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Abstract

We strengthen the foundations of deterministic public-keyencryption via definitional equivalences
and standard-model constructs based on general assumptions. Specifically we consider seven notions of
privacy for deterministic encryption, including six formsof semantic security and an indistinguishability
notion, and show them all equivalent. We then present a deterministic scheme for the secure encryption
of uniformly and independently distributed messages basedsolely on the existence of trapdoor one-way
permutations. We show a generalization of the constructionthat allows secure deterministic encryption
of independent high-entropy messages. Finally we show relations between deterministic and standard
(randomized) encryption.
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1 Introduction

The foundations of public-key encryption, as laid by Goldwasser and Micali [25] and their successors,
involve two central threads. The first is definitional equivalences, which aim not only to increase our con-
fidence that we have the “right” notion of privacy but also to give us definitions that are as easy to use in
applications as possible. (Easy-to-use indistinguishability is equivalent to the more intuitive, but also more
complex, semantic security [31, 25, 26, 23].) The second (ofthe two threads) is to obtain schemes achieving
the definitions under assumptions as minimal as possible. Inthis paper we pursue these same two threads for
deterministicencryption [3], proving definitional equivalences and providing constructions based on general
assumptions.

DETERMINISTIC ENCRYPTION. A public-key encryption scheme is said to be deterministicif its encryption
algorithm is deterministic. Deterministic encryption wasintroduced by Bellare, Boldyreva, and O’Neill [3].
The motivating application they gave is efficiently searchable encryption. Deterministic encryption permits
logarithmic time search on encrypted data, while randomized encryption only allows linear time search [30,
12], meaning a search requires scanning the whole database.This difference is crucial for large outsourced
databases which cannot afford to slow down search. Of coursedeterministic encryption cannot achieve the
classical notions of security of randomized encryption, but [3] formalize a semantic security style notion
PRIV that captures the “best possible” privacy achievable when encryption is deterministic, namely that an
adversary provided with encryptions of plaintexts drawn from a message-space of high (super-logarithmic)
min-entropy should have negligible advantage in computingany public-key independentpartial information
functionof the plaintexts. The authors provide some schemes in the random-oracle (RO) model [4] meeting
this definition but leave open the problem of finding standardmodel schemes.

The PRIV definition captures intuition well but is hard to work with. We would like to find simpler,
alternative definitions of privacy for deterministic encryption —restricted forms of semantic security as well
as an indistinguishablility style definition— that are equivalent to PRIV. We would also like to find schemes
not only in the standard model but based on general assumptions.

NOTIONS CONSIDERED. We define seven notions of privacy for deterministic encryption inspired by the
work of [20, 3]. These include a notion IND in the indistinguishability style and six notions —A-CSS,
B-CSS, BB-CSS, A-SSS, B-SSS, BB-SSS— in the semantic-security style. The IND definition —adapted
from [20]— asks that the adversary be unable to distinguish encryptions of plaintexts drawn from two,
adversary-specified, high-entropy message spaces, and is simple and easy to use. The semantic security
notions are organized along two dimensions. The first dimension is the class of partial information functions
considered, and we look at three choices, namely arbitrary (A), boolean (B), or balanced boolean (BB). (A
boolean function is balanced if the probabilities that it returns 0 or 1 are nearly the same.) The second
dimension is whether the formalization is simulation (S) based or comparison (C) based.1 The PRIV notion
of [3] is A-CSS in our taxonomy. Low-end notions —think of BB as the lowest, then B then A and similarly
C then S in the other dimension— are simpler and easier to use in applications, while high end ones are
more intuitively correct. The question is whether the simplifications come at the price of power.

DEFINITIONAL EQUIVALENCES. We show that all seven notions discussed above are equivalent. The
results are summarized in Figure 1. These results not only show that semantic security for boolean functions
(predicates) is as powerful as semantic security for arbitrary functions, but (perhaps surprisingly) that one
can even restrict attention to boolean functions that are balanced, meaning semantic security for balanced

1In the first case,A’s success in computing partial information about plaintexts from ciphertexts is measured relative to that of
a simulator, while in the second it is measured relative toA’s own success when it is given the encryption of plaintexts independent
of the challenge ones. The terminology is from [7] who prove equivalence between simulation and comparison based notions of
non-malleability.
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Figure 1: Notions of security for deterministic encryptionschemes and implications showing that all seven
notions are equivalent. An arrowX → Y means that every scheme secure underX is also secure underY .
Unlabeled implications are trivial.

boolean functions is as powerful as semantic security for arbitrary functions. We note that balance in this
context originates with [20] but they only use it as a tool. Weexplicitly define and consider the notions
BB-CSS and BB-SSS because they bear a natural and intuitive relation to IND and because we feel that
the use made of balance by [20] indicates it is important. Theproofs of our results rely on new techniques
compared to [20, 17, 18].

DEFINITIONAL FRAMEWORK. We believe that an important and useful contribution of ourpaper is its
definitional framework. Rather than an experiment per notion, we have a few core experiments and then use
the approach of [5], capturing different notions via different adversary classes. Advantages of this approach
are its easy extendability —for example we can capture the notions of [11] by simply introducing a couple
of new adversary classes— and the ability to capture many definitional variants in a way that is unified,
concise and yet precise.

A CONSTRUCTION FOR UNIFORM MESSAGES. Constructing a non-RO model deterministic encryption
scheme meeting our strong notions of security seems like a very challenging problem. We are however
able to make progress on certain special cases. We present a deterministic encryption schemeDE1 for the
secure encryption of independent, uniformly distributed messages. The scheme is not only without random
oracles but based on general trapdoor one-way permutations. To encrypt a random messagex one iterates
a trapdoor permutationf onx a number of times to get a pointy. Let r denote the sequence of Goldreich-
Levin [24] hardcore bits obtained in the process. Then one uses a standard IND-CPA scheme —which exists
assuming trapdoor one-way permutations— to encrypty with coinsr. The interesting aspect of the scheme,
and the source of the difficulty in analyzing it, is its cyclicnature, namely that the coins used for the IND-
CPA encryption depend on the plaintexty that is IND-CPA encrypted. The proof manages to show that an
adversary who, giveny, can distinguishr from random can recoverx even thoughthis adversary may have
partial information about the underlying seedx. The proof exploits in a crucial way that the equivalence
between A-CSS and B-CSS holds even for uniformly and independently distributed messages.

ANOTHER PERSPECTIVE. A deterministic encryption scheme is (syntactically) thesame thing as a family
of injective trapdoor functions. Our notions can then be seen as an extension of the usual notion of one-
wayness. Our construction is then a family of injective trapdoor functions which hides all (possible) partial
information about its (randomly chosen) input. We believe this is a natural and useful strengthening of the
usual notion of a trapdoor function that is fully achieved under standard assumptions in our work.
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EFFICIENCY. The general assumption notwithstanding, our scheme admits efficient instantiations. For
example with squaring as the trapdoor permutation [8] and Blum-Goldwasser [9] as the bare IND-CPA
scheme, encryption and decryption come in at about double that of Blum-Goldwasser with no increase in
ciphertext size. See Section 5.

A GENERALIZATION. We generalize our construction to obtain a non-RO model deterministic scheme
DE2 for the encryption of independent, high min-entropy (but not necessarily uniform) plaintexts. The
assumption used is that one has a trapdoor permutation that is one-way for high min-entropy distributions
on its input. This increase in assumption strength is in somesense necessary, since deterministic encryption
secure for some distribution trivially provides a one-way injective trapdoor function for that distribution.

FROM DETERMINISTIC TO RANDOMIZED ENCRYPTION. Another central foundational theme is relations
between primitives, meaning determining which primitivesimply which others. From this perspective we
consider how to build IND-CPA-secure standard (randomized) encryption from PRIV-secure deterministic
encryption. The obvious approach would be to use the deterministic encryption scheme as a trapdoor one-
way function within some well-known general construction [24]. However, this approach leads to large
ciphertexts, and we would hope to achieve better efficiency when using a primitive that provides more than
one-wayness. We provide a much more efficient construction using a hybrid encryption-style approach, in
which the deterministic scheme encrypts a fresh session keypadded with extra randomness and the session
key is used to encrypt the message. See Section 7 for the details.

CCA. Lifting our notions and equivalences to the CCA settingis straightforward; see Appendix G . Our
above-mentioned construction of a randomized encryption scheme from a deterministic one works even
in the CCA setting. This means, in particular, that we can generically build witness-recovering IND-CCA
encryption schemes [27] from arbitrary CCA-secure deterministic schemes. (Witness-recovering encryption
allows, during decryption, recovery of all randomness usedto generate a ciphertext.) CCA-secure witness-
recovering encryption is of use in further applications [16], and only very recently was a (not very efficient)
standard-model construction produced [27]. Our construction shows that building CCA-secure deterministic
schemes is at least as hard as building witness-recovering probabilistic encryption.

RELATED WORK. Dodis and Smith’s work on entropic security [20] has in common with ours the con-
sideration of privacy for messages of high min-entropy. Butthere are important differences in the set-
tings, namely that theirs is information-theoretic and symmetric while ours is computational and public-key.
Dodis and Smith [20] introduce definitions that in our framework are IND, B-SSS, and BB-SSS, to com-
plement the A-SSS-like information-theoretic notion originally proposed by Russell and Wang [28]. Also,
Desrosiers [17] and Desrosiers and Dupuis [18] subsequently treat quantum entropic security, providing
notions similar to our framework’s B-CSS and A-CSS. These works provide some relations between the
notions they define. While some of their techniques and implications lift to our setting, others do not. The
salient fact that emerges is that prior workdoes notimply equivalence of all seven notions we consider.
In particular, the BB-SSS and BB-CSS notions are not considered in [17, 18] and Dodis and Smith [20]
only provide reductions for BB-SSS implying A-SSS that result in inefficient or restricted adversaries. See
Appendix H for more information.

Another setting that deals with high min-entropy messages is that of perfectly one-way hash functions
(POWHF), introduced by Canetti [13] and further studied by Canetti, Micciancio, and Reingold [14]. These
are randomized hash functions that produce publically-verifiable outputs. Our definitions and equivalences
can be adapted to the POWHF setting.

INDEPENDENT WORK. In concurrent and independent work, Boldyreva, Fehr, and O’Neill [11] consider a
relaxation of PRIV in which message sequences need to not merely have high entropy but each message must
have high entropy even given the others. They prove some relations between their notions using techniques
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of [20, 17, 18] but do not consider as many notions as us and in particular do not consider balance. Their
schemes achieve stronger notions of security then ourDE1 but at the cost of specific algebraic assumptions
as opposed to our general one. Combining their results with ours shows that ourDE2 achieves their notion
of security while using a general (even though non-standard) assumption.

2 Preliminaries

NOTATION AND CONVENTIONS. If x is a string then|x| denotes its length; ifx is a number then|x| denotes
its absolute value; ifS is a set then|S| denotes its size. We denote byλ the empty string. IfS is a set then
X ←$ S denotes thatX is selected uniformly at random fromS. We letx[i . . . j] denote bitsi throughj of
stringx, for 1 ≤ i ≤ j ≤ |x|. By x1 ‖ · · · ‖ xn we denote the concatenation ofx1, . . . , xn. Vectors are
denoted in boldface, e.g.x. If x is a vector then|x| denotes the number of components ofx andx[i] denotes
its ith component for1 ≤ i ≤ |x|. If i ≥ 1 is an integer, we useBi as shorthand for{0, 1}i. By 〈a, b〉 we
denote the inner product modulo 2 of equal-length stringsa, b.

We write α←$ X(x, y, . . .) to denote runningX on inputs(x, y, . . .) with fresh random coins and
assigning the result toα. We let [X(x, y, . . .)] denote the set of possible outputs ofX when run on
x, y, . . . ∈ {0, 1}∗. An algorithmX is non-uniformif its first input is1k and there is a collection{Ck}k∈N
of (randomized) circuits such thatCk computesX(1k, . . .). The running time is the circuit size. A function
f is callednegligibleif it approaches zero faster than the reciprocal of any polynomial, that is, for any poly-
nomialp, there existsnp ∈ N such thatf(n) ≤ 1/p(n) for all n ≥ np. “PT” stands for polynomial time.
We denote byΛ the algorithm that on any inputs returnsλ.

PUBLIC-KEY ENCRYPTION. A public-key encryption (PKE)schemeΠ = (K, E ,D) is a triple of PT al-
gorithms. The key generation algorithmK takes input1k, wherek ∈ N is the security parameter, and
outputs a public-key, secret-key pair(pk, sk). The encryption algorithmE takes inputs1k, pk, and plaintext
x ∈ {0, 1}∗ and outputs a ciphertext. The deterministic decryption algorithm D takes inputs1k, sk, and
ciphertexty and outputs either a plaintextx or ⊥. We say thatΠ is deterministicif E is deterministic. If
x is a vector of plaintexts, then we writey←$ E(1k, pk,x) to denote component-wise encryption ofx, i.e.
y[i]←$ E(1k, pk,x[i]) for all 1 ≤ i ≤ |x|.

3 Security Notions for Deterministic PKE

We first provide formal definitions and then discuss them.

SEMANTIC SECURITY. An SS-adversaryA = (Ac, Am, Ag) is a tuple of non-uniform algorithms.Ac takes
as input a unary encoding1k of the security parameterk ∈ N and returns a stringst representing some
state information.Am takes input1k andst, and returns a vector of challenge messagesx together with a
test stringt that represents some information aboutx. Ag takes1k, a public key and the component-wise
encryption ofx under this key, and tries to computet. The running time ofA is defined as the sum of the
running times ofAc, Am, Ag, so thatA is PT if Ac, Am, Ag are all PT.

Let Π = (K, E ,D) be a PKE scheme,A = (Ac, Am, Ag) an SS-adversary, andS a simulator (a non-
uniform algorithm). Letk ∈ N. Figure 2 displays the css (comparison-based semantic security) and sss
(simulation-based semantic security) experiments. We define the css advantage and sss advantage ofA by

Advcss
Π,A(k) = 2 · Pr

[
Expcss

Π,A(k)⇒ true
]
− 1 , and (1)

Advsss
Π,A,S(k) = 2 · Pr

[
Expsss

Π,A,S(k)⇒ true
]
− 1 . (2)

Our approach to defining the six notions of semantic securityof interest to us is to associate to each a
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Experiment Expcss
Π,A(k)

b←$ {0, 1} ; st←$ Ac(1
k)

(x0, t0)←$ Am(1
k, st)

(x1, t1)←$ Am(1
k, st)

(pk, sk)←$K(1k)

c←$ E(1k,pk,xb)

g←$ Ag(1
k,pk, c, st)

If g = t1 thenb′ ← 1

Elseb′ ← 0

Ret(b′ = b)

Experiment Expsss
Π,A,S(k)

b←$ {0, 1} ; st←$ Ac(1
k)

(x, t)←$ Am(1
k, st)

(pk, sk)←$K(1k)
c←$ E(1k,pk,x)
If b = 1 then

g←$ Ag(1
k,pk, c, st)

Elseg←$ S(1k,pk, st)
If g = t thenb′ ← 1
Elseb′ ← 0
Ret(b′ = b)

Experiment Expind
Π,I(k)

b←$ {0, 1} ; st←$ Ic(1
k)

xb←$ Im(1
k, b, st)

(pk, sk)←$K(1k)

c←$ E(1k,pk,xb)

b′←$ Ig(1
k,pk, c, st)

Ret(b′ = b)

Figure 2: Three experiments for defining security of encryption schemes.

corresponding class of adversaries and ask that the advantage of any adversary in this class be negligible.
We proceed to define the relevant classes.

An SS-adversaryA = (Ac, Am, Ag) is legitimate if there exists a functionv(·), called the number of
messages, and a collection{yk}k∈N of referencemessage-vectors such that the following three conditions
hold. First,|x| = v(k) for all (x, t) ∈ [Am(1

k, st)] and allst ∈ {0, 1}∗. Second,|x[i]| = |yk[i]| for all
(x, t) ∈ [Am(1

k, st)], all st ∈ {0, 1}∗, and all1 ≤ i ≤ v(k). Third, the function

ν(k) = Pr
[

eq(x,yk) = 0 : st←$ Ac(1
k) ; (x, t)←$ Am(1

k, st)
]

is negligible, where

eq(x,yk) =

{

1 if ∀i, j : x[i] = x[j] iff yk[i] = yk[j]

0 otherwise.
(3)

(The third condition reflects that every deterministic scheme leaks plaintext equality.) LetASS be the set of
all legitimate, PT SS-adversaries. We say thatA hastrivial state functionif Ac = Λ. LetAλ be the set of
all SS-adversaries with trivial state functions.

Without loss of generality (through suitable padding) we can assume there is a functionℓ(·) such that
the output ofAg(1

k, ·, ·) and any test stringt output byAm(1
k, ·) always have lengthℓ(k). We callℓ the

information lengthof A. An SS-adversaryA = (Ac, Am, Ag) ∈ ASS is booleanif it has information
length ℓ(·) = 1. Let AB ⊆ ASS be the class of all boolean SS-adversaries. A boolean SS-adversary
A = (Ac, Am, Ag) ∈ AB is δ-balanced if for everyst we have

∣
∣
∣
∣
Pr

[

t = 0 : (x, t)←$ Am(1
k, st)

]

−
1

2

∣
∣
∣
∣
≤ δ . (4)

Whenδ = 0 we say thatA is perfectly balanced. We say thatA is balancedif it is δ-balanced for some
δ < 1/2. Let Aδ

BB ⊆ AB be the class of allδ-balanced boolean SS-adversaries. An SS-adversaryA =
(Ac, Am, Ag) ∈ ASS has min-entropyµ if

Pr
[

x[i] = x : (x, t)←$ Am(1
k, st)

]

≤ 2−µ(k)

for all k ∈ N, all 1 ≤ i ≤ v(k), all x ∈ {0, 1}∗, and allst ∈ {0, 1}∗. Let Aµ
ME ⊆ ASS be the class

of all SS-adversaries with min-entropyµ. We say thatA hashigh min-entropyif it is in Aµ
ME for some

µ(k) ∈ ω(log k). LetAHE ⊆ ASS be the class of all SS-adversaries that have high min-entropy.
Let Π be a PKE scheme. We say thatΠ is A-CSS secure ifAdvcss

Π,A(·) is negligible for allA ∈
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AHE ∩Aλ; Π is B-CSS-secure ifAdvcss
Π,A(·) is negligible for allA ∈ AHE ∩Aλ ∩AB; andΠ is BB-CSS-

secure if there existsδ < 1/2 such thatAdvcss
Π,A(·) is negligible for allA ∈ AHE ∩ Aλ ∩ A

δ
BB.

Similarly, we say thatΠ is A-SSS-secure if for allA ∈ AHE∩Aλ there exists a PT simulatorS such that
Advsss

Π,A,S(·) is negligible;Π is B-SSS-secure if for allA ∈ AHE ∩ Aλ ∩AB there exists a PT simulatorS
such thatAdvsss

Π,A,S(·) is negligible; andΠ is BB-SSS-secure if there existsδ < 1/2 such that for all
A ∈ AHE ∩ Aλ ∩ A

δ
BB there exists a PT simulatorS such thatAdvsss

Π,A,S(·) is negligible.
The message spaceof an SS-adversaryA = (Ac, Am, Ag) is the algorithmAd that on input1k, st

lets (x, t)←$ Am(1
k, st) and returnsx. An SS-adversary is said to produce independent messages ifthe

coordinates ofx are independently distributed whenx←$ Ad(1
k, st) for all k, st. LetA× be the class of

all SS-adversaries which produce independent messages.
For eachd ∈ {0, 1}, we letExpcss-d

Π,A (k) be the same asExpcss
Π,A(k) except that the first line setsb← d

rather than pickingb at random. We similarly defineExpsss-d
Π,A,S(k). A standard argument gives

Advcss
Π,A(k) = Pr

[
Expcss-1

Π,A (k)⇒ true
]
− Pr

[
Expcss-0

Π,A (k)⇒ false
]

and (5)

Advsss
Π,A,S(k) = Pr

[
Expsss-1

Π,A,S(k)⇒ true
]
− Pr

[
Expsss-0

Π,A,S(k)⇒ false
]
. (6)

INDISTINGUISHABILITY. An IND-adversaryI = (Ic, Im, Ig) is a tuple of non-uniform algorithms.Ic takes
as input1k and returns a stringst representing some state information.Im takes input1k, a bit b, andst,
and returns a vector of messagesx. Ig takes1k, a public key, the component-wise encryption ofx under
this key, andst and tries to compute the bitb. The running time ofI is defined as the sum of the running
times ofIc, Im, Ig, so thatI is PT if Ic, Im, Ig are all PT.

Let Π = (K, E ,D) be a PKE scheme,I = (Ic, Im, Ig) an IND-adversary andk ∈ N. Figure 2 displays
the ind experiment. We define the ind advantage ofI by

Advind
Π,I(k) = 2 · Pr

[

Expind
Π,I(k)⇒ true

]

− 1 . (7)

We next define classes of IND-adversaries. An IND-adversaryI = (Ic, Im, Ig) is legitimateif there exists a
functionv(·), called the number of messages, and a collection{yk}k∈N of referencemessage-vectors such
that the following three conditions hold. First,|x| = v(k) for all (x, t) ∈ [Im(1

k, b, st)], all b ∈ {0, 1}, and
all st ∈ {0, 1}∗. Second,|x[i]| = |yk[i]| for all (x, t) ∈ [Im(1

k, b, st)], all b ∈ {0, 1}, all st ∈ {0, 1}∗, and
all 1 ≤ i ≤ v(k). Third, the function

ν(k) = Pr
[

eq(x,yk) = 0 : st←$ Ic(1
k) ; b←$ {0, 1} ; (x, t)←$ Im(1

k, b, st)
]

is negligible, whereeq(x,yk) was defined by (3). LetI be the set of all legitimate, polynomial time IND-
adversaries. We say thatI hastrivial state functionif Ic = Λ. Let Iλ ⊆ I be the set of all IND-adversaries
with trivial state functions. An IND-adversaryI = (Ic, Im, Ig) ∈ I hasmin-entropyµ if

Pr
[

x[i] = x : x←$ Im(1
k, b, st)

]

≤ 2−µ(k)

for all k ∈ N, all b ∈ {0, 1}, all 1 ≤ i ≤ v(k), all x ∈ {0, 1}∗, and allst ∈ {0, 1}∗. Let IµME ⊆ I be the
class of all IND-adversaries with min-entropyµ. We sayI hashigh min-entropyif it is in IµME for some
µ(k) ∈ ω(log k). Let IHE be the class of all IND-adversaries that have high min-entropy. We say thatΠ is
IND-secure ifAdvind

Π,I(·) is negligible for allI ∈ IHE ∩ Iλ.
For eachd ∈ {0, 1}, we letExpind-d

Π,I (k) be the same asExpind
Π,I(k) except that the first line setsb← d

rather than pickingb at random. A standard argument gives

Advind
Π,A(k) = Pr

[

Expind-1
Π,I (k)⇒ true

]

− Pr
[

Expind-0
Π,I (k)⇒ false

]

. (8)

DISCUSSION. A-CSS is exactly the PRIV definition of [3]. As discussed in [3], it is important thatAm

does not take input the public key, and this carries over toIm. In the classical setting a standard hybrid
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argument [2] shows that the security of encrypting one message implies the security of encrypting multiple
messages. In the deterministic encryption setting this is not true in general, which is whyAm, Im output
vectors of messages.

Following [3], message spaces are not explicit but rather implicitly defined by their PT sampling algo-
rithmsAm andIm. As a consequence, message spaces are PT sampleable.

Following [3], the partial information function is not explicit. Think of t as its value onx. This is more
general becauset is allowed to depend on coins underlying the generation ofx rather than merely onx
itself. (This is stronger than merely allowing the functionto be randomized, which is standard.) It allows
us in particular to capture “history.” However, we show in Appendix A that this formulation is equivalent
to one where the partial information is computed as a function of the message. Note that the (implicit or
explicit) partial information functions are PT.

Our security definitions quantify only over adversaries with trivial state functions. We do this for com-
patibility with [3, 20]. So why introduce the common state function at all? The reason is that it is useful in
proofs. Indeed, [20] use such a function implicitly in many places. We believe making it explicit increases
clarity. In the end we can always hardwire a “best” state and thereby end up with an adversary inAλ.

4 Relating the Security Notions

In this section and its supporting appendices we justify theimplications summarized by Figure 1. The im-
plications given by the unlabeled arrows are trivial and canbe justified by the fact thatX → Y whenever the
adversary class corresponding toY is a subset of the one corresponding toX. We focus on the implications:
A-CSS⇒ A-SSS; BB-SSS⇒ IND; IND ⇒ BB-CSS; BB-CSS⇒ B-CSS; and B-CSS⇒ A-CSS.

Theorem 4.1 [B-CSS⇒ A-CSS] Let Π = (K, E ,D) be a PKE scheme. LetA = (Ac, Am, Ag) ∈ A
µ
ME ∩

Aλ be an SS-adversary having information lengthℓ(·). Then there exists a boolean SS-adversaryA′ =
(A′

c, A
′
m, A

′
g) ∈ A

µ
ME ∩Aλ ∩AB such that for allk ∈ N

Advcss
Π,A(k) ≤ 2 ·Advcss

Π,A′(k) . (9)

A′ has the same message space asA and its running time is that ofA plusO(ℓ). �

Proof: The proof is from [20] and repeated here in order to provide intuition for Theorem 4.2. Below we
write ℓ for ℓ(k). Then let

algorithm A∗
c(1

k):

r←$ {0, 1}ℓ

s←$ {0, 1}
Ret(r, s)

algorithm A∗
m(1

k, (r, s)):

(x, t)←$ Am(1
k, λ)

Ret(x, 〈r, t〉 ⊕ s))

algorithm A∗
g(1

k, pk, c, (r, s)):

g←$ Ag(1
k, pk, c, λ)

Ret〈r, g〉 ⊕ s

ThenA∗ = (A∗
c , A

∗
m, A

∗
g) is certainly boolean, and

PA∗(k) = PA(k) +
1

2
[1− PA(k)]

QA∗(k) = QA(k) +
1

2
[1−QA(k)]

wherePX(k) = Pr
[
Expcss-1

Π,X (k)⇒ true
]

andQX(k) = Pr
[
Expcss-0

Π,X (k)⇒ false
]
. Subtracting, we get

Advcss
Π,A∗(k) = 1

2 ·Advcss
Π,A(k). We are not done yet becauseA∗ does not have trivial state function. LetA′

be obtained fromA∗ by hardwiring in a “best” choice ofr, s and we are done.

9



Now we wish to show that BB-CSS⇒ B-CSS. Note that if the adversaryA′ constructed in the proof of
Theorem 4.1 were balanced, we would be done. But,A′ need not be balanced. Dodis and Smith [20] give
a partial solution to this problem, showing that it is in factpossible to find anr that, when hardwired into
A∗, results in a balanced adversary, as long asp ≤ ǫ2/4, wherep is the maximum probability of anyt being
output byAm andǫ = Advcss

Π,A(·).
We will remove this restriction by proceeding as follows. Let A be a given SS-adversary, which

from Theorem 4.1 we can assume is boolean (but not balanced).We again construct anA∗ with non-
trivial state, but this will consist ofn independently chosen keysK[1], . . . ,K[n] for a family of pair-
wise independent hash functionsH. ThenA∗

m(1
k,K) first runs (x, t)←$ Am(1

k, λ) and then returns
(x,H(K[i], t)) for randomi ∈ {1, . . . , n}, while A∗

g(1
k, pk, c,K) picks its own independent randomj

and returnsH(K[j], Ag(1
k, pk, c, λ)). Our analysis will show that for a suitable choice ofn there exists

a choice of the vectorK which, when hardwired intoA∗, yields an adversaryA′ having all the claimed
properties. The theorem is below and the proof is in AppendixB.

Theorem 4.2 [BB-CSS⇒ B-CSS] Let Π = (K, E ,D) be a PKE scheme. LetA = (Ac, Am, Ag) ∈
Aµ

ME ∩Aλ ∩AB be a boolean SS-adversary. Letǫ(·) = Advcss
Π,A(·) > 0 and letδ = 1/4. Then there exists

an SS-adversaryA′ = (A′
c, A

′
m, A

′
g) ∈ A

µ
ME ∩ Aλ ∩ A

δ
BB such that for allk ∈ N

Advcss
Π,A(k) ≤ 4n(k) ·Advcss

Π,A′(k) ,

wheren(k) = max {485 , ⌈64· ln (1/ǫ(k)) + 64 ln 4⌉}. A′ has the same message space asA and its
running time is that ofA plusO(log(1/ǫ(k)) + k). �

Below are theorem statements for the other three implications. The proofs are found in Appendices C, D,
and E, respectively.

Theorem 4.3 [A-CSS⇒ A-SSS] Let Π = (K, E ,D) be a PKE scheme. LetA = (Ac, Am, Ag) ∈ A
µ
ME ∩

Aλ be an SS-adversary outputting at mostv messages. Then there exists a simulatorS such that for all
k ∈ N

Advsss
Π,A,S(k) ≤ Advcss

Π,A(k) .

The running time ofS is that ofA plus the time to performv encryptions.�

Theorem 4.4 [BB-SSS⇒ IND] LetΠ = (K, E ,D) be a PKE scheme. LetI = (Ic, Im, Ig) ∈ I
µ
ME∩Iλ be

an IND-adversary. Letδ = 0. Then there exists an SS-adversaryA = (Ac, Am, Ag) ∈ A
µ
ME ∩ Aλ ∩ A

δ
BB

such that for any simulatorS and allk ∈ N

Advind
Π,I(k) ≤ 2 ·Advsss

Π,A,S(k) .

The running time ofA is that ofI. �

Theorem 4.5 [IND ⇒ BB-CSS] Let Π = (K, E ,D) be a PKE scheme. Let0 ≤ δ < 1/2 and letA =
(Ac, Am, Ag) ∈ A

µ
ME∩Aλ∩A

δ
BB be an SS-adversary. Then there exists an ind-adversaryI = (Ic, Im, Ig) ∈

IνME ∩ Iλ such that for allk ∈ N

Advcss
Π,A(k) ≤ 2·Advind

Π,I(k) + 2−k .

I has min-entropyν(k) = µ(k) − 1 + log(1 − 2δ) and its running time is that ofA plus the time for
⌈−(log(2/(1 + 2δ)))−1⌉(k + 3) + 1 executions ofAm. �

5 Deterministic Encryption from Trapdoor Permutations

We construct a deterministic encryption scheme, without ROs, that meets our definitions in the case that
the messages being encrypted are uniformly and independently distributed. It is based on the existence of
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algorithm K(1k):

(φ, τ)←$ G(1k)

s←$ {0, 1}k

(pk, sk)←$K(1k)

pk ← (φ,pk, s)

sk ← (τ, sk)

Ret(pk, sk)

algorithm E(1k,pk, x):

(φ,pk, s)← pk

y ← F
n(k)
φ (x)

ω ← G(1k, 1n(k), φ, x, s)

c← E(1k,pk, y ; ω)

Retc

algorithm D(1k, sk, c):

(τ, sk)← sk

y ← D(1k, sk, c)

x← F
n(k)
τ (y)

Retx

Figure 3: Algorithms defining our deterministic encryptionschemeΠ = (K, E ,D).

trapdoor permutations. In Appendix 6 we generalize the construction to independently distributed messages
of high min-entropyµ, but under the (stronger and non-standard) assumption of the existence of trapdoor
permutations that are one-way under all input distributions of min entropyµ.

PRIMITIVES. A family of trapdoor permutationsT P = (G,F, F ) is a triple of PT algorithms, with the last
two being deterministic. On input1k, the key generation algorithmG returns a pair(φ, τ) of strings such
thatFφ(·) = F (φ, ·) is a permutation on{0, 1}k andF τ (·) = F (τ, ·) is its inverse. Iff : {0, 1}k → {0, 1}k

thenf i : {0, 1}k → {0, 1}k is defined inductively byf0(x) = x andf i+1(x) = f(f i(x)) for i ≥ 0 and
x ∈ {0, 1}k . The Blum-Micali-Yao [10, 31], Goldreich-Levin [24] generatorGT P takes input1k, 1n, φ and
x, s ∈ Bk and returns

〈
F 0
φ(x), s

〉
‖
〈
F 1
φ(x), s

〉
‖ · · · ‖ 〈Fn−1

φ (x), s〉 .

To discuss the security of our scheme, we say that an SS-adversary is uniform if for everyk and everyst
the components ofx are uniformly and independently distributed over{0, 1}k when(x, t)←$ Am(1

k, st).
We letAUN be the class of all uniform SS-adversaries. Iff : Bk → Bk then f(x) denotes the vec-
tor whoseith component isf(x[i]). We let GT P(1

k, 1n, φ,x, s) be the vector whoseith component is
GT P(1

k, 1n, φ,x[i], s).

THE CONSTRUCTION. We fix a (randomized) encryption schemeΠ = (K, E ,D). Assume thatE(1k, ·, ·)
draws its coins from{0, 1}n(k), and writeE(1k, pk, x ; ω) for the execution ofE on inputs1k, pk, x and
coinsω. Let T P = (G,F, F ) be a family of trapdoor permutations andGT P the associated generator. Our
deterministic encryption schemeΠ = (K, E ,D) is defined as shown in Figure 3. We refer to it asDE1.

INTUITION . A weird aspect of our scheme is that one is encrypting, underthe standard schemeE , a message
y under coinsω that are related toy. The challenge is to show that this works assumingT P is one-way and
Π is IND-CPA. So letA = (Ac, Am, Ag) ∈ AUN ∩ Aλ be an adversary with associated information length
ℓ(·) and number of messagesv(·) that is successful in violating the A-CSS security ofΠ. It is not hard to
see that the assumed security ofΠ allows us to reduce our task to showing that it is hard for a PT adversary
D to have a non-negligible advantage in computing the challenge bitb in the following distinguishing game.
The game generatesφ, τ,pk, sk, s as done byK(1k) and lets(x, t)←$ Am(1

k, λ). It lets

ω1 ← GT P(1
k, 1n(k), φ,x, s) and ω0←$ B

v(k)
n(k) ,

picks a random challenge bitb, and provides the adversaryD with φ, s, Fn(k)
φ (x), ωb, andt. Now, D’s

task would be merely the standard (and known to be hard) one ofbreaking the pseudorandomness ofGT P

(meaning, we would be done) but for one catch, namely thatD has “help” informationt about the seed(s)
x. If we could somehow remove it we would be done, but this seemshard to do directly. Instead, we
first produce fromD an adversaryI ′ that solves (although still with help) a computational (rather than

11



Experiment Expowf
T P,J(k)

(φ, τ)←$ G(1k) ; st←$ Jc(1
k, φ)

x←$ {0, 1}k ; t←$ Jp(1
k, x, φ, st)

y ← Fφ(x) ; x
′←$ Js(1

k, φ, st, y, t)
Ret(x = x′)

Experiment Exp
prg-v
T P,D,n(k)

(φ, τ)←$ G(1k) ; st←$ Dc(1
k, φ)

x←$ B
v(k)
k ; s←$ {0, 1}k ; d←$ {0, 1}

t←$ Dp(1
k,x, φ, st)

ω1 ← GT P(1
k, 1n(k), φ,x, s)

ω0←$ B
v(k)
n(k)

d′←$ Dg(1
k, φ, st, F

n(k)
φ (x),ωd, s, t)

Ret(d = d′)

Figure 4: (Left) Experiment defining one-wayness ofT P = (G,F, F ). (Right) Experiment defining
pseudorandomness ofGT P .

decision) problem, namely that of invertingFφ: given φ, Fφ(x), and ℓ(·) bits of information aboutx,
our adversary computesx. This is obtained by noting that the Goldreich-Levin [24] and Blum-Micali-
Yao [10, 31] proof of pseudorandomness ofGT P based on the one-wayness ofT P generalizes to say that
GT P remains pseudorandom in the presence ofℓ(·) bits of help information about the seed assumingT P
is one-way in the presence ofℓ(·) bits of help information about the input. Now we need to turnI ′ into
an adversary succeeding at the same task, but without help. We appeal to Theorem 4.1, which allows us to
assume our starting adversaryA was boolean, meaningℓ(·) = 1. In this case it is easy to dispense with the
help provided toI because we can try both values of it and lower our success probability by at most a factor
of 2.

We remark that we have made crucial use of the fact that the adversary constructed by Theorem 4.1 has
the same message space as the original one. This means that ifthe latter is inAUN then so is the former,
so that B-CSS for uniform adversaries implies A-CSS for uniform adversaries. We now proceed to the full
proof.

OWPS AND PRGS WITH HELP. For our proof, we will need to extend the usual frameworks ofone-wayness
and pseudorandomness to adversaries with “help.” An inversion adversaryJ = (Jc, Jp, Js) is a triple of
non-uniform algorithms. IfT P = (G,F, F ) is a family of trapdoor permutations we let

Advowf
T P,J(k) = Pr

[

Expowf
T P,J(k)⇒ true

]

where the experiment is shown in Figure 4. The running time ofJ is defined as the sum of the running times
of Jc andJs, so thatJ is PT if Jc, Js are PT. (Jp is not required to be PT.) We say thatJ has help-lengthℓ(·)
if the output ofJp(1k, ·, ·, ·) is always of lengthℓ(k). We say thatJ is unaided if it has help lengthℓ(·) = 0.
We letJℓ denote the class of all PT inversion adversaries with help lengthℓ(·). We sayT P is one-way for
help-lengthℓ(·) if Advowf

T P,J(·) is negligible for allJ ∈ Jℓ. We say thatT P is one-way if it is one-way for
help-lengthℓ(·) = 0. The following, although trivial, will be very useful.

Proposition 5.1 LetT P be a family of trapdoor permutations andJ an inversion adversary with help-length
ℓ(·). Then there is an inversion adversaryJ ′ with help-length 0 such that

Advowf
T P,J(k) ≤ 2ℓ(k) ·Advowf

T P,J ′(k)

for all k, and the running time ofJ ′ is that ofJ plusO(ℓ). �

Proof: Let J = (Jc, Jp, Js) andJ ′ = (Jc,Λ, J
′
s) whereJ ′

s(1
k, φ, st, y, λ) lets t←$ {0, 1}ℓ(k) and returns

Js(1
k, φ, st, y, t).
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A PRG adversaryD = (Dc,Dp,Dg) is a triple of non-uniform algorithms. IfT P = (G,F, F ) is a family
of trapdoor permutations andGT P is the corresponding generator we let

Adv
prg-v
T P,D,n(k) = 2 · Pr

[

Exp
prg-v
T P,D,n(k)⇒ true

]

− 1

where the experiment is shown in Figure 4 andv(·), n(·) : N→ N. The running time ofD is defined as the
sum of the running times ofDc andDg, so thatD is PT if Dc,Dg are PT. (Dp is not required to be PT.) We
say thatD has help-lengthℓ(·) if the output ofDp(1

k, ·, ·, ·) is always of lengthℓ(k). We letDℓ denote the
class of all PT PRG-adversaries with help lengthℓ(·). We sayGT P is pseudorandom for help-lengthℓ(·) if
Adv

prg-v
T P,D,n(·) is negligible for allD ∈ Dℓ and all polynomialsv, n. We say thatGT P is pseudorandom if

it is pseudorandom for help-lengthℓ(·) = 0. We remark that it is important thatDp does not gets as input,
meaning the help information is only aboutx. The following says that ifT P is one-way for help-lengthℓ(·)
thenGT P is pseudorandom for help-lengthℓ(·). The caseℓ(·) = 0 is the standard result [10, 31, 24] saying
thatGT P is pseudorandom ifT P is one-way. The proof of the following is in Appendix F.

Lemma 5.2 Let T P = (G,F, F ) be a family of trapdoor permutations. Letv(·), n(·) be polynomials. Let
D be a PRG-adversary with help-lengthℓ(·) and letǫ(·) = Adv

prg-v
T P,D,n(·) > 0. Then there is an inversion

adversaryJ with help-lengthℓ(·) such that

ǫ(k) ≤ 4n(k)v(k) ·Advowf
T P,J(k)

and the running time ofJ is

TJ = O(k3n4v4ǫ−4) +O(TD + nvTF )k
2n2v2ǫ−2 ,

whereTX is the running time ofX. �

IND-CPA. Associate to (randomized) encryption schemeΠ = (K, E ,D) and adversaryB the experiment
Exp

ind-cpa
Π,B

(k) defined by

b←$ {0, 1} ; (pk, sk)←$K(1k) ; b′←$ BE
pk
(LR(·,·,b))(pk) ; Ret(b = b′)

whereLR(M0,M1, b) = Mb. B is an IND-CPA adversary if all its oracle queries consist of equal length
strings. Let

Adv
ind-cpa
Π,B

(k) = 2 · Pr
[

Exp
ind-cpa
Π,B

(k)⇒ true
]

− 1 .

We say thatΠ is IND-CPA secure ifAdv
ind-cpa
Π,B

(·) is negligible for all PT IND-CPA adversariesB.

SECURITY OF OUR SCHEME. The following says that our scheme is B-CSS secure for uniform adversaries
assumingT P is one-way andΠ is IND-CPA secure. By Theorem 4.1 it is A-CSS secure for uniform
adversaries under the same assumptions and a constant factor loss in security. Since the existence of one-
way trapdoor permutations implies the existence of IND-CPAsecure encryption schemes we obtain the
results under the sole assumption of the existence of one-way trapdoor permutations.

Theorem 5.3 Let T P = (G,F, F ) be a family of trapdoor permutations andΠ = (K, E ,D) an encryption
scheme. LetΠ = (K, E ,D) be the associated deterministic encryption scheme as per our construction
above. LetA = (Ac, Am, Ac) ∈ AB ∩ Aλ ∩ AUN be an SS-adversary againstΠ with advantageǫ(·) =
Advcss

Π,A(·) > 0 and number of messagesv(·). Then there is an unaided inversion adversaryJ and an
IND-CPA adversaryB such that for allk ∈ N

ǫ(k) ≤ 2 ·Adv
ind-cpa
Π,B

(k) + 16n(k)v(k) ·Advowf
T P,J(k) . (10)

The running time ofB is that ofA plusO(nTF + TG) and it makesv(k) oracle queries. The running time
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of J is

O(k3n4v4ǫ−4) +O(TA + TE + TK + nvTF ) ·k
2n2v2ǫ−2 (11)

whereTX is the running time ofX. �

Proof: Consider the experiments of Figure 5. ThereE(1k,pk,y ; ω) is the vector whoseith component is
E(1k,pk,y[i] ; ω[i]). Let

Pa = Pr
[

Expd-a
Π,A(k)⇒ true

]

for a ∈ {0, 1}. Then

Advcss
Π,A(k) = 2P1 − 1 = 2(P1 − P0) + (2P0 − 1) .

AdversaryB is shown in Figure 5, and we omit the (easy) analysis establishing that

2P0 − 1 ≤ Adv
ind-cpa
Π,B

(k) .

Next we define PRG-adversaryD = (Λ,Dp,Dg) with help lengthℓ(·) as shown in Figure 6 and claim that

P1 − P0 ≤ 2 ·Adv
prg-v
T P,D,n(k) . (12)

Before justifying this claim let us see how to conclude. LetJ ′ be the inversion adversary obtained fromD
by Lemma 5.2. It also has help-lengthℓ(·). Now apply Proposition 5.1 to get inversion adversaryJ with
help-length 0. Now, putting together the above would give us

Advcss
Π,A(k) ≤ Adv

ind-cpa
Π,B

(k) + 16n(k)v(k)Advowf
T P,J(k) . (13)

However, (10) has an extra factor of 2 on the first right-hand-side term. This is to ensure that the running
time of J is as claimed. To see this, consider two cases. The first is when 2(P1 − P0) ≥ ǫ(k)/2. In this
case, (12) implies thatAdv

prg-v
T P,D,n(k) ≥ ǫ(k)/8, and hence the running time ofJ ′ (and henceJ) is, up

to a constant factor, as given by Lemma 5.2. However, in the second case, namely2(P1 − P0) < ǫ(k)/2,
the value ofAdv

prg-v
T P,D,n(k) could be very small and the running time ofJ ′ (and henceJ) would not be as

shown in (11). But also in this case we have2P0 − 1 ≥ ǫ(k)/2 so

Advcss
Π,A(k) ≤ 2(2P0 − 1) ≤ 2 ·Adv

ind-cpa
Π,B

(k)

so (10) —but not (13)— is true regardless of the advantage ofJ in this case. Accordingly, we simply halt
J ′ (and henceJ) when its running time hits the bound (11).

It remains to justify (12). Letd be the challenge bit ofExp
prg-v
T P,D,n(k) andd′ the output ofDg. Then

Pr
[
d′ = 1 | d = 1

]

= Pr
[
c = c′ | d = 1

]

= Pr
[
c′ = 1 | c = 1 ∧ d = 1

] 1

2
+ (1− Pr

[
c′ = 1 | c = 0 ∧ d = 1

]
)
1

2

=
1

2
+

1

2
Pr [ g = t1 | c = 1 ∧ d = 1 ]−

1

2
Pr [ g = t1 | c = 0 ∧ d = 1 ]

=
1

2
+

1

2
Pr

[

Expd-1
T P,A(k)⇒ true | b = 1

]

−
1

2
Pr

[

Expd-1
T P,A(k)⇒ false | b = 0

]

=
1

2
+

1

2
P1 ,
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Experiment Expd-1
Π,A(k) / Expd-0

Π,A(k)

b←$ {0, 1}

(x0, t0), (x1, t1)←$ Am(1
k, λ)

(φ, τ)←$ G(1k) ; s←$ {0, 1}k

(pk, sk)←$K(1k) ; pk ← (φ,pk, s)

ω ← GT P(1
k, 1n(k), φ,xb, s)

ω←$ B
v(k)
n(k)

y← F
n(k)
φ (xb) ; c← E(1

k,pk,y ; ω)

g←$ Ag(1
k, pk, c, λ)

If g = t1 thenb′ ← 1 elseb′ ← 0

Ret(b = b′)

adversaryBE
pk
(LR(·,·,b))(pk):

(x0, t0), (x1, t1)←$ Am(1
k, λ)

(φ, τ)←$ G(1k) ; s←$ {0, 1}k

pk ← (φ,pk, s)

y0 ← F
n(k)
φ (x0) ; y1 ← F

n(k)
φ (x1)

For i = 1, . . . , v(k) do

c[i]←$ E
pk
(LR(y0[i],y1[i], b))

g←$ Ag(1
k,pk, c, λ)

If g = t1 then Ret 1 else Ret 0

Figure 5: (Left) Experiments used in the proof of Theorem 5.3. The experimentd-0 includes the boxed
statement whiled-1 does not.(Right) IND-CPA adversary for proof of Theorem 5.3.

whereb is the challenge bit of the Figure 5 experiments. Similarly

Pr
[
d′ = 1 | d = 0

]

= Pr
[
c = c′ | d = 0

]

= Pr
[
c′ = 1 | c = 1 ∧ d = 0

] 1

2
+ (1− Pr

[
c′ = 1 | c = 0 ∧ d = 0

]
)
1

2

=
1

2
+

1

2
Pr [ g = t1 | c = 1 ∧ d = 0 ]−

1

2
Pr [ g = t1 | c = 0 ∧ d = 0 ]

=
1

2
+

1

2
Pr

[

Expd-0
T P,A(k)⇒ true | b = 1

]

−
1

2
Pr

[

Expd-0
T P,A(k)⇒ false | b = 0

]

=
1

2
+

1

2
P0 .

So

Adv
prg-v
T P,D,n(k) = Pr

[
d′ = 1 | d = 1

]
− Pr

[
d′ = 1 | d = 0

]

=

(
1

2
+

1

2
P1

)

−

(
1

2
+

1

2
P0

)

=
1

2
(P1 − P0)

establishing (12).

INSTANTIATIONS. DE1 admits quite efficient instantiations. Say we want to encrypt a 1024 bit (random)
message. Let the trapdoor one-way permutation be squaring modulo a 1024-bit composite numberN [8] that
is part of the public key. Then the PRG requiresn squarings, wheren is the number of bits of randomness
required by the (randomized) encryption schemeΠ. LetΠ be the Blum-Goldwasser scheme [9], also using
a 1024-bit modulus. (This modulus, also part of the public key, must be different fromN .) Then encryption
cost ofDE1 is that of Blum-Goldwasser (1024 squarings) plusn = 1024 squarings for the PRG to get coins
for Π. (We assume here, and below, an efficient mapping from bits togroup elements, otherwisen increases
by a small amount.) Decryption time also doubles, coming in at about 4 exponentiations modulo 512 bit
numbers (less than one 1024 bit exponentiation!) using Chinese remainders. The ciphertext size is that of
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algorithm Dp(1
k,x, φ, λ):

Repeat

(x′, t′)←$ Am(1
k, λ)

Until (x′ = x)

t← t′

Rett

algorithm Dg(1
k, φ, λ,y,ω, s, t):

c←$ {0, 1} ; y1 ← y ; t1 ← t ; ω1 ← ω

(x0, t0)←$ Am(1
k, λ)

(pk, sk)←$K(1k) ; pk ← (φ,pk, s)

ω0 ← GT P(1
k, 1n(k), φ,x0, s) ; y0 ← F

n(k)
φ (x0)

c← E(1k,pk,yc ; ωc)

g←$ Ag(1
k,pk, c, λ)

If (g = tc) thenc′ ← 1 elsec′ ← 0

Retc⊕ c′ ⊕ 1

Figure 6: PRG adversary for proof of Theorem 5.3.

Blum-Goldwasser, namely 2048 bits, and security rests solely on factoring. Alternatively, letΠ be El Gamal
hybrid encryption using a 160-bit group. (A universal hash of the DH key is used to one-time symmetrically
encrypt the data.) Encryption time forDE1 is that of hybrid El Gamal plus the time forn = 320 squarings
moduloN , decryption time is 2 exponentiations modulo 512 bit numbers plus one 160-bit exponentiation.
and the ciphertext size is only1344 bits. The security assumption is now factoring + DDH.

DISCUSSION. One might ask why we did not work with IND rather than with CSSnotions. The reason is
that it is unclear how to meaningfully capture the case of uniformly and independently distributed messages
with IND. We could certainly say that an IND-adversaryI = (Ic, Im, Ig) is uniform if for everyk and
everyst, b the components ofx are uniformly distributed over{0, 1}k whenx←$ Im(1

k, b, st). But such
an adversary would always have zero advantage.

6 Generalizing Our Construction to Non-Uniform Messages

Section 5 provides a deterministic encryption scheme for the A-CSS-secure encryption of independent, uni-
formly distributed messages assuming the existence of trapdoor one-way permutations. Here we explain
how the same scheme provides A-CSS-secure encryption of independent messages that are not necessarily
uniformly distributed but rather have high min-entropyµ, as long as the assumption is strengthened to the
existence of trapdoor permutations one-way for distributions of min-entropyµ. We point out that a similar
assumption was used by [19] in order to construct signature schemes getting only “imperfect” randomness.
The main observation needed for the generalization is simply that min-entropy is preserved under permuta-
tion, meaning if a random variableX overBk has min-entropyµ then so doesf(X) for any permutation
f on Bk. In the following we make the result more precise and sketch how the previous proof approach
generalizes.

EXTENDING THE FRAMEWORK. An inversion adversaryJ = (Jm, Jc, Jp, Js) is now a 4-tuple whereJm
is a non-uniform algorithm with[Jm(1k)] ⊆ {0, 1}k andJc, Jp, Js are as before. We say thatJ ∈ J µ

ME

if the output ofJm has min-entropyµ. The running time ofJ is defined as the sum of the running times
of Jm, Jc andJs. A PRG-adversaryD = (Dm,Dc,Dp,Dg) is similarly a 4-tuple whereDm is a non-
uniform algorithm with[Dm(1

k, 1v)] ⊆ Bv
k andDc,Dp,Dg are as before. We say thatD ∈ Dµ

ME if the
components of the output ofDm are independently distributed, each with min-entropyµ. The running time
of D is defined as the sum of the running times ofDm, Dc andDg. The help lengthℓ(·) is defined as before
andJℓ,Dℓ are the corresponding classes.J is unaided if it has help length 0. ExperimentExpowf

T P,J(k) of
Figure 4 is modified by replacingx←$ {0, 1}k by x←$ Jm(1

k). ExperimentExp
prg-v
T P,D,n(k) of Figure 4 is
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modified by replacingx←$ B
v(k)
k by x←$ Dm(1

k, 1v(k)). The advantage functions are defined as before,
and we say thatT P is one-way for min-entropyµ if Advowf

T P,J(·) is negligible for all PTJ ∈ J0 ∩ J
µ
ME.

Proposition 5.1 generalizes so that ifJ is inJ µ
ME then so isJ ′. Lemma 5.2 generalizes so that ifD ∈ Dµ

ME

thenJ ∈ J µ
ME.

SECURITY OF OUR SCHEME. Theorem 5.3 generalizes as follows. In the preamble, instead ofA being
in AB ∩ Aλ ∩ AUN, let it be inAB ∩ Aλ ∩ A

µ
ME ∩ A×. Then, in the conclusion, the unaided inversion

adversaryJ will be in J µ
ME. The theorem is saying that our scheme is B-CSS secure for independently

distributed messages of min-entropyµ assumingT P is one-way for min-entropyµ andΠ is IND-CPA.
Since the transformation of Theorem 4.1 preserves the message distribution, the corollary is that our scheme
is A-CSS secure under the same conditions. Since the existence of a family of trapdoor permutations one-
way for min-entropyµ implies the existence of one-way trapdoor permutations, italso implies the existence
of IND-CPA secure encryption schemes and so we obtain the results under the sole assumption of the
existence of trapdoor permutations one-way for min-entropy µ.

7 From Deterministic to Randomized PKE

OVERVIEW. As observed in the introduction, any PRIV-secure deterministic schemeΠ is trivially a one-
way trapdoor injection, meaning an obvious method for building a secure randomized schemeΠ is to use
Π within a generic construction (i.e., [24, 21]) to derive an IND-CPA secure scheme. The equally obvious
downside of such an approach is the lack of efficiency. For example, [24] requires large ciphertexts:O(k ·
|M |) for security parameterk and messageM . ([21] requires both large ciphertexts and large keys, though
it meets CCA security.) One would expect to do better given a primitive that provides more than just one-
wayness.

A tempting approach to achieve a more efficient constructionis the following. Noting thatΠ meets a
form of semantic-security whenever there is sufficient entropy in the message space, we could haveΠ en-
crypt by padding messages with an appropriate number of random bits, and then applyingΠ to the resulting
padded string. This would ensure the scheme always enjoys PRIV security, even when messages have no
entropy. But isΠ also IND-CPA? In general the answer is no, due to the fact thatΠ only provides security
when messages are chosen independently of the public key. Onthe other hand, the IND-CPA definition
mandates security even against public-key dependent messages. One can easily build a schemeΠ that is
PRIV-secure but for whichΠ as described isnot IND-CPA.

Fortunately we can circumvent the key-independency issue using a hybrid-encryption approach. Par-
ticularly, encryption first generates a fresh session key and a random pad. Then, it usesΠ to encrypt the
concatenation of the session key and pad followed by using a standard (one-time secure) encryption scheme
to encrypt the actual message under the session key. This approach works even in the context of chosen-
ciphertext attacks, see Appendix G.

KEY ENCAPSULATION. We will in fact show how to build a (randomized) key encapsulation mechanism
(KEM) [15] from any PRIV-secure deterministic encryption scheme. Using the KEM formulation is simpler
and sufficient: in conjunction with any (one-time secure) symmetric scheme, this provides an IND-CPA
scheme [15]. Formally, a key-encapsulation mechanismΨ = (KK,KE ,KD) is a triple of algorithms. The
key generation algorithmKK takes input security parameter1k and outputs a public key, secret key pair. The
key encapsulation algorithmKE takes input1k and public keypk and outputs a session keyK ∈ {0, 1}s(k)

and a ciphertext. The functions : N→ N specifiesΨ’s session-key length. The key decapsulation algorithm
KD takes as input1k, a secret keysk, and a ciphertext and outputs a session key. A KEM-adversaryA is a
non-uniform algorithm that takes inputs1k, a public key, a bit string, and a ciphertext and outputs a bit. We
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Experiment Expkem
Ψ,A(k)

b←$ {0, 1} ; (pk, sk)←$KK(1k)

(K1, C)←$KE(1k, pk);K0←$ {0, 1}s(k)

b′←$ A(1k, pk,Kb, C)

Ret(b = b′)

Figure 7: Experiment defining advantage of a KEM adversaryA.

define the KEM advantage ofA againstΨ by

Advkem
Ψ,A(k) = 2 · Pr

[

Expkem
Ψ,A(k)⇒ true

]

− 1

where the kem experiment is defined in Figure 7.

THE CONSTRUCTION. Fix functionsµ, s : N → N. LetΠ = (K, E ,D) be a (deterministic) PKE scheme.
We sayΠ is suitable if it encrypts messages of lengthw(·) such thatw(k) ≥ µ(k) + s(k) for all k ∈ N. Let
Ψ = (KK,KE ,KD) be the KEM with session key lengths(·) defined by the subsequent three algorithms.

algorithm KK(1k):

(pk, sk)←$K(1k)
Ret(pk, sk)

algorithm KE(1k, pk):

R←$ {0, 1}µ(k) ; K←$ {0, 1}s(k)

c← E(1k, pk,R ‖K)
Ret(K, c)

algorithm KD(1k, sk, c):

R ‖K ← D(sk, c)
RetK

The next theorem captures the security ofΨ.

Theorem 7.1 Let µ, s : N → N. Let Π = (K, E ,D) be a suitable PKE scheme. LetΨ = (KK,KE ,KD)
be the associated KEM scheme as per our construction. LetA be a KEM-adversary. Then there exists an
IND-adversaryI = (Ic, Im, Ig) ∈ I

µ
ME ∩ Iλ, outputting a single message, such that for allk ∈ N

Advkem
Ψ,A(k) ≤ Advind

Π,I(k) .

The running time ofI is that ofA. �

Proof: Below we writeµ for µ(k) ands for s(k). We buildI∗ = (I∗c , I
∗
m, I

∗
g ) usingA, as shown below.

algorithm I∗c (1
k):

K←$ {0, 1}s

RetK

algorithm I∗m(1
k, b,K):

R←$ {0, 1}µ

If b = 1 then RetR ‖K
K ′←$ {0, 1}s

RetR ‖K ′

algorithm I∗g (1
k, pk, c,K):

b′←$ A(1k, pk,K, c)
Retb′

I∗ has min-entropyµ because of the selection ofR. It is straightforward to verify that

Pr
[

Exp
ind-cpa
Π,I∗ (k)⇒ true

]

= Pr
[

Expkem
Ψ,A(k)⇒ true

]

.

Finally, letI be the IND-adversary with trivial state function that worksjust likeI∗ except thatK is replaced
by a “best” value.

DISCUSSION. We make several observations about the construction. First, Ψ provideswitness-recovering
public-key encryption: all the randomness used to generatea ciphertext is recovered withinKD. Second,
we only requireΠ to be secure against adversaries that output a single message. This is notable because,
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as discussed in Section 3, security against single-messageadversaries is strictly weaker than multi-message
adversaries. Finally, one might wonder if it is possible to dispense with the random paddingR. In fact it is
requisite to meet KEM security. LetΨ′ work just like our constructionΨ except that we omitR. But then
there exists an easy KEM-adversary againstΨ′: just computec′ ← E(1k,pk,K) and output1 iff c′ = c. If
E is deterministic the advantage of this adversary is1− 2−s(k).
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A Message-based Partial Information

In our css and sss experiments, the informationt computed byAm can depend on coins underlying the
generation ofx rather than merely onx. Here we show that the two formulations are in fact equivalent and
then explore the implications for single versus multi-message security that motivated this question.

EQUIVALENCE. An SS-adversaryA = (Ac, Am, Ag) is said to be separable if there are non-uniform
algorithmsAd, Ap called the message space and partial information function,respectively, such that the
outputs of the following are identically distributed for all k ∈ N and allst:

(x, t)←$ Am(1
k, st)

Ret(x, t)

x←$ Ad(1
k, st)

t←$ Ap(1
k,x, st)

Ret(x, t)

LetAsep be the class of separable SS-adversaries. The following says that restricting attention to separable
adversaries leaves the class of secure schemes unchanged.

Theorem A.1 Let Π = (K, E ,D) be a PKE scheme. LetA = (Ac, Am, Ag) ∈ A
µ
ME be an SS-adversary

with information lengthℓ(·). Then there is a separable SS-adversaryA′ = (Ac, A
′
m, A

′
g) ∈ A

µ
ME ∩ Asep

with information lengthℓ(·) such that for allk ∈ N

Advcss
Π,A(k) ≤ Advcss

Π,A′(k) .

The running time ofA′ is that ofA plusO(ℓ+ µ). If A is inAδ
BB then so isA′. �

Proof: Let m(k) = ⌈µ(k)⌉ and let v(·) be the number of messages output byA. We obtainA′ =
(Ac, A

′
m, A

′
g), which will outputv(·) + 1 messages, by defining

algorithm A′
m(1

k, st):

(x, t)←$ Am(1
k, st)

r←$ {0, 1}m(k)

x[v(k) + 1]← t ‖ r
Ret(x, t)

algorithm A′
g(1

k,pk, c′, st):

c← (c′[1], . . . , c′[v(k)])
g←$ Ag(1

k,pk, c, st)
Retg

That is,A′
m simply putst into the message vector, randomizing it to ensure the min-entropy of the adversary

is not reduced. it is easy to see thatA′ = (Ac, A
′
m, A

′
g) is separable and has the same advantage asA.

WHY SEPARABILITY? The following says that in the context of separable adversaries producing indepen-
dently distributed messages, security of single and multi message encryption are equivalent. The proof is a
simple hybrid argument.

Proposition A.2 Let Π = (K, E ,D) be a PKE scheme. LetA = (Ac, Am, Ag) ∈ A
µ
ME ∩ Asep ∩ A×

be an SS-adversary with information lengthℓ(·) outputtingv(·) messages. Then there is an SS-adversary
A′ = (A′

c, A
′
m, A

′
g) ∈ A

µ
ME ∩ Asep with information lengthℓ(·) outputtingv′(·) = 1 message such that for

all k ∈ N

Advcss
Π,A(k) ≤ v(k) ·Advcss

Π,A′(k) .

The running time ofA′ is that ofA plusO(v). If A is inAδ
BB then so isA′. �

This leads to the following possible way to simplify the proof of Theorem 5.3. First, by Theorem A.1,
restrict attention to separable adversaries. Second, by Proposition A.2, assumev(·) = 1. The catch is that
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Theorem A.1 does not preserve message independence, meaning even ifA ∈ A×, adversaryA′ need not be
in A×. This is why Theorem 5.3 explicitly considers arbitraryv(·).

OPEN QUESTIONS. The above leads to several interesting open questions. Thefirst is whether there is
a reduction to separated adversaries that preserves independence, meaning an analog of Theorem A.1 in
whichA ∈ A× impliesA′ ∈ A×. Barring this another open question is whether PropositionA.2 extends to
non-separable adversaries. In case that the answer to either question is “no” it would also be interesting to
see counter-examples.

B BB-CSS⇒ B-CSS: Proof of Theorem 4.2

Let n : N → N be a function to be specified later. Below we writen for n(k). LetH : {0, 1}s × {0, 1} →
{0, 1} be a family of pairwise independent hash functions where each keyK ∈ {0, 1}s specifies a particular
functionHK : {0, 1} → {0, 1}. (Specifically lets = 2 so that a keyK = a ‖ b is a pair of bits and let
HK(x) = ax ⊕ b.) Let Sn = {0, 1}s × · · · × {0, 1}s where{0, 1}s is repeatedn times. SinceA ∈ Aλ

its state functionAc always outputsλ, which is the last input to bothAm andAg. LetA∗ = (A∗
c , A

∗
m, A

∗
g)

where
algorithm A∗

c(1
k):

K←$ Sn

RetK

algorithm A∗
m(1

k,K):

(x, t)←$ Am(1
k, λ)

i←$ [1 .. n]
Ret(x,H(K[i], t))

algorithm A∗
g(1

k, pk, c,K):

g←$ Ag(1
k, pk, c, λ)

j←$ [1 .. n]
RetH(K[j], g)

For t ∈ {0, 1} letZt(K) = Pr
[
H(K[i], t) = 0 : i←$ [1 .. n]

]
and let

G1 =

{

K ∈ Sn :

∣
∣
∣
∣
Zt(K)−

1

2

∣
∣
∣
∣
≥

1

4
for somet ∈ {0, 1}

}

.

Claim B.1 Pr [K ∈ G1 : K←$ Sn ] ≤ 4e−n/32
�

The proof of the above will use the following standard Chernoff bound.

Lemma B.2 Let X1, . . . ,Xn be independent random variables taking values in[0, 1] and letX = X1 +
· · ·+Xn. Then for anya ≥ 0

Pr [ |X − E [X]| ≥ a ] ≤ 2e−a2/2n
�

Proof of Claim B.1: Let Xt,i(K) = 1 − H(K[i], t). Let Xt =
∑n

i=1 Xt,i. ThenE [Xt,i] = 1/2 and
E [Xt] = n/2. Observe thatZt(K) = Xt(K)/n. So, with probabilities taken overK←$ Sn,

Pr

[ ∣
∣
∣
∣
Zt −

1

2

∣
∣
∣
∣
≥

1

4

]

= Pr
[ ∣
∣
∣Xt −

n

2

∣
∣
∣ ≥

n

4

]

= Pr
[ ∣
∣Xt − E [Xt]

∣
∣ ≥

n

4

]

.

But {Xt,i}
n
i=1 are independent so we can use Lemma B.2

Pr
[ ∣
∣Xt − E [Xt]

∣
∣ ≥

n

4

]

≤ 2e−(
n

4 )
2
/2n = 2e−n/32 .

Finally, we can apply a union bound to get

Pr [K ∈ G1 : K←$ Sn ] ≤
∑

t∈{0,1}

Pr
[ ∣
∣
∣Xt −

n

2

∣
∣
∣ ≥

n

4
: K←$ Sn

]

≤ 4e−n/32 .

Claim B.3 Advcss
Π,A∗(k) =

1

2n
Advcss

Π,A(k) �

22



Proof: Let P1 = Pr
[
Expcss-1

Π,A (k)⇒ true
]

andP0 = Pr
[
Expcss-0

Π,A (k)⇒ false
]
. Then

Pr
[
Expcss-1

Π,A∗(k)⇒ true
]

=
P1

n
·1 +

(

1−
P1

n

)
1

2
and

Pr
[
Expcss-0

Π,A∗(k)⇒ false
]

=
P0

n
·1 +

(

1−
P0

n

)
1

2

where we have used thatH is pairwise independent and so

Advcss
Π,A∗(k) =

P1

n
−

P0

n
+

1

2

[(

1−
P1

n

)

−

(

1−
P0

n

)]

=
1

2

P1

n
−

1

2

P0

n
=

1

2n
·Advcss

Π,A(k) .

Let Y (K) be the css advantage ofA∗ when we do not choosest at random in the game but instead useK.
ThenAdvcss

Π,A∗(k) = E [Y ], where the expectation is overK←$ Sn. Let P = 2−sn be the probability of
picking a particularK. Then we use the definition of expectation and Claim B.1 to getthat

E [Y ] =
∑

K/∈G1

Y (K) ·P +
∑

K∈G1

Y (K) ·P

≤
∑

K/∈G1

Y (K) ·P + Pr [K ∈ G1 : K←$ Sn ] ≤
∑

K/∈G1

Y (K) ·P + 4e−n/32 .

Rearranging, applying Claim B.3, and recalling thatǫ = Advcss
Π,A(k) gives

∑

K/∈G1

Y (K) ·P ≥ E [Y ]− 4e−n/32 = Advcss
Π,A∗(k)−

4

en/32
=

ǫ

2n
−

4

en/32
. (14)

Then choosingn so that4e−n/32 ≤ ǫ/4n ensures that the difference in (14) is greater than or equal to ǫ/4n.
This ensures that there exists aK such thatY (K) ≥ ǫ/4n and alsoK /∈ G1. LetA′ be the adversary that
runs likeA∗ except that it always uses such aK. ThenA′ has trivial state function, is 1/4-balanced, and has
advantage at leastǫ/4n.

Now we determine a suitable value forn. We need that4ne−n/32 ≤ ǫ/4. We can first find anN so that
4n ≤ en/64 for all n ≥ N . This holds forN = 485. We can then find ann ≥ 485 such thate−n/64 ≤ ǫ/4.
This concludes the proof.

C A-CSS⇒ A-SSS: Proof of Theorem 4.3

We define the simulatorS below.

Algorithm S(1k, pk, λ):

(x0, t0)←$ Am(1
k, st)

c←$ E(1k, pk,x0)
g←$ Ag(1

k, pk, c, st)
Retg

Then we have that
Pr

[
Expsss-1

Π,A,S(k)⇒ true
]
= Pr

[
Expcss-1

Π,A (k)⇒ true
]

because the experiments are exactly the same in the case thatb = 1. By the construction ofS we also have
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that
Pr

[
Expsss-0

Π,A,S(k)⇒ false
]
= Pr

[
Expcss-0

Π,A (k)⇒ false
]

by the same reasoning. The theorem statement follows.

D BB-SSS⇒ IND: Proof of Theorem 4.4

We defineA = (Λ, Am, Ag) via

algorithm Am(1
k, λ):

t←$ {0, 1}
x←$ Im(1

k, t, λ)
Ret(x, t)

algorithm Ag(1
k, pk, c, λ):

t′←$ Ig(1
k, pk, c, λ)

Rett′

Note thatA is perfectly balanced since it choosesd uniformly. LetS be an arbitrary simulator. LetAg⇒ t
be the event thatAg outputst. inExpsss

Π,A,S(k). LetS ; t be the event thatS outputs1−t in Expsss
Π,A,S(k).

Then,

Advsss
Π,A,S(k) = 2 · Pr

[
Expsss

Π,A,S(k)⇒ true
]
− 1

= 2 · (Pr [Ag⇒ t | b = 1 ] · Pr [ b = 1 ] + Pr [ S ; t | b = 0 ] · Pr [ b = 0 ])− 1

= 2 ·

(
1

2
Pr

[

Expind
Π,I(k)⇒ true

]

+
1

2
·
1

2

)

− 1 (15)

= Pr
[

Expind
Π,I(k)⇒ true

]

−
1

2

=
1

2
+

1

2
·Advind

Π,I(k) −
1

2
(16)

=
1

2
·Advind

Π,I(k) .

In the case thatb = 1, the experimentExpsss
Π,A,S(k) simulates forI exactly the experimentExpind

Π,I(k). In
the case thatb = 0, the simulatorS receives no information about the bitt. Thus, the probability that it
outputs a bit not equal tot is 1/2. Together these facts justify (15). Equation (16) is derived by applying
(7).

E IND ⇒ BB-CSS: Proof of Theorem 4.5

First, to give an idea of the efficiency of the reduction relative to δ, note that forδ = 1/4, the running time
of I is increased over that ofA by the time to perform4k + 13 executions ofAm.

Let n(·) : N → N to be defined later; below we writen for n(·). We define two IND-adversaries
I = (Λ, Im, Ig) andI ′ = (Λ, I ′m, Ig), both with trivial state functions and with the other algorithms defined
below.

Algorithm Im(1
k, b, λ):

For i = 1, . . . , n do
(x, t)←$ Am(1

k, λ)
If t = b then Retx

Retx

Algorithm I ′m(1
k, b, λ):

Do (x, t)←$ Am(1
k, λ)

Until (t = b)
Retx

Algorithm Ig(1
k, pk, c, λ):

g←$ Ag(1
k, pk, c, λ)

Retg

Note thatI ′m may not be PT.Im is an approximation to it that is PT. We first state three claims and use them
to conclude, then proceed to prove the claims.
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Claim E.1 Advind
Π,I′(k) ≤ Advind

Π,I(k) + 4 ·

(
1

2
+ δ

)n−1

Claim E.2 Advcss
Π,A(k) ≤ 2·Advind

Π,I′(k)

Combining Claim E.1 and Claim E.2 gives that

Advcss
Π,A(k) = 2 ·Advind

Π,I(k) + 8

(
1

2
+ δ

)n−1

≤ 2 ·Advind
Π,I(k) + 2−k ,

the last part by setting

n(k) =

⌈

−
1

log
(
1
2 + δ

)

⌉

· (k + 3) + 1 .

Our final claim is that the min-entropy ofI is close to that ofA.

Claim E.3 I has min-entropyµ′(k) = µ(k)− 2 + log(1− 2δ).

Before justifying the claims, we fix some notation. Letx ∈ [Am(1
k, λ)] and letb ∈ {0, 1}. Let

p1 = Pr
[

t = 1 : (y, t)←$ Am(1
k, λ)

]

p0 = Pr
[

t = 0 : (y, t)←$ Am(1
k, λ)

]

= 1− p1

αb(x) = Pr
[

(y, t) = (x, b) : (y, t)←$ Am(1
k, λ)

]

γb(x) = Pr
[

y = x : y←$ Im(1
k, b, λ)

]

γ′b(x) = Pr
[

y = x : y←$ I ′m(1
k, b, λ)

]

.

Then, we have

γb(x) = pn−1
1−b ·α1−b(x) +

n−1∑

i=0

pi1−b · αb(x) = pn−1
1−b ·α1−b(x) + αb(x) ·

n−1∑

i=0

pi1−b

= pn−1
1−b ·α1−b(x) + αb(x) ·

1− pn1−b

pb
.

and

γ′b(x) =
∞∑

i=0

pi1−b · αb(x) =
αb(x)

pb
.

So,

∣
∣γ′b(x)− γb(x)

∣
∣ =

∣
∣
∣
∣

αb(x)

pb
− pn−1

1−b ·α1−b(x)− αb(x) ·
1− pn1−b

pb

∣
∣
∣
∣

=

∣
∣
∣
∣

αb(x)p
n
1−b

pb
− pn−1

1−b ·α1−b(x)

∣
∣
∣
∣
.

We now turn to proving the claims.
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Proof of Claim E.1: For anyb ∈ {0, 1},
∣
∣
∣Pr

[

Expind-b
Π,I′ (k)⇒ true

]

− Pr
[

Expind-b
Π,I (k)⇒ true

]∣
∣
∣ ≤ SD

(

I ′m(1
k, b), Im(1

k, b)
)

and

SD
(

I ′m(1
k, b), Im(1

k, b)
)

=
∑

x

∣
∣γ′b(x)− γb(x)

∣
∣

=
∑

x

∣
∣
∣
∣

αb(x)p
n
1−b

pb
− pn−1

1−b ·α1−b(x)

∣
∣
∣
∣

≤
∑

x

αb(x)p
n
1−b

pb
+

∑

x

pn−1
1−b ·α1−b(x)

= pn1−b

(∑

x

αb(x)

pb
︸ ︷︷ ︸

=1

)

+ pn−1
1−b

(∑

x

α1−b(x)

︸ ︷︷ ︸

≤1

)

≤ pn−1
1−b (p1−b + 1)

≤ 2pn−1
1−b

≤ 2 ·

(
1

2
+ δ

)n−1

where we have used the fact thatpb ≤ 1/2+ δ, which follows from the fact thatA is δ-balanced. The above
implies that

Advind
Π,I′(k)−Advind

Π,I(k) ≤ 4 ·

(
1

2
+ δ

)n−1

which proves the claim.

To prove Claim E.2 we will utilize the following lemma:

Lemma E.4 Let Π = (K, E ,D) be an encryption scheme andA = (Ac, Am, Ag) ∈ ASS ∩ Aλ ∩ AB be a
boolean ss-adversary. Consider the following experiment,wherek ∈ N:

(x, t)←$ Am(1
k, λ) ; (pk, sk)←$K(1k) ; c←$ E(pk,x) ; g←$ Ag(1

k, pk, c, λ) .

Let a1 = Pr [ g = 1 | t = 1 ] andb1 = Pr [ g = 1 | t = 0 ] andc1 = Pr [ t = 1 ]. Then

Advcss
Π,A(k) = (a1 − b1)(2c1 − 2c21) �

Proof of Lemma E.4: We extend the experiment of the lemma statement with the additional step

(x′, t′)←$ Am(1
k, λ) .

Then let

a0 = Pr [ g = 0 | t = 1 ] = 1− a1

b0 = Pr [ g = 0 | t = 0 ] = 1− b1

c0 = Pr [ t = 0 ] = 1− c1
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Then

Pr
[
Expcss-1

Π,A (k)⇒ true
]

= Pr [ g = t ]

= Pr [ g = 1 | t = 1 ] Pr [ t = 1 ] + Pr [ g = 0 | t = 0 ]Pr [ t = 0 ]

= a1c1 + b0c0 .

Also, using the fact thatg, t, t′ ∈ {0, 1},

Pr
[
Expcss-0

Π,A (k)⇒ false
]

= Pr
[
g = t′

]

= Pr
[
g = t ∧ t = t′

]
+ Pr

[
g 6= t ∧ t 6= t′

]

= Pr
[
g = 1 ∧ t = 1 ∧ t′ = 1

]
+ Pr

[
g = 0 ∧ t = 0 ∧ t′ = 0

]

+Pr
[
g = 1 ∧ t = 0 ∧ t′ = 1

]
+ Pr

[
g = 0 ∧ t = 1 ∧ t′ = 0

]
.

But the event “t′ = 1” is independent of its conjuncts, and similarly for “t′ = 0” so

Pr
[
Expcss-0

Π,A (k)⇒ false
]

= Pr [ g = 1 ∧ t = 1 ] Pr
[
t′ = 1

]
+Pr [ g = 0 ∧ t = 0 ]Pr

[
t′ = 0

]
+

Pr [ g = 1 ∧ t = 0 ]Pr
[
t′ = 1

]
+ Pr [ g = 0 ∧ t = 1 ]Pr

[
t′ = 0

]

= Pr [ g = 1 | t = 1 ] Pr [ t = 1 ] Pr
[
t′ = 1

]
+

Pr [ g = 0 | t = 0 ]Pr [ t = 0 ]Pr
[
t′ = 0

]
+

Pr [ g = 1 | t = 0 ]Pr [ t = 0 ]Pr
[
t′ = 1

]
+

Pr [ g = 0 | t = 1 ]Pr [ t = 1 ]Pr
[
t′ = 0

]

= a1c
2
1 + b0c

2
0 + b1c0c1 + a0c1c0 .

The last equality uses the facts thatPr[t′ = 1] = Pr[t = 1] = c1 andPr[t′ = 0] = Pr[t = 0] = c0. Now

Advcss
Π,A(k) = Pr

[
Expcss-1

Π,A (k)⇒ true
]
− Pr

[
Expcss-0

Π,A (k)⇒ false
]

= a1c1 + b0c0 − a1c
2
1 − b0c

2
0 − b1c0c1 − a0c1c0

= a1(c1 − c21) + b0(c0 − c20)− (a0 + b1)c0c1

but c0c1 = c1 − c21 and alsoc0c1 = c0 − c20 so

Advcss
Π,A(k) = (a1 + b0 − b1 − a0)(c1 − c21)

= (2a1 − 2b1)(c1 − c21)

= (a1 − b1)(2c1 − 2c21) .

Proof of Claim E.2: Consider the experiment of Lemma E.4. ThenPr[Expind-1
Π,I′ (k) ⇒ true] = a1 and

Pr[Expind-0
Π,I′ (k)⇒ false] = b1 soAdvind

Π,I′(k) = a1 − b1. By Lemma E.4

Advcss
Π,A(k) = Advind

Π,I′(k) ·(2c1 − 2c21) ≤ 2·Advind
Π,I′(k)

where we have used the fact that2c1 − 2c21 is maximized whenc1 = 1/2.
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Proof of Claim E.3: Fix b ∈ {0, 1}, x ∈ {0, 1}∗, andi ∈ [1..v(k)]. LetS(x, i) = { x : x[i] = x }. Then

Pr
[

x[i] = x : x←$ Im(1
k, b)

]

=
∑

x∈S(x,i)

γb(x)

≤
∑

x∈S(x,i)

αb(x)
1− pn1−b

pb
+ pn−1

1−bα1−b(x)

=
1− pn1−b

pb
·

∑

x∈S(x,i)

αb(x) + pn−1
1−b ·

∑

x∈S(x,i)

α1−b(x)

≤
1

pb

∑

x∈S(x,i)

(αb(x) + α1−b(x))

=
1

pb
Pr

[

x[i] = x : (x, t)←$ Am(1
k)

]

≤
1

pb
·2−µ(k)

≤
1

1/2 − δ
·2−µ(k)

= 2−µ(k)+1−log(1−2δ)

and sinceδ < 1/2 this is well-defined.

F Proof of Lemma 5.2

LetD = (Dc,Dp,Dg). The following allows us to reduce to the casev(·) = 1.

Claim F.1 There is a PRG-adversaryD′ = (D′
c,D

′
p,D

′
g) with help lengthℓ(·) such that for allk ∈ N

ǫ(k) ≤ v(k) ·Adv
prg-1
T P,D′,n(k) .

The running time ofD′ is TD +O(nv) · TF . �

Proof: The proof is a simple hybrid argument. AdversaryD′ is shown in Figure 8. We highlight the fact
thatx, i need to be chosen byD′

c and put intost′. This is important to ensure that the help-length ofD′

stays equal to that ofD. We omit the analysis.

A prediction adversaryP = (Pc, Pp, Pg) is a triple of algorithms. We let

Adv
pre
T P,P (k) = 2 · Pr

[

Exp
pre
T P,P (k)⇒ true

]

− 1

where the experiment is shown in Figure 9. The running time ofP is defined as the sum of the running times
of Pc andPg, so thatP is PT if Pc, Pg are PT. (Pp is not required to be PT.) We say thatP has help-length
ℓ(·) if the output ofPp(1

k, ·, ·, ·) is always of lengthℓ(k).

Claim F.2 LetD′ = (Dc,Dp,Dg) be a PRG-adversary. Then there is a prediction adversaryP = (Pc, Pp, Pg)
such that for allk ∈ N

Adv
prg-1
T P,D′,n(k) ≤ n(k) ·Adv

pre
T P,P (k) .

The running time ofP is TD′ +O(n) · TF . �
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algorithm D′
c(1

k, φ):

i←$ {1, . . . , v(k)}

x←$ B
v(k)
k

st←$ Dc(1
k, φ)

st′ ← (st,x, i)

Retst′

algorithm D′
p(1

k, x, φ, st′):

(st,x, i)← st′

x[i]← x

t←$ Dp(1
k,x, φ, st)

Rett

algorithm D′
g(1

k, φ, y, ω, s, t):

(st,x, i)← st′

For j = 1, . . . , v(k) do

y[j]← F
n(k)
φ (x[j])

If j ≤ i− 1 then

ω[j]← GT P(1
k, 1n(k), φ,x[j], s)

Elseω[j]←$ Bn(k)

y[i]← y ; ω[i]← ω

b′←$ Dg(1
k, φ, st,y,ω, s, t)

Retb′

Figure 8: AdversaryD′ for proof of Claim F.1.

Experiment Exp
pre
T P,P (k)

(φ, τ)←$ G(1k) ; st←$ Pc(1
k, φ)

x←$ {0, 1}k ; t←$ Pp(1
k, x, φ, st)

y ← Fφ(x) ; s←$ {0, 1}k

c←$ Pg(1
k, φ, st, y, s, t)

Ret(c = 〈x, s〉)

Figure 9: Experiment defining advantage of prediction adversaryP = (Pc, Pp, Pg).

Proof: AdversaryP is shown in Figure 10. We focus on the aspects related to help information, meaning
what is different from the standard argument. In this regardwe note thatPp runsDp but on a valuex′

obtained by iteratingFφ backwards onx some number of times. This meansPp needs to invertFφ and is
not PT, but we allowed that. (Its running time is not counted in that ofP .) Also the guess indexi is chosen
byPc and put inst so thatP can keep its help length equal to that ofD′. We omit the hybrid argument used
in the analysis.

The final step uses the Goldreich-Levin theorem [24] whose core is captured by the following.

Lemma F.3 There is an algorithmREC such that for allk ∈ N and allx ∈ {0, 1}k the following is true.
LetB : {0, 1}k → {0, 1} be an oracle such that

2 · Pr
[

B(s) = 〈x, s〉 : s←$ {0, 1}k
]

− 1 ≥ δ > 0 . (17)

Let Eq be an oracle that on any inputw returns true ifx = w and false otherwise. Then

Pr
[

RECB,Eq(1k) = x
]

≥
1

2
. (18)

The running time ofREC isO(k3 ·δ−4). It makesO(k2 ·δ−2) calls to oracleB andO(kδ−2) calls to oracle
Eq. �

The running time above is in the model where an oracle call hasunit cost. The probability in (18) is over the
coins ofREC only, and that in (17) is over the choice ofs only. (B is deterministic.) A proof of the above,
following Rackoff’s simplification to [24], can be found in [1]. Let P = (Pc, Pp, Pg) be the prediction
adversary given by Claim F.2 applied to the PRG-adversaryD′ of Claim F.1. Letγ(·) = Adv

pre
T P,P (·) > 0.

Let I = (Pc, Pp, Is) where algorithmIs is shown in Figure 11. We claim that this inversion adversary
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adversaryPc(1
k, φ):

i←$ {1, . . . , v(k)}

st′←$ D′
c(1

k, φ)

st← (i, st′)

Retst

adversaryPp(1
k, x, φ, st):

(i, st′)← st

x′ ← F
−(i−1)
φ (x)

t←$ D′
p(1

k, x′, φ, st′)

Rett

adversaryPg(1
k, φ, st, y, s, t):

(i, st′)← st

For j = 1, . . . , n(k) do

If j ≤ i thenωj ←$ {0, 1}

Elseωj ← 〈F
j−i−1
φ (y), s〉

ω ← ω1 · · ·ωn(k)

b′←$ D′
g(1

k, φ, st′, F
n(k)−i
φ (y), ω, s, t)

Retb′ ⊕ ωi ⊕ 1

Figure 10: Prediction adversaryP = (Pc, Pp, Pg) for proof of Claim F.2.

algorithm Is(1
k, φ, st, y, t):

Rg←$ CoinsPg(1k)

oracleB(s):
c← Pg(1

k, φ, st, y, s, t ; Rg)
Retc

oracleEq(w):
Ret(Fφ(w) = y)

x′←$ RECB,Eq(1k)
Retx′

Figure 11: Algorithm Is for proof of Lemma 5.2, whereCoinsPg(1k) is the space of coins for
Pg(1

k, ·, ·, ·, ·, ·).

satisfies the conditions of Lemma 5.2. For the analysis let usenumerate the coins underlyingExp
pre
T P,P (k)

asRG, Rc, x,Rp, s, Rg whereRG, Rc, Rp, Rg are the coins ofG, Pc, Pp andPg respectively. Let

Γ(RG, Rc, x,Rp, Rg) = 2 · Pr [ c = 〈x, s〉 ]− 1

where the probability is over the choice ofs alone and the other coins in the experiment are fixed to the
given values. Thenγ(k) = E [Γ]. So a standard averaging argument says there is a setΩ of choices of
(RG, Rc, x,Rp, Rg) that has probability at leastγ(k)/2 and

Γ(RG, Rc, x,Rp, Rg) ≥
γ(k)

2
for all (RG, Rc, x,Rp, Rg) ∈ Ω. Now Lemma F.3 withδ = γ(k)/2 implies

Advowf
T P,I(k) ≥

γ(k)

2
·
1

2
=

γ(k)

4
.

Putting everything together we have

ǫ(k) ≤ v(k) ·Adv
prg-1
T P,D′,n(k)

≤ v(k) · n(k) ·Adv
pre
T P,P (()k)

= v(k) · n(k) · γ(k)

≤ 4v(k) · n(k) ·Advowf
T P,I(k) .
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With regard to running time we have

TI = O(k3γ−4) +O(k2γ−2) ·TP +O(kγ−2) ·TF

= O(k3γ−4) +O(k2γ−2) · [TD +O(nv) ·TF ] +O(kγ
−2) ·TF

= O(k2γ−2) ·TD +O(k2γ−2nv) ·TF +O(k3γ−4)

= O(k2(nv/ǫ)2) ·TD +O(k2(nv/ǫ)2nv) ·TF +O(k3(nv/ǫ)4)

= O(k3n4v4ǫ−4) +O(TD + nvTF )k
2n2v2ǫ−2 .

G Deterministic Encryption under Chosen Ciphertext Attacks

The definitions of Section 3 lift in a natural way to model chosen-ciphertext attacks. We denote the CCA
versions of the experiments by a -CCA suffix. LetA = (Ac, Am, Ag) be an SS-adversary and letS be a
simulator. Then the css experiment is modified to giveAg access to a decryption oracle. The sss experiment
is modified to give bothAg andS access to a decryption oracle. We now say that adversaryA is legitimate
if —in addition to the existing constraints detailed in Section 3—Ag(1

k, pk, c, st) does not query the de-
cryption oracle on anyc ∈ c. Let I = (Ic, Im, Ig) be an IND-adversary. The ind experiment is modified to
allow Ig access to a decryption oracle. The definition of legitimacy is similarly adapted. It is straightforward
to modify the theorem statements and proofs of our implications in Section 4 and Appendices B, C, D, and
E to the CCA setting.

The construction of randomized PKE from deterministic PKE in Appendix 7 also holds in the CCA
setting. Specifically, ifΠ is secure against IND-CCA adversaries, thenΨ is secure as a KEM against CCA
attacks. Modifying the proof just requires adding a decryption oracle in the appropriate places. As discussed
in the introduction, this is of particular interest becauseour construction implies that building a CCA-secure
deterministic encryption scheme is at least as hard as building a witness-recovering CCA encryption scheme.

H Related Work

To discuss prior work we let us say a that an adversary is efficient if it is polynomial time and a message space
is efficient if it is poly-time sampleable. Then a reduction is efficient if, whenever the starting adversary and
message space are efficient, so are the resulting adversary and message space. The reason efficient message
spaces are important is because they are necessary wheneverone uses the definitions in computationally-
bounded settings. For example, the reductions in [3] require efficiently-sampleable message spaces.

ENTROPIC SECURITY. The core concern of Dodis and Smith’s work on entropic security [20] is the same as
ours, namely the encryption of high min-entropy plaintexts. But there are important differences between the
settings, namely that of entropic security is information theoretic and symmetric while ours is computational
and public-key. The first difference means that adversariesand message spaces in the entropic security
setting need not be efficient while in our setting, in contrast, they must be efficient. They introduce notions
that are analogous to our notions IND, B-SSS and BB-SSS, to complement the A-SSS-like definition of
Russell and Wang [28], and they show equivalences in their setting. Note that in their definitions adversaries
are restricted to seeing the encryption of a single message,which is not in general equivalent to our multi-
message definitions. It becomes equivalent when one restricts our definitions to the case of independent and
separable adversaries, as discussed in Appendix A. Below weimplicitly mean our definitions so restricted.

Dodis and Smith [20] provide implications showing that IND,A-SSS, and BB-SSS are equivalent, but
their non-trivial reductions from BB-SSS to B-SSS and B-SSSto A-SSS are inefficient, so their results
do not imply equivalences in our setting. They do provide an efficient reduction from B-SSS to A-SSS
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B-CSS

BB-CSS

B-SSS

BB-SSS

IND B-SSS

BB-SSS

IND

A-SSSA-CSS

B-CSS

BB-CSS

B-SSS

BB-SSS

IND

A-SSSA-CSS

Figure 12: (Left) Diagram illustrating implications shown in [20]. Dashed lines are implications relying
on an inefficient reduction. The dotted line represents an implication relying on an unnatural adversarial
constraint.(Right) Diagram illustrating implications shown in [17, 18].

when the probability of the most likely output of the partialinformation function has a certain relation to
the adversary advantage, but this does not show that the one notion implies the other in general. The left
diagram in Figure 12 diagrams these results. Note that we show A-CSS, B-CSS, and BB-CSS and their
associated trivial implications in the diagram for completeness, but these were not considered in [20].

QUANTUM ENTROPIC SECURITY. Desrosiers [17] and Desrosiers and Dupuis [18] adapted entropic security
to the quantum setting. Moreover, they define notions analogous to A-CSS and B-CSS. As above, these are
single-message definitions. They provide an efficient reduction showing that A-CSS implies A-SSS. (For
completeness we also give a theorem and its proof for this straightforward implication; see Appendix C.)
They use a Goldreich-Levin predicate as the main tool of an efficient reduction showing that B-CSS implies
A-CSS. Of greater technical interest is their proof that INDimplies B-CSS. Here they aim to build an
IND-adversaryI = (Ic, Im, Ig) from a boolean SS-adversaryA = (Ac, Am, Ag). Associate toAm the
(implicitly defined) message distributionM and the (implicitly defined) boolean functionf . LetMb be
M but conditioned on a message being in the preimage off for b. Ideally, Im, when run with input bit
b, could sample a message fromMb and return it. However, sinceA, and thereforef , are not balanced,
Mb might be low entropy. Instead, they haveIm sample from a convex combination ofMb andM, which
ensures high min-entropy, but nevertheless allowsIg to utilizeAg to infer the bitb with probability close to
A’s advantage. Note that this does not change the balance off , but cleverly modifies the way messages are
chosen byAm to compensate forf ’s lack of balance. The reduction is efficient as long as the combination
ofMb andM is efficiently sampleable, which appears to be the case [29].

The right diagram of Figure 12 shows the relationships established in [17, 18]. Note that we show
BB-CSS, B-SSS, and BB-SSS and their associated trivial implications in the diagram for completeness, but
these were not considered in [17, 18]. Indeed, their implication that IND implies B-CSS (as sketched above)
side-steps the issue of balanced predicates entirely.

In light of the implications provided by [17, 18], one might ask why bother with the BB notions at all,
since IND can apparently be shown equivalent to the others without them. There are several reasons we
nevertheless consider them. The work of [20], and also our implications, highlight balance as a useful tool
for understanding the relationships between security notions for deterministic encryption. Most importantly,
the BB-CSS and BB-SSS notions are conceptually close to IND,and the balance feature allows an obviously
efficient reduction from IND to BB-CSS. (Whereas adapting the [17, 18] reduction from IND to B-CSS to
the computationally-efficient setting requires a non-obvious sampling algorithm.) Moreover, intuition might
predict that the BB notions are not as strong as their booleanor arbitrary counterparts. Our results show
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otherwise. Finally, we expect that these notions might be useful in future applications of deterministic
encryption.

PERFECTLY ONE-WAY HASH FUNCTIONS. Canetti introduced perfectly one-way hash functions (POWHF)
[13], which were further studied by Canetti, Micciancio, and Reingold [14]. These are randomized hash
functions that produce publically-verifiable outputs (i.e., given a message and a hash value, any party can
check if the hash corresponds to the message). The security required is that no adversary, given only the
output of the hash applied to some unpredictable message, should be able to compute any partial information
about the message. In [13] a notion analogous to B-SSS is introduced. Several other definitions are offered
in [13, 14], along with some equivalences, but these definitions, and the implications, are only meaningful
for randomized primitives. Our definitions and equivalences can be adapted to work in this setting.
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