
Slide Attacks on a Class of Hash Functions

Michael Gorski1, Stefan Lucks1, and Thomas Peyrin2

1 Bauhaus-University of Weimar, Germany {Michael.Gorski, Stefan.Lucks}@uni-weimar.de
2 Orange Labs and University of Versailles Thomas.Peyrin@gmail.com

Abstract. This paper studies the application of slide attacks to hash functions. Slide attacks have
mostly been used for block cipher cryptanalysis. But, as shown in the current paper, they also form a
potential threat for hash functions, namely for sponge-function like structures. As it turns out, certain
constructions for hash-function-based MACs can be vulnerable to forgery and even to key recovery
attacks. In other cases, we can at least distinguish a given hash function from a random oracle.

To illustrate our results, we describe attacks against the Grindahl-256 and Grindahl-512 hash func-
tions. To the best of our knowledge, this is the first cryptanalytic result on Grindahl-512. Furthermore,
we point out a slide-based distinguisher attack on a slightly modified version of RadioGatún. We finally
discuss simple countermeasures as a defense against slide attacks.

Key words: slide attacks, hash function, Grindahl, RadioGatún, MAC, sponge function.

1 Introduction

A hash function H : {0, 1}∗ → {0, 1}n is used to compute an n-bit fingerprint from an arbitrarily-
sized input. Established security requirements for cryptographic hash functions are collision re-
sistance, preimage and 2nd preimage resistance – but ideally, cryptographers expect a good hash
function to somehow behave like a random oracle.

Current practical hash functions , such as SHA-1 or SHA-2 [25, 26], are iterated hash functions,
using a compression function with a fixed-length input, say h : {0, 1}n+l → {0, 1}n, and the Merkle-
Damg̊ard (MD) transformation [14, 24] for the full hash function H with arbitrary input sizes. The
core idea is to split the message M into l-bit blocks M1, . . . ,Mm ∈ {0, 1}l (with some padding, to
ensure all the blocks are of size l-bit), to define an initial value X0, and to apply the recurrence
Xi = h(Xi−1, Mi). The final chaining variable Xi is used as the hash output. The main benefit
of the MD transformation is that it preserves collision resistance: if the compression function is
collision resistant, then so is the hash function. Recent results, however, highlight some intrinsic
limitations of the MD approach. This includes being vulnerable to multicollision attacks [16], long
second-preimages attacks [19], and herding [18]. Even though the practical relevance of these attacks
is unclear, they highlight some security issues, which designers of new hash functions should avoid.

In general, and due to certain structural weaknesses, MD-based hash functions do not behave like

a random oracles. Consider, e.g., a secret key K, a message M and define a Message Authentication
Code MAC(K, M) = H(K||M). If we model H as a random oracle, this construction meets the
expected security requirements for a MAC. But for an MD-based hash function H, one can easily
forge authentication codes: given MAC(K, M) = H(K||M), compute a valid MAC(K, M ||Y) =
H(K||M ||Y) without knowing the secret key K. Coron et al. [11] recently discussed a formal
model to prove hash functions being free from such structural weaknesses (but still weak against
multicollision attacks).

Our contribution. Newly proposed hash function designs should not suffer from length extension.
So for a new and well-designed hash function, the MAC(K, M) = H(K||M) should be a secure
MAC. We will show that this is not the case for some recently proposed hash functions. In contrast
to the case of MD-based hash functions, where one can forge messages but cannot recover K, our
attacks allow, in general, the adversary to find K (much faster than by exhaustively searching for
it).

Our attacks are an application of slide attacks. These are a classical tool for block ciphers
cryptanalysis, but have so far not been used for hash function cryptanalysis.

The Targets for Our Attacks. A natural idea for thwarting the MD limitations is to increase the
size of the internal chaining variables in the iterated process, see, e.g., [23]. Using a similar patch,
sponge functions [3] followed the idea to employ a huge internal state (to hold a huge chaining
variable) and to claim a capacity c, typically c ≫ n. This defends against attackers even if these
can perform≫ 2n/2 operations (but are still restricted to≪ 2c/2 units of work). Here n is considered
a typical hash function output size (sponge functions may also provide for arbitrary output sizes,
rather than for a fixed n).

Several recent hash functions follow this approach, including Grindahl [22] and Radio-

Gatún [2]. As far as we know, there are no cryptanalytic attack on either RadioGatún or the
512-bit version of Grindahl while some collision attacks for the 256-bit version of Grindahl have
already been published [27, 20].

In the current paper, we study the applicability of slide attacks for sponge functions. Our
results indicate that slide attacks can be a serious threat for hash functions fitting into the sponge
framework. On the other hand, if the hash function designer is aware of slide attacks, we believe
it is easy to defend against such attacks. We give concrete examples by providing attacks against
Grindahl [22] and two slightly tweaked versions of RadioGatún [2]. Our attack applies for both
published flavours of Grindahl, the 256-bit version and the 512-bit version. As far as we know, this
is the first cryptanalytic result for the 512-bit version.

Outline: in Section 2 we recall the slide attacks basics, study the case of hash functions and focus
on the case of sponge functions. Then, in Section 3 we give an example by applying our results
to the Grindahl hash function and discuss the vulnerability of RadioGatún to slide attacks in
Section 4. Finally, we describe cheap and simple defenses against slide attacks and conclude in
Section 5.

2 Slide Attacks

Block ciphers are often designed as a keyed permutation which is applied many rounds. It is a
common belief that increasing the number of rounds makes the cipher stronger, but this is just true
for statistical attacks such as differential or linear cryptanalysis. Some attacks can be applied even
for block cipher variants with an arbitrary number of rounds. This is true for certain related key
attacks, and for slide attacks. The usual defense is to strengthen the key schedule and the keyed
permutation itself. Related key attacks have been introduced by Biham [5] and independently by
Knudsen [21]. Slide attacks [8] utilize the self-similarity of the cipher, typically caused by a periodic
key schedule. An r round block cipher with the same keyed permutation F i in each round can be
attacked by slide attacks if F i is a weak permutation, i.e. the key used in F i can be found with a
slid plaintext-ciphertext pair.

2

2.1 Slide Attacks on Block Ciphers

Slide attacks on block ciphers have been applied to some ciphers with a weak key schedule (see [8,
17, 12, 9, 28, 6, 29, 15]). The original slide attack [8] works as follows. An n-bit block cipher E with
r rounds is split into b identical rounds of the same keyed permutation F i for i = {1, . . . , b}. In the
simplest case we have b = r where the key schedule produces the same key in each round3. Thus
we write the cipher as E = F 1 ◦F 2 ◦ · · · ◦F b = F ◦F ◦ · · · ◦F . A plaintext Pj is then encrypted as

Pj
F
→ X(1) F

→ X(2) F
→ · · ·

F
→ Cj

where X(i) represents the intermediate encryption value after application of F i and X(b) = Cj is the
corresponding ciphertext. To mount a slide attack one has to find a slid pair of plaintexts (Pj , Pk),
such that

Pk = F (Pj) and Ck = F (Cj) (1)

hold, see also Figure 1.

Pj
F
→ X(1) F

→ X
(2) F

→ X
(3) F

→ · · ·
F
→ Cj

Pk
F
→ X

(1) F
→ X

(2) F
→ · · ·

F
→ X

(b−1) F
→ Ck

Fig. 1. A slide attack on block ciphers

Slide attacks can only be applied to a small class of ciphers with weak permutations periodic
key schedules. A permutation is weak if, given the two equations in (1), it is easy to extract a non
negligible part of the secret key. With 2n/2 known plaintext/ciphertext pairs (Pi, Ci) we expect at
least one pair satisfying Pk = F i(Pj) among these texts by the birthday paradox. This gives us a
slid pair. Thus, the classical slide attack allows to recover the unknown key of an n-bit block cipher
using O(2n/2) known plaintexts.

Advanced sliding techniques like complementation slide and sliding with a twist were introduced
by Biryukov and Wagner [9]. These techniques allow to attack ciphers with a more complex key
schedule. The basic concept of complementation slide is to slide two encryptions against each other
where the inputs to the rounds may have a difference which is canceled out by a difference in
the keys, while an encryption is slid against a decryption using a sliding with a twist technique.
The realigning slide attack [28] allows to slide encryptions with unslid rounds in the middle of
the slide. Biham et al. [6] improved the slide attack to detect a large amount of slid pairs very
efficiently by using the relation between the cycle structure of the entire cipher and that of the
keyed permutation.

2.2 Slide Attacks on Hash Functions

Slide attacks in a hash function setting have attracted very few consideration in the literature. To
our knowledge, the only paper considers an attack on the internal block cipher from SHA-1 [31].

3 Note that F i might include more than one rounds of the cipher. If the key schedule produces identical keys with
period p then F i includes p rounds of the original cipher.

3

However, yet no direct way to transform it into a practical attack on the hash function has been
found.

Slide attacks for block ciphers are different in some aspects from those applied on hash functions.
By definition, block cipher computations depend on a secret key, and slide attacks are typically
employed to distinguish a block cipher from a random permutation – and often for a key recovery
attack to follow.

In the hash function case, there is no secret key to recover, just the message to be hashed,
and the adversary is allowed to know this message – or even to choose it. Typical attacks on hash
functions are about finding collisions or preimages – and it is hard to see how slide attacks could
be employed in that context. But even for hash functions, a slide property that (or which) can be
detected with some significant probability will allow us to differentiate the scheme from a random
oracle. Indeed, with such a property, one can show a non random behavior of the hash function.
This is already an issue, since hash functions are often utilized to simulate a random oracle as
they are considered to be the closest practical primitive to this theoretical object. Going further,
when secret data is used as a part of the input of the hash function, one can try to recover some
information from it. The natural primitive where hash functions handle secret data are of course the
Message Authentication Codes (MAC), that permit to authenticate a message M with a symmetric
secret key K. For example, constructions such as HMAC [1] are implemented in a lot of different
applications and make only two calls to a hash function. HMAC has the advantage to only require
the internal function to be weakly collision resistant and also to provide secure MACs with MD-
based hash functions. Note that a HMAC-based patch is one of the new domain extension algorithm
proposed by Coron et al. [11] to thwart the simple MD-based MACs attacks. Those attacks are no
more than a slide attack on the MD domain extension algorithm.

Generally, a good hash function H should provide a good MAC with the following computations:
MAC(K, M) = H(K||M) or MAC(K, M) = H(K||M ||K). Just like for block ciphers, if the hash
function considered is not protected, one may be able to recover some non negligible part of the
secret key K with a slide property that can be detected with a good probability. One has to note a
work from Sasaki et al. [32] that attacks prefix, suffix and hybrid approaches for MAC constructions
by using inner collisions for MD4, and a work from Preneel and Van Oorschot [30] that studies the
envelope approache instantiated with MD5.

2.3 Slide attacks on “extended” sponge constructions

We analyze in this section how one can apply slide attacks to sponge-based hash functions, a newly
introduced framework for building hash functions [2, 3]. More precisely, we use the “extended”
sponge functions, a more general framework.

The “extended” sponge framework Assume that H is an iterative hash function with an
internal state of c words of p-bit each and a final output size of n bits. Let M = M1||M2|| · · · ||M l

be the m×p-bit blocks of the message to hash with M l 6= 0m×p (the message is padded before split
into blocks). Let M i be the message block hashed at each round i and Xi the internal state after
proceeding M i, with X0 = IV . We then have Xi = F (S(Xi−1, M i)), where F is the round function
and S defines how the message is incorporated in the internal state. Once all the l message blocks
have been processed, r blank rounds (rounds with no message input) are applied Xi = F (Xi−1)
and A := X l+r is the final internal state. Finally, we derivate n output bits by using the final

4

output function T (X l+r). Such a hash function can be written as

H(M) = X0 F (S(X0,M1))
−→ · · ·

F (S(Xl−1,M l))
−→ X l

r times
︷ ︸︸ ︷

F (Xl)
−→ · · ·

F (Xl+r−1)
−→

A
︷ ︸︸ ︷

X l+r
i

T (A)
−→ TA,

where TA represents the hash output. One has to note that for efficiency reasons and since the
internal state will be big in practice, F is usually a quite light and fast round permutation.

This framework is really general and especially more general than the original sponge function
one. More precisely, in the original model, S introduces the message blocks by XORing them to
particular positions of the internal state. However, in our situation, we can also consider a function
S that replaces some bits of the internal state by the message bits. We call the former XOR

sponge and the latter overwrite sponge. Moreover, in the original model, the final output function
T continues to apply some blank rounds and extract some bits from the internal state at the end
of each application, until n bits have been received. In our framework we can also consider the case
where the output bits come from a direct truncation of the final internal state A, and we call it
truncated sponge.

There are two security issues, related to the general design of sponge functions. One issue is
invertibility : one can run the function F into both directions. The second issue is self-similarity : all
the blank rounds behave identically, and even a normal round can behave as a blank round if we
have Xi−1 = S(Xi−1, M i) (the effect of adding the message block is void). In the case of a XOR
sponge we need M i = 0 and in the case of an overwrite sponge we require that Mi is equal to the
overwritten part of the internal state.

We will exploit self-similarity for our slide attacks. The idea is that if one message M1 =
M1|| . . . ||M l is the prefix of another message M2 = M1|| . . . ||M l||M l+1, the extended state after
processing the first l blocks is the same. Now, if X l+1 = S(X l, M l+1), processing the next message
block M l+1 for the longer message is the same as the first blank round when hashing the shorter
message – the extended states remain identical. We call these two messages a slid pair : the two
final internal states are just one permutation away B := X l+r+1

j = F (X l+r
i). The slide attack is

shown in Figure 2.

H(Mi) = X
0
i

F (S(X0
i ,M0))

−→ · · ·
F (S(Xl−1

i
,Ml))

−→ X
l
i

r times
z }| {

F (Xl
i)−→ · · · · · · · · · · · · · ·

F (Xl+r−1

i
)

−→

A
z }| {

X
l+r
i

T (A)
−→ TA

H(Mj) = X
0
j

F (S((X0
j ,M0))

−→ · · ·
F (S((Xl−1

j
,Ml))

−→ X
l
j

F (S((Xl
j ,Ml+1))

−→ X
l+1
j

F (Xl+1

j
)

−→ · · · · ·
F (Xl+r

j
)

−→
| {z }

r times

X
l+r+1
j

| {z }

B

T (B)
−→ TB

Fig. 2. A slide attack on hash functions

Once we were able to generate a slid pair, we need to detect it. This fully depends on the output
function T . When T is defined as in the original sponge framework, it is very easy to detect a slid
pair : most of the output bits will be equal, just shifted by one round. If T is a truncation, we need
to do a case by case analysis depending on the strength of the round function F and the number of
bits thrown away. Yet finding and detecting a slid pair already allows us to differentiate the hash
function from a random oracle.

5

We can try to go further, by attacking a MAC with prefix key, i.e. MAC(K, M). Note that such
a construction makes sense as using HMAC based on a sponge hash function will turn out to be
very inefficient. This is due to the fact that hashing very short messages (required in HMAC by
the second hash function call) is quite slow because of the blank rounds. Therefore, Bertoni et al.
[4] proposed to use prefix-MAC instead of HMAC.

Consider a secret key K. For simplicity and without loss of generality, we assume some K to
be a uniformly distributed (k × m × p)-bit random value (i.e. k message words long), for some
public integer constant k. We will write K = (K1, . . . ,Km) ∈ ({0, 1}m×p)k. The adversary is
allowed to choose message challenges Ci, while the oracle replies MAC(K, Ci) = H(K||Ci). Ideally,
finding K in such a scenario would require the adversary to exhaustively search over the set of all
possible K ∈ {0, 1}k×m×p, thus taking 2k×m×p−1 units of time on average. Forging a valid MAC
depends on the size of the hash output and the size of the key, with a generic attack it requires
min{2k×m×p−1, 2n} units of time. A pair of challenges (Ci, Cj), with Ci = C1

i ||C
2
i || · · · ||C

l
i and

Cj = Ci||C
l
j is called a slid pair for K if their final internal state are slid by one application of the

blank round function as:

Xk+l+r+1
j = F (Xk+l+r

i)

Provided that one can generate slid pairs and detect them, one can also try to retrieve the
internal state Xk+l+r

i thanks to this information. Again, a case by case analysis is required here.
When Xk+l+r

i is known, one can invert all the blank rounds and get Xk+l
i . Note that with this

information, an attacker can directly forge valid MACs for any message that contains M as prefix
(exactly like the extension attacks against MD-based hash functions). If the round function with
the message is also invertible, we can continue to invert all the challenge rounds and get Xk

i . This
will allow us to recover some non trivial information on the secret key K.

A general outline of the attack is as follows:

1. Find and detect slid pairs of messages

2. Recover the internal state

3. Uncover some part of the secret key or forge valid MACs

The padding is very important here : for the XOR sponge functions, an appropriate padding
can avoid slide attacks. Indeed, in that case, we require M l = 0m×p to get a slid pair. This gives
an explanation why the condition M l 6= 0m×p is needed for the indifferentiability proofs of XOR
sponge functions. However, for the truncated sponge function, a padding is ineffective to avoid slide
attacks.

3 Applications

3.1 The Grindahl Design

Grindahl is a new hash function introduced by Knudsen et al. in [22], that fits our extended sponge
framework. More precisely, it is an overwrite sponge function. There are two concrete instantiations
of the Grindahl hash function family: a 256-bit and a 512-bit hash function proposed in the
original Grindahl paper [22]. The parameters of these instantiations in our framework are defined
as follows:

6

Grindahl-256 [22]. Grindahl-256 is a 256-bit hash function with Nr = 4 and Nc = 12. The
rotation amounts are (ρ0, . . . , ρ3) = (1, 2, 4, 10).

Grindahl-512 [22]. Grindahl-512 is a 512-bit hash function with Nr = 8 and Nc = 12. The
rotation amounts are (ρ0, . . . , ρ7) = (1, 2, . . . , 8).

Note that the internal state of Grindahl can also be viewed as a matrix. Therefore, we define
Nr and Nc to be the number of rows and columns of p-bit word respectively: we have Nr ×Nc = c.
For each instance of Grindahl we have p = 8. The message chunk entering at each round can then
be viewed as one column, thus m = Nr.

For Grindahl the padding consists of 10- and length-padding:

1. 10-padding appends a “1”-bit to the message, followed by as many “0”-bits as needed to complete
the last message block.

2. Length-padding then appends the number of message blocks (not bits!) for the entire padded
message as a 64-bit value.

One effect of the 10-padding is that the last message block before the Length-padding can be any
value, except for the all-zero block. (Or equivalently, any nonzero block B can be split up into an
incomplete block R plus 10-padding: B = R + P “10′′ . Note that R is 0 bit long if B = 1000 . . . 0.)

A message M = M1|| . . . ||M l of 32-bit blocks M i in the case of Grindahl-256, and an incom-
plete block M l, will be padded to Pad(M) = M1|| . . . ||M l +P “10′′

1 ||M l+1||M l+2, where P “10′′
1 is the

10-padding. This padded message has the following properties:

1. The last-but-two message block is not zero: M l + P “10′′
1 6= 032.

2. The final two message blocks contain the 64-bit integer l: (M l+1||M l+2) = l. (From the
Grindahl sample implementation, we conclude that the 32 least significant bits of the 64-
bit value are stored in M l+2, while the high-significant bits go into M l+1.)

Similarly for Grindahl-512, a message M = M1|| . . . ||M l of 64-bit blocks M i, where M l is
also incomplete, is padded to Pad(M) = M1|| . . . ||M l + P “10′′

1 ||M l+1 has the following properties
after padding:

1. The last-but-one message block is not zero: M l + P “10′′
1 6= 064.

2. The last message block contains the 64-bit integer l: M l+1 = l.

Most hash functions for variably-sized inputs iterate an underlying compression function for fixed-
size inputs. Grindahl is no exception. At the end, the output will be the first n/(p×Nr) columns
of of the final internal state. I.e., Grindahl is a truncated sponge. Internally, Grindahl uses a
state of (Nr ×Nc) words of p bit each. The compression function takes one m-word message block
and an (Nr × Nc)-word internal state as its input and generates new internal state (again of the
size (Nr ×Nc) words, of course), as its output.

Regarding this compression function, Grindahl follows a general three-step design strategy.
Assume a m-word message block, which we write as M i and a (Nr×Nc)-word internal state, which
we write as a Nc tuple of Nr-words: (X1, . . . , XNc) ∈ ({0, 1}p×Nr)Nc . The incorporation step which
concatenates a message block to the internal state is straightforward:

S: {0, 1}p×Nr×{0, 1}p×Nr×Nc → {0, 1}p×Nr+p×Nr×Nc , S(M i, (X1, . . . , XNc) = (M i, X1, . . . , XNc).

The (p×Nr + p×Nr ×Nc)-bit output of the incorporating S is the extended state (X0, . . . , XNc).
The second step is a permutation over the extended state:

7

F: {0, 1}p×Nr+p×Nr×Nc → {0, 1}p×Nr+p×Nr×Nc , F(X0, . . . , XNc) = (Y 0, . . . , Y Nc).

F is a permutation based on Rijndael [13] primitives:

F(X0, . . . , XNc) = MixColumns ◦ ShiftRows ◦ SubBytes ◦AddConstant(X0, . . . , XNc).

MixColumns. Is a linear matrix multiplication of each state matrix column with a constant
vector. This transformation is defined as in the Rijndael specifications for the 256-bit version of
Grindahl.

ShiftRows. This transformation cyclically shifts bytes a number of positions along each row. Thus,
the i-th row is rotated by ρi positions to the right.

SubBytes. The only non-linear part of the permutation, exactly defined as the SubBytes function
of Rijndael.

AddConstant. This function is a simple XORing of the state matrix with a constant matrix M
of the same size, where all bytes are zero except for one.

See [22] for a detailed description of Grindahl. The third operation is as straightforward as
the first one – the first p×Nr-bits of the (p×Nr + p×Nr ×Nc)-bit extended state are truncated
away, to get a new p×Nr ×Nc-bit internal state (Y 1, . . . , Y Nc):

R: {0, 1}p×Nr+p×Nr×Nc → {0, 1}p×Nr×Nc , R(Y 0, . . . , Y Nc) = (Y 1, . . . , Y Nc).

See Figure 3 for a visual illustration of this design strategy. Note that the final truncation in one
iteration and the initial concatenation of the b-bit message block in the next iteration together are
tantamount to simply overwriting the corresponding column of the extended internal state. The
final truncation is specified as

T: {0, 1}p×Nr+p×Nr×Nc → {0, 1}n, T(Y 0, . . . , Y Nc) = (Y 1, . . . , Y n/(p×Nr)).

Fig. 3. The general design of the Grindahl compression function.

Let α be the internal state matrix with Nc columns and Nr rows, while α̂ represents the extended
internal state with Nc + 1 columns and Nr rows. For a padded message M = M1|| . . . ||Md the

8

Grindahl hash function does for 0 < i < d:

α← R(P (S(M i, α)))

For the last message input Md Grindahl performs α̂← P (S(Md, α)). The truncation R is omitted
after the last message input and finally 8 blank rounds with no message input are performed. These
rounds only consists of the P operation on α̂. The final output remains after performing the output
truncation T , which leaves the n-bit output.

3.2 Slide attacks on Grindahl-512

Find slid pairs of messages Building the challenge that generates a slid pair works as follows.
We choose a message M1 = M0

1 ||M
1
1 || . . . ||M

l−1
1 ||M l

1, where M l
1 is a non complete block which will

be padded. The MAC therefore processes

Pad(K||M1) = K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1 + P “10”
1 ||PL

1

where P “10”
1 is the 10-padding to M l

1 and PL
1 is the one-block of the message length. The value of

PL
1 can be chosen by the attacker while modifying the message length. For each M1 we build the

message M2 = M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1 + P “10”
1 ||R, where R is a random incomplete block. The

MAC proceeds

Pad(K||M2) = K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1 + P “10”
1 ||R + P “10”

2 ||PL
2

and in some cases we have

Pad(K||M2) = K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1 + P “10”
1 ||PL

1 ||P
L
2 .

The messages M1 and M2 only differ in one additional block at the end. A pair (M1, M2) will be
a slid pair with probability 2−64. Detecting a slid pair is quite simple. Let TA = A0, . . . , A7 and
TB = B0, . . . , B7 be the query output (the truncated final internal states A and B). Then the
condition B = P (A) holds for a slid pair only. We could not directly apply another blank round to
A since we only know TA and not A. However, TA and TB leave enough information for detecting a
slid pair. We can invert TB one blank round and compare the resulting bytes with the bytes known
from TA. Thus, we can compare 34 bytes of TA with the known bytes obtained from inverting TB.
In this way we can detect a slide pair since one occurs among 264 pairs. Using the computation
described above we can filter 28·34 = 2272 false pairs. Figure 4 shows the backward computation of
one blank round.

Recover the internal state A challenge (M1, M2) which produces a slid pair (TA, TB) can be
used to recover the final internal state A (corresponding to the computation of M1) just before the
final truncation. Since the columns A8 to A12 are unknown, we have to recover 40 bytes. As shown
in Figure 4, we can directly recover 30 bytes from A by computing TB one blank round backward,
exactly as when we tried to detect slid pairs: we can fully invert the MixColumns transformation
for the eight first columns (where all the bytes are known), then it is also very easy to invert
ShiftRows, SubBytes and AddConstant transformations. So, when looking at Figure 4, it is clear
that the attacker can directly get 30 unknown bytes from A. The remaining 10 unknown bytes can

9

Fig. 4. Detecting a slid pair of messages for Grindahl-512. Cells in dark gray mark known bytes while cells in light
gray mark unknown bytes. The inverse MixColumns (MC−1) and the inverse ShiftRows (SR−1) are the only two
operations which are important for our analysis: AddConstant and SubBytes functions leave a known (respectively
unknown) bytes known respectively unknown). Therefore we prevent the other operations.

be recovered in a different way. For each possibility among those bytes (28·10 = 280 possibilities), we
invert all the blank rounds and check if the last added word (the first encountered when computing
backward) is PL

1 . Indeed, when inverting the real internal state A, we surely come to the insertion
of PL

1 and this can be easily detected since we know this message block and since the message
insertion overwrite the first column of the internal state. Now we are dealing with 280−64 = 216

possibilities only and we have to be careful, since some bytes become undetermined, if we continue
the backward computation. The undetermined bytes are those which are replaced by the inserted
message word during the message input step (due to the overwriting). However, we don’t need them
to discriminate among the 216 lasting possibilities and we can compute one more round backward
to check if we finally obtain the message word M l

1 + P “10”
1 inserted. This leaves us the complete

internal state A.

Uncover some parts of the secret key or forge valid MACs By knowing the whole internal
state A it is straightforward to invert the blank rounds. With this information, we can directly
generate new valid MACs for messages which contain M1 as prefix: we just have to continue the
computation of the hash function by ourselves.

We can also try to invert the rounds where known message words are inserted. Some parts
of the internal state are undetermined because of the truncation when adding message words as
mentioned in the previous section. We can guess those undetermined columns by only keeping
those which lead to the good inserted message words in the first column. This is equal to what
we did above to recover the final internal state. By trying all the possible values of the truncated
column, we can continue going backward and check which one leads to the known correct values
of the message blocks inserted a few rounds before. Some trials will lead to wrong message blocks
inserted and can be discarded. The one leading to the good values have a good chance to be the real
erased bytes. Thus, we can go backward for all the known message words and recover the erased
columns until we have to stop this procedure when we reach the unknown secret key word. The
last unknown column which can be recovered is the column before inserting M2

1 . Now, with all

10

those informations we can recover 4 bytes from 8 of the last unknown message block we encounter
(the first when computing backward), which is part of the secret key. The rest of the secret can
be then computed exhaustively (at a lower cost than brute force without slide attacks) or we can
use a trick4. Indeed, we know that the initial internal state is equal to zero and one can accelerate
the secret recovery with a meet-in-the-middle attack: we compute forward from the known initial
internal state and we compute backward as we described before.

3.3 Slide attacks on Grindahl-256

Applying the slide attack on Grindahl-256 is a little bit more difficult than on the 512 bit version,
since the message block size is of 32 bit an the padding adds two additional blocks to the message.
This makes it harder to control the message words and to find a slid pair. We describe the slide
attack on Grindahl-256 in Appendix A.

4 Slide attacks on modified versions of RadioGatún

We are able to use the presented technique to attack slightly modified versions of RadioGatún [2].
There are two possible modifications. Either we change the padding rule such that the last message
block can also be an all zero input block. Or we change the message input step such that the input
block enters the state via a replacement of the current state column. I.e., we turn RadioGatún

from an XOR sponge into an overwrite sponge. This modification is inspired by the message input
step of Grindahl.

Consider the first case. The padding rule requires the final message block always to be non-
zero, e.g., by applying the usual 10-padding. For an application where the message length always
happens to be a multiple of the block size, this padding may appear to be moot. So consider an
implementation without padding. Now the final message block might be all-zero. This gives an easy
way to generate slid pairs (Mi, Mj) of messages – just take any Mi and set Mj := (Mi||0) (Mi,
concatenated by an all-zero message block). In this case, slide attacks are straightforward. Given
for example a MAC such as

H(K||Mi) = Z1
i , Z2

i , Z3
i , . . . , Zk

i and

H(K||Mi||M
zero||M zero) = Z3

i , . . . , Zk
i , Zk+1

i , Zk+2
i ,

where Zr
i represents the r-th output stream, one can easily forge the MAC Z2

i , . . . , Zk+1
i , for the

message Mi||M
zero.

For the second case (turning RadioGatún into an overwrite sponge), consider a pair of mes-
sages Mi = M1

i || . . . ||M
d
i and Mj = Mi||M

d+1
j , with Mi being a prefix of Mj and Mj being one

block longer. Both final blocks Md
i and Md+1

j being non-zero are slid with a probability of 2−p×m.
It is easy to detect slid pairs by comparing k − 1 of the output blocks. If the pair (Mi, Mj) is slid,
then we obtain:

H(K||Mi) = Z1
i , Z2

i , Z3
i , . . . , Zk

i and

H(K||Mi||M
d+1
j) = Z2

i , Z3
i , . . . , Zk

i , Zk+1
i

4 If the size of the key is not too big, we don’t even require to do any exhausive search.

11

This shows that our slide attack can be used to distinguish some hash functions, e.g. sponge-based
one, from a random oracle if the designer do not take care to avoid sliding properties of their hash
functions.

Slide-like distinguishing attacks are also applicable for other schemes, i.e. a modified version
of PANAMA even leaves more non-trivial information of the internal state than our attack on
modified RadioGatún.

5 Possible Countermeasures and Conclusion

It only takes a negligible effort to defend hash functions from against slide attacks. Hash function
designers, like block cipher designers, must be aware of possible slide attacks and be on guard for
too much self-similarity in their constructions. For sponge-based hash functions, a simple patch
would be to just add a nonzero constant just before running the blank rounds and extracting the
hash value. Another option would be to marginally change the blank rounds. E.g., Grindahl could
be changed such that the blank rounds use different rotation amounts (while maintaining the old
rotation amounts for all the other rounds). Well-chosen padding rules also help. In the case of xor
sponges, a good padding even seems to suffice as a defense against slide attacks.

We have studied the applicability of slide attacks for sponge functions. These are a classical tool
for block cipher cryptanalysis, but have not been used for hash function cryptanalysis so far. Our
results indicate that slide attacks can be a serious threat for sponge-based hash functions. If the
hash function designer is aware of slide attacks, we believe that it is easy to defend against slide
attacks. In our slide attacks on Grindahl and modified version of RadioGatún we demonstrated
the power of these attacks. Our attacks apply for both published flavours of Grindahl, the 256-bit
version and the 512-bit version. As far as we know, this is the first cryptanalytic result for the
512-bit version.

Acknowledgements

The authors wish to thank the anonymous reviewers for helpful comments.

References

1. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentication, 1996.
2. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Radiogatun, a belt-and-mill hash

function. Presented at Second Cryptographic Hash Workshop, Santa Barbara (August 24-25, 2006). See
http://radiogatun.noekeon.org/.

3. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the Indifferentiability of the Sponge
Construction. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science,
pages 181–197. Springer, 2008.

4. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge Functions, presented at ECRYPT
Hash Workshop 2007.

5. Eli Biham. New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptology, 7(4):229–246, 1994.
6. Eli Biham, Orr Dunkelman, and Nathan Keller. Improved Slide Attacks. In Biryukov [7], pages 153–166.
7. Alex Biryukov, editor. Fast Software Encryption, 14th International Workshop, FSE 2007, Luxembourg, Luxem-

bourg, March 26-28, 2007, Revised Selected Papers, volume 4593 of Lecture Notes in Computer Science. Springer,
2007.

8. Alex Biryukov and David Wagner. Slide Attacks. In Lars R. Knudsen, editor, FSE, volume 1636 of Lecture Notes

in Computer Science, pages 245–259. Springer, 1999.

12

9. Alex Biryukov and David Wagner. Advanced Slide Attacks. In EUROCRYPT, pages 589–606, 2000.
10. Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference,

Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer

Science. Springer, 1990.
11. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damg̊ard Revisited: How

to Construct a Hash Function. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer

Science, pages 430–448. Springer, 2005.
12. Nicolas T. Courtois, Gregory V. Bard, and David Wagner. Algebraic and Slide Attacks on KeeLoq. Cryptology

ePrint Archive, Report 2007/062, 2007. http://eprint.iacr.org/.
13. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer,

2002.
14. Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard [10], pages 416–427.
15. Soichi Furuya. Slide Attacks with a Known-Plaintext Cryptanalysis. In Kwangjo Kim, editor, ICISC, volume

2288 of Lecture Notes in Computer Science, pages 214–225. Springer, 2001.
16. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In Matthew K.

Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 306–316. Springer, 2004.
17. Selçuk Kavut and Melek D. Yücel. Slide Attack on Spectr-H64. In Alfred Menezes and Palash Sarkar, editors,

INDOCRYPT, volume 2551 of Lecture Notes in Computer Science, pages 34–47. Springer, 2002.
18. John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nostradamus Attack. In Serge Vaudenay,

editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 183–200. Springer, 2006.
19. John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions for Much Less than 2n Work.

In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 474–490.
Springer, 2005.

20. Dmitry Khovratovich. Cryptanalysis of hash functions with structures, presented at ECRYPT Hash Workshop
2008.

21. Lars R. Knudsen. Cryptanalysis of LOKI91. In Jennifer Seberry and Yuliang Zheng, editors, ASIACRYPT,
volume 718 of Lecture Notes in Computer Science, pages 196–208. Springer, 1992.

22. Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl Hash Functions. In Biryukov [7],
pages 39–57.

23. Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Bimal K. Roy, editor, ASIACRYPT,
volume 3788 of Lecture Notes in Computer Science, pages 474–494. Springer, 2005.

24. Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [10], pages 428–446.
25. National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard. April 1995. See

http://csrc.nist.gov.
26. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard. August 2002. See

http://csrc.nist.gov.
27. Thomas Peyrin. Cryptanalysis of Grindahl. In ASIACRYPT, pages 551–567, 2007.
28. Raphael Chung-Wei Phan. Advanced Slide Attacks Revisited: Realigning Slide on DES. In Ed Dawson and Serge

Vaudenay, editors, Mycrypt, volume 3715 of Lecture Notes in Computer Science, pages 263–276. Springer, 2005.
29. Raphael Chung-Wei Phan and Soichi Furuya. Sliding Properties of the DES Key Schedule and Potential Exten-

sions to the Slide Attacks. In Pil Joong Lee and Chae Hoon Lim, editors, ICISC, volume 2587 of Lecture Notes

in Computer Science, pages 138–148. Springer, 2002.
30. Bart Preneel and Paul C. van Oorschot. On the security of two mac algorithms. In EUROCRYPT, pages 19–32,

1996.
31. Markku-Juhani Olavi Saarinen. Cryptanalysis of Block Ciphers Based on SHA-1 and MD5. In Thomas Johansson,

editor, FSE, volume 2887 of Lecture Notes in Computer Science, pages 36–44. Springer, 2003.
32. Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro. Password Recovery on Challenge and Response:

Impossible Differential Attack on Hash Function. In AFRICACRYPT, 2008.

A A slide attack on Grindahl-256

A.1 Find slid pairs of messages

Building the challenge that generates a slid pair works as follows. We choose a message M1 =
M0

1 ||M
1
1 || . . . ||M

l−1
1 ||M l

1, where M l
1 is a non complete block which will be padded. The MAC there-

fore processes the hash input

13

Pad(K||M1) = K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1 + P “10”
1 ||PL1

1 ||P
L2
1 ,

where P “10”
1 is the 10-padding to M l

1 and PL1
1 ||P

L2
1 is the two-block of the message length. Before

building the second message, we want the condition

0n 6= PL1
1 = PL2

1

to always hold for M1. Then, for each M1 we build the message M2 = M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1 +
P “10”

1 ||R, where R is an incomplete block which, after 10-padding, is the same as PL1
1 . As PL1

1 is
nonzero, such an R exists. In this case, the hash input is

Pad(K||M2) = K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1 + P “10”
1 || R + P “10”

2 ||PL1
2 ||P

L2
2

= K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1 + P “10”
1 || PL1

1 ||PL2
1 ||P

L2
2

This holds because of the conditions fulfilled by PL1
1 and PL2

1 . In other words, M1 and M2 only
differ in an additional block at the end. Such a pair (M1, M2) is slid with a probability of 2−32.
Detecting a slid pair is as simple as in the case of Grindahl-512. Here also the condition B = P (A)
holds for a slid pair only. TA leaves enough information to compute column B4 by performing one
blank round on TA. In this way the output (TA, TB) of a challenge (M1, M2) can be checked for
a value of B4 what we will expect for a slid pair. We can further check by using other columns
than B4, even if for them only a subspace of the potential solutions are determined by TA. On the
average, we need 231 pairs until we find a slid one. Thus, we need to make about 232 function calls
to obtain and detect a slid pair. Figure 5 shows the backward computation of one blank round.

Fig. 5. Detecting a slide pair of messages for Grindahl-256. Cells in dark gray mark known bytes while cells in light
gray mark unknown bytes. The inverse MixColumns (MC−1) and the inverse ShiftRows (SR−1) are the only two
operations which are important for our analysis: AddConstant and SubBytes functions leave a known (respectively
unknown) bytes known respectively unknown). Therefore we prevent the other operations.

A.2 Recover the internal state

A challenge (M1, M2) which produces a slid pair (TA, TB) can be used to recover the final internal
state A (corresponding to the computation of M1) just before the final truncation. Since the columns
A8 to A12 are unknown we have to recover 20 bytes. We can directly recover 10 bytes from A by
computing TB one blank round backward, exactly as when we tried to detect slid pairs: we can fully

14

invert the MixColumns transformation for the eight first columns (where all the bytes are known),
then it is also very easy to invert ShiftRows, SubBytes and AddConstant transformations. So, when
looking at Figure 5, it is clear than the attacker can directly get 10 unknown bytes from A. The
remaining 10 unknown bytes can be recovered in a different way. For each possibility among those
bytes (28·10 = 280 possibilities), we invert all the blank rounds and check if the last added word
(the first encountered when computing backward) is PL2

1 . Indeed, when inverting the real internal
state A, we surely come to the insertion of the block PL2

1 and this can be easily detected since we
know this message block and since the message insertion overwrite the first column of the internal
state. We can continue to compute backward with the word PL1

1 even if some parts of the internal
state at this point becomes undetermined due to the truncation when inserting the message words
and thus we only have 248−32 = 216 possibilities. Finally, we can continue to the message word
M l

1 + P “10”
1 which leads to a recovery of the full internal state A.

A.3 Using only short messages

Note that the above attack required 0n 6= PL1
1 = PL2

1 , i.e., the most significant and the least
significant word of the length field of (K||M1) must the same – and nonzero. Thus, the smallest
possible choice for PL1

1 = PL2
1 is PL1

1 = PL2
1 = 1, implying a message length (for (K||M), i.e.,

including the key) of 1 + 232 blocks. If dealing with such long messages is an issue, we can modify
the attack so use short messages. The modified attack goes as follows.

We choose a message M1 = M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1 + P “10”
1 , where the final block M l

1 is
incomplete. The MAC processes the hash input

Pad(K||M1) = K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1||P
L1
1 ||P

L2
1 ,

with a length-field PL1
1 ||P

L2
1 . Note that PL2

1 holds the 32 least significant bits, while PL1
1 holds the

32 most significant bits. We assume short messages, thus PL1
1 = 0n. This time, we want the MAC

to process the hash input

Pad(K||M2) = K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1 + P “10′′
1 ||PL1

1 || S + P “10′′
2 ||PL1

2 ||P
L2
2

= K||M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1 + P “10′′
1 ||PL1

1 || PL2
1 ||PL1

2 ||P
L2
2 ,

Thus, M1 and M2 only differ in two additional blocks at the end. Accordingly, we choose

M2 = M0
1 ||M

1
1 || . . . ||M

l−1
1 ||M l

1 + P “10′′

1 ||PL1
1 ||S.

As PL2
1 is nonzero, an incomplete block S with S + P “10′′

2 = PL2
1 does exist.

Now we define M1 and M2 as a slid-by-two pair, if, when processing the shorter message M1,
the first two empty rounds behave exactly the last two nonempty rounds when processing M2. This
happens with a probability of (2−32)2, and on the average, we need 263 pairs to find slid-by-two
pair.

A pair of messages is slid-by-two, if and only if the two corresponding states A and B satisfy
B = P (P (A)). Detecting slid-by-two pairs from T (A) and T (B) and then recovering the internal
state A is slightly more complicated, compared to “ordinarily” slid-by-one pairs, but still feasible.

15

A.4 Uncover some parts of the secret key or forge valid MACs

By knowing the whole internal state A it is straightforward to invert the blank rounds. With this
information, we can directly generate new valid MACs for messages which contain M1 as prefix:
we just have to continue the computation of the hash function by ourselves.

We can also try to invert the rounds where known message words are inserted. Some parts of
the internal state are undetermined because of the truncation when adding message words. We
do not known what was in the first column before erasing it with a message word, except for
the first undetermined column which is equal to PL2

1 as described above. But we can guess those
undetermined columns by only keeping those which lead to the good inserted message words in the
first column. This is equal to what we did above to recover the final internal state. By trying all the
possibles values the truncated column, we can continue going backward and check which one leads
to the known correct values of the message blocks inserted a few rounds before. Some tries will lead
to wrong message blocks inserted and can be discarded. The one leading to the good values have a
good chance to be the real erased bytes. Thus, we can go backward for all the known message words
and recover the erased columns until we have to stop this procedure when we reach the unknown
secret key word. The last unknown column which can be recovered is the column before inserting
M3

1 . Now, with all those informations we can recover 1 bytes from 4 of the last unknown message
block we encounter (the first when computing backward), which is part of the secret key. The rest
of the secret can be then computed exhaustively (at a lower cost than brute force without slide
attacks) or we can use a trick5. Indeed, we know that the initial internal state is equal to zero and
one can accelerate the secret recovery with a meet-in-the-middle attack: we compute forward from
the known initial internal state and we compute backward as we described before.

5 If the size of the key is not too big, we don’t even require to do any exhausive search.

16

