis of pairings, more specifically, side-channel and fault attacks on
pairings [10, 17, 18] and pairing inversion [7].

Recall that the general setting of pairings is the following: let E be an elliptic
curve over a finite field Fq and let r be a large prime with gcd(r, q) = 1 and
r | #E(Fq). By definition, the embedding degree k is the smallest positive integer
with r | (qk − 1). All variants of the Tate pairing can then be described as
functions of the form

e : G1 × G2 → µr ⊂ Fqk : (P,Q) 7→ e(P,Q) = fS,P (Q)L , (1)

where G1,G2 are given cyclic subgroups of E(Fqk)[r], fS,P is a Miller function,
i.e. has divisor S(P )− ([S]P )− (S−1)(O) and L|(qk −1). Often, L = (qk −1)/r

3



with r | Φk(q), where Φk is the k-th cyclotomic polynomial. However, to speed
up the final exponentiation, L is sometimes taken to have very low Hamming
weight in base q, by moving some of the complexity into the scalar S (see for
instance [1]). In most protocols, one of the input values to the pairing is public,
e.g. the point P and so is the pairing value. The security of the protocol then
relies on the inability of the adversary to recover the other input point Q.

3.1 Fault Attacks on Pairings

The function fS,P is computed using Miller’s algorithm [9] and thus consists of
a product of roughly log2 S powers of evaluations of lines appearing in the scalar
multiplication of P by S. Algorithm 1 below gives the pseudo-code of Miller’s
algorithm: lT,P denotes the line through the points T and P and vT denotes the
vertical line through T .

Algorithm 1 Miller’s algorithm for elliptic curves

Inputs: S ∈ N, P, Q ∈ E[r]
Outputs: fS,P (Q)

Write s =
Pt

j=0 sj2
j , with sj ∈ {0, 1} and st = 1.

T ← P , f ← 1.
for j = t− 1 down to 0 do

f ← c2 · lT,T (Q)/v[2]T (Q).
T ← [2]T
if sj = 1 then

f ← f · lT,P (Q)/vT⊕P (Q).
T ← T ⊕ P

end if

end for

Return f .

The parameter S typically is public knowledge, since it’s either equal or
related to the group order r. In a much simplified setting (see [10, 17, 18] for
more realistic attacks) we could mount a fault attack on S resulting in a bit-flip
of the least significant bit of S. As such the adversary will have access to two
pairing values: the correct value fS,P (Q)L and a faulted one fS⊕1,P (Q)L. Note
that all steps in Miller’s algorithm, except the last, will be exactly the same in
the computation of both values. By dividing both values the adversary will know
the value of (assuming S is odd)

ξP =

(

l[S−1]P,P (Q)

v[S]P (Q)

)L

. (2)

Furthermore, in most cases we can ignore the last vertical line v[S]P (Q), either
due to denominator elimination or simply because [S]P = O. By repeating the
attack (for different known P ), several equations of the form (2) can be gathered

4



and the adversary is left to solve an instance of the HRP (and in many cases the
LHRP) with exponent L over Fqk .

3.2 Pairing Inversion

In [7], several approaches to invert the pairing function (1) itself were described.
One of these approaches consists of solving two problems: firstly, inverting the
final exponentiation and secondly, Miller inversion, i.e. given the evaluation
fS,P (Q) and the point P , recover Q. Furthermore, it was shown that for some
instances of the ate pairing [8], Miller inversion can be achieved in polynomial
time and the security relies entirely on the final exponentiation. In these cases,
the function fS,P is of low degree and to invert the final exponentiation, the
adversary has to solve an instance of the HRP. Note that due to bilinearity of
the pairing, the adversary can easily generate many equations from one given
equation z = fS,P (Q)L by the following simple rule

zi = fS,[i]P (Q)L .

Finally, we note that in case of the ate pairing, the point Q is defined over the
field Fq, and pairing inversion corresponds to the subfield HRP.

4 An Algorithm for the HRP over Extension Fields

In this section we devise an algorithm to solve the HRP over extension fields
Fqk by combining Weil restriction and linearity of q-th powering. For simplicity
we will focus on the LHRP, but the same technique applies to any algebraic
function fx. However, the feasibility of the algorithm will very much depend on
the degree in x of fx (see the paragraph “Complexity for HRP”).

Version 0. Let e|(qk − 1) and write

e =
k−1
∑

i=0

ciq
i −

k−1
∑

i=0

diq
i , (3)

where ci, di ∈ N≥0. Clearly there are many tuples ci, di that give a valid expres-
sion for e, but we are only interested in those ci, di that minimize the quantity

De := max

{

k−1
∑

i=0

ci,

k−1
∑

i=0

di

}

. (4)

Consider Fqk as a degree k extension over Fq, i.e. Fqk = Fq[θ]/(f(θ)) where
f ∈ Fq[x] is an irreducible polynomial of degree k. In the LHRP we are given an
equation ξa,b = (ax+b)e for some pair (a, b) and unknown x. By Weil restriction

5



we will consider this as k equations over Fq in k unknowns. More precisely,
consider the map

ψ : Fqk → (Fq)
k : α =

k−1
∑

i=0

αiθ
i 7→ [α0, . . . , αk−1]

and note that q-th powering is a linear operation, i.e. there exists an easily
computable k × k matrix F such that ψ(αq) = F · ψ(α). By substituting the
expression (3) for e, we obtain

ξa,b =
(ax + b)

Pk−1

i=0
ciq

i

(ax+ b)
Pk−1

i=0
diqi

=

∏k−1
i=0 (ax+ b)ciq

i

∏k−1
i=0 (ax+ b)diqi

.

Exploiting linearity of qi-th powering, the above equation can be rewritten as

k−1
∏

i=0

(

aqi

xqi

+ bq
i
)ci

= ξa,b

k−1
∏

i=0

(

aqi

xqi

+ bq
i
)di

. (5)

Finally, apply ψ to both sides of this equation to obtain k non-linear equations
over Fq in the unknowns x0, . . . , xk−1. Furthermore, since ψ(xqi

) = F iψ(x), each
of the factors in the product is linear in the unknowns xi, so the degree of the
non-linear system of equations is precisely De defined in (4). Solving a system of
non-linear equations over finite fields is in general a very hard problem. A notable
exception however is when the system is highly overdetermined, which can be
easily obtained by repeatedly querying the oracle. In the latter case, Groebner
basis techniques [4] are rather efficient or one could resort to relinearization [5].
For both algorithms, the complexity is given by the time to solve a linear system
of equations of dimension equal to the total number of monomials of degree less
than or equal to De in k variables, which is given by

Me :=

(

De + k

De

)

.

The complexity of both algorithms then is O(Mω
e ) with ω ≤ 3 the matrix mul-

tiplication exponent. Since k is given, minimizing De is crucial, since only for
reasonably sized Me and thus very small De, will it be possible to even write
down the system of non-linear equations. The experiments in Section 5 show
that for the algorithm to succeed we need De to be very small (depending on k),
e.g. at most 4 for k = 30. This implies that for fixed k and growing q, version 0
of the algorithm will only be efficient for a constant number of exponents. This
situation will be much improved in versions 1 and 2.

Complexity for HRP. Version 0 (and also 1 and 2) also works for any algebraic
function fx. Assume that fx = h(x)/g(x) with h, g ∈ Fqk [x], then the equivalent
of equation (5) simply is:

k−1
∏

i=0

(

h(x)qi
)ci

·

k−1
∏

i=0

(

g(x)qi
)di

= ξa,b

k−1
∏

i=0

(

h(x)qi
)di

·

k−1
∏

i=0

(

g(x)qi
)ci

.

6



By applying ψ to both sides of this equation, we again obtain k non-linear
equations over Fq in the unknowns x0, . . . , xk−1. The main difference however is
the degree of these non-linear equations, namely

Df,e := max

{

deg h

k−1
∑

i=0

ci + deg g

k−1
∑

i=0

di, deg h

k−1
∑

i=0

di + deg g

k−1
∑

i=0

ci

}

.

If deg h = deg g = d, we conclude that dDe ≤ Df,e ≤ 2dDe, so the algorithm
will only be efficient for fx of very low degree.

Version 1. The main idea of version 1 is to drastically increase the applicability
of version 0 of the algorithm by considering multiples of e. Indeed, each equation
ξa,b = (ax + b)e gives rise to many other equations ξm

a,b = (ax + b)me for m ∈ Z

and as long as me 6= 0 mod (qk − 1), these equations will be non-trivial. Note
that by raising to the power m we are in fact ignoring information contained
in the original equation. This is not a problem since we can query the oracle
to obtain sufficient equations. The main advantage however is that a random
looking exponent can be transformed in one with much more algebraic structure.
The goal therefore is to find a multiple me of e with Dme as small as possible.

A first method to find good multiples of e is to exploit the algebraic fac-
torization xk − 1 =

∏

d|k Φd(x) with Φd ∈ Z[x] the d-th cyclotomic poly-

nomial. Since e|(qk − 1), we can determine an index set I and a polynomial
Π(x) :=

∏

d|k,d∈I Φd(x) such that e|Π(q) and Π(x) has low D (i.e. sum of posi-

tive coefficients minus the sum of the negative coefficients). If Π(x) 6= (xk − 1),
we have found a good multiple Π(q) of e.

Version 2. Although version 1 gives reasonable results for a wide variety of
e, it is limited to finding multiples me of e that also divide (qk − 1). Version 2
relies on LLL [12] to automatically find the best multiple possible. Consider the
lattice L ⊂ Zk spanned by the vectors

L :=















e 0 0 · · · 0
−q 1 0 · · · 0
−q2 0 1 · · · 0

...
...

. . .

−qk−1 0 . . . 0 1















.

Note the inner product of all vectors in the lattice with the vector [q0, . . . , qk−1]
is a multiple of e. By reducing the lattice L, we find a short vector [s0, · · · , sk−1]

with e|
∑k−1

i=0 siq
i. Note that short vectors automatically have small D.

Subfield HRP. In case of the subfield HRP, we have the extra information that
x ∈ Fq, so all unknowns xi = 0 for i > 0. The system of non-linear equations
thus simplifies to a system of k univariate polynomials in x = x0 of degree De (or

7



Df,e in case of an algebraic function fx). To find the solution x, it suffices to take
the GCD of several of these polynomials, each of which takes O(D2) operations
in Fq. The subfield HRP therefore is fundamentally easier than the full HRP,
since its complexity is polynomial in the parameter D and the dependence on
k only appears in the first phase, i.e. writing down the system of univariate
polynomials.

5 LHRP and Projection onto Algebraic Tori

In this section we analyze the effectiveness of the various versions of the algorithm
given in Section 4 in the special case of LHRP, where the e-th powering equals
projection onto the algebraic torus Tk(Fq). The main reason to consider this
special case is that Tk(Fq) is the biggest subgroup which is really contained in
Fqk itself and not in a strict subfield. Furthermore, all known pairings map into
(a strict subgroup of) Tk(Fq), so the torus Tk(Fq) can be considered as the base
case.

Recall that by definition we have

Tk(Fq) = {α ∈ Fqk | NF
qk /F

qd
(α) = 1 for all d|k, d < k} ,

and |Tk(Fq)| = Φk(q) with Φk the k-th cyclotomic polynomial. Therefore, we
choose the e in the LHRP equal to

e = (qk − 1)/Φk(q) .

This implies that we can take Π(x) in version 1 of the algorithm to be equal to
(xk − 1)/Φk(x). To investigate the degree D of the resulting non-linear system,
we prove the following lemma.

Lemma 1. Assume k has prime factorization k =
∏t

i=1 p
si

i with pi 6= pj for

i 6= j and si > 0. Define k̂ =
∏t

i=1 pi, then

Φk(x) = Φk̂(xk/k̂) .

Proof. This follows immediately from the explicit expression

Φk(x) =
∏

d|k

(xd − 1)µ(k/d) ,

with µ the Möbius function: for n ∈ N>0, µ(n) = 0 if n is not squarefree and
(−1)k if n is the product of k distinct primes. Note µ(k/d) = 0 except for d that

are multiples of k/k̂, i.e. d is of the form d = v · (k/k̂) for v|k̂.

Corollary 1. Using the notation of Lemma 1 we have Πk(x) = Πk̂(xk/k̂), where
Πk(x) = (xk − 1)/Φk(x).

8



The above corollary implies that the degree D of the non-linear system only de-
pends on k̂ and not on k itself. A further analysis gives the following refinement:
if k̂ = p, a prime, then D = 1 and thus the system of equations becomes linear.
For k̂ = pq, we have D = min{p, q} which follows from the equality

Πpq(x) =
(xp − 1)(xq − 1)

(x − 1)
.

Indeed, assume that p < q, then (xp − 1)/(x − 1) is the all-one polynomial of
degree (p−1) and since p < q, multiplication by (xq −1) does not cancel out any
non-zero terms. For three or more primes, the pattern becomes more intricate,
but for k = 2pq with p < q, we have D = 2p. These cases cover all k up to 100
which is sufficient for practical applications.

To compare version 1 and version 2 of the algorithm described in Section 4,
we ran several tests using Magma for some interesting cases of k, namely k =
3, 6, 12, 15, 30. For each k, we determined the best multiple of e = (qk −1)/Φk(q)
using version 1 and 2. We then derived the system of non-linear equations as
described in Section 4 for the LHRP using a predetermined number of queries
to the oracle. Finally, the system of non-linear equations was solved using the
Groebner basis command in Magma. In these tests, the prime field Fp was kept
constant for some fixed random 32-bit prime p, since the size of p only has a
minor influence on the feasibility of the tests. Table 1 gives a summary of the test
results. Especially the last two entries are interesting since version 2 outperforms
version 1 considerably. For example, for k = 30, version 1 leads to a system of
non-linear equations of degree D = 6 corresponding to

Π(x) = (x30−1)/Φ30(x) = x22−x21+x20+x17−x16+x15−x7+x6−x5−x2+x−1

so it would be nearly impossible to even write down the system of equations,
since each non-linear equation contains 1947792 terms. However, version 2 finds
a much better multiple of e corresponding to

(x5 + x4 − x2 − x− 1)Π(x) = x27 − x20 − x17 − x15 − x12 + x5 + x2 + 1 ,

leading to D = 4 and thus non-linear equations of only 46376 terms, which is
just manageable, but already used up around 3 Gb of memory.

In each case, we made roughly 2 logh q
k queries to the oracle. The column

“Min # queries” contains the minimum number of queries to the oracle that
gives a unique solution to the system of non-linear equations. This number ap-
proximates the expected logh q

k from the information theoretical viewpoint.
For most values of k < 100, the algorithm performs fairly well since D will

often be very small. However, for k having many prime factors, the number of
terms in the non-linear equations simply becomes too large, e.g. for k = 70,
version 2 gives D = 4 and thus M = 1150626.

In stark contrast, the subfield LHRP with projection onto Tk(Fq) is easy for
all practical k (for instance all k < 1000) and the algorithm runs very fast in
a matter of seconds, e.g. for k = 665 we have D = 85 and solving the subfield

9



Table 1. Comparison of version 1 and 2 for the LHRP and projection on Tk(Fq) for
various extension degrees k

k D (v.1) D (v.2) M =
`

D+k

D

´

Min # queries Time (s)

3 1 1 4 2 0.01
6 2 2 28 4 0.01
12 2 2 91 4 0.04
15 3 2 816 / 136 5 0.15
30 6 4 1947792 / 46376 16 2420

LHRP by using GCD’s only takes 240 seconds, most of which is spent in comput-
ing the system of univariate equations. For the full LHRP, the number of terms
in the non-linear equations would be M ≃ 10114, which is clearly infeasible.

The results in this section show that the LHRP will be solvable for moderately
sized k if e is a divisor of (qk−1)/Φk(q), since then it can be reduced to projection
onto Tk(Fq). However, when e is of the form (qk −1)/s with s a proper divisor of
Φk(q) with large cofactor (e.g. 280), i.e. e-th powering corresponds to projection
into a strict subgroup of Tk(Fq) with large cofactor, then the HRP (and also the
subfield HRP) remains hard. In implementing pairing based cryptosystems in a
side-channel resistant manner, it is therefore paramount to ensure that the final
exponentiation does not succumb to the algorithms described in Section 4. In
particular, this implies that final exponentiations of low Hamming weight in base
q should be avoided. The implications for the more general problem of pairing
inversion are currently unclear: it is possible to define pairings with “easy” final
exponentiation from an HRP point of view, but the obvious candidates all lead
to Miller functions fS,P of restrictively high degree.

6 Conclusion

In this paper we studied a new computational problem called the Hidden Root
Problem, motivated by immediate applications to cryptanalysis of pairing based
cryptosystems. We have given the first algorithm to solve this problem over ex-
tension fields and concluded that for exponents e which are divisors of (qk −
1)/Φk(q) the problem can be solved efficiently for moderately sized k. However,
for exponents e of the form (qk −1)/s with s a proper divisor of Φk(q) with large
cofactor, the problem remains hard. In implementing pairing based cryptosys-
tems, it is therefore advisable to avoid using Miller functions fS,P where S is a
multiple of Φk(q).

Acknowledgements

The author would like to thank the anonymous referees of Pairing 2008 for
suggesting several improvements to the exposition of the paper.

10



References

1. P.S.L.M. Barreto, S.D. Galbraith, C. Ó hÉigeartaigh, and M. Scott. Efficient
pairing computation on supersingular abelian varieties. In Designs, Codes and

Cryptography, vol 42(3), pages 239–271, 2007.
2. D. Boneh and R. Venkatesan. Hardness of computing the most significant bits of

secret keys in Diffie-Hellman and related schemes. In Lect.Notes in Comp. Sci.,
Springer-Verlag, Berlin, 1109, pages 129–142, 1996.

3. D. Boneh and R. Venkatesan. Rounding in lattices and its cryptographic applica-
tions. In Proc. 8th Annual ACM-SIAM Symp. on Discr. Algorithms, ACM, NY,
pages 675–681, 1997.

4. B. Buchberger. A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bull., 10(3): 19–29, 1976.

5. N. Courtois, A. Klimov, J. Patarin and A. Shamir. Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. Advances in Cryptology

– EUROCRYPT 2000, Springer-Verlag LNCS 1807, 392–407, 2000.
6. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Trans. Inform. Theory, 31(4):469–472, 1985.
7. S.D. Galbraith, F. Hess, and F. Vercauteren. Aspects of pairing inversion. Preprint,

2008. Available from http://eprint.iacr.org/2007/256.
8. F. Hess, N. Smart, and F. Vercauteren. The Eta-pairing revisited. IEEE Transac-

tions on Information Theory, 52(10):4595–4602, 2006.
9. V.S. Miller. The Weil pairing, and its efficient calculation. J. Cryptology, 17(4):235–

261, 2004.
10. D. Page and F. Vercauteren. A Fault Attack on Pairing Based Cryptography. In

IEEE Transactions on Computers, volume 55(9), pages 1075–1080, July 2006.
11. J. Hoffstein, J. Pipher and J.H. Silverman. NTRU: a ring-based public key cryp-

tosystem. Algorithmic number theory – ANTS III, Springer-Verlag LNCS 1423,
267–288, 1998.

12. A.K. Lenstra, H.W. Lenstra and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982.

13. R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Comm. ACM, 21(2):120–126, 1978.

14. I.E. Shparlinski. Playing ”Hide-and-Seek” in finite fields: Hidden number problem
and its applications. In Proc. 7th Spanish Meeting on Cryptology and Information

Security, Vol.1, Univ. of Oviedo, 49–72, 2002.
15. E. Verheul. Evidence that XTR Is More Secure than Supersingular Elliptic Curve

Cryptosystems. In B. Pfitzmann, editor, EUROCRYPT, volume of 2045 Lecture

Notes in Computer Science, pages 195–210. Springer, 2001.
16. E. Verheul, Evidence that XTR is more secure than supersingular elliptic curve

cryptosystems, J. Crypt., 17, No. 4 (2004) 277–296.
17. C. Whelan and M. Scott. The Importance of the Final Exponentiation in Pair-

ings when Considering Fault Attacks. In Tsuyoshi Takagi, Tatsuaki Okamoto,
Eiji Okamoto, and Takeshi Okamoto, editors, First International Conference on

Pairing-Based Cryptography - Pairing 2007, volume 4575 of Lecture Notes in Com-

puter Science, pages 225–246. Springer, 2007.
18. C. Whelan and M. Scott. Side Channel Analysis of Practical Pairings: Which

Path is more Secure? In Phong Q. Nguyen, editor, International Conference on

Cryptology in Vietnam - VIETCRYPT 2006, volume 4341 of Lecture Notes in

Computer Science, pages 99–114. Springer Verlag, September 2006.

11


