
Secure Computability of Functions in the IT setting with Dishonest
Majority and Applications to Long-Term Security

Robin Künzler∗ and Jörn Müller-Quade† and Dominik Raub‡

November 6, 2008 16:25

Abstract

It is well known that general secure function evaluation (SFE) with information-theoretical (IT) security is
infeasible in presence of a corrupted majority in the standard model. On the other hand, there are SFE protocols
(Goldreich et al. [STOC’87]) that are computationally secure (without fairness) in presence of an actively cor-
rupted majority of the participants. Now, the issue with computational assumptions is not so much that they might
be unjustified at the time of protocol execution. Rather, we are usually worried about a potential violation of the
privacy of sensitive data by an attacker whose power increases over time (e.g. due to new technical developments).
Therefore, we ask which functions can be computed with long-term security, where we admit computational as-
sumptions for the duration of a computation, but require IT security (privacy) once the computation is concluded.

Toward this end we combinatorially characterize the classes of functions that can be computed IT securely
in the authenticated channels model in presence of passive, semi-honest, active, and quantum adversaries (our
results for quantum adversaries and in part for active adversaries are limited to the 2-party setting). In particular
we obtain results on the fair computability of functions in the IT setting along the lines of the work of Gordon
et al. [STOC’08] for the computational setting. Our treatment is constructive in the sense that if a function is
computable in a given setting, then we exhibit a protocol.

We show that the class of functions computable with long-term security in a very practical setting where
the adversary may be active and insecure channels and a public-key infrastructure are provided is precisely the
class of functions computable with IT security in the authenticated channels model in presence of a semi-honest
adversary.

Finally, from our results and the work of Kushilevitz [SIAM Journal on Discrete Mathematics ’92] and
Kraschewski and Müller-Quade we can derive a complete combinatorial classification of functions, by secure
computability and completeness under passive, semi-honest, active, and quantum adversaries.

Keywords: long-term security, information-theoretic security, corrupted majority, secure function evaluation.

∗Department of Computer Science, ETH Zurich, Switzerland, robink@student.ethz.ch
†IAKS/EISS, Fakultät für Informatik, Universität Karlsruhe (TH), Germany, muellerq@ira.uka.de
‡Department of Computer Science, ETH Zurich, Switzerland, raubd@inf.ethz.ch

1

1 Introduction

In cryptography one distinguishes computational (CO) security which could in principle be broken by a very pow-
erful adversary and information theoretical (IT) security which withstands even an unlimited attacker. However,
general IT secure protocols fail in presence of an adversary that may corrupt a majority of the participants. On the
other hand, an unlimited attacker is not a realistic threat and the problem with CO assumptions is not so much that
these could be unjustified right now, but that concrete CO assumptions could eventually be broken by an attacker
whose power increases over time. With such a more realistic threat model in mind an interesting question arises:
Which cryptographic tasks can be realized with long-term (LT) security? I.e., which tasks can be realized in
presence of an attacker (potentially corrupting a majority of protocol participants) who is CO limited during the
protocol execution, but becomes unlimited afterwards?

In this work we study multi-party secure function evaluation (SFE). The main result is a classification of the
functions which can be computed with LT security over a network of authenticated channels. Furthermore we give
a classification of all the 2-party functions which can securely be computed in presence of an adversary who is
unlimited from the start. This class is strictly contained in the class of functions which can be computed with LT
security and the notion of LT security hence lies strictly between CO security and IT security.

Quantum cryptography can achieve tasks, like IT secure key distribution, which cannot be achieved classically.
For the task of secure function evaluation it is not known if quantum cryptography can achieve anything beyond the
classically possible1. However, in this work we show that the class of 2-party functions which can be realized with
quantum cryptography is strictly contained in the class of 2-party functions realizable with LT security. From this
inclusion novel impossibility results for quantum cryptography can be derived which are no direct consequences of
the results by Mayers [May97] or Kitaev [ABDR04].

All results in this paper are constructive: whenever it is claimed that a class of functions is securely computable
a protocol is given. We use a stand-alone simulatability based security model with a synchronous communication
network (see e.g. [Gol04]). Simulatability directly implies privacy2 and correctness3. The ideal functionality that
formalizes SFE in the simulation model can be chosen to additionally require robustness4, fairness5, or agreement
on abort6.

1.1 Contributions

To combinatorially characterize the class of functions which are computable with LT security we first characterize
the class of passively computable functions Faut

pas, i.e. the class of functions which can securely be computed by
parties which are connected by authenticated channels in presence of a CO unlimited passive7 adversary who must
behave according to the protocol. Next we characterize the class of semi-honestly computable functions Faut

sh which
are securely computable in the same setting as above but in presence of a stronger, semi-honest8 adversary, that has
to stick to the protocol, but may replace his inputs or lie about his local output.

To prove a separation between the notion of LT security and IT security we characterize the class F2act of all 2-
party functions which are securely computable in presence of an unlimited active adversary. We furthermore provide
a necessary condition (which we conjecture to be also sufficient) for membership in the class of actively computable
functions Faut

act that are securely computable in presence of an active adversary in the authenticated channels model
with broadcast (BC). Next we consider the class of 2-party functions F2qu that can securely be computed where the
parties may use quantum cryptographic protocols and the attacker is an unlimited active quantum adversary. We
show that the class F2qu is strictly contained in the class F2sh of semi-honestly computable 2-party functions which

1However, quantum bit commitment is impossible [May97] and hence no function implying bit commitment is computable.
2An adversary cannot learn more about the honest players’ inputs than what is implied by inputs and outputs of the corrupted players.
3The protocol output equals the intended function value f(x1, ..., xn) of the inputs or there is no output.
4An adversary cannot prevent the honest parties from learning their outputs.
5The honest parties learn their outputs if the adversary learns anything.
6Either all honest parties learn their outputs or none.
7In the literature our notion of passive is also occasionally referred to as semi-honest.
8In the literature our notion of semi-honest is also sometimes referred to as weakly semi-honest or weakly passive.

1

gives rise to novel impossibility results beyond those of Mayers [May97] or Kitaev [ABDR04].
To obtain the desired result on LT security we prove that the class of semi-honestly computable functions Faut

sh
equals the class Fbc

lts of functions which can LT securely be computed given an authenticated BC channel. Further-
more, we show that the class of LT securely computable functions remains unchanged if we replace the authenticated
BC channel by a network of authenticated channels or by the realistic communication infrastructure of a network of
insecure channels with a given public-key infrastructure (PKI). Hence our classification applies to a very practical
internet-like setting.

Unlike our IT secure protocols the LT secure protocols given in this work do not achieve robustness or fairness.
We show that this is optimal in the sense that generally functions implementable with LT security cannot be imple-
mented with fairness. However, we present protocols which guarantee that only a specific designated party can abort
the computation after learning the output. I.e. the fairness property can only be violated by this designated party.
Interestingly these protocols make use of CO secure oblivious transfer (OT) protocols even though OT itself cannot
be achieved with LT security.

Summarizing our results and importing the treatment of complete two party functions from [KMQ08] (i.e. func-
tions which are cryptographically as powerful as oblivious transfer) we arrive at a complete classification of two
party functions. Interestingly, there is a class of functions which cannot securely be computed but still are not
complete. This shows that for non-boolean functions there is no zero-one law for privacy [CK89].

1.2 Related Work

Secure computability of functions was first discussed by [CK89]. They characterize the symmetric boolean functions
(all parties receive the same output y ∈ {0, 1}) that can be computed with IT security in presence of passive
adversaries in the private channels model. In this scenario functions are either computable or complete (zero-one
law for privacy).

Kushilevitz [Kus92] presented the first result for non-boolean functions describing the symmetric 2-party func-
tions which can be computed with perfect security in presence of an unbounded passive adversary. Our protocols
and proof techniques draw heavily upon [Kus92]. Also in the 2-party setting, [MQ05] sketches a generalization
of [Kus92] to the asymmetric, IT case, connections to LT security and discusses quantum aspects, though without
proper formalization or proofs. Our work goes beyond the results of [CK89, Kus92, MQ05] in that we consider
IT secure computability of asymmetric, non-boolean functions, in presence of passive, semi-honest, active, and
quantum adversaries, for the most part in the multi-party setting.

Gordon et al. [GHKL08] characterize the boolean functions computable with CO fairness in the 2-party setting in
presence of active adversaries. Our protocols for active adversaries are robust (and hence fair) and being applicable
to asymmetric, non-boolean functions, pertain to a larger class of functions than those of [GHKL08], but in the IT
scenario instead of the CO setting.

Other works that deal with the computability of 2-party functions in the perfect or IT setting are [Kil91, Kil00,
BMM99, KMQ08]. However, these papers focus mostly on reducibility and completeness, while we are more
interested in computability in the authenticated channels model and implications for LT security. Computability of
a few interesting special functions in presence of dishonest majorities is discussed in [BT07].

Our impossibility result in the quantum case makes use of a result of Kitaev showing the impossibility of quantum
coin flipping which is published in [ABDR04].

Everlasting security from temporary assumptions has been investigated in cryptographic research for some
time. It was shown that a bound on the memory available to the adversary allows key exchange and OT pro-
tocols [CM97, CCM02] which remain secure even if the memory bound holds only during the execution of the
protocol. This idea has been pursued further to achieve everlasting security from a network of distributed servers
providing randomness [Rab03]. In [DM04] it was shown that using a CO secure key exchange in the bounded stor-
age model need not yield everlasting security. For some time general quantum cryptographic protocols were sought
which obtain everlasting security from a temporary assumption. Such protocols are now generally accepted to be
impossible [BCMS99]. Additional assumptions, like a temporary bound on the quantum memory can again provide
everlasting security for secure computations [DFSS05].

2

In this paper we investigate the power of temporary CO assumptions in the standard model. This is along the
lines of [MQU07]. However, in [MQU07] strong composability requirements are imposed under which little is
possible without additional setup assumptions, like the temporary availability of secure hardware.

2 Security Definitions and Notation

In secure function evaluation (SFE) the goal is to compute a function f : X1 × . . .×Xn → Y1 × . . .×Yn securely
among n parties P = {P1, . . . , Pn}.9 Each party Pi ∈ P (i ∈ [n] := {1, . . . , n}) holds an input xi ∈ Xi from a
finite set Xi and is supposed to receive output fi(x1, . . . , xn) := yi ∈ Yi, where (y1, . . . , yn) = f(x1, . . . , xn). We
extend this notation to subsets M = {Pm1 , . . . , Pm|M|} ⊆ P and write fM (x1, . . . , xn) := yM := (ym1 , . . . , ym|M|)
and xM := (xm1 , . . . , xm|M|). We call the set of all n-party functions Fn and the set of multi-party functions
F :=

⋃
n≥1 Fn.

In order to compute the function f the parties may execute a protocol π, utilizing a set of resources10 (commu-
nication primitives) R. We designate by H ⊂ P the set of honest parties, that execute their protocol machine πi as
specified by protocol π, and by E := P \H the set of corrupted parties that may deviate from the protocol. We gen-
erally make the worst case assumption that corrupted parties are controlled by a central adversary E. The adversary
(if present, i.e. if at least one party is corrupted) acts for the corrupted parties, sees messages sent over authenticated
channels, and can manipulate messages sent over insecure channels. If no party is corrupted, we assume that no ad-
versary is present. External adversaries that can listen on authenticated channels and manipulate insecure channels
even when no party is corrupted are easily modelled by adding an additional party, that has constant function output
and whose input is ignored. Securely computing f then means that privacy of the inputs and correctness of the result
should be guaranteed for the honest parties.

We define security using a simulation based stand-alone11 model (see e.g. [Gol04]) with synchronous message
passing. The security of a protocol (the real model) is defined with respect to an ideal model, where f is evaluated
by a trusted third party or ideal functionality I . A protocol π then achieves security according to the simulation
paradigm if whatever an adversary E controlling a subset E ⊆ P of parties can do in the real model, a simulator (or
ideal adversary) S (connected to the interfaces of the corrupted parties to the ideal functionality I) could replicate in
the ideal model.

This is formalized by means of a distinguisher D. D provides inputs xi (Pi ∈ H) for the honest parties and xE

for the adversary E. In the ideal setting the xi (Pi ∈ H) are input to I , while xE is passed to the simulator S (which
in turn computes inputs x′E to I for the corrupted parties). In the real setting the protocol machines πi are run on
input xi (Pi ∈ H) with the adversary E on input xE and with resources R. Finally the outputs yH of the honest parties
and yE of the adversary or simulator are passed to D, which then has to output a decision bit d ∈ {0, 1}, that can be
regarded as the distinguisher’s guess if it is connected to the real system E ◦ πH ◦ R or the ideal system S(E) ◦ I . To
facilitate a unified treatment of different corruption models, we will generally wlog assume that xE = (xE, x′E) and
yE = (yE, y′E) where xE ∈ XE and yE ∈ YE are function inputs and outputs respectively, x′E is an auxiliary input
and y′E is the protocol transcript observed by the adversary.12

Denoting statistical distance13 by ∆(·, ·), we can then define the advantage of a class D of distinguishers in
distinguishing systems S and S′ as

∆D(S, S′) := max
D∈D

∆D(S, S′) := max
D∈D

∆(D(S),D(S′)) = max
D∈D

|Pr(D(S) = 1)− Pr(D(S′) = 1)|,

where D(S) denotes the output of distinguisher D when interacting with system S. A protocol is now secure if
for any adversary (corrupting a certain set of parties) there is a simulator which renders ideal and real scenario
indistinguishable for any distinguisher.

9In the 2-party setting we will occasionally use A and B instead of P1 and P2.
10In this work these are most often a complete network of authenticated channels or an authenticated broadcast (BC) channel.
11as opposed to a universally composable model
12Note that arbitrary inputs can be passed to the adversary via x′E and whatever the adversary might compute from its observations can also

be computed from the protocol transcript y′E directly.
13The statistical L1 distance of random variables XA, XB : Ω → X with X finite is ∆(XA, XB) = 1

2

P
x∈X |PrXA(x)− PrXB (x)|.

3

Definition 2.1 (Stand-Alone Security). Given a class of distinguishers D, a class of adversaries E , a class of simu-
lators S, and an advantage function14 ε(κ) (where κ is the security parameter) a protocol π securely implements an
ideal functionality I if for every adversary E ∈ E corrupting a set E of parties there is a simulator S(E) ∈ S such
that ∆D(S(E) ◦ I,E ◦ πH ◦ R) ≤ ε(κ). The type of security is dependent on the choice of D, E , S, and ε(κ), and on
the ideal functionality I . We will discuss several resulting security paradigms below.

We consider both computational (CO) security, where distinguishers, adversaries and simulators must be effi-
cient15 (Poly) and information-theoretic (IT) security where distinguishers, adversaries and simulators are arbitrary
unbounded algorithms (Algo). Furthermore, we investigate long-term (LT) security where adversaries and simu-
lators must be efficient but distinguishers may be unbounded, formalizing that we expect CO assumptions to hold
only for the duration of the protocol. In all three cases the advantage function ε(κ) is chosen to be negligible in the
security parameter κ. If in the IT case we fix an advantage of ε = 0 we arrive at perfect (PF) security. We may vary
the IT and PF cases by demanding efficient simulators (ITE, PFE).

Paradigm Short D = E = S = ε(κ) Notation
Perfect security PF Algo Algo Algo ε(κ) = 0 π <PF I

Information-theoretical security IT Algo Algo Algo ε(κ) < negl π <IT I

PF security with efficient simulator PFE Algo Algo Poly ε(κ) = 0 π <PFE I

IT security with efficient simulator ITE Algo Algo Poly ε(κ) < negl π <ITE I

Computational security CO Poly Poly Poly ε(κ) < negl π <CO I

Long-term security LT Algo Poly Poly ε(κ) < negl π <LT I

Table 1: Basic Security Paradigms

We refine these security paradigms further by defining adversarial models, i.e. restrictions that we can impose on
the adversaries and simulators for any of the above paradigms. We discuss active (act) adversaries, where adversaries
and simulators in the classes Eact, Sact are not restricted further; semi-honest (sh) adversaries8, where adversaries in
the class Esh are restricted to generate messages according to the prescribed protocol π with the inputs xE provided
by the distinguisher D, and simulators in the class Ssh are not restricted further; and passive (pas) adversaries7,
where adversaries are in the class Epas = Esh and simulators in the class Spas are restricted to forward the inputs xE

provided by the distinguisher D to the ideal functionality I .
We briefly motivate our definition of sh adversaries. When CO tools are applied to force active adversaries to

behave passively, they can still substitute inputs. The sh setting is intended to model this scenario, where, in contrast
to the pas setting, the adversaries and simulators can substitute the inputs provided by the distinguisher for different
ones. However, for simplicity, the definition above only allows for simulators (and not adversaries) to substitute
inputs, as this is actually equivalent under the distinguisher classes D we consider: For any D ∈ D we can find a
distinguisher D′ = D ◦ σ ∈ D that incorporates the input substitution of the adversary E = E′ ◦ σ. So we can find a
passive adversary E′ ∈ Esh = Epas and a distinguisher D′ that yield the same advantage as E and D.

Security paradigms and adversarial models as defined above are combined by intersecting their defining sets, i.e.
sh IT security is described by DIT

sh = DIT, S IT
sh = S IT ∩Ssh, E IT

sh = E IT ∩Esh, ε(κ) < negl and denoted π <IT
sh I . By

definition we have the following implications among security paradigms and adversarial models respectively:

PFE

��

+3 ITE

��

+3 LT +3 CO

PF +3 IT

act +3 sh pasks

We can now formalize the computation of a function f with a specific set of security properties under each of the
definitions above by providing an appropriate ideal functionality. Let f ∈ Fn be a concrete function16 and let E ⊂ P

be a set of corrupted players.
14usually a negligible function in the security parameter κ
15By efficient we mean polynomially bounded in the security parameter κ.
16In this work we take the function f to be independent of the security parameter κ. As such the efficiency of protocols is always discussed

4

Demanding privacy, correctness and agreement on abort only for the computation of f is captured by the ideal
functionality Iab

f , which operates as follows: Iab
f accepts an input xi from each party Pi. If a party Pi provides no

input, a default input xdef
i is used. Iab

f then computes the outputs (y1, . . . , yn) = f(x1, . . . , xn) and outputs yE to
the adversary (simulator). If |E| > 0, the adversary may decide whether the other parties also receive the output
(output flag o = 1) or not (output flag o = 0). Finally, Iab

f sends either the outputs yi or the empty value ⊥ to the
honest parties, depending on the output flag received from the adversary.17

The ideal functionality I fair
f specifying privacy, correctness and fairness (which implies agreement on abort)

works like Iab
f but takes an output flag before making output to the adversary. Then for output flag 1 the functionality

I fair
f sends the result y to all parties and for output flag 0 it sends ⊥ to all parties.

Computing function f with full security, which implies all the security notions mentioned above, is specified
by means of the ideal functionality If . The functionality If operates like I fair

f but takes no output flag and instead
directly delivers the output y to all parties.

Computing function f with a designated aborter (DA) is a slighlty weaker notion of security than fairness in that
only the designated party P1 can abort the protocol after receiving output. The corresponding ideal functionality
Ides
f operates as follows: Ides

f accepts an input xi from each party Pi. If a party Pi provides no input, a default
input xdef

i is used. Ides
f then computes the outputs (y1, . . . , yn) = f(x1, . . . , xn). If P1 ∈ E the functionality Ides

f

outputs yE to the adversary (simulator). If |E| > 0, the adversary may decide whether the other parties also receive
the output (output flag o = 1) or not (output flag o = 0). Finally, Ides

f either delivers the remaining outputs yi or the
empty value ⊥, depending on the output flag received from the adversary.

Note that in the 2-party setting (but not for n > 2 parties) robustness and fairness amount to the same. Given
I fair
f we can implement If by having Pi output fi(xi, x

def
2−i) when it receives ⊥. Conversely, given If , we directly

use it as implementation of I fair
f . The simulators are straightforward.

Lemma 2.2. In the 2-party setting, I fair
f and If are efficiently and PFE securely locally mutually reducible, even in

presence of active adversaries, i.e. robustness and fairness amount to the same.

Finally we show that computability by public discussion (authenticated BC only as resources R) and in the
authenticated channels model (complete network of authenticated channels as resources R) lead to identical results
for semi-honest or passive adversaries. In the authenticated channels model we can securely (against sh and pas
adversaries) implement BC by simply sending messages to all other parties. Conversely in the authenticated BC
model, authenticated channels can be implemented by broadcasting messages and instructing parties other than the
intended recipient not to listen. By the last argument computability by public discussion and in the authenticated
channels model with BC lead to identical results for active adversaries also.

Lemma 2.3. In presence of semi-honest or passive adversaries, a function f ∈ F is securely computable in the
authenticated channels model if and only if it is computable by public discussion (authenticated BC only). In
presence of active adversaries, a function f ∈ F is securely computable in the authenticated channels model with
BC if and only if it is computable by public discussion.

3 The Class Faut
pas of Passively Computable Functions

We subsequently characterize the class Faut
pas of n-party functions f ∈ Fn that are computable IT securely in the

authenticated channels model in presence of a passive adversary.

Definition 3.1 (Faut
pas: Passively Computable Functions). The class of passively computable functions Faut

pas consists
of the functions f ∈ F for which an efficient protocol π ∈ Poly exists that implements If with IT security in
presence of a passive adversary in the authenticated channels model.

for a fixed function in terms of the security parameter κ. This is the most relevant case for applications, however, our proofs still hold for a
family of functions fκ, where the input domain grows at most polynomially fast in the security parameter κ.

17We could relax the definition further by allowing the adversary to send one output flag for each party, dropping agreement on abort.
However, all our protocols will achieve agreement on abort.

5

Note that by Lem. 2.3 we have Faut
pas = Fbc

pas, where Fbc
pas denotes the functions computable by public discussion

in the setting above. Hence we may, for the sake of simplicity, assume an authenticated BC channel instead of
authenticated channels as the sole underlying resource in the following discussion.

An important subset Faut
pas is the set Floc of locally computable n-party functions.

Definition 3.2 (Floc: Locally Computable Functions). A function f ∈ F is called locally computable (f ∈ Floc)
if each party Pi can compute its function value yi = fi(x1, . . . , xn) locally, without interacting with a resource or
another party.

Obviously, for f to be locally computable, fi cannot depend on the inputs of parties other then Pi:

Lemma 3.3 (Characterization of Floc). A function f ∈ F is locally computable (f ∈ Floc) if and only if for every
i ∈ [n] and every xi ∈ Xi the restriction fi |X1×...×Xi−1×{xi}×Xi+1×...×Xn

of f is constant.

Towards a characterization of Faut
pas, we give a combinatorial definition of a set F′pas of functions that we call

passively decomposable. Passive decomposability captures the fact that a party can send a message about its input
such that no adversary can learn anything that is not implied by its own input and function output.

Definition 3.4 (F′pas: Passively Decomposable Functions). A function f ∈ Fn is called passively decomposable,
denoted f ∈ F′pas, if for any restriction f | eX1×...× eXn

of f to subsets X̃j ⊆ Xj (j ∈ [n]) we have:

1. f | eX1×...× eXn
is locally computable (f | eX1×...× eXn

∈ Floc) or

2. there is an i ∈ [n] and a partition (K-Cut) of X̃i into non-empty sets X ′
i ∪̇X ′′

i = X̃i such that for all Pe ∈
P \ {Pi} and all xe ∈ X̃e: fe(xe, X̃H′ ,X ′

i) ∩ fe(xe, X̃H′ ,X ′′
i) = ∅ (E := {Pe}, H′ := H \ {Pi}).

The above definition only discusses adversary sets E of cardinality |E| = 1. As the following lemma shows that
this is actually equivalent to quantifying over all sets E ⊆ P.

Lemma 3.5 (An Equivalent Characterization of F′pas). A function f ∈ Fn is passively decomposable if and only if
for any restriction f | eX1×...× eXn

of f to subsets X̃j ⊆ Xj (j ∈ [n]) we have:

1. f | eX1×...× eXn
is locally computable (f | eX1×...× eXn

∈ Floc) or

2. there is an i ∈ [n] and a partition (K-Cut) of X̃i into non-empty sets X ′
i ∪̇X ′′

i = X̃i such that for all ∅ 6= E ⊆
P \ {Pi} and all xE ∈ X̃E: fE(xE, X̃H′ ,X ′

i) ∩ fE(xE, X̃H′ ,X ′′
i) = ∅ (H′ := H \ {Pi}).

The proof of Lemma 3.5 is by induction over the size of the adversary set E and can be found in Appendix B.
There we also provide a graphical illustration of passive decomposability (Fig. 2).

We now show that passive decomposability as defined above indeed characterizes the passively computable
n-party functions:

Theorem 3.6. A function f ∈ F is passively computable if and only if it is passively decomposable. In short
Faut

pas = F′pas. Furthermore, any function f ∈ Faut
pas can efficiently18 be computed with PFE security.

The proof of Thm. 3.6 can be found in App. C. Faut
pas ⊆ F′pas is shown by demonstrating that in absence of a

K-cut no protocol participant can send a message that bears any information about his input without losing security.
The proof of Faut

pas ⊇ F′pas is constructive in the sense that it inductively describes an efficient passively PFE secure
protocol πf to compute a function f ∈ F′pas. The protocol πf generalizes the approach of [Kus92] to asymmetric
n-party functions:

Wlog assume that there is a partition of Xi = X (1)
i ∪̇X (2)

i as described in Definition 3.4. The protocol πf then
proceeds as follows: The party Pi determines the message m1 ∈ {0, 1} such that for the input xi ∈ Xi of Pi we have
xi ∈ X (m1)

i and broadcasts m1. The parties P then restrict the function f to f |X1×X2×...×X (m1)
i ×...×Xn

and proceed
with a partition for the restricted function in the same fashion. The process is iterated until the parties arrive at a
locally computable restriction of f , at which point they can determine the output locally.

We conjecture that the above protocol achieves the optimal round complexity if it is refined to use the finest
possible decomposition (according to [Kus92]) of the input domains in every round.

18in the security parameter κ

6

4 The Class Faut
sh of Semi-Honestly Computable Functions

Next we characterize the class Faut
sh of n-party functions that are IT securely computable in the authenticated channels

model in presence of a semi-honest adversary. Here, in order to obtain extra information, the corrupted parties are
allowed to exchange their inputs for different ones, but must still behave according to the prescribed protocol. The
results in this chapter will later help us to characterize LT secure functions in a very practical setting.

Definition 4.1 (Faut
sh : Semi-Honestly Computable Functions). The class of semi-honestly computable functions Faut

sh
consists of the functions f ∈ F for which an efficient protocol π ∈ Poly exists that implements If with IT security
in presence of a semi-honest adversary in the authenticated channels model.

Note that by Lem. 2.3 we have Faut
sh = Fbc

sh, where Fbc
sh denotes the functions computable by public discussion

in the setting above. Hence we may, for the sake of simplicity, assume an authenticated BC channel instead of
authenticated channels as the sole underlying resource in the following discussion.

We intend to characterize the class Faut
sh combinatorially. To this end we introduce the concept of redundancy-

freeness for n-party functions, generalizing the 2-party definitions of [KMQ08]. For a party Pi, two of its possible
inputs xi and x′i to f may be completely indistinguishable to the other parties (by their output from f), while the input
xi may yield a more informative output from f for Pi than x′i. We then say the input xi yielding more information
dominates the input x′i giving less information. As semi-honest (and active) adversaries can select their inputs,
generally with the goal to obtain as much information as possible, the dominated input x′i giving less information
is not useful to a corrupted Pi. Along the same lines an ideal adversary (simulator) can always use the dominating
input xi instead x′i of for simulation. As such the input x′i is redundant, irrelevant in terms of security, and we can
eliminate it from the function f under consideration. This procedure yields a redundancy-free version f̂ of f , with
new, smaller, dominating input sets.

Definition 4.2 (Domination and Redundancy-Freeness). Given an n-party function f ∈ Fn we say xi ∈ Xi

dominates x′i ∈ Xi if and only if for all xP′ ∈ XP′ : fP′(xi, xP′) = fP′(x′i, xP′) and for all xP′ , x′P′ ∈ XP′ :
fi(x′i, xP′) 6= fi(x′i, x

′
P′) =⇒ fi(xi, xP′) 6= fi(xi, x

′
P′), where P′ = P \ {Pi}.

We proceed to define sets of dominating inputs X̃j := {X ⊆ Xj | ∀x′ ∈ Xj∃x ∈ X : x dominates x′} (j ∈ [n]).
We define the dominating set X̂j as (some) element of minimal cardinality in X̃j . We then call f̂ := f |X̂1×...×X̂n

the
redundancy-free version of f . Furthermore, for xj ∈ Xj let x̂j ∈ X̂j be the (unique) element that dominates xj .

The redundancy-free version f̂ of f is uniquely defined up to a renaming of input and output values (also see
App. G or Sec. 8). Domination is a reflexive and transitive relation. Furthermore it is antisymmetric up to renaming
of input and output symbols. Hence two different dominating sets X̂i and X̂ ′

i are sets of maximal elements under the
domination relation and equal up to renaming of input and output values.

Since corrupted parties can cooperate to choose their inputs to obtain as much information as possible, it is
important to note that the above Def. 4.2 generalizes to the combined input of the corrupted parties E as stated
in Lem. 4.3 below. So if each corrupted party Pej chooses an input xej dominating input x′ej

, then the combined
adversarial input xE actually dominates x′E.

Lemma 4.3. Let xE = (xe1 , . . . , xe|E|), x′E = (x′e1
, . . . , x′e|E|) such that each xej dominates x′ej

(j ∈ [|E|]). Then
we have for all xH ∈ XH: fH(xE, xH) = fH(x′E, xH) and for all xH, x′H ∈ XH: fE(x′E, xH) 6= fE(x′E, x′H) =⇒
fE(xE, xH) 6= fE(xE, x′H). Again we say that xE dominates x′E.

The proof of Lem. 4.3 is by induction on |E| and can be found in App. D.
The following lemma states that the functions f and f̂ are locally19 and efficiently mutually reducible. This

means that it does not matter in terms of security which of the two functions is used and redundant inputs can safely
be eliminated.

Lemma 4.4. The functions f and f̂ are efficiently and PFE securely locally mutually reducible, even in presence of
active adversaries.

19without using any communication resources

7

The proof of Lem. 4.4 is fairly straightforward, by showing how to implement If̂ when If is given and vice
versa. It can be found in App. E. The protocol essentially replaces inputs xi with dominating inputs x̂i.

As PFE security in presence of active adversaries implies IT security in presence of semi-honest adversaries, we
can derive the following simple corollary:

Corollary 4.5. For any function f ∈ F we have: f ∈ Faut
sh ⇐⇒ f̂ ∈ Faut

sh .

An n-party function f is then sh computable if and only if its redundancy-free version f̂ is pas computable.

Theorem 4.6. For a function f ∈ F we have: f ∈ Faut
sh ⇐⇒ f̂ ∈ Faut

pas.

The full proof of Thm. 4.6 can be found in App. F, we only give a sketch here. By Cor. 4.5 we know that
f ∈ Faut

sh ⇐⇒ f̂ ∈ Faut
sh . Therefore it suffices to show for redundancy-free functions f where f = f̂ that we

have f ∈ Faut
sh ⇐⇒ f ∈ Faut

pas. The implication f ∈ Faut
pas =⇒ f ∈ Faut

sh is then clear by definition. The
implication f ∈ Faut

sh =⇒ f ∈ Faut
pas is shown along the lines of the proof of Thm. 3.6, demonstrating that

f ∈ Faut
sh =⇒ f ∈ F′pas. The proof exploits the redundancy-freeness of f due to which a (working) simulator in

the sh setting cannot actually substitute inputs.
The functions f (5) and f (6) in Fig. 1 are examples of not sh computable functions taken from [Kus92]. The

function f (6) is of particular interest as it is of strictly less cryptographic strength than oblivious transfer. Function
f (9) is sh computable: After eliminating the redundant input x3, the function is pas computable (as indicated by the
horizontal and vertical lines).

5 The Class Faut
act of Actively Computable Functions

In contrast to previous sections some of the results in this section are limited to the 2-party case. We characterize
the class F2act of 2-party functions which can securely be computed in presence of an unlimited active adversary.
We give some generalizations to the n-party scenario, but our 2-party results are sufficient to see that F2act is strictly
contained in F2sh and hence the notion of LT security lies strictly between IT security and CO security.

Definition 5.1 (Faut
act : Actively Computable Functions). The class of actively computable functions Faut

act consists of
the functions f ∈ F for which an efficient protocol π ∈ Poly exists that implements If with IT security in presence
of an active adversary in the authenticated channels model with broadcast.

Note that by Lem. 2.3 we have Faut
act = Fbc

act, where Fbc
act denotes the functions computable by public discussion

in the setting above. Hence we may, for the sake of simplicity, assume an authenticated BC channel as the sole
underlying resource in the following discussion.

Interestingly there are some useful functions in the class Faut
act , e.g. f (7) in Fig. 1 which is a formalization of a

Dutch flower auction, where the price is lowered in every round until a party decides to buy.
We next give a combinatorial characterization of actively computable functions, which essentially states that

a party Pi must be able to send a message about its input such that the corrupted parties E reacting to this new
information by changing their input from x′E to x′′E could have achieved the same effect on the output by selecting a
third input xE a priori:

Definition 5.2 (F′act: Actively Decomposable Functions). A function f ∈ F is called actively decomposable, denoted
f ∈ F′act, if and only if f̂ ∈ F̂act. We have f ∈ F̂act if one of the following holds:

1. f is locally computable (f ∈ Floc);

2. there is an i ∈ [n] and a partition (T-Cut) of Xi into non-empty sets X ′
i ∪̇X ′′

i = Xi such that

(i) f |X1×...×X ′
i×...×Xn

, f |X1×...×X ′′
i ×...×Xn

∈ F̂act and

8

(ii) for all E ⊆ P \ {Pi} and H′ := H \ {Pi} we have

∀x̄E ∈ XE : fE(x̄E,XH′ ,X ′
i) ∩ fE(x̄E,XH′ ,X ′′

i) = ∅ (K-cut) and

∀x′E, x′′E ∈ XE ∃xE ∈ XE ∀xH′ ∈ XH′ (∀x′i ∈ X ′
i : fH(x′E, xH′ , x′i) = fH(xE, xH′ , x′i)

∧ ∀x′′i ∈ X ′′
i : fH(x′′E, xH′ , x′′i) = fH(xE, xH′ , x′′i))

Active decomposability indeed characterizes the actively computable functions.

Theorem 5.3. A function f ∈ F is actively computable if it is actively decomposable. In short Faut
act ⊇ F′act. In the

2-party case20 we even have F2act ⊆ F′2act, i.e. F2act = F′2act. Furthermore, any function f ∈ F′act can be computed
efficiently with PFE security.

Furthermore, we conjecture:

Conjecture 5.4. A function f ∈ F is actively computable if and only if it is actively decomposable. In short
Faut

act = F′act. Furthermore, any function f ∈ Faut
act can be computed efficiently with PFE security.

The proof of Thm. 5.3 can be found in App. H. The implication f ∈ F′act =⇒ f ∈ Faut
act is proven by showing

the protocol for the semi-honest scenario secure against active adversaries, when applied to the T-cuts of a function
f ∈ F′act instead of the K-cuts of a function in Faut

sh . To obtain f ∈ F2act =⇒ f ∈ F′2act we observe that for
f 6∈ F′2act the adversary can in any protocol induce an ouput distribution that is impossible to achieve in the ideal
setting. The adversary does this by extracting information on the inputs of other participants from the protocol
messages and adjusting his input according to that information.

The functions f (7) and f (8) in Fig. 1 are examples of actively computable functions. Especially compare f (8)

with f (2) ∈ F2sh which is not actively computable. The lines in the tables for f (7) and f (8) represent messages
which are to be sent in the protocol.

6 Quantum Protocols

In this section we will relate the class F2sh of sh computable 2-party functions with the class of 2-party functions
computable with quantum cryptography in presence of an active adversary. A similar result has been obtained by
Louis Salvail, but is not published yet. Naturally, we have to adapt our model of security to the quantum case. All
machines except for the distinguisher D will be quantum machines able to exchange quantum messages. Further-
more, all inputs and outputs must be classical and the distinguisher must try to distinguish the real and the ideal
model based on this classical information.

Let F2qu denote the set of functions f ∈ F2 which can, with the help of a quantum channel, securely and
efficiently be computed in presence of an unbounded active adversary. Then the following result holds.

Theorem 6.1. The class F2qu of quantum computable functions is strictly contained in the class of sh computable
functions F2sh.

A proof of this theorem is sketched in App. I. The strict inclusion F2qu (F2sh gives rise to new impossibility
results. For instance, the function f (6) 6∈ F2sh in Fig. 1 cannot be computed by means of quantum cryptography.
An interesting still open question is the power of temporary CO assumptions together with a quantum channel. It
is known that this does not suffice to securely implement any function which could in turn be used to implement an
IT secure bit commitment. However a secure implementation of the function f (6) in Fig. 1 is not precluded by this
impossibility result.

20For a function class Fchan
name we denote the 2-party subclass Fchan

name ∩ F2 by F2name. We drop the communication model specification chan
as it is irrelevant for the 2-party setting.

9

7 Long-Term Security

Subsequently we characterize the n-party functions that can be computed LT securely (without fairness) in presence
of active adversaries. LT security means we are willing to make CO assumptions, but only for the duration of the
protocol interaction. Once the protocol has terminated we demand IT security. We look at different classes of LT
securely computable functions, defined by different channel models. The most practical model, corresponding to the
class F

ins, pki
lts , is an internet-like setting, where insecure channels and a PKI are available to the parties. Furthermore

we also discuss the classes Faut
lts where authenticated channels and Fbc

lts where an authenticated BC channel are given.
We find that all these classes F

ins, pki
lts = Fbc

lts = Faut
lts are equal to the class Faut

sh of sh computable functions.

Definition 7.1 (Fbc
lts , F

ins, pki
lts , Faut

lts : LT Computable Functions). The classes of LT computable functions (i) Fbc
lts , (ii)

F
ins, pki
lts , (iii) Faut

lts consists of the functions f ∈ F for which an efficient protocol π ∈ Poly exists that implements
Iab
f with LT security in presence of an active adversary from (i) an authenticated broadcast channel; (ii) a complete

network of insecure channels and a PKI; (iii) a complete network of authenticated channels; respectively.

We now show that the classes defined in the previous section are all equivalent to Faut
sh . First, we observe

that once we allow CO assumptions during the protocol execution, we can force semi-honest behavior (i.e. that
the adversary behaves according to the protocol) using an unconditionally hiding commitment scheme and zero-
knowledge arguments of knowledge:

Theorem 7.2. If one-way functions (OWF) exist, we have Faut
sh = Fbc

lts .

A proof of Thm. 7.2 can be found in App. J. Furthermore we claim:

Theorem 7.3. We have F
ins, pki
lts = Fbc

lts = Faut
lts = Faut

sh .

We prove this by showing Fbc
lts ⊆ F

ins, pki
lts , F

ins, pki
lts ⊆ Faut

lts , Faut
lts ⊆ Fbc

lts . First, Fbc
lts ⊆ F

ins, pki
lts holds as we can

use the Dolev-Strong-Protocol [DS83] to obtain authenticated BC in the PKI setting. F
ins, pki
lts ⊆ Faut

lts holds as using
detectable precomputation [FHHW03] we can establish a PKI in the authenticated channels model.21 Faut

lts ⊆ Fbc
lts

holds as given authenticated BC, authenticated channels can be implemented by simply broadcasting messages and
instructing honest parties other than the intended recipient to ignore the message.

Thm. 7.3 is optimal in the sense that we cannot hope to implement all functions f ∈ F
ins, pki
lts with robustness

or even fairness. Of course we have (by definition) robust LT (even IT) secure protocols for the functions f ∈
Faut

act . But e.g. the symmetric XOR function fXOR(x1, x2) := (x1 XOR x2, x1 XOR x2) is by the combinatorial
characterizations of the previous sections fXOR ∈ F2sh \ Fact ⊂ Fbc

lts \ Faut
act . Now a fair implementation of fXOR

would clearly imply a fair cointoss, which by [Cle86] cannot be implemented in the model under consideration. As
such the security without fairness as guaranteed by Thm. 7.3 is indeed the best we can hope for.

7.1 Long Term Security with designated Aborter

As mentioned above we cannot generally guarantee robustness or even fairness for a LT secure protocol πf comput-
ing f ∈ F2lts. However, under stronger CO assumptions, we can guarantee that only a specific designated party can
abort the protocol after obtaining output and before the honest parties can generate output. This may be of practical
relevance where a specific party is not trusted, but can be relied upon not to abort the protocol. For instance a party
may have a vested interest in the successful termination of the protocol regardless of the outcome. One may think
of an auctioneer that gets paid only if the auction terminates successfully. Or a party may act in an official capacity
and cannot abort the protocol for legal reasons.

We will show that stronger guarantees of this type are obtainable if the underlying CO assumption allows for
an oblivious transfer (OT) protocol which is LT secure against one of the participants. Enhanced trapdoor one-way
permutations are an example of such an assumption [Gol04]. It is generally believed that OT is not implied by
OWFs, meaning that LT security with designated aborter appears to require strictly stronger assumptions than plain
LT security.

21Note that robustness is not required here: The establishment of the PKI may fail, but then the protocol simply aborts.

10

Lemma 7.4. Any sh computable function f ∈ Faut
sh = F

ins, pki
lts can be computed using a protocol π which is LTS-DA,

i.e. implements Ides
f with CO security and simultaneously Iab

f with LT security in the insecure channels model with
PKI iff CO oblivious transfer LT-secure against one party (CO-OT+) exists.

A proof of this lemma is sketched in Appendix K. Essentially we apply the protocol compiler of [GMW87,
Gol04] to the distributed circuit of the sh secure protocol for f in such a fashion that gates owned by a specific party
Pi are computed with CO primitives that IT protect Pi. Reconstruction is in the end done toward the designated
party P1, which then ensures that the remaining parties can reconstruct. As a result the protocol is CO correct, and
IT no one learns more than in the sh secure protocol for f .

8 Classification of 2-party Functions

Combining the results of this work and of [KMQ08], we can derive a complete combinatorial classification of the
2-party functions F2 by completeness and computability.

We first define an equivalence relation renaming on F2 by f (1) ≡ f (2) iff f (2) is obtained from f (1) by locally
renaming input and output values. A formal definition can be found in [KMQ08] or App. G. It is easy to see
that renamings are locally mutually reducible under all security paradigms considered in this work. In particular
f (1) ≡ f (2) implies If (1) <PFE

act If (2) <PFE
act If (1) and If (1) <PFE

pas If (2) <PFE
pas If (1) .

Next we define an equivalence relation matching on the set of classes F2/ ≡ (and thereby on F2) by isolating
inputs that lead to identical behavior and regarding functions as matching if, after eliminating such trivially redundant
inputs, they are renamings:

Definition 8.1. Given a 2-party function f ∈ F2 we say xA matches x′A for inputs xA, x′A ∈ XA, iff xA dominates
x′A and x′A dominates xA. The matching relation is an equivalence relation on XA. By X̄A we designate a set of
representatives. X̄B is defined analogously.

We then call f̄ := f |X̄A×X̄B
the weakly redundancy-free version of f and for f (1), f (2) ∈ F2 we write f (1) ∼= f (2)

if f̄ (1) ≡ f̄ (2) Furthermore for xA ∈ XA and xB ∈ XB let x̄A ∈ X̄A and x̄B ∈ X̄B be the (unique) elements that
match xA respectively xB .

Like the redundancy-free version f̂ of f , the weakly redundancy-free version f̄ of f is well defined up to
renaming. Before we can state the actual classification, we have to reiterate another result of [KMQ08]:

Theorem 8.2 (Complete Functions [KMQ08]). The classes C2act, C2sh and C2pas of actively, semi-honestly, and
passively complete 2-party functions are the classes of functions f ∈ F2 to which all other 2-party functions can be
securely reduced in presence of an active, semi-honest or passive adversary respectively.

The classes C2act = C2sh consist of exactly the functions f ∈ F2 where f̂ ∈ C2pas. The class C2pas consists of
exactly the functions f ∈ F2 where ∃ a1, a2 ∈ XA, b1, b2 ∈ XB :

fA(a1, b1) = fA(a1, b2) ∧ fB(a1, b1) = fB(a2, b1) ∧
(

fA(a2, b1) 6= fA(a2, b2) ∨ fB(a1, b2) 6= fB(a2, b2)
)
.

We refer to this combinatorial structure as minimal OT.

Note that f ∈ C2pas iff f ∈ C2act or f̂ 6≡ f̄ . This is clear from Kraschewki’s result as stated above and from the
observation that f̂ 6≡ f̄ implies a minimal OT. We then arrive at the following

Theorem 8.3 (Classification). The class of 2-party functions is a disjoint union of three sets F2 = C2act∪F2act∪Fnct
2act

or F2 = C2sh ∪F2sh ∪Fnct
2sh or F2 = C2pas ∪F2pas ∪Fnct

2pas where nct stand for “neither complete nor computable”.
Now

∅ 6= F2act,F2pas (F2act ∪ F2pas (F2sh

∅ 6= Fnct
2pas (Fnct

2sh (Fnct
2act

∅ 6= C2act = C2sh (C2pas

The above results are directly derived from the combinatorial descriptions of the function classes that can be
found in the preceding sections and, as far as complete functions are concerned, in [KMQ08]. Additional details and
examples can be found in Appendix L.

11

9 Conclusions

We defined the notion of long-term (LT) security, where we assume that the adversary is CO bounded during the
execution of the protocol only. That is, we rely on CO assumptions, but only for the duration of the protocol
execution; thereafter, a failure of the CO assumptions must not compromise security. We then gave a combinatorial
description of the class F

ins, pki
lts of functions that can be computed LT securely in an internet-like setting, where a

complete network of insecure channels and a PKI are available. Towards this goal, we characterized the classes Faut
pas,

Faut
sh and Faut

act of functions that can be computed with information theoretic (IT) security in the authenticated channels
model (with broadcast) in presence of passive, semi-honest and active adversaries. Our results are constructive in
that, for every function proven computable in a given setting, one can deduce a secure protocol.

More precisely, we showed that semi-honest computability and LT secure computability amount to the same,
i.e. Faut

sh = Fbc
lts = Faut

lts = F
ins, pki
lts , where the classes Faut

lts and Fbc
lts are defined analogously to F

ins, pki
lts , but rely

on a network of authenticated channels or authenticated broadcast respectively as communication resources. We
then characterized the class F2act of actively computable 2-party functions in order to offset IT secure computability
against LT secure computability. Indeed, we found Faut

act (F
ins, pki
lts , meaning that in presence of corrupted majorities

strictly more functions are computable with LT security than with IT security. We furthermore gave a necessary
condition (that we conjecture also to be sufficient) for an n-party function to be in Faut

act . As the functions in Faut
act are

robustly (and therefore fairly) computable, these results can be interpreted along the lines Gordon et al. [GHKL08],
who discuss the fair computability of binary 2-party functions in the CO setting. Our results apply to the IT scenario
instead of the CO setting, there however, our results are much more general in that they pertain to arbitrary n-party
functions. We showed that for the functions F

ins, pki
lts fairness is generally not achievable. However, for the functions

F
ins, pki
lts we can guarantee LT security with designated aborter, where only a specific designated party can prematurely

abort the protocol after having learned the output. Astonishingly, CO secure oblivious transfer (OT) is used in our
construction, even though OT itself cannot be realized with full LT security.

We remark, that from a practical point of view, LT security is a useful notion if we deal with sensitive data that
has to remain private beyond a limited time frame in a setting where a majority of the parties may be corrupted. In
such a setting general IT secure SFE protocols like [BGW88] fail, as they do not tolerate corrupted majorities. CO
protocols can tolerate corrupted majorities (if fairness is not required) but, as time passes, progress in hardware or
algorithms may invalidate our CO assumptions and jeopardize the privacy of our computation. As the problem with
CO assumptions is not so much that these could be unjustified right now, but rather their possible future invalidation,
LT security is a viable alternative to IT security in this case. And indeed we could show that Faut

act (F
ins, pki
lts , i.e. there

are functions that cannot be computed with IT security in presence of dishonest majorities, but can be computed with
LT security.

Furthermore, we found that quantum cryptography is not helpful in our context, i.e. the class F2qu of 2-party
functions which can be implemented with quantum cryptography is strictly contained in F2sh. This inclusion implies
novel impossibility results beyond those of Mayers [May97] or Kitaev [ABDR04]. However, quantum cryptography
can solve classically impossible problems in other models of security, like achieving a certain robustness to abort in
a model with guaranteed message delivery or implementing deniable key exchange.

Finally, collecting results form the literature, especially [Kus92, KMQ08], and adding the results of this work,
we obtain a complete taxonomy of 2-party functions by computability and completeness in the IT setting.

10 Acknowledgements

The authors wish to thank Daniel Kraschewski for helpful comments and discussions, and Ueli Maurer for encour-
agement and insightful comments on security models.

12

References

[ABDR04] Andris Ambainis, Harry Buhrman, Yevgeniy Dodis, and Hein Röhrig. Multiparty quantum coin flip-
ping. In IEEE Conference on Computational Complexity, pages 250–259. IEEE Computer Society,
2004.

[BCMS99] Gilles Brassard, Claude Crépeau, Dominic Mayers, and Louis Salvail. Defeating classical bit commit-
ments with a quantum computer. Los Alamos preprint archive quant-ph/9806031, May 1999.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. 20th ACM Symposium on the Theory of Computing
(STOC), pages 1–10, 1988.

[BMM99] Amos Beimel, Tal Malkin, and Silvio Micali. The all-or-nothing nature of two-party secure computa-
tion. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO’99, volume 1666 of LNCS, pages
80–97. Springer, 1999.

[BT07] Anne Broadbent and Alain Tapp. Information-theoretic security without an honest majority. In ASI-
ACRYPT, pages 410–426, 2007.

[CCM02] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer with a memory-bounded
receiver. In 34th Annual ACM Symposium on Theory of Computing, Proceedings of STOC 2002, pages
493–502. ACM Press, 2002.

[CK89] Chor and Kushilevitz. A zero-one law for boolean privacy. In STOC: ACM Symposium on Theory of
Computing (STOC), 1989.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty. In STOC ’86:
Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages 364–369, New
York, NY, USA, 1986. ACM Press.

[CM97] Christian Cachin and Ueli Maurer. Unconditional security against memory-bounded adversaries. In
Burton S. Kaliski Jr., editor, Advances in Cryptology—CRYPTO ’97, volume 1294 of Lecture Notes in
Computer Science, pages 292–306. Springer-Verlag, 17–21 August 1997.

[DFSS05] Ivan Damgård, Serge Fehr, Louis Salvail, and Christian Schaffner. Cryptography in the bounded
quantum-storage model. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 449–458. IEEE Computer Soci-
ety, 2005.

[DM04] Stefan Dziembowski and Ueli M. Maurer. On generating the initial key in the bounded-storage model.
In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzer-
land, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer Science, pages 126–137.
Springer, 2004.

[DS83] Dolev and Strong. Authenticated algorithms for byzantine agreement. SICOMP: SIAM Journal on
Computing, 12, 1983.

[FHHW03] Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg Wullschleger. Two-threshold broadcast and
detectable multi-party computation. In Eli Biham, editor, Advances in Cryptology — EUROCRYPT
2003, volume 265 of Lecture Notes in Computer Science, pages 51–67. Springer-Verlag, May 2003.

[GHKL08] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness in secure two-
party computation. In Richard E. Ladner and Cynthia Dwork, editors, STOC, pages 413–422. ACM,
2008.

13

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game — a completeness
theorem for protocols with honest majority. In Proc. 19th ACM Symposium on the Theory of Computing
(STOC), pages 218–229, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge University
Press, 2004.

[Kil91] Joe Kilian. A general completeness theorem for two-party games. In Proceedings of the 23rd Annual
ACM Symposium on Theory of Computing, STOC’91, pages 553–560, New York, 1991. ACM Press.

[Kil00] Joe Kilian. More general completeness theorems for secure two-party computation. In Proceedings
of the 32nd Annual ACM Symposium on Theory of Computing, STOC’00, pages 316–324, New York,
2000. ACM Press.

[KMQ08] Daniel Kraschewski and Jörn Müller-Quade. Completeness theorems with constructive proofs for sym-
metric, asymmetric and general 2-party-functions. Unpublished Manuscript, 2008. Online available at
http://iks.ira.uka.de/eiss/completeness.

[Kus92] Eyal Kushilevitz. Privacy and communication complexity. SIAM Journal on Discrete Mathematics,
5(2):273–284, 1992.

[May97] D. Mayers. Unconditionally secure bit commitment is impossible. Phys. Rev. Letters, 78:3414–3417,
1997. A previous version was published at PhysComp96.

[MQ05] Jörn Müller-Quade. Temporary assumptions—quantum and classical. In The 2005 IEEE Information
Theory Workshop on Theory and Practice in Information-Theoretic Security, pages 31–33, 2005.

[MQU07] J. Müller-Quade and D. Unruh. Long-term security and universal composability. In Theory of Cryp-
tography, Proceedings of TCC 2004, Lecture Notes in Computer Science. Springer-Verlag, 2007. to
appear.

[Rab03] Michael O. Rabin. Hyper-encryption by virtual satellite. Science Center Research Lecture Series,
December 2003. Online available at http://athome.harvard.edu/dh/hvs.html.

A Examples

f (1) 0 1
0 0/0 0/0
1 0/0 1/0

f (2) 0 1
0 0 1
1 0 2
2 3 2

f (3) 0 1 2
0 0/0 1/1 1/0
1 0/0 2/2 2/0
2 3/3 2/2 2/0

f (4) 0 1 2 3
0 1/1 1/1 2/2 2/0
1 4/4 5/5 2/2 2/0
2 4/4 3/3 3/3 3/0

f (5) 0 1
0 0 0
1 0 1

f (6) 0 1 2
0 1 1 2
1 4 5 2
2 4 3 3

f (7) 4 2 0
3 4 3 3
1 4 2 1
0 4 2 0

f (8) 0 1
0 0 1
1 0 2
2 3 2
3 3 1

f (9) z1 z2 z3

x1 5/d 5/e 6/e
x2 8/a 5/b 9/c
x3 8/a 9/b 8/c

Figure 1: Examples. Inputs for A are shown to the right, inputs for B on top. For asymmetric functions, outputs are
denoted yA/yB; for symmetric functions only the common output of both parties is listed.

14

http://iks.ira.uka.de/eiss/completeness
http://athome.harvard.edu/dh/hvs.html

B Proof of Lemma 3.5

Before we give a proof of Lemma 3.5, we want to illustrate passive decomposability. Fig. 2 shows the function table
of a restriction of f but only with the function outputs of fE. The input domains are partitioned into three parts
(namely the inputs of E,H \ {Pi} = H′ and Pi) and listed on the three axes. The definition says, that for any choice
of E and xE, all the function outputs of fE in the densely dotted part have to be different from all the function values
in the sparsely dotted part. As mentioned earlier, the intuition behind the above definition is that party Pi can now
tell all the other parties if its input is in X ′

i or in X ′′
i . From this information, the other parties cannot learn anything

more than they will know anyway, once they obtain their respective function outputs.

Figure 2: Illustration of Passive Decomposability

Proof. We prove the two implications separately. It is easy to see that Lemma 3.5 implies Definition 3.4. If (2.)
holds for any set E it also holds for sets E where |E| = 1.

In order to prove the other direction, let f be passively decomposable according to Definition 3.4 and consider
some restriction f̃ of f . If f̃ is locally computable, we are done because then (1.) of Lemma 3.5 holds. If (2.) of
Definition 3.4 holds, we show by induction on the size of E that indeed (2.) of Lemma 3.5 is true:
Base case: If we restrict to |E| = 1 in the lemma, the two characterizations are equivalent.
Induction hypothesis: Now assume that the lemma holds for sets E where |E| < m and m < |P| − 1.
Induction step: We show that the two characterizations are equivalent for any set Em where |Em| = m. Let
f̃ = f | eX1× eX2×...× eXn

be some restriction of f . Wlog (else rename the parties) let

Em = {P1, P2, . . . , Pm} Em−1 = {P1, P2, . . . , Pm−1} Ẽm = {Pm}
H′

m = P \ (Em ∪ {Pi}) H′
m−1 = P \ (Em−1 ∪ {Pi}) H̃′

m = P \ (Ẽm ∪ {Pi})
xEm ∈ X̃Em xEm−1 ∈ X̃Em−1 xm ∈ X̃eEm

= Xm

x′H′
m
∈ X̃H′

m
x′H′

m−1
∈ X̃H′

m−1
xeH′

m
∈ X̃eH′

m

x′′H′
m
∈ X̃H′

m
x′′H′

m−1
∈ X̃H′

m−1
x′′eH′

m

∈ X̃eH′
m

15

Since |Em−1| = m− 1 < m by induction hypothesis we know, that ∀xEm−1 , x
′
H′

m−1
, x′′H′

m−1
:

fEm−1(xEm−1 , x
′
H′

m−1
,X ′

i) ∩ fEm−1(xEm−1 , x
′′
H′

m−1
,X ′′

i) = ∅

and also by induction hypothesis, since |Ẽm| = 1 < m, we have ∀xm, x′eH′
m

, x′′eH′
m

:

fm(xm, x′eH′
m

,X ′
i) ∩ fm(xm, x′′eH′

m
,X ′′

i) = ∅

The above two statements tell us that for the parties in Em−1 and the party Pm the intersection is empty for any
choice of input values of the parties in H′

m−1 and H̃′
m respectively. But now, since Em = Em−1 ∪ Ẽm, H′

m ⊆ H′
m−1

and H′
m ⊆ H̃′

m this implies that ∀xEm , x′H′
m

, x′′H′
m

:

fEm(xEm , x′H′
m

,X ′
i) ∩ fEm(xEm , x′′H′

m
,X ′′

i) = ∅

which concludes the argument.

C Proof of Theorem 3.6

By Lem. 2.3 we have Faut
pas = Fbc

pas, so it suffices to show that Fbc
pas = F′pas This is simplifies matters because in

the public discussion setting we have a global transcript which we can refer to. We then first prove F′pas ⊆ Fbc
pas by

inductively describing a passively PFE secure protocol to compute any function in F′pas. Since the protocol is PFE
secure, this implies that it is also IT secure. In the second part of the proof we show that Fbc

pas ⊆ F′pas, i.e. that any
passively computable function has the structure described in Def. 3.4.

f ∈ F′pas =⇒ f ∈ Fbc
pas: We prove the claim by induction over the size of the input space |X1 ×X2 × . . .×Xn|

of the function f .
Base case: If the function f is locally computable (f ∈ Floc), we trivially have f ∈ Fbc

pas since all the parties can
compute the function locally.
Induction hypothesis: We assume that for any f ′ ∈ F′pas with input space smaller than |X1 × X2 × . . . × Xn| we
have f ′ ∈ Fbc

pas.
Induction step: Since f ∈ F′pas we have two cases: Either f ∈ Floc (this is the base case and we are done) or f has
a K-cut according to the definition of F′pas. This is the case we consider now.

Wlog we can assume (else interchange the parties) that the set X1 has K-cut X (1)
1 ∪̇X (2)

1 = X1 (We choose the
subset X̃1 from the definition of F′pas to be X1). Now we define

f (1) := f |X (1)
1 ×X2×...×Xn

f (2) := f |X (2)
1 ×X2×...×Xn

By the induction hypothesis, f (1), f (2) ∈ Fbc
pas since f (1), f (2) ∈ F′pas and

|X (1)
1 ×X2 × . . .×Xn| < |X1 ×X2 × . . .×Xn|

|X (2)
1 ×X2 × . . .×Xn| < |X1 ×X2 × . . .×Xn|.

So there are protocols π(1) and π(2) that PFE securely implement If (1) and If (2) and there exist corresponding
simulators S(1) and S(2) in Spas. We construct the protocol π by defining a first round where P1 sends a message
m1 ∈ {1, 2} to all other parties indicating whether P1’s input x1 is x1 ∈ X (1)

1 or x1 ∈ X (2)
1 . Subsequently all parties

proceed to run π(m1). To prove that the protocol π is PFE secure we provide an appropriate simulator S ∈ Spas for
the case where an arbitrary subset E of the parties P is corrupted by the adversary E ∈ Epas. It suffices to look at
two cases. Either P1 is in the set of corrupted parties (P1 ∈ E), or it is not (P1 /∈ E).

If P1 /∈ E, we have E = {Pe1 , Pe2 , . . . , Pe|E|} where ei ∈ {2, 3, . . . , n} and we assume E 6= ∅ (If E = ∅, no
party is corrupted and security is trivially achieved). Now we construct the simulator SP1 /∈E as follows:

16

1. SP1 /∈E fixes the randomness of the adversary E.

2. It feeds the input xE = (xE, x′E) of the distinguisher22 D to E.

3. It extracts the input xE = (xe1 , xe2 . . . , xe|E|) from xE and forwards it to the ideal system If .

4. After receiving the output yE = (ye1 , ye2 . . . , ye|E|) from If with H′ = H \ {P1} and:

yE = fE(xE, xH′ , x1),

SP1 /∈E computes m1 such that yE ∈ fE(xE, xH′ ,X (m1)
1).

Note that this is always possible since f ∈ F′pas implies (using Lemma 3.5) in particular that for all E ⊆ P

and for any x′H′ , x′′H′ we have

fE(xE, x′H′ ,X (1)
1) ∩ fE(xE, x′′H′ ,X (2)

1) = ∅.

5. Finally SP1 /∈E inputs m1 to E and runs S(m1)(E) forwarding all inputs and outputs.

The correctness of the the simulation stems from the fact that the simulator SP1 /∈E can correctly discern the first
message m1 given the output yE of If . After simulating this message, the remainder of the simulation can be
delegated to the subsimulator S(m1) that is guaranteed by our induction hypothesis.

It remains to look at the case where P1 ∈ E. We then have E = {P1, Pe1 , Pe2 , . . . , Pe|E\{1}|} where ei ∈
{2, 3, . . . , n}. The simulator SP1∈E can be constructed as follows:

1. SP1∈E fixes the randomness of the adversary E.

2. It feeds the input xE of the distinguisher D to the adversary E and runs it until it outputs the message m1.

3. SP1∈E then runs the simulator S(m1) simply forwarding all inputs and outputs.

The simulation is correct since S(m1) (which is given by our induction hypothesis) now correctly simulates the
execution with the honest parties that execute π(m1).

This completes the first part of the proof.

f ∈ Fbc
pas =⇒ f ∈ F′pas: We give a proof by contradiction. Assume a counterexample f ∈ Fbc

pas that is minimal
in the size of the input space |X1×X2×. . .×Xn|, such that f /∈ F′pas. Our goal is to show that such a counterexample
does not exist.

Since f /∈ F′pas, there is a restriction f̃ := f | eX1× eX2×...× eXn
of f such that

1. f̃ is not locally computable (f̃ /∈ Floc) and

2. ∀i : ∀ partitions of X̃i into non-empty sets X ′
i ∪̇X ′′

i = X̃i

∃Pe ∈ P \ {Pi} (where we define E = {Pe} and thus |E| = 1)
∃xe ∈ X̃e such that:

f̃e(xe, X̃H′ ,X ′
i) ∩ f̃e(xe, X̃H′ ,X ′′

i) 6= ∅

where H = P \ E and H′ := H \ {Pi}.

Claim C.1. Due to the minimality of f , the above two facts (1.) and (2.) hold for the function f̃ = f itself, i.e. f is
not locally computable and does not have a K-Cut.

22x′E stands for additional information that is passed along with the inputs by the distinguisher D and xE are the actual function inputs that
the passive adversary E must use.

17

To see this, we observe that as f ∈ Fbc
pas, so is any restriction f̃ := f | eX1× eX2×...× eXn

of f to subsets X̃1 ⊆
X1, X̃2 ⊆ X2, . . . , X̃n ⊆ Xn:

f ∈ Fbc
pas =⇒ f̃ ∈ Fbc

pas (1)

Indeed this can be seen by using exactly the same protocol and simulator as for f , merely restricting the input
domain. Now assume (1.) and (2.) both hold for a proper restriction f̃ (This means that f̃ is not locally computable
and does not have a K-Cut). Therefore we know f̃ /∈ F′pas, which, using Equation (1) and the fact that f̃ is a proper
restriction, contradicts the minimality of f . Therefore we know that (1.) and (2.) do not both hold in any proper
restriction of f and thus the function f = f |X1×X2×...×Xn must itself satisfy both (1.) and (2.). This proves Claim
C.1.

Now as f ∈ Fbc
pas we have an efficient passively IT secure protocol π computing f . Then the number of rounds

of protocol π is bounded by a polynomial pπ(κ) in the security parameter κ. So we can wlog “pad” all protocol
executions with dummy messages to have the same length pπ(κ). We then define the set of transcripts

Π := π(X1,X2, . . . ,Xn) = {t = m1,m2, . . . ,mpπ(κ)|
∃x1, c1, x2, c2, . . . , xn, cn : t = π(x1, c1, x2, c2, . . . , xn, cn)}

Πr := π(X1,X2, . . . ,Xn)|r = {t = m1,m2, . . . ,mr|
∃mr+1, . . . ,mpπ(κ) : t, mr+1, . . . ,mpπ(κ) ∈ Π}

= {t = m1,m2, . . . ,mpr |
∃x1, c1, x2, c2, . . . , xn, cn : t = π(x1, c1, x2, c2, . . . , xn, cn)|r}

where xi denotes the input and ci the random coin tosses of party Pi.
We define random variables X1, . . . , Xn and Y1, . . . , Yn for the input and output of the parties P1, . . . , Pn re-

spectively. For a set M ⊆ P we define XM and YM to be the random variable for the inputs and outputs of
the parties in M . Then we let T ∈ Π denote the random variable for the transcript, and Tr ∈ Πr the ran-
dom variable on transcript prefixes of length r. We name the inputs Xl = {x(1)

l , x
(2)
l , . . . , x

(|Xl|)
l } for party

Pl ∈ P and similarly XM = {x(1)
M , x

(2)
M , . . . , x

(|XM |)
M } for a subset M of the parties P. We first show that for

any x
(i1)
1 ∈ X1, x

(i2)
2 ∈ X2, . . . , x

(in)
n ∈ Xn the statistical distance

∆(PrT |X1,X2,...,Xn
(·, x(1)

1 , x
(1)
2 , . . . , x(1)

n), PrT |X1,X2,...,Xn
(·, x(i1)

1 , x
(i2)
2 , . . . , x(in)

n)) < negl (2)

of these two distributions on the transcripts t ∈ Π is negligible in the security parameter κ. We proceed by induction
over the number of protocol rounds r and show that for any r

δr := max
i1,i2,...,in

∆(PrTr|X1,X2,...,Xn
(·, x(1)

1 , x
(1)
2 , . . . , x(1)

n), PrTr|X1,X2,...,Xn
(·, x(i1)

1 , x
(i2)
2 , . . . , x(in)

n)) < negl. (3)

Base case: For r=0 we have Π0 = {ε} where ε is the empty transcript. Thus δ0 = 0.
Induction hypothesis: We assume δr−1 < negl.
Induction step: Let tr = (m1,m2, . . . ,mr) ∈ Πr and define tr−1 = (m1,m2, . . . ,mr−1) ∈ Πr−1. Wlog (else
rename the parties) the message in round r is sent from party P1 to all other parties.

Recall the definition of f /∈ F′pas from the beginning of the proof. As we have seen in Claim C.1, f does not
have a K-Cut. Using this, we can impose an ordering on the elements of X1 such that

∀x(j)
1 where 1 < j ≤ |X1|

∃x(k)
1 where 1 ≤ k < j

∃E = {Pe} where Pe ∈ {P2, P3, . . . , Pn}
∃x(jk)

e ∈ XE = Xe

∃x̄(jk)
H′ , ¯̄x(jk)

H′ ∈ XH′ such that:

fe(x(jk)
e , x̄

(jk)
H′ , x

(k)
1) = fe(x(jk)

e , ¯̄x(jk)
H′ , x

(j)
1) (4)

18

Where we define H = P \ E and H′ = H \ {P1}.
Now by the security of the passively IT secure protocol π we must have for any r that

∆(PrTr|Xe,XH′ ,X1
(·, x(jk)

e , x̄
(jk)
H′ , x

(k)
1), PrTr|Xe,XH′ ,X1

(·, x(jk)
e , ¯̄x(jk)

H′ , x
(j)
1)) < negl (5)

This is because a simulator Se for the corrupted party Pe sees exactly the same (see (4)) for the above inputs and is
thus unable to emulate two non-negligibly different distributions of transcripts.

Now, since mr travels from P1 to all other parties, we find:

∆(PrTr|Xe,XH′ ,X1
(·, x(1)

e , x
(1)
H′ , x

(k)
1), PrTr|Xe,XH′ ,X1

(·, x(jk)
e , x̄

(jk)
H′ , x

(k)
1)) (6)

=
∑

tr∈Πr

|PrTr|Xe,XH′ ,X1
(tr, x(1)

e , x
(1)
H′ , x

(k)
1)− PrTr|Xe,XH′ ,X1

(tr, x(jk)
e , x̄

(jk)
H′ , x

(k)
1)| (7)

=
∑

tr∈Πr

|PrMr|Tr−1,X1
(mr, tr−1, x

(k)
1) · PrTr−1|Xe,XH′ ,X1

(tr−1, x
(1)
e , x

(1)
H′ , x

(k)
1) (8)

− PrMr|Tr−1,X1
(mr, tr−1, x

(k)
1) · PrTr−1|Xe,XH′ ,X1

(tr−1, x
(jk)
e , x̄

(jk)
H′ , x

(k)
1)| (9)

=
∑

tr−1∈Πr−1

(∑
mr

PrMr|Tr−1,X1
(mr, tr−1, x

(k)
1))

)
︸ ︷︷ ︸

=1

(10)

|PrTr−1|Xe,XH′ ,X1
(tr−1, x

(1)
e , x

(1)
H′ , x

(k)
1)− PrTr−1|Xe,XH′ ,X1

(tr−1, x
(jk)
e , x̄

(jk)
H′ , x

(k)
1)| (11)

= ∆(PrTr−1|Xe,XH′ ,X1
(tr−1, x

(1)
e , x

(1)
H′ , x

(k)
1), PrTr−1|Xe,XH′ ,X1

(tr−1, x
(jk)
e , x̄

(jk)
H′ , x

(k)
1)) (12)

≤ ∆(PrTr−1|Xe,XH′ ,X1
(tr−1, x

(1)
e , x

(1)
H′ , x

(1)
1), PrTr−1|Xe,XH′ ,X1

(tr−1, x
(1)
e , x

(1)
H′ , x

(k)
1)) (13)

+ ∆(PrTr−1|Xe,XH′ ,X1
(tr−1, x

(1)
e , x

(1)
H′ , x

(1)
1), PrTr−1|Xe,XH′ ,X1

(tr−1, x
(jk)
e , x̄

(jk)
H′ , x

(k)
1)) (14)

= 2 · δr−1 < negl, (15)

Now let x̃e ∈ Xe and x̃H′ ∈ XH′ be arbitrary elements. In the same way as we derived Equation (15) we find:

∆(PrTr|Xe,XH′ ,X1
(·, x(jk)

e , ¯̄x(jk)
H′ , x

(j)
1), PrTr|Xe,XH′ ,X1

(·, x̃e, x̃H′ , x
(j)
1)) (16)

= 2 · δr−1 < negl, (17)

so we find, using (5), (6) and (16), that

∆(PrTr|Xe,XH′ ,X1
(·, x(1)

e , x
(1)
H′ , x

(k)
1), PrTr|Xe,XH′ ,X1

(·, x̃e, x̃H′ , x
(j)
1)) (18)

≤ ∆(PrTr|Xe,XH′ ,X1
(·, x(1)

e , x
(1)
H′ , x

(k)
1), PrTr|Xe,XH′ ,X1

(·, x(jk)
e , x̄

(jk)
H′ , x

(k)
1)) (19)

+ ∆(PrTr|Xe,XH′ ,X1
(·, x(jk)

e , x̄
(jk)
H′ , x

(k)
1), PrTr|Xe,XH′ ,X1

(·, x(jk)
e , ¯̄x(jk)

H′ , x
(j)
1)) (20)

+ ∆(PrTr|Xe,XH′ ,X1
(·, x(jk)

e , ¯̄x(jk)
H′ , x

(j)
1), PrTr|Xe,XH′ ,X1

(·, x̃e, x̃H′ , x
(j)
1)) (21)

≤ negl + negl + negl (22)

This is not yet what we claimed in (3) because we would like to obtain the above result (22) for k = 1. We can
first observe that the choice of x̃e and x̃H′ and j is arbitrary for the above argument, but E = {Pe} is fixed for given
j. To finally obtain what we claimed in (3) we use induction on j. The idea is to apply the result (22) step by step:

• To get from j to k1 < j there exists a set of corrupted parties E1 = Pe1 such that the statistical distance in
(22) is negligible.

• To get from k1 to k2 < k1 there exists a set of corrupted parties E2 = Pe2 such that the statistical distance in
(22) is negligible.

19

• . . .

• To get from ki to 1 < ki there exists a set of corrupted parties Ei = Pei such that the statistical distance in
(22) is negligible.

We claim that the sum of all these negligible distances is again negligible. This only holds if the length i of the in-
duction chains is at most polynomial in the security parameter κ. But this is given, since we require the round
number pπ(κ) to be polynomially bounded and as for a given fixed function f the sizes of the input domains
|X1|, |X2|, . . . , |Xn| is of course constant.

This concludes our inductive argument and we proved the claim (3).
We know by (1.) from the beginning of the proof and the minimality of f that f is in particular not locally

computable. Hence wlog there is a party Pi such that

∃xi ∈ X̃i

∃x′P′ , x′′P′ ∈ X̃P′ where P′ = P \ {Pi} such that

fi(xi, x
′
P′) 6= fi(xi, x

′′
P′) (23)

From the above result (2) and an application of the triangle inequality we obtain:

∆(PrT |Xi,XP′ (·, xi, x
′
P′), PrT |XA,XB

(·, xi, x
′′
P′)) < negl. (24)

As the output of Pi is independent of the inputs of P′ given the transcript, we have:

PrYi|T,Xi,XP′ = PrYi|T,Xi
(25)

And so we find:

∆(PrYi|Xi,XP′ (·, xi, x
′
P′), PrYi|Xi,XP′ (·, xi, x

′′
P′)) (26)

=
∑

yi∈Yi

|PrYi|Xi,XP′ (yi, xi, x
′
P′)− PrYi|Xi,XP′ (yi, xi, x

′′
P′)| (27)

=
∑

yi∈Yi

|
∑
t∈Π

PrYi,T |Xi,XP′ (yi, t, xi, x
′
P′)−

∑
t∈Π

PrYi,T |Xi,XP′ (yi, t, xi, x
′′
P′)| (28)

≤
∑

yi∈Yi,t∈Π

|PrYi|T,Xi,XP′ (yi, t, xi, x
′
P′)PrT |Xi,XP′ (t, xi, x

′
P′) (29)

− PrYi|T,Xi,XP′ (yi, t, xi, x
′′
P′)PrT |Xi,XP′ (t, xi, x

′′
P′)|

(25)=
∑

yi∈Yi,t∈Π

|PrYi|T,Xi
(yi, t, xi)PrT |Xi,XP′ (t, xi, x

′
P′)− PrYi|T,Xi

(yi, t, xi)PrT |Xi,XP′ (t, xi, x
′′
P′)| (30)

=
∑

yi∈Yi,t∈Π

PrYi|T,Xi
(yi, t, xi) |PrT |Xi,XP′ (t, xi, x

′
P′)− PrT |Xi,XP′ (t, xi, x

′′
P′)| (31)

=
∑
t∈Π

∑
yi∈Yi

PrYi|T,Xi
(yi, t, xi)


︸ ︷︷ ︸

=1

|PrT |Xi,XP′ (t, xi, x
′
P′)− PrT |Xi,XP′ (t, xi, x

′′
P′)| (32)

= ∆(PrT |Xi,XP′ (·, xi, x
′
P′), PrT |Xi,XP′ (·, xi, x

′′
P′))

(24)
< negl. (33)

This is in obvious contradiction to the correctness of the protocol π, so we must have f ∈ F′pas. Hence there is no
counterexample and the claim is proven.

20

D Proof of Lemma 4.3

For any xE = (xe1 , . . . , xe|E|), x̂E = (x̂e1 , . . . , x̂e|E|) where each x̂ej dominates xej (j ∈ [|E|]), we have to show
that:

1. for all xH ∈ XH: fH(x̂E, xH) = fH(xE, xH) and

2. for all xH, x′H ∈ XH: fE(xE, xH) 6= fE(xE, x′H) =⇒ fE(x̂E, xH) 6= fE(x̂E, x′H).

Each x̂ej dominates xej , so we know the following:

(i) for all xP′ ∈ XP′ : fP′(x̂ej , xP′) = fP′(xej , xP′) and

(ii) for all xP′ , x′P′ ∈ XP′ : fej (xej , xP′) 6= fej (xej , x
′
P′) =⇒ fej (x̂ej , xP′) 6= fej (x̂ej , x

′
P′)

where P′ = P \ {Pej}.
To prove the first part (1.) of the lemma, we use induction on |E|.

Base case: We have |E| = 1 and the claim is exactly what is given by (i) in the above statement.
Induction hypothesis: Assume the claim (1.) holds for |E| = m− 1.
Induction step: We show that the claim holds for |E| = m. By our induction hypothesis we have

∀xH ∈ XH : fH(x̂E, xH) = fH(xE, xH) (34)

for xE = (xe1 , xe2 , . . . , xem−1). Now we add the corrupted party Pem and let H′ = H \ {Pem}. From the above we
know in particular:

∀xH′ ∈ XH′ : fH(x̂E, xem , xH′) = fH(xE, xem , xH′) (35)

But now by (i) for xem we can conclude that

∀xH′ ∈ XH′ : fH′(x̂E, x̂em , xH′) (i)= fH′(x̂E, xem , xH′) (35)= fH′(xE, xem , xH′) (36)

which is exactly what we wanted to show.
To prove the second part (2.), we again use induction on |E|.

Base case: We have |E| = 1 and the claim is exactly what is given by (ii) in the above statement.
Induction hypothesis: Assume the claim (2.) holds for |E| = m− 1.
Induction step: We show that the claim holds for |E| = m. By our induction hypothesis we have

∀xH, x′H ∈ XH : fE(xE, xH) 6= fE(xE, x′H) =⇒ fE(x̂E, xH) 6= fE(x̂E, x′H) (37)

for xE = (xe1 , xe2 , . . . , xem−1). Now we add the corrupted party Pem and let H′ = H \ {Pem}. Then we can see the
following:

∀xH′ , x′H′ ∈ XH′ :
fE(xE, xem , xH′) 6= fE(xE, xem , x′H′)

=⇒ fE(x̂E, xem , xH′) 6= fE(x̂E, xem , x′H′)
=⇒ fE(x̂E, x̂em , xH′) 6= fE(x̂E, x̂em , x′H′) (38)

We get the first implication from Equation (37) and the second implication becomes clear from the following obser-
vation: By (i) for xem we have:

fE(x̂E, xem , xH′) = fE(x̂E, x̂em , xH′)
fE(x̂E, xem , x′H′) = fE(x̂E, x̂em , x′H′)

21

Now on the other hand we find:

∀xH′ , x′H′ ∈ XH′ :
fem(xE, xem , xH′) 6= fem(xE, xem , x′H′)

=⇒ fem(xE, x̂em , xH′) 6= fem(xE, x̂em , x′H′)
=⇒ fem(x̂E, x̂em , xH′) 6= fem(x̂E, x̂em , x′H′) (39)

Where the first implication is a special case of property (1.) of the definition of x̂em and the second implication is
given by the definition of x̂e1 , x̂e2 , . . . , x̂em−1 .
Now we can conclude from Equations (38) and (39) that for E′ = E ∪ {Pem}

∀xH′ , x′H′ ∈ XH′ : fE′(xE′ , xH′) 6= fE′(xE′ , x
′
H′) =⇒ fE′(x̂E′ , xH′) 6= fE′(x̂E′ , x

′
H′) (40)

holds and this is what we wanted to prove.

E Proof of Lemma 4.4

We have to show that If and If̂ are locally mutually reducible. We prove each direction separately.
We proceed as follows:

1. We show how to implement If̂ when If is given.

2. We show how to implement If when If̂ is given.

For both cases we show that the implementation is correct and secure.
Let If be given. We implement If̂ using a protocol πf̂ that simply restricts the input space for If . So in this

case the real system is πf̂ ◦ If and the ideal system is If̂ . Correctness (for the all honest case) is obvious. To prove
security we have to provide a simulator S ∈ Poly that interacts with the ideal system If̂ . We assume some nonempty
set of parties E = {Pe1 , Pe2 , . . . , Pe|E|} ⊆ P is corrupted. The simulator SE simply runs the adversary E until E
produces an input xE = (xe1 , xe2 , . . . , xe|E|) intended for If . SE then inputs x̂E = (x̂e1 , x̂e2 , . . . , x̂e|E|) to If̂ and

receives an output ŷE = f̂E(x̂E, xH) where xH is the input of the honest parties H = P \ E. Now by Lemma 4.3 we
have:

1. for all xH ∈ XH: fH(x̂E, xH) = fH(xE, xH) and

2. for all xH, x′H ∈ XH: fE(xE, xH) 6= fE(xE, x′H) =⇒ fE(x̂E, xH) 6= fE(x̂E, x′H).

By the second point SE can deduce yE = f(xE, xH) from ŷE. The simulator SE then feeds yE to the adversary E
and forwards its output yE to the distinguisher D. This clearly results in a perfectly indistinguishable interaction for
E and hence in indistinguishable output yE for D. Due to the first point the simulation is also indistinguishable by
the outputs of the honest parties yH, thus πf̂ ◦ If indeed perfectly securely implements If̂ and the simulator SE is
efficient.

Now let If̂ be given. We describe the protocol π for implementing If from If̂ by describing Pi’s protocol

πi for any i. The protocol πi takes input xi and inputs x̂i to If̂ , receiving ŷi = f̂i(x̂i, x̂P′) in turn (recall that

P′ = P \ {Pi}). Now by definition of x̂i (1.) and f̂ we have

ŷi = f̂i(x̂i, x̂P′) = fi(x̂i, xP′).

By definition of x̂i (2.) then for all xP′ , x′P′ ∈ XP′ :

fi(xi, xP′) 6= fi(xi, x
′
P′) =⇒ fi(x̂i, xP′) 6= fi(x̂i, x

′
P′).

Once again this implies that πi can recover yi = fi(xi, xP′) from ŷi. Finally the protocol πi outputs yi to the
distinguisher. The correctness of the protocol for the all honest case is immediate. For the security proof, we note
that in this case the ideal system is If and the real system is πi ◦ If̂ . Then the security is follows trivially: The

simulator Si simply restricts the input space for If to X̂i.

22

F Proof of Lemma 4.6

From Corollary 4.5 we know that f ∈ Faut
sh ⇐⇒ f̂ ∈ Faut

sh . Therefore it suffices to show that for redundancy-free
functions f = f̂

f = f̂ ∈ Faut
sh ⇐⇒ f = f̂ ∈ Faut

pas (41)

because then we have:
f ∈ Faut

sh
Cor. 4.5⇐⇒ f̂ ∈ Faut

sh ⇐⇒ f̂ ∈ Faut
pas.

So wlog we assume for the remainder of this proof that the function f is redundancy-free. Now by Lem. 2.3 we
have Faut

sh = Fbc
sh, so it suffices to show

f = f̂ ∈ Fbc
sh ⇐⇒ f = f̂ ∈ Faut

pas. (42)

This is simplifies matters because in the public discussion setting we have a global transcript which we can refer to.
We proceed by showing each implication separately.

f ∈ Faut
pas =⇒ f ∈ Fbc

sh: Since passive security implies semi-honest security this is given.

f ∈ Fbc
sh =⇒ f ∈ Faut

pas: The argument we give below is very similar to the second part the proof of Theorem 3.6
where we showed that f ∈ Fbc

pas =⇒ f ∈ F′pas. But there are two main differences:

(i) Here we do not assume a counterexample that is minimal in the size of the input space and we use our argument
on the proper restriction f̃ .
The reason for this change is that f ∈ Fbc

sh does not directly imply that any restriction of f is also in Fbc
sh and

therefore we cannot immediately show an analogue of Claim C.1.

(ii) Since now we are in the semi-honest setting, the simulator is allowed to substitute the inputs provided by the
distinguisher for different ones. Therefore, compared to the proof in the passive setting, we have to give an
additional argument to prove Equation (46), which was Equation (5) in the proof for the passive case. At that
point we use the fact that f = f̂ is redundancy-free to show that the simulator indeed has to forward the inputs
provided by the distinguisher.

We give a proof by contradiction. Assume a counterexample f ∈ Fbc
sh such that f /∈ Faut

pas. Our goal is to show that
such a counterexample does not exist.

Recall that wlog f = f̂ is redundancy-free. Since f /∈ Faut
pas, there is a restriction f̃ := f | eX1× eX2×...× eXn

of f
such that

1. f̃ is not locally computable (f̃ /∈ Floc) and

2. ∀i : ∀ partitions of X̃i into non-empty sets X ′
i ∪̇X ′′

i = X̃i

∃Pe ∈ P \ {Pi} (where we define E = {Pe} and thus |E| = 1)
∃xe ∈ X̃e such that:

f̃e(xe, X̃H′ ,X ′
i) ∩ f̃e(xe, X̃H′ ,X ′′

i) 6= ∅

where H = P \ E and H′ := H \ {Pi}.

Now as f ∈ Fbc
sh we have an efficient semi-honestly IT secure protocol π computing f . Then the number of

rounds of the protocol π is bounded by a polynomial pπ(κ) in the security parameter κ. So we can wlog “pad” all

23

protocol executions with dummy messages to have the same length pπ(κ). We then define the set of transcripts

Π := π(X1,X2, . . . ,Xn) = {t = m1,m2, . . . ,mpπ(κ)|
∃x1, c1, x2, c2, . . . , xn, cn : t = π(x1, c1, x2, c2, . . . , xn, cn)}

Πr := π(X1,X2, . . . ,Xn)|r = {t = m1,m2, . . . ,mr|
∃mr+1, . . . ,mpπ(κ) : t, mr+1, . . . ,mpπ(κ) ∈ Π}

= {t = m1,m2, . . . ,mpr |
∃x1, c1, x2, c2, . . . , xn, cn : t = π(x1, c1, x2, c2, . . . , xn, cn)|r}

where xi denotes the input and ci the random coin tosses of party Pi.
We define random variables X1, . . . , Xn and Y1, . . . , Yn for the input and output of the parties P1, . . . , Pn re-

spectively. For a set M ⊆ P we define XM and YM to be the random variables for the inputs and outputs of the
parties in M . Then we let T ∈ Π denote the random variable for the transcript, and Tr ∈ Πr the random variable on
transcript prefixes of length r. Recall that f̃ = f | eX1×...× eXn

from the beginning of the proof. We name the inputs

X̃l = {x(1)
l , x

(2)
l , . . . , x

(| eXl|)
l } for party Pl ∈ P and similarly X̃M = {x(1)

M , x
(2)
M , . . . , x

(| eXM |)
M } for a subset M of the

set of parties P. We first show that for any x
(i1)
1 ∈ X̃1, x

(i2)
2 ∈ X̃2, . . . , x

(in)
n ∈ X̃n (from the restricted input space)

the statistical distance

∆(PrT |X1,X2,...,Xn
(·, x(1)

1 , x
(1)
2 , . . . , x(1)

n), PrT |X1,X2,...,Xn
(·, x(i1)

1 , x
(i2)
2 , . . . , x(in)

n)) < negl (43)

of these two distributions on the transcripts t ∈ Π is negligible in the security parameter κ. We proceed by induction
over the number of protocol rounds r and show that for any r

δr := max
i1,i2,...,in

∆(PrTr|X1,X2,...,Xn
(·, x(1)

1 , x
(1)
2 , . . . , x(1)

n), PrTr|X1,X2,...,Xn
(·, x(i1)

1 , x
(i2)
2 , . . . , x(in)

n)) < negl. (44)

Base case: For r=0 we have Π0 = {ε} where ε is the empty transcript. Thus δ0 = 0.
Induction hypothesis: We assume δr−1 < negl.
Induction step: Let tr = (m1,m2, . . . ,mr) ∈ Πr and consider tr−1 = (m1,m2, . . . ,mr−1) ∈ Πr−1. Wlog (else
rename the parties) the message in round r is sent from party P1 to all other parties.

Recall the definition of f /∈ Faut
pas from the beginning of the proof. We know by property (2.) of f̃ that the

restricted function f̃ does not have a K-Cut. Using this, we can impose an ordering on the elements of X̃1 such that

∀x(j)
1 ∈ X̃1 where 1 < j ≤ |X̃1|

∃x(k)
1 ∈ X̃1 where 1 ≤ k < j

∃E = {Pe} where Pe ∈ {P2, P3, . . . , Pn}
∃x(jk)

e ∈ X̃E = X̃e

∃x̄(jk)
H′ , ¯̄x(jk)

H′ ∈ X̃H′ such that:

fe(x(jk)
e , x̄

(jk)
H′ , x

(k)
1) = fe(x(jk)

e , ¯̄x(jk)
H′ , x

(j)
1) (45)

Where we define H = P \ E and H′ = H \ {P1}.
We proceed by showing that for any r we have

∆(PrTr|Xe,XH′ ,X1
(·, x(jk)

e , x̄
(jk)
H′ , x

(k)
1), PrTr|Xe,XH′ ,X1

(·, x(jk)
e , ¯̄x(jk)

H′ , x
(j)
1)) < negl. (46)

In order to prove this claim, we make use of the fact that the protocol π is semi-honestly secure. By the security of π
we know that for any set of corrupted parties E = {Pe} there exists a simulator Se ∈ Ssh such that no distinguisher
is able to distinguish the ideal from the real setting.

24

We observe that if the simulator Se forwards the inputs that are provided by D, then the claim holds because
Se for the corrupted party Pe sees exactly the same (see Equation (45)). But since π is semi-honestly secure, the
simulator Se could input a value x̃e different from x

(jk)
e to If and therefore it could observe a different behavior if

the function values in Equation (45) for the new input x̃e are not equal. Now we show that due to the fact that f

is redundancy-free, Se must forward the input x
(jk)
e provided by the distinguisher D to the ideal functionality If .

The following argument shows that if Se forwards a different input, then there exists a distinguisher telling the real
and ideal settings apart with non-negligible probability, contradicting our assumption that using Se, the settings are
indistinguishable.

Towards a contradiction assume that Se inputs x̃e 6= x
(jk)
e to If with non-negligible probability. As wlog f is

redundancy-free, we know that x
(jk)
e does not dominate x̃e so there are two possibilities:

∃xH ∈ XH : fH(x(jk)
e , xH) 6= fH(x̃e, xH) or (47)

∃x′H, x′′H ∈ XH : fe(x(jk)
e , x′H) 6= fe(x(jk)

e , x′′H) ∧ fe(x̃e, x
′
H) = fe(x̃e, x

′′
H). (48)

If Equation (47) holds with non-negligible probability, a distinguisher D can easily distinguish the two settings
by inputting xH and comparing the outputs of the honest parties, contradicting our assumption that using Se, the real
and ideal settings are indistinguishable.

So assume Equation (48) holds with non-negligible probability. We know that the adversary E runs the protocol
πe because we are in the semi-honest setting. Furthermore we can assume that E includes the protocol result ye in its
output yE, as a simulator that works for such an adversary E will also work if the protocol output ye is not included
in yE.

Now we construct a distinguisher D that selects the input for the honest parties x̃H uniformly at random from
{x′H, x′′H}. In the real setting we find ye = fe(x

(jk)
e , x̃H) with overwhelming probability. But in the ideal setting we

find ye 6= fe(x
(jk)
e , x̃H) with non-negligible probability because the simulator receives

y′e = fe(x̃e, x
′
H) = fe(x̃e, x

′′
H)

with non-negligible probability. Then, in the ideal setting ye is independent of x̃H whereas in the real setting it
is directly depending on x̃H. So the distinguisher D can distinguish the two settings by checking whether ye =
fe(x

(jk)
e , x̃H). This is a contradiction to the indistinguishability of Se(E) ◦ If and E ◦ π .

This concludes the argument and we can be sure that Se forwards the input it receives with non-negligible
probability. So the claim (46) is proved.

25

Now, since mr travels from P1 to all other parties, we find:

∆(PrTr|Xe,XH′ ,X1
(·, x(1)

e , x
(1)
H′ , x

(k)
1), PrTr|Xe,XH′ ,X1

(·, x(jk)
e , x̄

(jk)
H′ , x

(k)
1)) (49)

=
∑

tr∈Πr

|PrTr|Xe,XH′ ,X1
(tr, x(1)

e , x
(1)
H′ , x

(k)
1)− PrTr|Xe,XH′ ,X1

(tr, x(jk)
e , x̄

(jk)
H′ , x

(k)
1)| (50)

=
∑

tr∈Πr

|PrMr|Tr−1,X1
(mr, tr−1, x

(k)
1) · PrTr−1|Xe,XH′ ,X1

(tr−1, x
(1)
e , x

(1)
H′ , x

(k)
1) (51)

− PrMr|Tr−1,X1
(mr, tr−1, x

(k)
1) · PrTr−1|Xe,XH′ ,X1

(tr−1, x
(jk)
e , x̄

(jk)
H′ , x

(k)
1)| (52)

=
∑

tr−1∈Πr−1

(∑
mr

PrMr|Tr−1,X1
(mr, tr−1, x

(k)
1))

)
︸ ︷︷ ︸

=1

(53)

|PrTr−1|Xe,XH′ ,X1
(tr−1, x

(1)
e , x

(1)
H′ , x

(k)
1)− PrTr−1|Xe,XH′ ,X1

(tr−1, x
(jk)
e , x̄

(jk)
H′ , x

(k)
1)| (54)

= ∆(PrTr−1|Xe,XH′ ,X1
(tr−1, x

(1)
e , x

(1)
H′ , x

(k)
1), PrTr−1|Xe,XH′ ,X1

(tr−1, x
(jk)
e , x̄

(jk)
H′ , x

(k)
1)) (55)

≤ ∆(PrTr−1|Xe,XH′ ,X1
(tr−1, x

(1)
e , x

(1)
H′ , x

(1)
1), PrTr−1|Xe,XH′ ,X1

(tr−1, x
(1)
e , x

(1)
H′ , x

(k)
1)) (56)

+ ∆(PrTr−1|Xe,XH′ ,X1
(tr−1, x

(1)
e , x

(1)
H′ , x

(1)
1), PrTr−1|Xe,XH′ ,X1

(tr−1, x
(jk)
e , x̄

(jk)
H′ , x

(k)
1)) (57)

= 2 · δr−1 < negl, (58)

Now let x̃e ∈ X̃e and x̃H′ ∈ X̃H′ be arbitrary elements. In the same way as we derived equation (58) we find:

∆(PrTr|Xe,XH′ ,X1
(·, x(jk)

e , ¯̄x(jk)
H′ , x

(j)
1), PrTr|Xe,XH′ ,X1

(·, x̃e, x̃H′ , x
(j)
1)) (59)

= 2 · δr−1 < negl, (60)

so we find, using (46), (49) and (59), that

∆(PrTr|Xe,XH′ ,X1
(·, x(1)

e , x
(1)
H′ , x

(k)
1), PrTr|Xe,XH′ ,X1

(·, x̃e, x̃H′ , x
(j)
1)) (61)

≤ ∆(PrTr|Xe,XH′ ,X1
(·, x(1)

e , x
(1)
H′ , x

(k)
1), PrTr|Xe,XH′ ,X1

(·, x(jk)
e , x̄

(jk)
H′ , x

(k)
1)) (62)

+ ∆(PrTr|Xe,XH′ ,X1
(·, x(jk)

e , x̄
(jk)
H′ , x

(k)
1), PrTr|Xe,XH′ ,X1

(·, x(jk)
e , ¯̄x(jk)

H′ , x
(j)
1)) (63)

+ ∆(PrTr|Xe,XH′ ,X1
(·, x(jk)

e , ¯̄x(jk)
H′ , x

(j)
1), PrTr|Xe,XH′ ,X1

(·, x̃e, x̃H′ , x
(j)
1)) (64)

≤ negl + negl + negl (65)

This is not yet what we claimed in (44) because we would like to obtain the above result (65) for k = 1. We can
first observe that the choice of x̃e, x̃H′ and j is arbitrary for the above argument, but E = {Pe} is fixed for given j.
To finally obtain what we claimed in (44) we use induction on j. The idea is to apply the result (65) step by step:

• To get from j to k1 < j there exists a set of corrupted parties E1 = Pe1 such that the statistical distance in
(65) is negligible.

• To get from k1 to k2 < k1 there exists a set of corrupted parties E2 = Pe2 such that the statistical distance in
(65) is negligible.

• . . .

• To get from ki to 1 < ki there exists a set of of corrupted parties Ei = Pei such that the statistical distance in
(65) is negligible.

26

We claim that the sum of all these negligible distances is again negligible. This only holds if the length i of the in-
duction chains is at most polynomial in the security parameter κ. But this is given, since we require the round
number pπ(κ) to be polynomially bounded and as for a given fixed function f the sizes of the input domains
|X1|, |X2|, . . . , |Xn| is of course constant.

This concludes our inductive argument and we proved the claim (44).
We know by definition that f̃ is in particular not locally computable. Hence wlog there is a party Pi such that

∃xi ∈ X̃i

∃x′P′ , x′′P′ ∈ X̃P′ where P′ = P \ {Pi} such that

fi(xi, x
′
P′) 6= fi(xi, x

′′
P′) (66)

From the above result (43) and an application of the triangle inequality we obtain:

∆(PrT |Xi,XP′ (·, xi, x
′
P′), PrT |XA,XB

(·, xi, x
′′
P′)) < negl. (67)

As the output of Pi is independent of the inputs of P′ given the transcript, we have:

PrYi|T,Xi,XP′ = PrYi|T,Xi
(68)

And so we find:

∆(PrYi|Xi,XP′ (·, xi, x
′
P′), PrYi|Xi,XP′ (·, xi, x

′′
P′)) (69)

=
∑

yi∈Yi

|PrYi|Xi,XP′ (yi, xi, x
′
P′)− PrYi|Xi,XP′ (yi, xi, x

′′
P′)| (70)

=
∑

yi∈Yi

|
∑
t∈Π

PrYi,T |Xi,XP′ (yi, t, xi, x
′
P′)−

∑
t∈Π

PrYi,T |Xi,XP′ (yi, t, xi, x
′′
P′)| (71)

≤
∑

yi∈Yi,t∈Π

|PrYi|T,Xi,XP′ (yi, t, xi, x
′
P′)PrT |Xi,XP′ (t, xi, x

′
P′) (72)

− PrYi|T,Xi,XP′ (yi, t, xi, x
′′
P′)PrT |Xi,XP′ (t, xi, x

′′
P′)|

(68)=
∑

yi∈Yi,t∈Π

|PrYi|T,Xi
(yi, t, xi)PrT |Xi,XP′ (t, xi, x

′
P′)− PrYi|T,Xi

(yi, t, xi)PrT |Xi,XP′ (t, xi, x
′′
P′)| (73)

=
∑

yi∈Yi,t∈Π

PrYi|T,Xi
(yi, t, xi) |PrT |Xi,XP′ (t, xi, x

′
P′)− PrT |Xi,XP′ (t, xi, x

′′
P′)| (74)

=
∑
t∈Π

∑
yi∈Yi

PrYi|T,Xi
(yi, t, xi)


︸ ︷︷ ︸

=1

|PrT |Xi,XP′ (t, xi, x
′
P′)− PrT |Xi,XP′ (t, xi, x

′′
P′)| (75)

= ∆(PrT |Xi,XP′ (·, xi, x
′
P′), PrT |Xi,XP′ (·, xi, x

′′
P′))

(67)
< negl. (76)

This is in obvious contradiction to the correctness of the protocol π, so we must have f ∈ Faut
pas. Hence there is no

counterexample and the claim is proven.

G Symmetrization

We present a generalization of the Symmetrization-Lemma of [KMQ08] to the n-party setting.

Lemma G.1. (Symmetrization) For any function f ∈ Faut
sh there is a redundancy free, symmetric function sym(f) ∈

F such that the functions f and sym(f) are efficiently and PFE securely locally mutually reducible, even in presence
of active adversaries.

27

Proof. By Lem. 4.4 it is sufficient to show Lem. G.1 for redundancy-free functions f where f = f̂ . So in the
following let f ∈ Faut

sh and let f = f̂ be redundancy-free. Then by Thm. 4.6 we already have f ∈ Faut
pas.

We now follow the proof of [KMQ08]. Let

P−i := P \ {Pi},
~x := x1, . . . , xn ∈ ~X := X1 × · · · × Xn,

~x−i := x1, . . . , xi−1, xi+1, . . . , xn ∈ ~X−i := X1 × . . .×Xi−1 ×Xi+1 × · · · × Xn

~x−i,j := x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn

∈ ~X−i,j := X1 × . . .×Xi−1 ×Xi+1 × . . .×Xj−1 ×Xj+1 × · · · × Xn.

We begin by defining a consistent renaming, generalizing the definition of [KMQ08] to the multi-party case.

Definition G.2 (Consistent Renaming). A function f (1) ∈ F is a consistent renaming of a function f (2) ∈ F iff for
all i ∈ [n] there are

1. bijective maps σi : X (1)
i → X (2)

i ,

2. ∀xi ∈ X (1)
i a bijective map σxi : f

(1)
i (xi,X (1)

−i) → f
(2)
i (σi(xi),X (2)

−i),

We then say f (1) and f (2) are renamings: f (1) ≡ f (2).

If f ≡ g, then clearly functions f, g are efficiently and PFE securely locally mutually reducible, even in presence
of active adversaries.

We define new functions g, h ∈ F by

gi(~x) := {~x′−i ∈ ~X−i | fi(~x) = fi(~x′−i, xi)},
hi(~x) := (gj(~x))j∈[n],

where h is by construction symmetric. Clearly f ≡ g. We now show that g ≡ h. It suffices to prove

∀i ∈ [n] ∀xi ∈ Xi, ~x−i, ~x
′
−i ∈ X−i : gi(xi, ~x−i) = gi(xi, ~x

′
−i) ⇐⇒ hi(xi, ~x−i) = hi(xi, ~x

′
−i)

By definition of h, this is equivalent to

∀i ∈ [n] ∀xi ∈ Xi, ~x−i, ~x
′
−i ∈ X−i : gi(xi, ~x−i) = gi(xi, ~x

′
−i) =⇒ g−i(xi, ~x−i) = g−i(xi, ~x

′
−i) (77)

Towards a contradiction assume we have an i ∈ [n] and xi ∈ Xi, ~x−i, ~x
′
−i ∈ X−i such that for ~x := (xi, ~x−i) and

~x′ := (xi, ~x
′
−i) we have gi(~x) = gi(~x′) but g−i(~x) 6= g−i(~x′). So there is a j ∈ [n] \ {i} such that gj(~x) 6= gj(~x′).

Because of gj(~x) 6= gj(~x′) we find ~x′′−j ∈ X−j such that wlog (else interchange ~x and ~x′) ~x′′−j ∈ gj(~x′),
~x′′−j 6∈ gj(~x). We now define ~x′′ := (xj , ~x

′′
−j), ~x′′′ := (x′j , ~x

′′
−j) ,and

~X ′ := {xi, x
′′
i } × {xj , x

′
j} × {~x−i,j , ~x

′
−i,j , ~x

′′
−i,j}

and claim that f | ~X ′ 6∈ Faut
pas. By definition of g and choice of ~x, ~x′, ~x′′, ~x′′′ we have

fi(~x) = fi(~x′) by choice of ~x = (xi, ~x−i), ~x′ = (xi, ~x
′
−i) (78)

fj(~x) 6= fj(~x′′) because x′′−j 6∈ gj(~x) (79)

fj(~x′) = fj(~x′′′) because x′′−j ∈ gj(~x′). (80)

So f | ~X ′ is not locally computable due to fj(~x) 6= fj(~x′′), and there is no K-cut for Pi due to fj(~x′) = fj(~x′′′), no
K-cut for Pj due to fi(~x) = fi(~x′), and no K-cut for P−i,j due to fi(~x) = fi(~x′) and fj(~x′) = fj(~x′′′).

So by Thm.3.6 we have f | ~X ′ 6∈ Faut
pas and moreover f | ~X ′ being a restriction of f we find f 6∈ Faut

pas in contradic-
tion to the choice of f . We conclude that Eq. (77) holds and thus f ≡ h =: sym(f). The statement of Lem. G.1
immediately follows.

28

H Proof of Theorem 5.3

By Lem. 4.4 it is sufficient to show for redundancy-free functions f where f = f̂ that f ∈ F′act =⇒ f ∈ Faut
act and

f ∈ F2act =⇒ f ∈ F′2act. For all other (not redundancy-free) functions we then find

f ∈ F′act
Def. 5.2⇐⇒ f̂ ∈ F′act =⇒ f̂ ∈ Faut

act
Lem. 4.4⇐⇒ f ∈ Faut

act (81)

f ∈ F2act
Lem. 4.4⇐⇒ f̂ ∈ F2act =⇒ f̂ ∈ F′2act

Def. 5.2⇐⇒ f ∈ F′2act. (82)

So in the following let f = f̂ be redundancy-free.

f ∈ F′act =⇒ f ∈ Faut
act: This part of the proof is considerably simplified by use of the symmetrization-lemma

Lem. G.1. Said lemma states that any function f ∈ Faut
sh is locally mutually reducible to a symmetric, redundancy-

free function sym(f), i.e. for all i, j ∈ [n] sym(f)i = sym(f)j . Now it is easily seen that F′act,F
aut
act ⊆ Faut

sh and it
suffices to show that sym(f) ∈ F′act =⇒ sym(f) ∈ Faut

act because using Lem. G.1 we have

f ∈ F′act
(*)⇐⇒ sym(f) ∈ F′act =⇒ sym(f) ∈ Faut

act
Lem. G.1⇐⇒ f ∈ Faut

act .

Implication (*) holds as we have seen in the proof of Lem. G.1, that sym(f) is a consistent renaming of f̂ so

sym(f) ∈ F′act ⇐⇒ f̂ ∈ F′act
Def. 5.2⇐⇒ f ∈ F′act.

So wlog let f ∈ F′act be symmetric and redundancy-free.

We prove f ∈ F′act =⇒ f ∈ Fbc
act

Lem. 2.3= Faut
act by induction over the size of the input space |X1×X2× . . .×Xn|.

Now f ∈ F′act implies that f is either f ∈ Floc locally computable, in which case clearly f ∈ Fbc
act actively

computable and we are done, or f has a T-cut.
In the second case, by definition of the class F′act for some Pi ∈ P the set Xi has a partition X (1)

i ∪̇X (2)
i = Xi

such that

(i) f (1) := f |X1×...×X (1)
i ×...×Xn

, f (2) := f |X1×...×X (2)
i ×...×Xn

∈ F′act and

(ii) ∀E ⊆ P \ {Pi} and H′ = H \ {Pi} we have

∀x̄E ∈ XE : fE(x̄E,XH′ ,X (1)
i) ∩ fE(x̄E,XH′ ,X (2)

i) = ∅

and ∀x′E, x′′E ∈ XE ∃xE ∈ XE ∀xH′ ∈ XH′

∀x(1)
i ∈ X (1)

i : fH(x′E, xH′ , x
(1)
i) = fH(xE, xH′ , x

(1)
i) ∧

∀x(2)
i ∈ X (2)

i : fH(x′′E, xH′ , x
(2)
i) = fH(xE, xH′ , x

(2)
i)

By induction hypothesis we then have f (1), f (2) ∈ Fbc
act as

|X1 × . . .×X (1)
i × . . .×Xn| < |X1 × . . .×Xi × . . .×Xn|

|X1 × . . .×X (2)
i × . . .×Xn| < |X1 × . . .×Xi × . . .×Xn|

and there are protocols π(1), π(2) actively PFE securely implementing If (1) , If (2) under simulators S(1),S(2).
We now construct a protocol π by defining a first protocol round where Pi broadcasts a message m1 ∈ {1, 2}

indicating whether Pi’s input xi is xi ∈ X (1)
i or xi ∈ X (2)

i . If Pi sends no message, the other parties just assume
m1 = 1. Subsequently the parties proceed to run π(m1).

It remains to prove that this protocol π is PFE secure by providing an appropriate simulator S ∈ Sact for the case
where an arbitrary subset E of the parties P is corrupted by the adversary E ∈ Eact. It suffices to consider two cases.
Either Pi is in the set of corrupted parties (Pi ∈ E), or it is not (Pi /∈ E).

Let us first consider the case where Pi /∈ E. We construct the simulator SPi /∈E as follows:

29

1. SPi /∈E fixes the randomness of the adversary E

2. It feeds the input xE of the distinguisher D to E

3. It generates two copies E(1) and E(2) of E and feeds m1 = 1 to E(1) and m1 = 2 to E(2)

4. Now SPi /∈E runs S(1)(E(1)) and S(2)(E(2)) until these simulators produce inputs x
(1)
E and x

(2)
E for If (1) and

If (2) respectively

5. Since f ∈ F′act we know:

∀x̄E ∈ XE : fE(x̄E,XH′ ,X (1)
i) ∩ fE(x̄E,XH′ ,X (2)

i) = ∅ (83)

and ∃xE ∈ XE ∀xH′ ∈ XH′

∀x(1)
i ∈ X (1)

i : fH(x(1)
E , xH′ , x

(1)
i) = fH(xE, xH′ , x

(1)
i) ∧

∀x(2)
i ∈ X (2)

i : fH(x(2)
E , xH′ , x

(2)
i) = fH(xE, xH′ , x

(2)
i) (84)

The simulator SPi /∈E computes this xE, inputs it to If and receives one of the following two outputs:

yE = fE(xE, xH′ , xi)
(∗)
= fH(xE, xH′ , xi)

(84)
= fH(x(1)

E , xH′ , xi)
(∗)
= fE(x(1)

E , xH′ , xi) if xi ∈ X (1)
i (85)

yE = fE(xE, xH′ , xi)
(∗)
= fH(xE, xH′ , xi)

(84)
= fH(x(2)

E , xH′ , xi)
(∗)
= fE(x(2)

E , xH′ , xi) if xi ∈ X (2)
i

where the equalities marked by (∗) follow from the symmetry of the function f , which we assumed in the
beginning of the proof.

6. Now if yE ∈ fE(xE,XH′ ,X (1)
i) (by Eqn. (83) this check is always unambiguous) then SPi /∈E passes yE to

S(1)(E(1)) and returns the output of that simulator. Note that the above Eqn (85) shows that the input yE is
correct for S(1)(E(1)).
If yE ∈ fE(xE,XH′ ,X (2)

i) then SPi /∈E proceeds in the same way with S(2)(E(2)).

The correctness of the above simulation is obvious.
We now turn to the second case, where Pi is corrupted, i.e. we have Pi ∈ E. The simulator SPi∈E can be

constructed as follows:

1. SPi∈E fixes the randomness of the adversary E

2. It passes the input xE provided by the distinguisher D to E

3. It runs the adversary E until it outputs a message m1

4. If the adversary makes no output m1 ∈ {1, 2}, SPi∈E uses m1 = 1

5. Now the simulator SPi∈E runs S(m1)(E) and simply forwards all inputs and outputs

This simulates the real execution, as depending on the message m1 the protocol π(m1) is executed by the honest
parties. The interaction with this protocol is then faithfully simulated by SPi∈E.

Note that we actually prove active PFE security above. The computation of locally computable functions is
perfectly secure (induction base) and in the above argument if the subsimulators are perfectly secure and efficient,
so are the resulting simulators (induction step).

30

f ∈ F2act =⇒ f ∈ F′2act: Recall that wlog f = f̂ is redundancy-free. If f ∈ F2loc is locally computable
then f ∈ F′2act and we are done. So consider an f 6∈ F2loc. We show that f has a T-cut and then apply an
inductive argument. As f is actively computable we have f ∈ F2sh and f 6∈ F2loc, so f has a K-cut. Wlog we have
XB = X ′

B ∪ X ′′
B and

∀xA ∈ XA : fA(xA,X ′
B) ∩ fA(xA,X ′′

B) = ∅ (86)

Now for any xA ∈ XA and regardless of the a priori distribution PrXA,XB
on the inputs, as the function outputs on

X ′
B and X ′′

B differ, so must the protocol outputs yA for A with overwhelming probability. As a result the statistical
distance of the transcripts under input taken from xA,X ′

B or xA,X ′′
B must be overwhelming as well:

1− negl < ∆(PrYA|XA,XB
(·, xA,X ′

B), PrYA|XA,XB
(·, xA,X ′′

B)) (87)

=
∑

yA∈YA

|PrYA|XA,XB
(yA, xA,X ′

B)− PrYA|XA,XB
(yA, xA,X ′′

B)| (88)

=
∑

yA∈YA

|
∑
t∈Π

PrYA,T |XA,XB
(yA, t, xA,X ′

B)−
∑
t∈Π

PrYA,T |XA,XB
(yA, t, xA,X ′′

B)| (89)

≤
∑

yA∈YA,t∈Π

|PrYA|T,XA,XB
(yA, t, xA,X ′

B)PrT |XA,XB
(t, xA,X ′

B) (90)

− PrYA|T,XA,XB
(yA, t, xA,X ′′

B)PrT |XA,XB
(t, xA,X ′′

B)|

=
∑

yA∈YA,t∈Π

|PrYA|T,XA
(yA, t, xA)PrT |XA,XB

(t, xA,X ′
B) (91)

− PrYA|T,XA
(yA, t, xA)PrT |XA,XB

(t, xA,X ′′
B)|

=
∑

yA∈YA,t∈Π

PrYA|T,XA
(yA, t, xA) |PrT |XA,XB

(t, xA,X ′
B)− PrT |XA,XB

(t, xA,X ′′
B)| (92)

=
∑
t∈Π

∑
yA∈YA

PrYA|T,XA
(yA, t, xA)︸ ︷︷ ︸

=1

|PrT |XA,XB
(t, xA,X ′

B)− PrT |XA,XB
(t, xA,X ′′

B)| (93)

= ∆(PrT |XA,XB
(·, xA,X ′

B), PrT |XA,XB
(·, xA,X ′′

B)). (94)

Note, that being independent from the priori distribution PrXA,XB
, this result applies to all subsets of X ′

B , X ′′
B as

well. In particular for any x′B ∈ X ′
B , x′′B ∈ X ′′

B , xA ∈ XA

1− negl < ∆(PrYA|XA,XB
(·, xA, x′B), PrYA|XA,XB

(·, xA, x′′B)) (95)

≤ ∆(PrT |XA,XB
(·, xA, x′B), PrT |XA,XB

(·, xA, x′′B)). (96)

Now for any X ′
B ∪ X ′′

B = XB , a ∈ XA

∆(PrT0|XA,XB
(·, a,X ′

B), PrT0|XA,XB
(·, a,X ′′

B)) = 0. (97)

Hence considering all possible choices of values xA ∈ XA and cuts X ′
B ∪ X ′′

B = XB , as well as symmetrically
xB ∈ XB and cuts X ′

A ∪ X ′′
A = XA, there must be a minimal round number r for which there is a distribution

PrXA,XB
on the inputs such that we have

α :=∆(PrTr|XA,XB
(·, xA,X ′

B), PrTr|XA,XB
(·, xA,X ′′

B)) > ntcbl or (98)

∆(PrTr|XA,XB
(·,X ′

A, xB), PrTr|XA,XB
(·,X ′′

A, xB)) > ntcbl (99)

Wlog we assume that the minimum r is achieved for some particular xA ∈ XA and a cut X ′
B ∪ X ′′

B = XB . Then, by
minimality of the round number r, for all r′ < r

∀xB ∈ XB, xA ∈ XA, X ′
B ∪ X ′′

B = XB X ′
A ∪ X ′′

A = XA :
∆(PrTr′ |XA,XB

(·, xA,X ′
B), PrTr′ |XA,XB

(·, xA,X ′′
B)) < negl and (100)

∆(PrTr|XA,XB
(·,X ′

A, xB), PrTr|XA,XB
(·,X ′′

A, xB)) < negl.

31

So the message mr travels from B to A, as A cannot construct mr for lack of information about xB . So Eq. (100)
and Eq. (98) hold for the given cut X ′

B ∪ X ′′
B = XB and an arbitrary xA ∈ XA, as mr is constructed by B without

information about xA.
Furthermore note that we can find a cut X ′

B∪X ′′
B = XB such that the above holds for every distribution PrXA,XB

on the inputs. This can be seen using a hybrid argument over the inputs.
We need to show now

1. X ′
B ∪ X ′′

B = XB constitutes a K-cut

2. X ′
B ∪ X ′′

B = XB constitutes a T-cut

3. the argument perpetuates inductively

The cut X ′
B ∪ X ′′

B = XB constitutes a K-cut. Towards a contradiction assume we have b′ ∈ X ′
B , b′′ ∈ X ′′

B ,
a ∈ XA such that fA(a, b′) = fA(a, b′′). Then for any simulated transcript TS

PrTS|XA,XB
(·, a, b′) = PrTS|XA,XB

(·, a, b′′) (101)

Now by security there exists a simulator S such that

∆(PrTS|XA,XB
(·, a, b′), PrT |XA,XB

(·, a, b′)) < negl, (102)

∆(PrTS|XA,XB
(·, a, b′′), PrT |XA,XB

(·, a, b′′)) < negl. (103)

Then by transitivity

∆(PrT |XA,XB
(·, a, b′), PrT |XA,XB

(·, a, b′′)) < negl (104)

which implies

∆(PrTr|XA,XB
(·, a, b′), PrTr|XA,XB

(·, a, b′′)) < negl (105)

in contradiction to Eq. (98).

The cut X ′
B ∪ X ′′

B = XB is a T-cut. Consider an a′′ ∈ XA and the cut X ′
B ∪ X ′′

B = XB from Eq. (98). From
Eq. (100) we have for any a′ ∈ XA

∆(PrTr|XA,XB
(·, a′,X ′

B), PrTr|XA,XB
(·, a′′,X ′

B)) < negl. (106)

Thus at round r the distribution of transcripts for different inputs of A differs still only negligibly. So with over-
whelming probability a corrupted A can choose (uniformly among the matching ones) a new random string c′A such
that under the random string c′A the input a′ is consistent with the transcript Tr observed so far. The execution then
proceeds according to π with the new values a′ as input and c′A as random string. We now fix an a′ ∈ XA and name
the procedure just described π′ and the induced transcript random variable T ′.

We find that the distributions on the transcript T ′ (and thus also the output distributions) resulting from this
procedure differ only negligibly from the transcript distributions obtained by initiating a normal protocol run with

32

input a′:

∆(PrT |XA,XB
(·, a′,X ′

B), PrT ′|XA,XB
(·, a′′,X ′

B)) (107)

=
∑
t∈Π

|PrT |XA,XB
(t, a′,X ′

B)− PrT ′|XA,XB
(t, a′′,X ′

B)| (108)

=
∑
t∈Π

|PrT |Tr,XA,XB
(t, tr, a′,X ′

B)PrTr|XA,XB
(t, a′,X ′

B) (109)

− PrT ′|T ′
r,XA,XB

(t, tr, a′′,X ′
B)PrT ′

r|XA,XB
(t, a′′,X ′

B)|

=
∑
t∈Π

|PrT |Tr,XA,XB
(t, tr, a′,X ′

B)PrTr|XA,XB
(t, a′,X ′

B) (110)

− PrT |Tr,XA,XB
(t, tr, a′,X ′

B)PrTr|XA,XB
(t, a′′,X ′

B)|

=
∑
t∈Π

PrT |Tr,XA,XB
(t, tr, a′,X ′

B)|PrTr|XA,XB
(t, a′,X ′

B)− PrTr|XA,XB
(t, a′′,X ′

B)| (111)

= ∆(PrTr|XA,XB
(·, a′,X ′

B), PrTr|XA,XB
(·, a′′,X ′

B)) < negl. (112)

We can proceed analogously for X ′′
B and thus have

∆(PrT |XA,XB
(·, a′,X ′

B), PrT ′|XA,XB
(·, a′′,X ′

B)) < negl, (113)

∆(PrT |XA,XB
(·, a′,X ′′

B), PrT ′|XA,XB
(·, a′′,X ′′

B)) < negl. (114)

A corrupted A may then mount the following attack: A executes π with input a up to round r, obtaining a tran-
script tr. Now if PrTr|XA,XB

(tr, a′′,X ′
B) > PrTr|XA,XB

(tr, a′′,X ′′
B) (assuming uniform distribution on each set X ′

B

or X ′′
B of the partition) then A runs π′ and π else. The resulting output distributions are indistinguishable (negligible

statistical distance) from π(a′, XB) and π(a′′, XB) respectively as seen above. We designate this protocol execution
by π̆ and the induced random variable for the transcripts T̆ . Now take a distinguisher D that with probability 1

2
each chooses XB from X ′

B or X ′′
B respectively with uniform distribution on each set X ′

B or X ′′
B of the partition and

provides A with no information.
Consider the conditional distribution of B’s output under the given adverserial A and distinguisher D where we

33

first take b′ ∈ X ′
B and then b′′ ∈ X ′′

B:

PrYB |XB
(y, b′) =

∑
t∈Π

PrYB |T̆ ,XB
(y, t, b′)PrT̆ |XB

(t, b′) (115)

=
∑
t∈Π

PrYB |T,XB
(y, t, b′)PrT̆ |XB

(t, b′) (116)

(100)
≈
∑
t∈Π

PrYB |T,XB
(y, t, b′)

(
1 + α

2
PrT |XA,XB

(t, a′, b′) +
1− α

2
PrT |XA,XB

(t, a′′, b′)
)

(117)

≈ 1 + α

2
PrYB |XA,XB

(y, a′, b′) +
1− α

2
PrYB |XA,XB

(y, a′′, b′) (118)

≈ 1 + α

2
1y=fB(a′,b′) +

1− α

2
1y=fB(a′′,b′); (119)

PrYB |XB
(y, b′′) =

∑
t∈Π

PrYB |T̆ ,XB
(y, t, b′′)PrT̆ |XB

(t, b′′) (120)

=
∑
t∈Π

PrYB |T,XB
(y, t, b′′)PrT̆ |XB

(t, b′′) (121)

(100)
≈
∑
t∈Π

PrYB |T,XB
(y, t, b′′)

(
1− α

2
PrT |XA,XB

(t, a′, b′′) +
1 + α

2
PrT |XA,XB

(t, a′′, b′′)
)

(122)

≈ 1− α

2
PrYB |XA,XB

(y, a′, b′′) +
1 + α

2
PrYB |XA,XB

(y, a′′, b′′) (123)

≈ 1− α

2
1y=fB(a′,b′′) +

1 + α

2
1y=fB(a′′,b′′). (124)

In the ideal setting and for the distinguisher D as described above, the input a of A as provided to the ideal function-
ality by the simulator is independent of the input b of B. Thus we find for the conditional distribution of the output
Y I

B of B in the ideal case, both for b ∈ X ′
B and b ∈ X ′′

B

PrY I
B |XB

(y, b) =
∑

a∈XA : y=fB(a,b)

PrXA
(a) (125)

where the simulator can only adjust PrXA
(a).

By security of the protocol (simulatability) we must have a single distribution PrXA
such that

negl > ∆(PrYB |XB
(y, b′), PrY I

B |XB
(y, b′)) (126)

negl > ∆(PrYB |XB
(y, b′′), PrY I

B |XB
(y, b′′)) (127)

We can conclude that there is an a ∈ XA such that PrXA
(a) > ntcbl and fB(a, b′) = fB(a′, b′), fB(a, b′′) =

fB(a′′, b′′) for all b′ ∈ X ′
B and b′′ ∈ X ′′

B:

negl > ∆(PrYB |XB
(y, b′), PrY I

B |XB
(y, b′)) (128)

=
∑

y∈YB

|PrYB |XB
(y, b′)− PrY I

B |XB
(y, b′)| (129)

≈
∑

y∈YB

|1 + α

2
1y=f(a′,b′) +

1− α

2
1y=fB(a′′,b′) −

∑
a∈XA : y=fB(a,b′)

PrXA
(a)| (130)

=
∑

y∈YB

|1 + α

2
1y=f(a′,b′) +

1− α

2
1y=fB(a′′,b′) −

∑
a∈XA

PrXA
(a)1y=fB(a,b′)|. (131)

If fB|XA×X ′
B

or fB|XA×X ′′
B

are constant, then f already has a T-cut. So wlog we consider a′, a′′ ∈ XA such that
there is a b′ ∈ X ′

B and a b′′ ∈ X ′′
B where fB(a′, b′) 6= fB(a′′, b′) and fB(a′, b′′) 6= fB(a′′, b′′). But then the obvious

34

solution PrXA
(a′) ≈ 1+α

2 , PrXA
(a′′) ≈ 1−α

2 , PrXA
(a) ≈ 0 for a′ 6= a 6= a′′ leads to a contradiction with

negl > ∆(PrYB |XB
(y, b′′), PrY I

B |XB
(y, b′′)) (132)

≈
∑

y∈YB

|1− α

2
1y=f(a′,b′′) +

1 + α

2
1y=fB(a′′,b′′) −

∑
a∈XA

PrXA
(a)1y=fB(a,b′′)|. (133)

So there must be an a ∈ XA where PrXA
(a) > ntcbl. But then also f(a, b′) = f(a′, b′), f(a, b′′) = f(a′′, b′′). In

fact, if there is only one such a, we find

PrXA
(a) ≈ α, (134)

PrXA
(a′) ≈ 1− α

2
, (135)

PrXA
(a′′) ≈ 1− α

2
. (136)

Extending the Argument Finally we need to show, that the argument presented above applies inductively
until we are left with locally computable restrictions of the original function.

To this end we consider f ′ = f |XA×X ′
B

and f ′′ = f |XA×X ′′
B

. Unfortunately we cannot readily conclude that
f ∈ F2act implies f ′, f ′′ ∈ F2act. Take for instance f ′ and some corrupted B. Then S simulates correctly for If by
security of π for f . On If ′ however the simulation may fail, as S may rely on making an input b ∈ X ′′

B to If , which
will be rejected by If ′ .

However, for our proof above we employ only a specific class E of adversaries, namely semi-honest adversaries
and adversaries that generally adhere to the protocol π, but possibly attempt to “switch” their input. We show that
security against this class E of adversaries already implies f ∈ F′2act, so in particular f ∈ F2act =⇒ f ∈ F′2act.
So it is sufficient to argue that both f ′ and f ′′ are indeed in the class F′′2act of functions secure against this specific
subclass E of adversaries. Then we can proceed inductively or simply argue by contraposition: Take an f ∈ F′′2act,
f 6∈ F′2act where |XA × XB| minimal. We have shown that such an f must have a T-cut decomposing f into f ′

and f ′′. Now f ′, f ′′ ∈ F′′2act (this we show below) and hence by minimality of f we have f ′, f ′′ ∈ F′2act. But then
f ′ ∈ F′2act by definition of F′2act in contradiction to the choice of f . We hence find

f ∈ F2act =⇒ f ∈ F′′2act =⇒ f ∈ F′2act. (137)

So we need to show that f ′ and f ′′ are indeed in the class F′′2act of functions secure against the subclass of
adversaries E used in the proof above. Now clearly for corrupted A we have f ′ and f ′′ as secure as f , since the same
simulators can be applied. For a corrupted B consider adversaries and distinguishers as in the argument above where
simply the set XA is replaced by X ′

B and the set XB by XA. Then the outcome Y of the real protocol execution will
be Y ∈ f(XA,X ′

B) with overwhelming probability. Now X ′
B ∪ X ′′

B = XB is a K-cut, meaning

∀xA ∈ XA : f(xA,X ′
B) ∩ f(xA,X ′′

B) = ∅. (138)

But then, as S(B) is a valid simulator for If under π, S(B) must with overwhelming probability give an input
b ∈ X ′

B to If . Hence S(B) is actually a valid simulator for If ′ with respect to π. In other words f ′ ∈ F′′2act.

I Proofsketch of Theorem 6.1

We first show F2qu 6= F2sh. Due to the impossibility of implementing unbiased coin flipping (Kitaev, quoted
in [ABDR04]) it is impossible to have XOR∈ F2qu (which is sufficient to implement coin flipping), however XOR
is in F2sh.

Next we sketch how to prove F2qu ⊆ F2sh. Towards a contradiction assume there is a function f ∈ F2qu \ F2sh.
Then there is an effcient secure quantum protocol π for f , but no classical protocol secure against a semi-honest
adversary. We can assume f to be minimal in the size of the input space |XA × XB|. Then f must already be
redundancy-free and hence, according to Lemma 4.6 we have f 6∈ F2pas. This implies that f does not have a K-cut.

35

The secure quantum protocol π runs in a polynomial number of rounds, and we can assume the number of rounds
to be padded to p(k) rounds independent of the inputs.

The proof will be by induction over the number of rounds, analogously to the proof of Lemma 3.6. However we
will have to consider measurements on the quantum data.

For round number r of a protocol π and a quantum non-demolition measurement23 M which measures just
one bit we define an adversary Er,M . This adversary honestly follows the protocol π until round r. In round r
(before sending or after receiving a message) the adversary Er,M performs the measurement M . Then the adversary
continues to honestly follow the protocol, however, his quantum data might be disturbed by the measurement M and
we have to see that this will remain undetected by the uncorrupted party with noticeable probability:

A quantum state before a quantum non-demolition measurement yielding one bit of output and the quantum state
after the measurement have a noticeable overlap and the probability for any measurement to give identical results
for the two states is noticeable. This noticeable probability upper bounds the probability that the uncorrupted party
will detect any difference between the behaviour of Er,M and honest behaviour.

Let the inputs xA, xB for the parties be chosen uniformly at random. According to the above discussion of the
probability with which the measurement performed by the adversary remains undetected we have that for every input
xA, xB the protocol π will not abort (i.e. terminate successfully) with noticeable probability. We will next prove
by induction that for these non-aborting protocol runs it holds that the bit measured by the adversary is statistically
independent of the input of the uncorrupted party. This will then lead to the desired contradiction.

In round r = 0 before any message was sent any bit resulting from a measurement performed by the adversary
is statistically independent of the input of the uncorrupted party.

Now we take as induction hypothesis that no statistical difference could be observed by any adversary up to
round r. In round r + 1 a message is sent. If this message is sent by the adversary then still no statistical difference
can be detected, hence we only need to consider the case where the message in round r+1 is sent by the uncorrupted
party to the adversary (for notational convenience we assume in the following that B is the corrupted party). We
assume that there is an adversary Er+1,M who can after receiving the message observe a statistical difference with
respect to different inputs of the uncorrupted party. There is one party which, if corrupted, would be able to observe
the statistical difference first with a probability ≥ 1/2 and we can thus conclude that with a probability ≥ 1/2 the
result of any measurement which could be performed on the quantum data of the uncorrupted party is statistically
independent of the input of the adversary (otherwise we just change the roles of the parties). Hence the (noticeable)
probability of observing this statistical difference in round r + 1 is almost independent of the input of the adversary
Er+1,M . Due to this statistical difference the set of inputs XA of the uncorrupted party can be partitioned into two
disjoint subsets X ′

A,X ′′
A (XA = X ′

A ∪ X ′′
A) such that the conditional probability of any input in X ′

A is noticeably
higher than the conditional probability of any input in X ′′

A given the measured bit. Since the function f has no K-cut
there exist inputs x′A ∈ X ′

A and x′′A ∈ X ′′
A for the uncorrupted party and an input xB for the adversary such that

fB(x′A, xB) = fB(x′′A, xB). So with noticeable probability the protocol will not abort and the adversary will have a
noticeable advantage in distinguishing x′A and x′′A while using input xB . This is impossible in an ideal model secure
function evaluation of f . We can conclude that for every adversary Er,M and every round r the bit measured by the
adversary is statistically independent of the input of the uncorrupted party.

However, there is an adversary who is looking at his output in the last round (and otherwise runs the protocol).
This adversary will be able to see a statistical difference with respect to the input of the uncorrupted party or the
function is locally computable. This contradicts the statistical independence of every measured bit and concludes
the proof.

J Proofsketch of Theorem 7.2

By Lem. 2.3 we have Faut
sh = Fbc

sh, so it suffices to show f ∈ Fbc
sh ⇐⇒ f ∈ Fbc

lts . We proceed to show each
implication separately.

23I.e. a textbook measurement which disturbs the quantum state just as much as required by the laws of quantum mechanics.

36

f ∈ Fbc
sh =⇒ f ∈ Fbc

lts: A long-term secure protocol is already by definition secure against unbounded semi-
honest adversaries.

f ∈ Fbc
sh =⇒ f ∈ Fbc

lts: Let f ∈ Fbc
sh. We show that f ∈ Fbc

lts by constructing a protocol for computing f and
prove its security.

The protocol works as follows: First, we obtain an unconditionally hiding commitment scheme from the given
OWF. Then the parties commit to their inputs and give a zero-knowledge argument of knowledge of their inputs.
Now the parties execute the semi-honestly secure protocol πf for f , that exists as f ∈ Fbc

sh, with the following
modifications: After each computation step they commit to the result and give a perfect ZK argument that it was
computed correctly. Instead of sending messages they now simply open commitments. If at any point a zero-
knowledge argument fails, the protocol aborts.

To show that this protocol is LT secure (security with abort), we construct an efficient simulator S ∈ Poly such
that for any efficient adversary E ∈ Poly every distinguisher D ∈ Algo has only negligible distinguishing advantage.

The simulator S feeds the input xE received from D to E. Now E has to commit to his inputs xE and give a
zero-knowledge argument of knowledge of the inputs xE. By the definition of a proof of knowledge, there exists
a knowledge-extractor W interacting with E that can extract the knowledge xE of E. Since S can execute multiple
instances of E and branch its execution with E’s randomness fixed, the simulator can use W to learn xE. Now S
forwards xE to the ideal functionality Iab

f (E) and in return gets the outputs yE. Now the simulator determines some
x̃H such that

fE(x̃H, xE) = yE

using the function table of f . S now proceeds to run the protocol πH(x̃H) of the honest parties with the adversary E.
S forwards the output yE of E to D. If E deviates from the protocol π (i.e. a zero-knowledge argument fails), S sends
the abort signal to Iab

f (E).
Now we have to check if this simulator S meets our requirements:

It is clear that S is efficient, since E, W and π are efficient and finding x̃H in the constant size function table can be
done efficiently.
It remains to see that the real and the ideal settings are indistinguishable for any distinguisher D:
Let xH be the input of D for the honest parties. By the way x̃H is chosen by S the protocol execution between S
and E must lead to a protocol execution that only negligibly differs from the real protocol execution and therefore
the output of the adversary differs only negligibly from the output in the real setting. This directly follows from the
security of the underlying semi-honestly secure protocol.
Since E must be efficient, it cannot forge the zero-knowledge arguments with non-negligible probability. Thus, if
the adversary E deviates from the protocol π, this results in a failed zero-knowledge argument with overwhelming
probability and then the protocol aborts. So our use of zero-knowledge arguments actually forces semi-honest be-
havior (with abort).
Since we use a perfectly hiding bit commitment scheme and the arguments are perfect zero-knowledge, no additional
information is flowing compared to the original protocol.
Finally, we see that the security cannot be violated anymore after protocol termination, even by unbounded adver-
saries.

K Proofsketch of Lemma 7.4

Let f ∈ Faut
sh be a sh computable two party function. From Theorem 4.6 we obtain a sh secure protocol π̃. We

“pad” the protocol with dummy-messages, such that the number of rounds does not depend on the inputs anymore.
We view the resulting protocol as a distributed circuit, where the gates are owned by the parties Pi, depending on
which party executes a specific computation. Communication is then nothing else than a wire between gates owned
by different parties.

From this distributed circuit we can obtain a CO secure protocol for the function f using the Goldreich compiler
[Gol04], that (CO) securely computes any circuit using a CO-OT+ functionality.

37

As in the case of plain LT security each party first commits to their input using unconditionally hiding bit-
commitments and proofs knowledge of the input using a perfectly zero-knowledge argument of knowledge. How-
ever, in the following, since we are interested in an LT secure protocol π for f with designated aborter P1, we
need to take special care when applying the Goldreich compiler. Concretely, we only use unconditionally hiding
bit-commitments and perfect zero-knowledge arguments and we take care to apply the CO-OT+ in such a fashion
that it is LT secure for Pi when computing a gate owned by Pi. When the protocol is complete, the result is first
opened towards P1, who then ensures that the result is opened to the remaining parties.

As shown in [Gol04] the protocol π computes f CO securely and the designated abort property is provided
through the opening procedure, since as Goldreich shows no party learns anything until the opening phase. It
remains to argue LT security.

In π the structure of the underlying passively IT secure protocol π̃ is preserved. Due to the way we employ CO-
OT+, information-theoretically, each party only receives information about inputs and outputs of gates it computes
itself in π̃. Therefore no party receives more information than in π̃, and after termination of the protocol security,
even against unbounded distinguishers, is guaranteed.

Simulators as demanded by the definition of security are easily constructed from the above. The proofs of
knowledge in the beginning of the protocol are used to extract an input. A simulator passes this input to the ideal
functionality and obtain output from the ideal functionality. The simulator then determines an input of the honest
party that is consistent with the input and output extracted from the adversary respectively received from ideal
functionality. Using this input the simulator can simulate a regular protocol execution toward the adversary and use
the output of the adversary as its own. Indistiguishability of such a simulation follows once again directly from the
above arguments.

L Classification of 2-party Functions

Note that in Theorem 8.3 we actually have

F2act \ F2pas = {f ∈ F2act | f̄ 6≡ f̂}
F2sh \ F2pas = {f ∈ F2sh | f̄ 6≡ f̂}

Fnct
2pas = {f ∈ Fnct

2sh | f̄ ≡ f̂}
Fnct

2act = Fnct
2sh ∪ (F2sh \ F2act)

C2pas = C2act ∪ {f ∈ F2 | f̂ 6≡ f̄}.

Using the examples in Fig. 1 we can illustrate that the inclusions of Theorem 8.3 are indeed proper:

f (1) ∈ F2act \ F2pas (C2pas \ C2act (139)

f (2) ∈ F2pas \ F2act (Fnct
2act \ Fnct

2sh (140)

f (3) ∈ F2sh \ F2act ∪ F2pas (141)

f (4) ∈ C2pas ∩ Fnct
2sh (C2pas \ C2act. (142)

38

	Introduction
	Contributions
	Related Work

	Security Definitions and Notation
	The Class Fpasaut of Passively Computable Functions
	The Class Fshaut of Semi-Honestly Computable Functions
	The Class Factaut of Actively Computable Functions
	Quantum Protocols
	Long-Term Security
	Long Term Security with designated Aborter

	Classification of 2-party Functions
	Conclusions
	Acknowledgements
	Examples
	Proof of Lemma 3.5
	Proof of Theorem 3.6
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.6
	Symmetrization
	Proof of Theorem 5.3
	Proofsketch of Theorem 6.1
	Proofsketch of Theorem 7.2
	Proofsketch of Lemma 7.4
	Classification of 2-party Functions

