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Abstract

We strengthen the foundations of deterministic public-&egryption via definitional equivalences
and standard-model constructs based on general assusi@ipacifically we consider seven notions of
privacy for deterministic encryption, including six forrmssemantic security and an indistinguishability
notion, and show them all equivalent. We then present am@testic scheme for the secure encryption
of uniformly and independently distributed messages basksdy on the existence of trapdoor one-way
permutations. We show a generalization of the constru¢tiahallows secure deterministic encryption
of independent high-entropy messages. Finally we shovioakbetween deterministic and standard
(randomized) encryption.
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1 Introduction

The foundations of public-key encryption, as laid by Goldsexr and Micali [25] and their successors,
involve two central threads. The first is definitional eqlévees, which aim not only to increase our con-
fidence that we have the “right” notion of privacy but also teegus definitions that are as easy to use in
applications as possible. (Easy-to-use indistinguigitalié equivalent to the more intuitive, but also more
complex, semantic security [31, 25, 26, 23].) The seconth@two threads) is to obtain schemes achieving
the definitions under assumptions as minimal as possiblhidpaper we pursue these same two threads for
deterministicencryption [3], proving definitional equivalences and paong constructions based on general
assumptions.

DETERMINISTIC ENCRYPTION A public-key encryption scheme is said to be deterministts encryption
algorithm is deterministic. Deterministic encryption wasoduced by Bellare, Boldyreva, and O’Neill [3].
The motivating application they gave is efficiently sealitbancryption. Deterministic encryption permits
logarithmic time search on encrypted data, while randodchegcryption only allows linear time search [30,
12], meaning a search requires scanning the whole databasedifference is crucial for large outsourced
databases which cannot afford to slow down search. Of calateministic encryption cannot achieve the
classical notions of security of randomized encryptior, [Bliformalize a semantic security style notion
PRIV that captures the “best possible” privacy achievaldienvencryption is deterministic, namely that an
adversary provided with encryptions of plaintexts dravamfra message-space of high (super-logarithmic)
min-entropy should have negligible advantage in computimgpublic-key independepfrtial information
functionof the plaintexts. The authors provide some schemes in titwra-oracle (RO) model [4] meeting
this definition but leave open the problem of finding standaaodiel schemes.

The PRIV definition captures intuition well but is hard to wavith. We would like to find simpler,
alternative definitions of privacy for deterministic engtipn —restricted forms of semantic security as well
as an indistinguishablility style definition— that are aglént to PRIV. We would also like to find schemes
not only in the standard model but based on general assumptio

NOTIONS CONSIDERED We define seven notions of privacy for deterministic entioypinspired by the
work of [20, 3]. These include a notion IND in the indistingliability style and six notions —A-CSS,
B-CSS, BB-CSS, A-SSS, B-SSS, BB-SSS— in the semanticisgatyle. The IND definition —adapted
from [20]— asks that the adversary be unable to distinguistrygtions of plaintexts drawn from two,
adversary-specified, high-entropy message spaces, amdpgksand easy to use. The semantic security
notions are organized along two dimensions. The first difoaris the class of partial information functions
considered, and we look at three choices, namely arbitégrybpolean (B), or balanced boolean (BB). (A
boolean function is balanced if the probabilities that turas O or 1 are nearly the same.) The second
dimension is whether the formalization is simulation (S3dzhor comparison (C) baséd:he PRIV notion

of [3] is A-CSS in our taxonomy. Low-end notions —think of BB thhe lowest, then B then A and similarly
C then S in the other dimension— are simpler and easier toruapplications, while high end ones are
more intuitively correct. The question is whether the sifigaltions come at the price of power.

DEFINITIONAL EQUIVALENCES. We show that all seven notions discussed above are equivaléhe

results are summarized in Figure 1. These results not ooky et semantic security for boolean functions
(predicates) is as powerful as semantic security for antyittunctions, but (perhaps surprisingly) that one
can even restrict attention to boolean functions that al@nbad, meaning semantic security for balanced

1In the first caseA’s success in computing partial information about plaitgdsom ciphertexts is measured relative to that of
a simulator, while in the second it is measured relativd'soown success when it is given the encryption of plaintextteependent
of the challenge ones. The terminology is from [7] who progeigalence between simulation and comparison based rsotibn
non-malleability.
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Figure 1: Notions of security for deterministic encryptiechemes and implications showing that all seven
notions are equivalent. An arroW — Y means that every scheme secure urxies also secure undéf.
Unlabeled implications are trivial.

boolean functions is as powerful as semantic security foitrary functions. We note that balance in this
context originates with [20] but they only use it as a tool. &#plicitly define and consider the notions
BB-CSS and BB-SSS because they bear a natural and intugigon to IND and because we feel that
the use made of balance by [20] indicates it is important. d@ioefs of our results rely on new techniques
compared to [20, 17, 18].

DEFINITIONAL FRAMEWORK. We believe that an important and useful contribution of paper is its
definitional framework. Rather than an experiment per mptiee have a few core experiments and then use
the approach of [5], capturing different notions via diffet adversary classes. Advantages of this approach
are its easy extendability —for example we can capture thiemsof [11] by simply introducing a couple

of new adversary classes— and the ability to capture manyitiefial variants in a way that is unified,
concise and yet precise.

A CONSTRUCTION FOR UNIFORM MESSAGES Constructing a non-RO model deterministic encryption
scheme meeting our strong notions of security seems likenacdkallenging problem. We are however
able to make progress on certain special cases. We presetdgranthistic encryption scheni2e1 for the
secure encryption of independent, uniformly distributegssages. The scheme is not only without random
oracles but based on general trapdoor one-way permutafi@nencrypt a random messagene iterates

a trapdoor permutatiofi on z a number of times to get a poigt Letr denote the sequence of Goldreich-
Levin [24] hardcore bits obtained in the process. Then ores astandard IND-CPA scheme —which exists
assuming trapdoor one-way permutations— to encyyith coinsr. The interesting aspect of the scheme,
and the source of the difficulty in analyzing it, is its cydtiature, namely that the coins used for the IND-
CPA encryption depend on the plaintexthat is IND-CPA encrypted. The proof manages to show that an
adversary who, givep, can distinguish- from random can recover even thouglthis adversary may have
partial information about the underlying seed The proof exploits in a crucial way that the equivalence
between A-CSS and B-CSS holds even for uniformly and indégethy distributed messages.

ANOTHER PERSPECTIVE A deterministic encryption scheme is (syntactically) slaene thing as a family
of injective trapdoor functions. Our notions can then benseg an extension of the usual notion of one-
wayness. Our construction is then a family of injective tiaqr functions which hides all (possible) partial
information about its (randomly chosen) input. We beligvis ts a natural and useful strengthening of the
usual notion of a trapdoor function that is fully achievedienstandard assumptions in our work.



EFFICIENCY. The general assumption notwithstanding, our scheme adsffitient instantiations. For
example with squaring as the trapdoor permutation [8] andrBGoldwasser [9] as the bare IND-CPA
scheme, encryption and decryption come in at about doubteofrBlum-Goldwasser with no increase in
ciphertext size. See Section 5.

A GENERALIZATION. We generalize our construction to obtain a non-RO modedrgenistic scheme
DE2 for the encryption of independent, high min-entropy (but necessarily uniform) plaintexts. The
assumption used is that one has a trapdoor permutationstibaetway for high min-entropy distributions
on its input. This increase in assumption strength is in seemse necessary, since deterministic encryption
secure for some distribution trivially provides a one-wajgctive trapdoor function for that distribution.

FROM DETERMINISTIC TO RANDOMIZED ENCRYPTION Another central foundational theme is relations
between primitives, meaning determining which primitiweply which others. From this perspective we
consider how to build IND-CPA-secure standard (randon)isgatryption from PRIV-secure deterministic
encryption. The obvious approach would be to use the detéstici encryption scheme as a trapdoor one-
way function within some well-known general constructi@#]. However, this approach leads to large
ciphertexts, and we would hope to achieve better efficientognausing a primitive that provides more than
one-wayness. We provide a much more efficient constructsimgua hybrid encryption-style approach, in
which the deterministic scheme encrypts a fresh sessiop&aged with extra randomness and the session
key is used to encrypt the message. See Section 7 for thésdetai

CCA. Lifting our notions and equivalences to the CCA setiimgtraightforward; see Appendix G . Our
above-mentioned construction of a randomized encryptahrerse from a deterministic one works even
in the CCA setting. This means, in particular, that we caregeally build withess-recovering IND-CCA
encryption schemes [27] from arbitrary CCA-secure deteistic schemes. (Witness-recovering encryption
allows, during decryption, recovery of all randomness usegenerate a ciphertext.) CCA-secure withess-
recovering encryption is of use in further applications|[Hhd only very recently was a (not very efficient)
standard-model construction produced [27]. Our constmahows that building CCA-secure deterministic
schemes is at least as hard as building witness-recoverifgiilistic encryption.

RELATED WORK. Dodis and Smith’s work on entropic security [20] has in coomnwith ours the con-
sideration of privacy for messages of high min-entropy. Bwfre are important differences in the set-
tings, namely that theirs is information-theoretic and sitric while ours is computational and public-key.
Dodis and Smith [20] introduce definitions that in our franoekvare IND, B-SSS, and BB-SSS, to com-
plement the A-SSS-like information-theoretic notion araly proposed by Russell and Wang [28]. Also,
Desrosiers [17] and Desrosiers and Dupuis [18] subseqguéetht quantum entropic security, providing
notions similar to our framework’s B-CSS and A-CSS. Theseke/@rovide some relations between the
notions they define. While some of their techniques and izagibns lift to our setting, others do not. The
salient fact that emerges is that prior watkes notimply equivalence of all seven notions we consider.
In particular, the BB-SSS and BB-CSS notions are not consiten [17, 18] and Dodis and Smith [20]
only provide reductions for BB-SSS implying A-SSS that iesuinefficient or restricted adversaries. See
Appendix H for more information.

Another setting that deals with high min-entropy messagékadt of perfectly one-way hash functions
(POWHF), introduced by Canetti [13] and further studied ané€tti, Micciancio, and Reingold [14]. These
are randomized hash functions that produce publicallifiabte outputs. Our definitions and equivalences
can be adapted to the POWHF setting.

INDEPENDENT WORK In concurrent and independent work, Boldyreva, Fehr, ainke® [11] consider a
relaxation of PRIV in which message sequences need to netyrterve high entropy but each message must
have high entropy even given the others. They prove somgardabetween their notions using techniques
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of [20, 17, 18] but do not consider as many notions as us andriticplar do not consider balance. Their
schemes achieve stronger notions of security therD&ldr but at the cost of specific algebraic assumptions
as opposed to our general one. Combining their results with shows that oUDE2 achieves their notion

of security while using a general (even though non-standessumption.

2 Preliminaries

NOTATION AND CONVENTIONS. If z is a string thenz| denotes its length; if is a number thefic| denotes
its absolute value; if is a set thenlS| denotes its size. We denote hythe empty string. IfS is a set then
X <s .S denotes thak is selected uniformly at random frost We letx|[i ... j] denote bitg through; of
stringz, for1 <i < j < |z|. Byz; | --- || z, we denote the concatenation of, ..., z,. Vectors are
denoted in boldface, e.g. If x is a vector therx| denotes the number of componentsatndx[i| denotes
its 4" component for < i < |x|. If i > 1is an integer, we us8; as shorthand fof0, 1}*. By (a,b) we
denote the inner product modulo 2 of equal-length strings

We write a <5 X (z,y,...) to denote runningX on inputs(zx,y,...) with fresh random coins and
assigning the result ta. We let [X(z,v,...)] denote the set of possible outputs &f when run on
z,y,... € {0,1}*. An algorithm X is non-uniformif its first input is 1* and there is a collectiofiCy, } xen
of (randomized) circuits such that, computesX (1%, ...). The running time is the circuit size. A function
f is callednegligibleif it approaches zero faster than the reciprocal of any pwtyial, that is, for any poly-
nomial p, there existsy, € N such thatf(n) < 1/p(n) for all n > n,. “PT" stands for polynomial time.
We denote by\ the algorithm that on any inputs returks

PUBLIC-KEY ENCRYPTION. A public-key encryption (PKEychemell = (K, &, D) is a triple of PT al-
gorithms. The key generation algorithk takes inputl®, wherek € N is the security parameter, and
outputs a public-key, secret-key péirk, sk). The encryption algorithrd takes inputd*, pk, and plaintext
x € {0,1}* and outputs a ciphertext. The deterministic decryptiomritigm D takes inputsl”, sk, and
ciphertexty and outputs either a plaintextor L. We say thafl is deterministicif £ is deterministic. If
x is a vector of plaintexts, then we write«s £(1*, pk, x) to denote component-wise encryptionxgfi.e.
yli] < E(1F, pk,x[i]) forall 1 < i < |x].

3 Security Notions for Deterministic PKE

We first provide formal definitions and then discuss them.

SEMANTIC SECURITY. An SS-adversaryl = (A, Am, A,) is a tuple of non-uniform algorithmsi, takes
as input a unary encodintf of the security parametér € N and returns a stringt representing some
state information.A,, takes inputl” andst, and returns a vector of challenge messagésgether with a
test stringt that represents some information abautA, takes1¥, a public key and the component-wise
encryption ofx under this key, and tries to computeThe running time of4 is defined as the sum of the
running times ofA., A,,, Ag, so thatd is PT if A., A,,,, A, are all PT.

LetIl = (K, &, D) be a PKE schemed = (A¢, Am, Ag) an SS-adversary, ansla simulator (a non-
uniform algorithm). Lett € N. Figure 2 displays the css (comparison-based semanticity¢@nd sss
(simulation-based semantic security) experiments. Waeléfie css advantage and sss advantagelyf

AdviP, (k) = 2-Pr[Expff® (k) = true] — 1, and (1)
Adv%szyS(k:) = 2-Pr [Exp%sz,S(k:) = true] —1. (2)

Our approach to defining the six notions of semantic secwfitinterest to us is to associate to each a



Experiment ExpCHSfA(k)
b<s{0,1}; st <s A (1)
(x0,t0) s A (17, st)
(x1,t1) s A (1%, st)
(pk, sk) <s KC(1%)

c s E(1%, pk,xy)

g s Ag(lk’,pk, c, st)

Experiment Expiy’y (k)

b<s{0,1}; st <s A (1)
(x,t) +s A (17, st)
(pk, sk) <s KC(1%)
c s &(1%, pk,x)
If b=1then

g+ Ag(1%, pk,c, st)
Elseg < S(1¥, pk, st)

Experiment Expii (k)
b<s{0,1}; st <s I.(1¥)
xp, <3 I, (1%, b, st)

(pk, sk) <s K(1%)
c<+sE(1%, pk,xy)

b s Ig(lk,pk,c, st)
Ret(V = b)

If g =tthend + 1
Elset’ «+ 0
Ret(V = b)

If g =t; thent/ + 1
Elset’ «+ 0
Ret(V = b)

Figure 2: Three experiments for defining security of enéoypschemes.

corresponding class of adversaries and ask that the adeaotaany adversary in this class be negligible.
We proceed to define the relevant classes.

An SS-adversaryl = (A., A, Ag) is legitimateif there exists a function(-), called the number of
messages, and a collecti¢wy } . Of referencemessage-vectors such that the following three conditions
hold. First,|x| = v(k) for all (x,t) € [AnL(1%,st)] and allst € {0,1}*. Second,x[i]| = |y[i]| for all
(x,t) € [Am (1%, st)], all st € {0,1}*, and alll < i < v(k). Third, the function

v(k) =Pr [eq(x, yi) =0 : sts A (1%); (x,1) s Ay (17, St)]
is negligible, where
1t Vi, g2 x[i] = x[j] iff yi[i] = yrl]
0 otherwise.

eq(X, yx) = { 3)
(The third condition reflects that every deterministic snkdeaks plaintext equality.) Letsg be the set of
all legitimate, PT SS-adversaries. We say tAdtastrivial state functionif A. = A. Let A, be the set of
all SS-adversaries with trivial state functions.

Without loss of generality (through suitable padding) we easume there is a functidit-) such that
the output ong(l’“, -,-) and any test string output by A,,,(1%, ) always have lengtii(k). We call/ the
information lengthof A. An SS-adversaryl = (Ac, A, A;) € Ags is booleanif it has information
length¢(-) = 1. Let Ag C Agg be the class of all boolean SS-adversaries. A boolean S&saty
A= (Ac, Am, Ag) € Ag is 6-balanced if for everyt we have

1

Pr[t:O L (x,t) <—$Am(1k,5t)} —g| <9 (4)

Whend = 0 we say thatd is perfectly balanced We say that4 is balancedif it is §-balanced for some
§ < 1/2. Let A%y C Ajp be the class of a-balanced boolean SS-adversaries. An SS-adverasy
(Ac, A, Ag) € Ags has min-entropy: if

Pr [X[l] =z (X,t) <s Am(lk,st)] < 9—Hlk)

forall k € Nyall1l < i < wv(k), allz € {0,1}*, and allst € {0,1}*. Let A}, C Agg be the class
of all SS-adversaries with min-entropy We say thatd hashigh min-entropyif it is in A}, for some
w(k) € w(logk). Let Aug C Agg be the class of all SS-adversaries that have high min-gntrop

Let IT be a PKE scheme. We say thidtis A-CSS secure ifAdv®,(-) is negligible for allA €



Ang N Ay; ITis B-CSS-secure iAdv® ’4(+) is negligible for allA € Apg N A\ N Ap; andIl is BB-CSS-
secure if there exists < 1/2 such tha‘rAdeSS 1 (+) is negligible for allA € Agg N Ay N ARp.

Similarly, we say thaitl is A-SSS-secure 'if for allt e AurN A, there exists a PT simulatérsuch that
Advi, s(¢) is negligible;ITis B-SSS-secure if for alll € Apg N A) N Ag there exists a PT simulatér
such thatAdvii’, ¢(-) is negligible; andll is BB-SSS-secure if there exisis < 1/2 such that for all
A € Aur N Ay N Ap there exists a PT simulatdf such thatAdvir’y ¢(-) is negligible.

The message spacef an SS-adversaryl = (A, A, A;) is the algorithmAy that on inputl”, st
lets (x,t) <—s A, (1%, st) and returnsc. An SS-adversary is said to produce independent messatfes if
coordinates ok are independently distributed wherx—s A4 (1%, st) for all k, st. Let A, be the class of
all SS-adversaries which produce independent messages.

For eachd € {0, 1}, we letExpy;) (k) be the same aBxpir 4 (k) except that the first line sets«— d
rather than picking at random. We similarly deflnEprﬁbAdS(k). A standard argument gives

AdVCSS (k) = Pr [Expcnsizll(k:) = true] Pr [ExpCSS O(k:) = false] and (5)
AV 5() = Pr[Bxpifiis(h) = true | - Pr [Bxpiilo(h) = fae] ©)

INDISTINGUISHABILITY. AnIND-adversaryl = (I, I, I) is a tuple of non-uniform algorithmd,, takes
as inputl* and returns a stringt representing some state informatioh, takes inputl”, a bitb, andst,
and returns a vector of messages], takes1”, a public key, the component-wise encryptionxofinder
this key, andst and tries to compute the hit The running time off is defined as the sum of the running
times of I, I.,, I, so thatl is PT if I, I,,,, I, are all PT.

LetIl = (K, &, D) be a PKE schemd, = (I, I, I;) an IND-adversary anél € N. Figure 2 displays
the ind experiment. We define the ind advantagé oy

Advmd(kz) = 2-Pr [Expmd(kz) :>true] —-1. (7)

We next define classes of IND-adversaries. An IND-adversasy(I., Im, I,) is legitimateif there exists a
functionu(-), called the number of messages, and a collectyr} < of referencemessage-vectors such
that the following three conditions hold. Firgk| = v(k) for all (x,t) € [I,(1%,b, st)], allb € {0,1}, and
all st € {0,1}*. Second|x[i]| = |yx[i]| for all (x,t) € [I(1%,b,st)], allb € {0,1}, all st € {0,1}*, and
all 1 <4 <w(k). Third, the function

v(k) = Pr [eq(x,yk) =0 : st<sI.(1%); bs{0,1}; (x,t) s (1%, b, st)

is negligible, whereq(x, y) was defined by (3). LeI be the set of all legitimate, polynomial time IND-
adversaries. We say thatastrivial state functionif 7. = A. LetZ, C 7 be the set of all IND-adversaries
with trivial state functions. An IND-adversaty= (1., Iy, I;) € Z hasmin-entropyy if

Pr [x[z] =z xs (15,6, st) | < 27#R)

forallk € N,allb € {0,1}, all1 < i < v(k), allz € {0,1}*, and allst € {0,1}*. LetZ{;; C Z be the
class of all IND-adversaries with min-entropy We say! hashigh min-entropyif it is in Z{;,, for some
wu(k) € w(log k). Let Zyy be the class of all IND-adversaries that have high min-@ytroVe say thail is
IND-secure |fAdv‘“d( -) is negligible for alll € Zyg N Z).

For eachd € {0, 1}, we letExpi{}5 (k) be the same aBxpi} (k) except that the first line sets« d
rather than picking at random. A standard argument gives

AdvmCl a(k) = Pr [ExpmCl k)= true} —Pr {Explnd O(k) = false | . (8)

DiscussioN A-CSS is exactly the PRIV definition of [3]. As discussed &}, [it is important thatA,,
does not take input the public key, and this carries ovef,to In the classical setting a standard hybrid



argument [2] shows that the security of encrypting one nggesgaplies the security of encrypting multiple
messages. In the deterministic encryption setting thioidnme in general, which is why,,, I,,, output
vectors of messages.

Following [3], message spaces are not explicit but rathe@tioitly defined by their PT sampling algo-
rithms A, andl,,. As a consequence, message spaces are PT sampleable.

Following [3], the partial information function is not exgt. Think of ¢ as its value orx. This is more
general becauseis allowed to depend on coins underlying the generatior odther than merely ox
itself. (This is stronger than merely allowing the functimnbe randomized, which is standard.) It allows
us in particular to capture “history.” However, we show inpmdix A that this formulation is equivalent
to one where the partial information is computed as a funatibthe message. Note that the (implicit or
explicit) partial information functions are PT.

Our security definitions quantify only over adversarieswitvial state functions. We do this for com-
patibility with [3, 20]. So why introduce the common statedtion at all? The reason is that it is useful in
proofs. Indeed, [20] use such a function implicitly in marigqes. We believe making it explicit increases
clarity. In the end we can always hardwire a “best” state &edeby end up with an adversary.it),.

4 Relating the Security Notions

In this section and its supporting appendices we justifyittiyi@ications summarized by Figure 1. The im-
plications given by the unlabeled arrows are trivial andlwajustified by the fact that — Y whenever the
adversary class correspondingYtas a subset of the one correspondingktoWe focus on the implications:
A-CSS=- A-SSS; BB-SSS= IND; IND = BB-CSS; BB-CSS= B-CSS; and B-CSS> A-CSS.

Theorem 4.1 B-CSS=- A-CSq LetII = (K, &, D) be a PKE scheme. Let = (A¢, A, Ag) € Ajjp N
A, be an SS-adversary having information length. Then there exists a boolean SS-adverséry=
(A, AL, AL) € Ay N Ay N Ap such that for alk € N

Advi®y (k) <2 Adviy (k) 9
A’ has the same message spacd asd its running time is that ol plusO(¢). O

Proof: The proof is from [20] and repeated here in order to provideition for Theorem 4.2. Below we
write ¢ for (k). Then let

algorithm A% (1%): algorithm A* (1%, (r, s)): algorithm Ax (1%, pk,c, (r, s)):
r<s{0,1}* (x,1) <=5 A (1%, )) g s Ag(1% pk,c,\)
s+s{0,1} Ret(x, (r,t) @ s)) Ret(r,g) @ s

Ret(r, s)

ThenA* = (A7, A}, Ag) is certainly boolean, and

Pac(k) = Pa(k)+ 5 [~ Pa(b)

Qu(k) = Qa(k)+ 5 (1~ Qa(k)

wherePy (k) = Pr | Exp§i%' (k) = true | andQx (k) = Pr [ Exp{{*’(k) = false ]. Subtracting, we get

AdviPy. (k) = 3-Advip, (k). We are not done yet becausdé does not have trivial state function. Lét
be obtained fromA* by hardwiring in a “best” choice af, s and we are donel
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Now we wish to show that BB-CSS> B-CSS. Note that if the adversary/ constructed in the proof of
Theorem 4.1 were balanced, we would be done. Blneed not be balanced. Dodis and Smith [20] give
a partial solution to this problem, showing that it is in factssible to find am that, when hardwired into
A*, results in a balanced adversary, as long &se?/4, wherep is the maximum probability of anybeing
output by Ay, ande = Advi% ().

We will remove this restriction by proceeding as follows. tL& be a given SS-adversary, which
from Theorem 4.1 we can assume is boolean (but not balandé@).again construct ar* with non-
trivial state, but this will consist of: independently chosen keys[1],...,K[nr| for a family of pair-
wise independent hash functiods. Then A% (1%, K) first runs (x,t) <s A, (1%, \) and then returns
(x, H(K]i],t)) for randomi € {1,...,n}, while A;(lk,pk,c, K) picks its own independent randogn
and returnst (K[j], Az (1%, pk, ¢, \)). Our analysis will show that for a suitable choicerothere exists
a choice of the vectoK which, when hardwired intod*, yields an adversand’ having all the claimed
properties. The theorem is below and the proof is in AppeBdix

Theorem 4.2 BB-CSS = B-CS§ LetIl = (K,&,D) be a PKE scheme. Lel = (A, Ay, Ag) €
A N Ax N Ap be a boolean SS-adversary. két) = Advii®s(-) > 0 and letd = 1/4. Then there exists
an SS-adversany’ = (AL, A, A}) € A N Ay N A%y such that for alk € N

Advi®y (k) < 4n(k) - AdviTa (k) ,
wheren(k) = max {485, [64-1In(1/e(k)) +64In4]}. A’ has the same message spacedaand its
running time is that oA plusO(log(1/e(k)) + k). O

Below are theorem statements for the other three implieatidhe proofs are found in Appendices C, D,
and E, respectively.

Theorem 4.3 A-CSS=- A-SS{ LetII = (K, &, D) be a PKE scheme. Let = (A, Ay, Ag) € Ay N
A, be an SS-adversary outputting at moshessages. Then there exists a simul&uch that for all
keN

AdviPy (k) < Advi (k) .
The running time of5' is that of A plus the time to perforna encryptions.]

Theorem 4.4 BB-SSS=- IND] LetII = (K, £, D) be a PKE scheme. Lét= (I, Iy, I,) € I}z NI\ be
an IND-adversary. Lef = 0. Then there exists an SS-adversary= (Ac, A, Ag) € Ay N Ay N ALy
such that for any simulata$ and allk € N

Adviii(k) < 2- AdviP, g(k) .
The running time ofd is that of/. [
Theorem 4.5 [ND = BB-CSY LetIl = (K,&,D) be a PKE scheme. L& < § < 1/2 and letA =

(Ac, Am, Ag) € AL pNANNASLL be an SS-adversary. Then there exists an ind-advefsaryle, Iy, I,) €
Tyir N Zy such that for alk € N

Adv§iy (k) < 2-Advifg(k) +27F .

I has min-entropy (k) = u(k) — 1 + log(1 — 20) and its running time is that afl plus the time for
[—(log(2/(1 +26)))~ '] (k + 3) + 1 executions ofd,,,. (I

5 Deterministic Encryption from Trapdoor Permutations

We construct a deterministic encryption scheme, withous R@at meets our definitions in the case that
the messages being encrypted are uniformly and indepéndbsiributed. It is based on the existence of
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algorithm KC(1%): algorithm &(1%, pk, z): algorithm D(1%, sk, ¢):
(¢, 7) s G(1F) (¢, pk, s) < pk (7,sk) < sk

s {0, 1} y + FY(@) y « D(1*, 5k, ¢)

(Pk, sk) s K (1¥) w G(1F,17®) ¢ 1. 5) z— FrP )

pk < (¢, pk, s) c+ E(1% pk,y; w) Retz

sk < (r,sk) Retc

Ret(pk, sk)

Figure 3: Algorithms defining our deterministic encryptiechemdl = (K, £, D).

trapdoor permutations. In Appendix 6 we generalize thetcocison to independently distributed messages
of high min-entropyu, but under the (stronger and non-standard) assumptioreaéxistence of trapdoor
permutations that are one-way under all input distribiiohmin entropyj.

PRIMITIVES. A family of trapdoor permutation§ P = (G, F, F') is a triple of PT algorithms, with the last
two being deterministic. On input®, the key generation algorithi@ returns a paif¢, 7) of strings such
thatFy(-) = F(¢, ) is a permutation of0, 1}¥ andF, () = F(r, ) isits inverse. Iff : {0,1}* — {0,1}*
then f7: {0,1}* — {0,1}* is defined inductively byf*(z) = x and fi*'(z) = f(f¥(x)) fori > 0 and
x € {0,1}*. The Blum-Micali-Yao [10, 31], Goldreich-Levin [24] gerator Gp takes inputl®, 1", ¢ and
x,s € By and returns

(Fp(@),s) || (Fy(a),s) | - [1{F5 (@), s) -
To discuss the security of our scheme, we say that an SSsadlyas uniform if for everyk and everyst
the components of are uniformly and independently distributed oyér 1}* when (x,t) <s Ay, (1%, st).
We let Ayn be the class of all uniform SS-adversaries. fIf: B, — By then f(x) denotes the vec-
tor whosei component isf(x[i]). We let Grp(1%,1", ¢,x,s) be the vector whosé" component is
Grp(1F,17, ¢, x[i], 5).

THE CONSTRUCTION We fix a (randomized) encryption scheiie= (IC, £, D). Assume tha€(1*,-,")
draws its coins from{0,1}"*), and write€ (1%, pk, x ; w) for the execution of on inputs1”, pk, z and
coinsw. Let TP = (G, F, F) be a family of trapdoor permutations agetp the associated generator. Our
deterministic encryption schenmieé= (I, £, D) is defined as shown in Figure 3. We refer to itCs1.

INTUITION. A weird aspect of our scheme is that one is encrypting, uthdgestandard schendg a message

y under coinsv that are related tg. The challenge is to show that this works assumirfg is one-way and
ITis IND-CPA. So letA = (A, Ap, Ag) € Aun N Ay be an adversary with associated information length
¢(-) and number of messages$ ) that is successful in violating the A-CSS securitylbf It is not hard to
see that the assumed securityibéllows us to reduce our task to showing that it is hard for a Reesary

D to have a non-negligible advantage in computing the chgdidaitd in the following distinguishing game.
The game generates 7, pk, sk, s as done byC(1%) and lets(x, t) <—s A, (1%, )). It lets

v(k)

wy < Grp(1F, 1" ¢ x s) and wy s B »

picks a random challenge bit and provides the adversarfy with ¢, s, Fg(k)(x), wy, andt. Now, D’s
task would be merely the standard (and known to be hard) obesaking the pseudorandomnessjeip
(meaning, we would be done) but for one catch, namely thags “help” informationt about the seed(s)
x. If we could somehow remove it we would be done, but this selkand to do directly. Instead, we
first produce fromD an adversaryl’ that solves (although still with help) a computational lfeat than

11



Experiment Exp*i ; (k) Experiment Exp's"), | (k)
(6,7) s G(1¥) ; st s J.(1, ¢) (¢,7) <=5 G(1¥) ; st <=s Dc(1%, ¢)
x4 {0, 1}7 5 t s J, (1%, z, ¢, st) X <8 BZ(k) 545 {0,1}%; d<s{0,1}
Yy Fy(z); o’ s J;(1F, ¢, st,y,t) t s Dy(1%, x, ¢, st)
Ret(l’ = l'/) w1 < gTP(lkv 1n(k)’ ¢7X7 8)

w Bv(k)

0555, k)
d' s Dy(1¥, ¢, st, Fi" (x),wa, 5, 1)
Ret(d = d')

Figure 4: (Left) Experiment defining one-wayness ®P = (G, F, F). (Right) Experiment defining
pseudorandomness Gf-p.

decision) problem, namely that of inverting,: given ¢, Fy(x), and/(-) bits of information aboutr,
our adversary computes. This is obtained by noting that the Goldreich-Levin [24-daBlum-Micali-
Yao [10, 31] proof of pseudorandomnessdaf» based on the one-waynessP generalizes to say that
Grp remains pseudorandom in the presencé(of bits of help information about the seed assunmijig

is one-way in the presence 6f-) bits of help information about the input. Now we need to tiitrinto

an adversary succeeding at the same task, but without hamppeal to Theorem 4.1, which allows us to
assume our starting adversatywas boolean, meaningf-) = 1. In this case it is easy to dispense with the
help provided tdl because we can try both values of it and lower our successipitiip by at most a factor
of 2.

We remark that we have made crucial use of the fact that thersary constructed by Theorem 4.1 has
the same message space as the original one. This meansttietdfter is inAyy then so is the former,
so that B-CSS for uniform adversaries implies A-CSS for amif adversaries. We now proceed to the full
proof.

OWPs AND PRGs WITH HELP. For our proof, we will need to extend the usual frameworksraf-wayness
and pseudorandomness to adversaries with “help.” An ilvemsdversary/ = (J., J,,, Js) is a triple of
non-uniform algorithms. P = (G, F, F) is a family of trapdoor permutations we let

Adv%—vgﬂj(kz) =Pr Exp%,J(/{) = true

where the experiment is shown in Figure 4. The running timé isfdefined as the sum of the running times
of J. andJs, so that/ is PT if J., Js are PT. {J, is not required to be PT.) We say thahas help-lengtl(-)

if the output ofJ,, (1%, -, -, -) is always of length{(k). We say that/ is unaided if it has help lengtt(-) = 0.
We let 7, denote the class of all PT inversion adversaries with helgtle/(-). We say7 P is one-way for
help-length¢(-) if Adv%ﬂ,(-) is negligible for all.J € 7,. We say that/ P is one-way if it is one-way for
help-length?(-) = 0. The following, although trivial, will be very useful.

Proposition 5.1 Let 7P be a family of trapdoor permutations asidn inversion adversary with help-length
¢(-). Then there is an inversion adversafywith help-length 0 such that

Adv§y (k) < 2'0) - Adv§s 5 (k)
for all k£, and the running time of’ is that of J plusO(¢). O

Proof: Let J = (J., Jp, Js) andJ’ = (Je, A, J.) where J/(1%, ¢, st,y, \) letst <5 {0,1}**) and returns
Js(lk7¢7 8t7 y7 t)' I
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A PRG adversanD = (D., D,, D,) is a triple of non-uniform algorithms. P = (G, F, F) is a family
of trapdoor permutations ari@lp is the corresponding generator we let

Advsf%:lbm(k) =2-Pr Expsf%:lbm(k) = true] -1

where the experiment is shown in Figure 4 arid, n(-): N — N. The running time oD is defined as the
sum of the running times ab. and D, so thatD is PT if D, D, are PT. (0, is not required to be PT.) We
say thatD has help-lengttf(-) if the output of D, (1%, -, -, -) is always of lengtt(k). We letD, denote the
class of all PT PRG-adversaries with help length. We sayGsp is pseudorandom for help-lengtky) if
Advy Y () is negligible for allD € D, and all polynomials), n. We say thatir» is pseudorandom if
it is pseudorandom for help-lengtl-) = 0. We remark that it is important thd@?, does not get as input,
meaning the help information is only abautThe following says that if P is one-way for help-lengtfi(-)
thenGrp is pseudorandom for help-lengtly). The cas€/(-) = 0 is the standard result [10, 31, 24] saying
thatGyp is pseudorandom if P is one-way. The proof of the following is in Appendix F.

Lemma5.2 Let TP = (G, F, F) be a family of trapdoor permutations. Let), n(-) be polynomials. Let
D be a PRG-adversary with help-length) and lete(-) = Advar%:%m(-) > 0. Then there is an inversion
adversary/ with help-length?(-) such that
e(k) < dn(k)v(k) - Adv§3 (k)
and the running time aof is
Ty = O(K*n*vte™) + O(Tp + nvTr)k*n*v?e?
whereTx is the running time ofX. [

IND-CPA. Associate to (randomized) encryption schdie: (K, £, D) and adversary3 the experiment

Exp%ljgpa(k) defined by

b<s{0,1}; (pk,sk) «sK(1%) ; ¥ s BEFROD) (DR« Ret(b = )
whereLR(My, M1,b) = M,. B is an IND-CPA adversary if all its oracle queries consist @fi@ length
strings. Let

Adviﬁni;pa(k:) =2-Pr Expiﬁni;pa(k) = true] —1.

We say thall is IND-CPA secure ifAdviﬁ“C;Cpa(-) is negligible for all PT IND-CPA adversaries.

SECURITY OF OUR SCHEME The following says that our scheme is B-CSS secure for umifadversaries
assuming7 P is one-way andl is IND-CPA secure. By Theorem 4.1 it is A-CSS secure for unifo
adversaries under the same assumptions and a constamtlfesstin security. Since the existence of one-
way trapdoor permutations implies the existence of IND-Ge&ure encryption schemes we obtain the
results under the sole assumption of the existence of oerajpdoor permutations.

Theorem 5.3 Let TP = (G, F, F') be a family of trapdoor permutations ahid= (K, £, D) an encryption
scheme. Lefl = (K,&,D) be the associated deterministic encryption scheme as peromstruction
above. Letd = (Ac, Am, Ac) € Ag N Ay N Ayn be an SS-adversary agaii$twith advantage:(-) =

Advii’s(-) > 0 and number of messages:). Then there is an unaided inversion adversérgnd an
IND-CPA adversaryB such that for alk € N

e(k) <2- Adv%lnga(k) + 16n(k)v(k) - Adv§s (k) . (10)

The running time ofB is that of A plus O(nTr + Tg) and it makes:(k) oracle queries. The running time
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of Jis
O(k*n"v'e ™) + O(Ta + Tg + T + nuTp) - konve > (1)

whereTx is the running time ofX. [

Proof: Consider the experiments of Figure 5. Thé@”, pk,y ; w) is the vector whosé&" component is
E(1%, pk,y[i] ; wli]). Let
P,=Pr Expﬂ"%(/{) = true
fora € {0,1}. Then
AdVCHS?A(kJ) =2P —-1= 2(P1 — P()) + (2P0 — 1) .
AdversaryB is shown in Figure 5, and we omit the (easy) analysis estabisthat
2P) — 1 < Adv2TP2 (k)

II,B
Next we define PRG-adversafy = (A, Dy, D) with help length/(-) as shown in Figure 6 and claim that

Before justifying this claim let us see how to conclude. lZébe the inversion adversary obtained fr@m
by Lemma 5.2. It also has help-lengttr). Now apply Proposition 5.1 to get inversion adversdrwith
help-length 0. Now, putting together the above would give us

AdVE (k) < AdVIESP (k) + 16n(k)o (k) AdvE, 5 (F) (13)

However, (10) has an extra factor of 2 on the first right-haité term. This is to ensure that the running
time of J is as claimed. To see this, consider two cases. The first ia@f® — Py) > €(k)/2. In this
case, (12) implies thaAdv’'3, | (k) > €(k)/8, and hence the running time df (and henceJ) is, up
to a constant factor, as given by Lemma 5.2. However, in thergkcase, namely(P, — Fy) < €(k)/2,
the value ofAdvi'37, | (k) could be very small and the running time f(and hence/) would not be as
shown in (11). But also in this case we ha&) — 1 > ¢(k)/2 so

AdviE, (k) <2(2P) — 1) < 2 Adv%lj_tjpa(k)
so (10) —but not (13)— is true regardless of the advantagé iafthis case. Accordingly, we simply halt
J’ (and henceJ) when its running time hits the bound (11).

It remains to justify (12). Led be the challenge bit cExppTr%'fjln(k) andd’ the output ofD,. Then

= Pr[d=1]c=1Ad= }l—i—(l—Pr[clzl | c:O/\dzl])%

2
1 1 1
= §+§Pr[g:t1|c:l/\dzl]—gPr[g:tl\c:O/\dzl]
1 1 - 1 -
= 3 + §Pr [ExpdfrﬁA(kz) = true | b= 1} — §Pr [ExpdfrﬁA(kz) = false | b= 0]
1 1
— Z4-P
3 Tt

14



Experiment Exp Y (k) / |ExpY (k) adversary BE#(MR00) (pF):

) )

b s {0 1} (Xo,to),(xl,tl) <3 Am(lk,)\)
(XO,tO), (Xlutl) s Am(lk, /\) (Qb» T) <_$E(1k) ; S8 {0> l}k
(6.7) s G(1¥) ; 545 {0, 1}* ph ¢ (. Dk s) .
(PR, 58) s K(1F) 5 ph (6, PF.5) Yo e Fy o) v 4 By Tx)
W gT'P(lkv 1n(k)7¢7xb78) Fori : 17 = ,U(]C) do ) )

R c[i] <=s E5z(LR(yold], y1i], b))
ws B ) A (1k

o o g<_$ g(l ,pk,C,)\)

y < Fg(k)(xb) ; ¢« E(1F, pk,y ; w) If g = t; then Ret 1 else Ret 0

g s Ag(lk,pk:,c, A)
If g =t; thend’ < 1 elsedt’ + 0
Ret(b = V)

Figure 5: (Left) Experiments used in the proof of Theorem 5.3. The experimghincludes the boxed
statement whilel-1 does not(Right) IND-CPA adversary for proof of Theorem 5.3.
whereb is the challenge bit of the Figure 5 experiments. Similarly

Pr(d=1|d=0]
= Pr[c=c’|d:0]

= Pr[d=1| c:l/\dZO}%—i-(l—Pr[c’:l | c:O/\dZOD%

11 1

= §+§Pr[g:t1|c:l/\d:0]—§Pr[g:t1|c:O/\d:0]
11 ) 1 ]

= S+5Pr [Exp%—%A(kJ) = true | b= 1} 5P [Exp%—%vA(k:) — false | b= 0]
11

— Z4-p.
p Tl

So

AdviE) (k) = Pr[d=1]d=1]-Pr[d=1|d=0]

establishing (12).1

INSTANTIATIONS. DE1 admits quite efficient instantiations. Say we want to entcay024 bit (random)
message. Letthe trapdoor one-way permutation be squaondglma 1024-bit composite numh#&r[8] that

is part of the public key. Then the PRG requiresquarings, where is the number of bits of randomness
required by the (randomized) encryption schdme et IT be the Blum-Goldwasser scheme [9], also using
a 1024-bit modulus. (This modulus, also part of the publig keust be different fromiV.) Then encryption
cost of DE1 is that of Blum-Goldwasser (1024 squarings) ptus 1024 squarings for the PRG to get coins
for II. (We assume here, and below, an efficient mapping from bisaiop elements, otherwiseincreases
by a small amount.) Decryption time also doubles, comingtiabmut 4 exponentiations modulo 512 bit
numbers (less than one 1024 bit exponentiation!) using €deimemainders. The ciphertext size is that of
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algorithm D, (1%, x, ¢, \): algorithm Dy (1%, ¢, \,y, w, s,1):

Repeat cs{0,1};y1 < y;t1+t; w +—w
(x/,t') <=5 A (1%, X) (X0, t0) <=3 A (1%, )

until (x’ = x) (pk, sk) < KC(1%) ; pk < (&, pk, s)

tt wo = Grp(15, 1" ¢, x¢,5) ; yo Fg(k)(xo)

Rett c+ E(1%, pk,y.; w,)

g s Ag (1%, pk,c, \)
If (9 =t.)thend + 1 elsed «+ 0
Retcod @1

Figure 6: PRG adversary for proof of Theorem 5.3.

Blum-Goldwasser, namely 2048 bits, and security restdysofefactoring. Alternatively, lefl be EI Gamal
hybrid encryption using a 160-bit group. (A universal hatthe DH key is used to one-time symmetrically
encrypt the data.) Encryption time fBfE1 is that of hybrid El Gamal plus the time far= 320 squarings
modulo NV, decryption time is 2 exponentiations modulo 512 bit nuralus one 160-bit exponentiation.
and the ciphertext size is only344 bits. The security assumption is now factoring + DDH.

DiscussioN One might ask why we did not work with IND rather than with C&&ions. The reason is
that it is unclear how to meaningfully capture the case dfaunily and independently distributed messages
with IND. We could certainly say that an IND-adversaly= (I, I, I,) is uniform if for everyk and
everyst, b the components ot are uniformly distributed ovef0, 1}* whenx «s I, (1%, b, st). But such

an adversary would always have zero advantage.

6 Generalizing Our Construction to Non-Uniform Messages

Section 5 provides a deterministic encryption scheme ®AHCSS-secure encryption of independent, uni-
formly distributed messages assuming the existence ofld@pone-way permutations. Here we explain
how the same scheme provides A-CSS-secure encryption epémdlent messages that are not necessarily
uniformly distributed but rather have high min-entropyas long as the assumption is strengthened to the
existence of trapdoor permutations one-way for distrdngiof min-entropy:. We point out that a similar
assumption was used by [19] in order to construct signatthieraes getting only “imperfect” randomness.
The main observation needed for the generalization is gitinalt min-entropy is preserved under permuta-
tion, meaning if a random variabl& over B;, has min-entropy: then so doeg (X)) for any permutation

f on Bg. In the following we make the result more precise and sketsh the previous proof approach
generalizes.

EXTENDING THE FRAMEWORK. An inversion adversary = (Ju, Je, Jp, Js) is now a 4-tuple wherée,,

is a non-uniform algorithm with.J,,(1%)] € {0,1}* and J., J,,, Js are as before. We say thdte J{p

if the output of J,, has min-entropy:. The running time of/ is defined as the sum of the running times
of Jm, J. and Js. A PRG-adversanyD = (D, D, D, D) is similarly a 4-tuple wheré),, is a non-
uniform algorithm with[D,,(1%,1%)] € Bp and D, D,,, D, are as before. We say that € Dy, if the
components of the output @d,,, are independently distributed, each with min-entrppyrhe running time
of D is defined as the sum of the running timeddf, D. andD,. The help lengtl(-) is defined as before
and Jy, D, are the corresponding classesis unaided if it has help length O. Experimdﬁkp‘%vgvj(k) of
Figure 4 is modified by replacing s {0, 1}* by x <s J,,(1%). ExperimenExppTr%fbm(k) of Figure 4 is
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modified by replacing «—s BZ(’“) by x s Dy, (1%, 1)), The advantage functions are defined as before,
and we say thaf P is one-way for min-entropy: if Adv%ﬂj(-) is negligible for all PTJ € 7y N Fig-
Proposition 5.1 generalizes so thaf/ifs in 7}, then so is/’. Lemma 5.2 generalizes so that¥f € Df,
thenJ € Jip.

SECURITY OF OUR SCHEME Theorem 5.3 generalizes as follows. In the preamble, adst# A being

in Ag N A\ N Aun, letit be inAg N Ay N A§ N Ax. Then, in the conclusion, the unaided inversion
adversaryJ will be in 7). The theorem is saying that our scheme is B-CSS secure fepamdiently
distributed messages of min-entropyassuming7 P is one-way for min-entropy: and Il is IND-CPA.
Since the transformation of Theorem 4.1 preserves the meskstribution, the corollary is that our scheme
is A-CSS secure under the same conditions. Since the eséste#ra family of trapdoor permutations one-
way for min-entropyu implies the existence of one-way trapdoor permutatioresd implies the existence
of IND-CPA secure encryption schemes and so we obtain thdtsesnder the sole assumption of the
existence of trapdoor permutations one-way for min-emytrop

7 From Deterministic to Randomized PKE

OVERVIEW. As observed in the introduction, any PRIV-secure deteistimschemdl is trivially a one-
way trapdoor injection, meaning an obvious method for lgch secure randomized scheiiids to use

II within a generic construction (i.e., [24, 21]) to derive &D-CPA secure scheme. The equally obvious
downside of such an approach is the lack of efficiency. Fomge, [24] requires large ciphertext®(k -
|M|) for security parametet and messagé/. ([21] requires both large ciphertexts and large keys, ghou
it meets CCA security.) One would expect to do better giveniraifive that provides more than just one-
wayness.

A tempting approach to achieve a more efficient construdsahe following. Noting thafl meets a
form of semantic-security whenever there is sufficientagtrin the message space, we could hEven-
crypt by padding messages with an appropriate number obrariits, and then applying to the resulting
padded string. This would ensure the scheme always enjoi)é &Rurity, even when messages have no
entropy. But isIT also IND-CPA? In general the answer is no, due to the factlihanly provides security
when messages are chosen independently of the public keyheOother hand, the IND-CPA definition
mandates security even against public-key dependent gesss®ne can easily build a schemighat is
PRIV-secure but for whichl as described inot IND-CPA.

Fortunately we can circumvent the key-independency issugga hybrid-encryption approach. Par-
ticularly, encryption first generates a fresh session keyaarandom pad. Then, it usésto encrypt the
concatenation of the session key and pad followed by usit@naard (one-time secure) encryption scheme
to encrypt the actual message under the session key. Thisambpworks even in the context of chosen-
ciphertext attacks, see Appendix G.

KEY ENCAPSULATION. We will in fact show how to build a (randomized) key encapioh mechanism
(KEM) [15] from any PRIV-secure deterministic encryptiacheme. Using the KEM formulation is simpler
and sufficient: in conjunction with any (one-time secureneyetric scheme, this provides an IND-CPA
scheme [15]. Formally, a key-encapsulation mechanism (KIC, KE, KD) is a triple of algorithms. The
key generation algorithriC K takes input security parametet and outputs a public key, secret key pair. The
key encapsulation algorithii& takes inputl® and public keypk and outputs a session kéy € {0, 1}5(*)
and a ciphertext. The function N — N specifiesl’s session-key lengtihe key decapsulation algorithm
KD takes as input”®, a secret keyk, and a ciphertext and outputs a session key. A KEM-adverdasya
non-uniform algorithm that takes input§, a public key, a bit string, and a ciphertext and outputs .a\Visé
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Experiment Exp'i™} (k)

b<s{0,1}; (pk, sk) +s KK (1F)

(K1, C) s KE(1*, pk); Ko +s{0,1}°*)
Vs A(1%, pk, K, C)

Ret(b =)

Figure 7: Experiment defining advantage of a KEM adversary

define the KEM advantage of against¥ by
AdvE™ (k) = 2- Pr | Exp (k) = true] 1
where the kem experiment is defined in Figure 7.

THE CONSTRUCTION Fix functionsy,s: N — N. LetIl = (K, &, D) be a (deterministic) PKE scheme.
We sayll is suitable if it encrypts messages of length) such thato(k) > u(k) + s(k) forall & € N. Let
U = (KK,KE,KD) be the KEM with session key lengttt-) defined by the subsequent three algorithms.

algorithm JCKC(1%): algorithm K& (1%, pk): algorithm KD(1*, sk, c):
(pk, sk) s KC(1%) R+s{0,1}*®) ; K +s{0,1}5%) R K + D(sk,c)
Ret(pk, sk) c— EF pk, R || K) RetK

Ret(K,c)

The next theorem captures the securitylof

Theorem 7.1 Let u,s: N — N. LetIl = (K, &, D) be a suitable PKE scheme. Lét= (KIC,KE,KD)
be the associated KEM scheme as per our constructionAles a KEM-adversary. Then there exists an
IND-adversaryl = (I, Im, Iy) € I} NIy, outputting a single message, such that fokall N

AdviT (k) < Advii(k) .
The running time of is that ofA. [

Proof: Below we writey for p(k) ands for s(k). We buildI* = (I, I}, I*) using A, as shown below.

m’—g
algorithm 17 (1%): algorithm I* (1%, b, K): algorithm 13 (1%, pk, ¢, K):
K <+s{0,1}° R < {0,1}* V s A(1%, pk, K, c)
Ret & If b= 1then RetR || K Retl’
K’ +s{0,1}°
RetR || K’

I* has min-entropy: because of the selection &f It is straightforward to verify that
Pr [Expirrﬁ_fpa(k) = true] =Pr [Expl\ﬁrﬁ(l@) = true

Finally, let] be the IND-adversary with trivial state function that wojlist like I* except thats is replaced
by a “best” value.l

DiscussioN We make several observations about the constructiont, Birgrovideswitness-recovering

public-key encryption: all the randomness used to generaiphertext is recovered withiiD. Second,
we only requirell to be secure against adversaries that output a single nees$ags is notable because,
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as discussed in Section 3, security against single-mesgbgesaries is strictly weaker than multi-message
adversaries. Finally, one might wonder if it is possible ispdnse with the random paddidgy In fact it is
requisite to meet KEM security. Lait’ work just like our construction except that we omifz. But then
there exists an easy KEM-adversary agaibistjust compute’ < £(1%, pk, K) and outputl iff ¢/ = c. If

£ is deterministic the advantage of this adversary is2~5(+).

References

[1] M. Bellare. The Goldreich-Levin Theorem. Manuscripttp://www-cse.ucsd.edu/users/
mihir/papers/gl.pdf

[2] M. Bellare, A. Boldyreva, and S. Micali. Public-key egption in a multi-user setting: Security proofs
and improvements. IAdvances in Cryptology — EUROCRYPT ,QINCS vol. 1807, pp. 259-274,
2000.

[3] M. Bellare, A. Boldyreva, and A. O’'Neill. Deterministiand efficiently searchable encryption. In
Advances in Cryptology— CRYPTO ;AMNCS vol. 4622, pp. 535-552, 2007.

[4] M. Bellare and P. Rogaway. Random oracles are practsglaradigm for designing efficient proto-
cols. InConference on Computer and Communications Security — C&30M, pp. 62—73, 1993.

[5] M. Bellare and P. Rogaway. Robust computational sedratisg and a unified account of classical
secret-sharing goals. I@onference on Computer and Communications Security — CGSAOM,
pp. 172-184, 2007.

[6] M. Bellare and P. Rogaway. The security of triple enciyptand a framework for code-based game-
playing proofs. InAdvances in Cryptology — EUROCRYPT,Q@BCS vol. 4004, pp. 409-426, 2006.

[7] M. Bellare and A. Sahai. Non-malleable encryption: Bmlénce between two notions, and an
indistinguishability-based characterization. Advances in Cryptology — CRYPTO ;92NCS
vol. 1666, pp. 519-536, 1999.

[8] L. Blum, M. Blum, and M. Shub. A simple unpredictable pdetrandom number generatog8lIAM
Journal on Computingvol. 15, pp. 364—383, 1986.

[9] M. Blum and S. Goldwasser. An efficient probabilistic iakkey encryption scheme which hides all
partial information. InAdvances in Cryptology — CRYPTO ;8ANCS vol. 196, pp. 289-302, 1984.

[10] M. Blum and S. Micali. How to generate cryptographigadtrong sequences of pseudorandom bits.
SIAM Journal on Computingol. 13, pp. 850-864, 1984.

[11] A.Boldyreva, S. Fehr, and A. O’Neill. On notions of seityfor deterministic encryption, and efficient
constructions without random oracles.Advances in Cryptology — CRYPTO ,G808, to appear.

[12] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. PersiaRablic key encryption with keyword
search. IMdvances in Cryptology — EUROCRYPT,@NCS vol. 3027, pp. 506-522, 2004.

[13] R. Canetti. Towards realizing random oracles: Hastctions that hide all partial information. In
Advances in Cryptology — CRYPTO ;AMNCS vol. 1294, pp. 455-469, 1997.

[14] R. Canetti, D. Micciancio, and O. Reingold. Perfectlyeeway probabilistic hash functions (Prelimi-
nary version). IrSymposium on the Theory of Computation — STOCpp8131-141, 1998.

19



[15] R. Cramer and V. Shoup. A practical public key cryptaeys provably secure against adaptive chosen
ciphertext attack. Ii\dvances in Cryptology — CRYPTO ;98NCS vol. 1462, pp. 13-25, 1998.

[16] I. Damgaard, D. Hofheinz, E. Kiltz, and R. Thorbek. Roiley encryption with non-interactive
opening. InTopics in Cryptology — CT-RSA ‘08NCS vol. 4964, pp. 239-255, 2008.

[17] S. Desrosiers. Entropic security in quantum cryptpgsa arXiv e-Print quant-ph/07030486itp:
/larxiv.org/abs/quant-ph/0703046 , 2007.

[18] S. Desrosiers and F. Dupuis. Quantum entropic secarityapproximate quantum encryption. arXiv
e-Print quant-ph/0707.069h{tp://arxiv.org/abs/0707.0691 , 2007.

[19] Y. Dodis, S. J. Ong, M. Prabhakaran, and A. Sahai. On iimgppssibility of cryptography with
imperfect randomness. lBymposium on the Foundations of Computer Science — FOCIERE,
pp. 196-205, 2004.

[20] Y. Dodis and A. Smith. Entropic security and the enciyptof high entropy messages. Tineory of
Cryptography Conference — TCC ‘OBNCS vol. 3378, pp. 556577, 2005.

[21] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptaging. SIAM Journal on Computingol. 30,
no. 2, pp. 391-437, 2000.

[22] T. El Gamal. A public-key cryptosystem and a signatureesne based on discrete logarithms. In
Advances in Cryptology — CRYPTO ;8ANCS vol. 196, pp. 10-18, 1984.

[23] O. Goldreich. A uniform complexity treatment of enctigm and zero-knowledgeJournal of Cryp-
tology, vol. 6, pp. 21-53, 1993.

[24] O. Goldreich and L. Levin. A hard-core predicate for @fle-way functions. I'Symposium on the
Theory of Computation — STOC "'88CM, pp. 25-32, 1989.

[25] S. Goldwasser and S. Micali. Probabilistic encryptialournal of Computer and Systems Sciences
vol. 28, no. 2, 1984, pp. 412-426.

[26] S. Micali, C. Rackoff, and R. Sloan. The notion of setufor probabilistic cryptosystemsSIAM
Journal on Computingvol. 17, no. 2, April 1988, pp. 412—-426.

[27] C. Peikert and B. Waters. Lossy trapdoor functions &t applications. IiSymposium on the Theory
of Computing — STOC 'Q&ACM, pp. 187-196, 2008.

[28] A. Russell and H. Wang. How to fool an unbounded advgrsdth a short key. InAdvances in
Cryptology — EUROCRYPT'Q2NCS vol. 2332, pp. 133-148, 2002.

[29] A. Smith. Personal correspondence. 2008.

[30] D. Song, D. Wagner, and A. Perrig. Practical technicfoesearches on encrypted data Symposium
on Security and PrivagyEEE, pp. 44-55, 2000.

[31] A. Yao. Theory and applications of trapdoor functios. Symposium on Foundations of Computer
Science — FOCS '82EEE, pp. 80-91, 1982.

20



A Message-based Partial Information

In our css and sss experiments, the informati@omputed byA,, can depend on coins underlying the
generation ok rather than merely or. Here we show that the two formulations are in fact equiviséerl
then explore the implications for single versus multi-naggssecurity that motivated this question.

EQUIVALENCE. An SS-adversaryd = (Ac, Am, Ag) is said to be separable if there are non-uniform
algorithms A4, A,, called the message space and partial information functespectively, such that the
outputs of the following are identically distributed foi &l N and allst:

x s Aq (1%, st)
t s Ap (1% x, st)
Ret(x,t)

(x,t) <=3 A (1%, st)
Ret(x,t)

Let A, be the class of separable SS-adversaries. The followirgythay restricting attention to separable
adversaries leaves the class of secure schemes unchanged.

Theorem A.1 LetII = (K, &, D) be a PKE scheme. Let = (Ac, A, A,) € A}, be an SS-adversary
with information length/(-). Then there is a separable SS-advers#lry= (A, Ay, A}) € Ay N Asep
with information lengthY(-) such that for alk € N

AdvES, (k) < AdvES, (k)
The running time ofd’ is that of A plus O(¢ + p). If Aisin A%y thensoisd’. O

Proof: Let m(k) = [u(k)] and letv(-) be the number of messages output Ay We obtain A’ =
(A, AL, Ay ), which will outputw(+) + 1 messages, by defining

algorithm A’ (1%, st): algorithm A (1%, pk, ¢, st):
(x,1) s Am(1F, st) c (C[,....cp)
s {0,1}m(F) g+ Ag(1%, pk, c, st)
x[v(k) + 1]« t]r Retg

Ret(x,t)

That is, A/ simply putst into the message vector, randomizing it to ensure the mirogy of the adversary
is not reduced. it is easy to see thHit= (A, A}, 4, ) is separable and has the same advantage 4s

WHY SEPARABILITY? The following says that in the context of separable adviesgroducing indepen-
dently distributed messages, security of single and mudgsage encryption are equivalent. The proof is a
simple hybrid argument.

Proposition A.2 LetII = (K,&,D) be a PKE scheme. Let = (Ac, Ay, Ag) € Al N Asep N Ax

be an SS-adversary with information lendth) outputtingv(-) messages. Then there is an SS-adversary
A" = (AL, AL, Ay) € Ay N Asep With information lengthé(-) outputtings’(-) = 1 message such that for
allk e N

Adviis(k) <wv(k) - AdviTs (k) .
The running time ofd’ is that of A plus O(v). If Aisin A%y thensoisA’. O

This leads to the following possible way to simplify the pr@d Theorem 5.3. First, by Theorem A.1,
restrict attention to separable adversaries. Second, dpoBition A.2, assume(-) = 1. The catch is that
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Theorem A.1 does not preserve message independence, mesamifA € A, adversaryd’ need not be
in A, . This is why Theorem 5.3 explicitly considers arbitrary).

OPEN QUESTIONS The above leads to several interesting open questions.fifBhés whether there is
a reduction to separated adversaries that preserves milpee, meaning an analog of Theorem A.1 in
which A € A, implies A’ € A. Barring this another open question is whether Proposai@extends to
non-separable adversaries. In case that the answer to gitbstion is “no” it would also be interesting to
see counter-examples.

B BB-CSS= B-CSS Proof of Theorem 4.2

Letn : N — N be a function to be specified later. Below we writdéor n(k). Let H : {0,1}* x {0,1} —
{0, 1} be a family of pairwise independent hash functions wherd ag K € {0, 1}* specifies a particular
function Hi : {0,1} — {0,1}. (Specifically lets = 2 so that a key' = a || b is a pair of bits and let
Hg(z) = ar ®b.) LetS™ = {0,1}® x --- x {0,1}* where{0, 1}* is repeatech times. Sinced € A,
its state functiond. always outputs\, which is the last input to boti,,, and 4,. Let A* = (A7, A7, A7)
where

algorithm A (1%): algorithm A* (1% K): algorithm A% (1%, pk, ¢, K):
Ks 9" (%, 1) s A (17, ) g s Ag(1F, pk,c, )
RetK i<s[l..n] js[l..n]
Ret(x, H(K][i], 1)) RetH (K], g)
Fort € {0,1} let Z;(K) = Pr [H(K][i],t) =0 : i<s[l..n]] and let
G = {K eS" | Zy(K) - % > i for somet € {0, 1}} .

ClaimB.1 Pr[K e G; : K+s8"] <4e ™32 [
The proof of the above will use the following standard Chérhound.

LemmaB.2 Let Xy,..., X, be independent random variables taking value®jn| and letX = X; +
-+ 4+ X,. Then for anyaz > 0

Pr[|X —E[X]|>a] <2%/?" O

Proof of ClaimB.1: Let X;;(K) = 1 — H(K][i],t). LetX; = Y ", X;;. ThenE[X;;] = 1/2 and
E [X:] = n/2. Observe tha?,(K) = X,(K)/n. So, with probabilities taken ové€ «s S™,

1
Pr[

1 n n n
Zt——‘ > Z] =Pr[|X-3| =7 =P | |IX-EX) =]
But {X;,}" , are independent so we can use Lemma B.2

2 4

e[| —E DX 2 7] < 20 (820 2 g,
Finally, we can apply a union bound to get

PriIKeG; : K+sS"| < Z PrHXt—g‘z
te{0,1}

n.

T
_ . 1 5

Claim B.3 Advii*y. (k) = 7-Advii*s (k) O
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Proof: Let P, = Pr [ Expf{{®}' (k) = true | and Py = Pr [ Exp{{"’ (k) = false |. Then

- Pl P1 1
Pr [ Expfi*ih (k) = t = —1+(1-—)= and
[Bxpfiit () = te] = oo (1-21)
P, P\ 1
Pr [ Expfi®)! (k) = false|] = —0-1+<1——0>5
’ n n

where we have used that is pairwise independent and so

-« P, P, 1 P, P,
AdviPL (k) = = - =+ 5 [(1 — —1> — (1 - —°>]

Let Y (K) be the css advantage df when we do not choos€ at random in the game but instead dise
ThenAdvi®. (k) = E[Y], where the expectation is ovl «—s S™. Let P = 27°" be the probability of
picking a particulaiK. Then we use the definition of expectation and Claim B.1 tdfpt

EY] = > YX)-P+ ) Y(K)-P

K¢Gh KeG
= Z Y(K)-P+Pr[KeG; : K+sS"] < Z Y(K)-P + 4e/32
K¢ Ko

Rearranging, applying Claim B.3, and recalling that Adv(®,(k) gives
Y Y(K)-P>E[Y]—4e % = Adviy- (k) — 67% = % — ﬁ : (14)
K¢G

Then choosing: so thatde—"/32 < ¢/4n ensures that the difference in (14) is greater than or equalit..
This ensures that there exist&asuch thaty’ (K) > ¢/4n and alsaK ¢ G;. Let A’ be the adversary that
runs like A* except that it always uses suclika Then A’ has trivial state function, is 1/4-balanced, and has
advantage at leasf4n.

Now we determine a suitable value for We need thatne"/32 < ¢/4. We can first find anV so that
4n < e"/%* for alln > N. This holds forN = 485. We can then find an > 485 such thate /64 < ¢/4.
This concludes the proof.

C A-CSS= A-SSS Proof of Theorem 4.3

We define the simulato$ below.
Algorithm S(1%, pk, \):
(x0, o) s Am(1F, st)
c s E(1% pk,xq)
g s Ag(lk,pk:, c, st)
Retg

Then we have that

Pr [Expﬁjls(k:) = true | = Pr [Expﬁf}(kz) = true |

because the experiments are exactly the same in the cagethatBy the construction of we also have
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that
Pr [Expﬁsz?s(k:) = false | = Pr [Expcnsizlo(kz) = false |

by the same reasoning. The theorem statement follows.

D BB-SSS= IND: Proof of Theorem 4.4

We defined = (A, Ay, Ag) via

algorithm A, (1%, \): algorithm A, (1%, pk, c, \):
t<s{0,1} t' s I, (1%, pk,c, )

x s Iy (17, ¢, \) Rett/

Ret(x,t)

Note thatA is perfectly balanced since it chooséaniformly. Let.S be an arbitrary simulator. Let, = ¢
be the event that, outputst. in Expir’y o(k). LetS = t be the event thaf outputsl —¢ in Exp}i®y (k).
Then,

AdviP, g(k) = 2-Pr|Expi, g(k) =true] —1
= 2-(Pr[Ag=t|b=1]-Pr[b=1]4+Pr[S+t|b=0]-Pr[b=0]) -1
1 ind 1 1

= 2. (5 Pr [EpoJ(kz) :>true] + 3 §> —1 (15)
ind 1

= Pr{EpoJ(kz):true] b

1 1 in 1
= §+§~Advng(kﬁ)—§ (16)

1 )
= 5 Advii(k) .

In the case that = 1, the experimenExpij’, ¢(k) simulates forl exactly the experimerExpiﬁf‘I(k). In
the case that = 0, the simulatorS receives no information about the bit Thus, the probability that it
outputs a bit not equal tois 1/2. Together these facts justify (15). Equation (16) is detitsg applying
(7).

E IND = BB-CSS Proof of Theorem 4.5

First, to give an idea of the efficiency of the reduction rie&to J, note that ford = 1/4, the running time
of I is increased over that of by the time to performik + 13 executions ofd,,,.

Letn(-): N — N to be defined later; below we write for n(-). We define two IND-adversaries
I = (A, Iy, 1) andI’ = (A, I}, I,), both with trivial state functions and with the other algoms defined
below.

Algorithm I,,,(1%, b, \): Algorithm 1’ (1%, b, \): Algorithm I(1%, pk, ¢, \):
Fori=1,...,ndo Do (x,t) < Ap (1%, )) g s Ag(1%, pk,c,\)
(x,t) s A (1%, )) until (¢ = b) Retg
If t = bthen Retx Retx
Retx

Note thatl/, may not be PTI,, is an approximation to it that is PT. We first state three ca@md use them
to conclude, then proceed to prove the claims.
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. . . 1 n—1
Claim E.1 Advid, (k) < Advid(k)+4- <§ n 5>

Claim E.2 Adv{% (k) < 2-Advij9 (k)
Combining Claim E.1 and Claim E.2 gives that

. 1 n—1 .
Adv§iy (k) = 2 Advii(k) +8 <§ - 5> < 2- Advii(k) +27F,

the last part by setting

1
nk)=|-—-——
() { log (% +5)

Ouir final claim is that the min-entropy dfis close to that ofd.

—‘-(k:+3)+1.

Claim E.3 I has min-entropy// (k) = u(k) — 2 4 log(1 — 24).
Before justifying the claims, we fix some notation. bet [A,, (1%, \)] and letb € {0,1}. Let
pr = Pr =1 (y,t) <—$Am(1k,)\)]

Py = Pr-t:():(y,t)<—$Am(1k,)\)]:1—p1

ap(x) = Prl(y,t)=(xb) : (v,%) <—$Am(1k,/\)]
w(x) = Pr _y:X : y<—$Im(1k,b,)\)}
(x) = Pr-y:x : y<—$Ir’n(1k,b,)\)} .
Then, we have
n—1 ‘ n—1 ‘
Wx) = Py e () + Y Py an(x) = piT e (x) +ap(x) - Y piy
1=0 1=0
= P anp(x) + ap(x) - & :
Db
and
P  ax)
X)) = ZPH)'O%(X) = :
i—0 Db
So,
ap(x n— 1—pi_
) =) = |22 a0 — ap() - DA
Db Do
ap(x)p_ N
= | e (x)
Do

We now turn to proving the claims.
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Proof of Claim E.1: Foranyb € {0,1},
Pr [Expiﬁ’%?b(k) = true} —Pr [Explnd P(k) = true] ‘ <SD (Ifn(lk, b), I (1%, b))

and

SD(1,(1%,0), In(15,8)) = 37 [34(x) = ()|

IA
M
:3
0“
M
F
@‘
S
0“

—_——— %,_/
—1 <1
< p?:g(pl—b +1)
< 27,
1 n—1
< 2.[=4+9
< <2 ; >

where we have used the fact thgt< 1/2 + §, which follows from the fact that! is §-balanced. The above
implies that

n—1
Advii (k) — AdvifG(k) < 4- (% + 5>

which proves the claiml

To prove Claim E.2 we will utilize the following lemma:

Lemma E.4 Letll = (K, £, D) be an encryption scheme ard= (A., A, A) € Ags N Ay N Ag be a
boolean ss-adversary. Consider the following experimeh&rek € N:

(x,1) =5 A (1%, 0) ; (pk, sk) s KC(1%) 5 ¢ =5 E(pk,x) 5 g +s Ag(1F, pk,c, \) .
Leta; =Pr[g=1|t=1]andby =Pr[g=1| t=0]ande; =Pr[t=1]. Then
Adviy (k) = (a1 — b1)(2c; —2¢}) O

Proof of Lemma E.4: We extend the experiment of the lemma statement with theiaeddi step
(x/,t") s A (18,0 .

Then let
ag = Prig=0|t=1]=1-a
b() = Pr[g:0|t:0]:1—bl
g = Prit=0]=1-¢
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Then

Pr [ Expfi* '(k) = true| = Pr[g=t]
= Prig=1|t=1]Pr[t=1]+Pr[g=0|t=0]|Pr[t=0]
= ajci + bocy .

Also, using the fact thag, t,t' € {0, 1},

Pr [Expcsso(k):M‘alse] = Pr{g=1]
= Prlg=tAt=t']|+Pr[g#tAt#t]
= Prig=1At=1At'=1]+Pr[g=0At=0At'=0]

+Pr[g=1At=0At'=1]+Pr[g=0At=1At'=0] .

But the eventt' = 1" is independent of its conjuncts, and similarly faf = 0" so

Pr[Expf®(k) = false] = Pr(g=1At=1]Pr[t'=1]+Pr[g=0At=0]Pr[t'=0]+
Pr[g—l/\t—O]Pr[t'zl]+Pr[g:0/\t:1] Prt'=0]
= Prig= |t:1]Pr[t:1]Pr[t':1]—|—
Prig=0|t=0]Pr[t=0]Pr[t'=0]+
Prig=1]t=0]Pr[t=0]Pr[¢'=1]+
Pr[gzou:] [t=1]Pr[t' =0]

= CL161 + bocg + bicper + apeicg -
The last equality uses the facts taft’ = 1] = Pr[t = 1] = ¢; andPr[t’ = 0] = Pr[t = 0] = ¢p. Now
AdviPy (k) = Pr[Expf) (k) = true ] — Pr | Expfi®) O(k) = false |

2
= aicy + bOCO — a1y — bOCO - b16061 — apcCi1Co

= a1(01 — C%) + bo(Co — Cg) — (ao + b1)6001
butcyc; = ¢ — c% and alsocge; = ¢ — cg So
Adviy (k) = (a1 +bo— by —ag)(c1 — c})

= (2&1 — 2b1)(61 — C%)
(a1 — bl)(261 — 26%) . I

Proof of Claim E.2: Consider the experiment of Lemma E.4. TﬂéﬂExpiﬁlf‘ﬁl(k) = true] = a; and
Pr[Exp}i7°(k) = false] = by SOAdv{{: (k) = ai — by. By Lemma E.4

AdviP, (k) = Advii (k) (2c1 — 2c}) < 2-Advii9 (k)
where we have used the fact tRa — 2¢? is maximized whem; = 1/2. 1
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Proof of Claim E.3: Fixb € {0,1}, z € {0,1}*, andi € [1..v(k)]. Let S(z,7) = {x : x[i{] =« }. Then

Pr|x[i] =x: x<—$Im(1k,b)] = Z Yb(x)
x€S(z,1)
1—- p?—b n—1
< D) w) + P, 0n-b(x)
xXES(z,1) Pb
1—pt _
= — N )T Y a)
Py x€S (i) x€S(x,7)
1
< = D (a(x) + onp(x))
Py xES(z,1)
1 S k
= p—bPr [X[Z] =x: (x,1) s Ap(l )}
< i.Q—#(k)
D
< b o
1/2 -9

_ 27u(k)+1710g(1725)

and since) < 1/2 this is well-defined. |

F Proof of Lemma 5.2
Let D = (D, Dy, D). The following allows us to reduce to the case) = 1.

Claim F.1 There is a PRG-adversaly’ = (D¢, D}, D) with help lengthé(-) such that for alk € N
e(k) < v(k) - AdvlET, (k) .
The running time o’ is Tp + O(nv) - Tp. O

Proof: The proof is a simple hybrid argument. Adversdpyis shown in Figure 8. We highlight the fact
thatx, 7 need to be chosen bl and put intost’. This is important to ensure that the help-lengthZif
stays equal to that db. We omit the analysis.I

A prediction adversary’ = (P, P,, P;) is a triple of algorithms. We let
AdVE;, p(K) = 2 Pr | Bxpl, (k) = true | — 1

where the experiment is shown in Figure 9. The running time &f defined as the sum of the running times
of P. andF,, so thatP is PT if P, P, are PT. &, is not required to be PT.) We say th@thas help-length
((-) if the output of P, (1%, -, -, -) is always of lengtht(k).

Claim F.2 LetD' = (D, Dy, Dy) be a PRG-adversary. Then there is a prediction advei3agy( P, Py, Py)
such that for alk € N

AdVIET, (k) < (k) - AdVES, o (k) .
The running time o is T, + O(n) - Tp. O
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algorithm D/ (1%, ¢): | algorithm D[ (1%, z, ¢, st'): | algorithm D/ (1%, ¢,y,w,s, t):

i<s{l,...,v(k)} (st,x,i) < st’ (st,x,1) < st’

x ¢s B/ x[i] < x Forj=1,...,v(k) do

st +s Do(1%, ¢) tes Dy (1, %, 6, st) sl FrO )

st’ «+ (st,x,1) Rett If j <i—1then

Retst' wlj]  Grp(1%,18), ¢, x[j], 5)

Elsew[ ]<—$B (k)
yli] <y w[ J < w
b <s Dg(1%, ¢, st,y,w, s,t)
Retd/

Figure 8: AdversanD’ for proof of Claim F.1.

Experiment Exp/p, p(k)

(6.7) s G(1F) 5 st s (17, ¢)
x s {0, 1}”C st Pp(lk, x, ¢, st)
y<—F¢( ); s+ {0,1}"

c s Py(1%, ¢, 5t,y,,t)

Ret(c = (z,s))

Figure 9: Experiment defining advantage of prediction asbgtP = (P, Py, Py).

Proof: AdversaryP is shown in Figure 10. We focus on the aspects related to h&pmation, meaning
what is different from the standard argument. In this regaednote that?, runs D, but on a valuer’
obtained by iteratindg”, backwards orx some number of times. This meaRs needs to invert, and is
not PT, but we allowed that. (Its running time is not countethiat of P.) Also the guess indekis chosen
by P. and put inst so thatP can keep its help length equal to that/@f. We omit the hybrid argument used
in the analysis.

The final step uses the Goldreich-Levin theorem [24] whose isocaptured by the following.

Lemma F.3 There is an algorithnREC such that for all: € N and allz € {0, 1}* the following is true.
LetB: {0,1}* — {0,1} be an oracle such that

2-Pr[B(s):<x,s>:s<—${0,1}k}—125>0. (17)
Let Eq be an oracle that on any inputreturns true ifr = w and false otherwise. Then
1
Pr [ RECBEd(1k) — x} =3 (18)

The running time oREC is O(k3-6~%). It makesO(k?-§~2) calls to oracleB andO(kj—2) calls to oracle
Eq. OJ

The running time above is in the model where an oracle caluh@asost. The probability in (18) is over the
coins of REC only, and that in (17) is over the choice ©bnly. (B is deterministic.) A proof of the above,
following Rackoff’s simplification to [24], can be found id]. Let P = (P, P,, P,) be the prediction
adversary given by Claim F.2 applied to the PRG-advergdrgf Claim F.1. Lety(-) = Adv’p p(-) > 0.

Let I = (P, Py, Is) where algorithm/ is shown in Figure 11. We claim that this inversion adversary
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adversary P.(1%, ¢):

adversary P, (1%, z, ¢, st):

is{l,...,v(k)}
st’ «s DL(1%, ¢)
st « (i, st’)
Retst

(i,st") « st

—(i—1
x F, ( )(:1:)
t<s Dl/j(lk,:c/,qb, st’)
Rett

adversary P, (1%, ¢, st, y, s, 1):
(i,st") + st
Forj=1,...,n(k)do
If j <ithenw; s {0,1}
Elsew; < (F] ™" '(y), )

W < W1 Wpk) ‘
Vs D (1% 6,5t FL O (), w5, 0)
Rett dw; &1

Figure 10: Prediction adversafy = (P, P, P;) for proof of Claim F.2.

algorithm I (1%, ¢, st,y, t):
R, +s Coins’®(1%)

oracle B(s):
C < Pg(lkv ¢7 Stvyv S,t ; Rg)
Retc

oracle Eq(w):

Ret(Fy(w) = y)
o' s RECPFa(1F)
Reta’

Figure 11: Algorithm I for proof of Lemmab5.2, whereCoinng(l"’) is the space of coins for

satisfies the conditions of Lemma 5.2. For the analysis lefhusnerate the coins underlyi@xpl}rfgf(lz)

asRq, R, x, R,, s, R, whereRg, R, R, R, are the coins ofs, P, P, and P, respectively. Let
I'(Rg,Re,z,Rp,Ry) =2-Pric=(x,s)] — 1

where the probability is over the choice ofalone and the other coins in the experiment are fixed to the
given values. Then(k) = E[I']. So a standard averaging argument says there is @ séichoices of
(Ra, Re, z, Ry, Ry) that has probability at least(k)/2 and

k
F(Rg, R, x, Rp’Rg) > @
forall (Rg, R.,x, Ry, Ry) € Q2. Now Lemma F.3 withh = y(k)/2 implies

|
- y(k) 1 (k)
AdvFp (k) > 5 3 4 -

Putting everything together we have
e(k)

v(k) - AdvPEL, (k)
v(k)
)

TP,D'n
(
k) - n(

) AdvE (0B
v(k) - n(k) - Adv%J(k) .

IN A

N

k) - (k)

I
<

n

IA
W
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With regard to running time we have

Tr = Ok ™)+ Oy %) Tp + O(ky?)-Tr
O ) + O(k22)- [T + O(nv) - Tr] + Oky2) T
)

(
(
O(k*y™2)-Tp + O(k*y~*nv)-Tp + O(k3y~4)
(
(

@) k2(nv/e) )-Tp + O(kQ(m)/e)Qm) TF + O3 (nw/e)*)
Entvte™) + O(Tp + nvTr)k*n*v?e 2 .

|
©

G Deterministic Encryption under Chosen Ciphertext Attacks

The definitions of Section 3 lift in a natural way to model ahiesiphertext attacks. We denote the CCA
versions of the experiments by a -CCA suffix. Lét= (A., Am, A;) be an SS-adversary and Igtbe a
simulator. Then the css experiment is modified to glyeaccess to a decryption oracle. The sss experiment
is modified to give both, and.S access to a decryption oracle. We now say that adver$asylegitimate

if —in addition to the existing constraints detailed in Sect3— Ag(lk,pk, c, st) does not query the de-
cryption oracle on any € c. Let] = (I, Iy, I;) be an IND-adversary. The ind experiment is modified to
allow I, access to a decryption oracle. The definition of legitimagimilarly adapted. It is straightforward

to modify the theorem statements and proofs of our implcetin Section 4 and Appendices B, C, D, and
E to the CCA setting.

The construction of randomized PKE from deterministic PKREAppendix 7 also holds in the CCA
setting. Specifically, il is secure against IND-CCA adversaries, theis secure as a KEM against CCA
attacks. Modifying the proof just requires adding a dedoypbracle in the appropriate places. As discussed
in the introduction, this is of particular interest becaaseconstruction implies that building a CCA-secure
deterministic encryption scheme is at least as hard asihgigwitness-recovering CCA encryption scheme.

H Related Work

To discuss prior work we let us say a that an adversary isefiidfit is polynomial time and a message space
is efficient if it is poly-time sampleable. Then a reductisrefficient if, whenever the starting adversary and
message space are efficient, so are the resulting advershrmessage space. The reason efficient message
spaces are important is because they are necessary whenevases the definitions in computationally-
bounded settings. For example, the reductions in [3] recgfiiciently-sampleable message spaces.

ENTROPIC SECURITY The core concern of Dodis and Smith’s work on entropic 98c[#0] is the same as
ours, namely the encryption of high min-entropy plaintefat there are important differences between the
settings, namely that of entropic security is informatioedretic and symmetric while ours is computational
and public-key. The first difference means that adversaies message spaces in the entropic security
setting need not be efficient while in our setting, in coritriey must be efficient. They introduce notions
that are analogous to our notions IND, B-SSS and BB-SSS, nplment the A-SSS-like definition of
Russell and Wang [28], and they show equivalences in thiéingeNote that in their definitions adversaries
are restricted to seeing the encryption of a single messagjeh is not in general equivalent to our multi-
message definitions. It becomes equivalent when one tssitic definitions to the case of independent and
separable adversaries, as discussed in Appendix A. Beloimpleitly mean our definitions so restricted.
Dodis and Smith [20] provide implications showing that IN®SSS, and BB-SSS are equivalent, but
their non-trivial reductions from BB-SSS to B-SSS and B-38%&\-SSS are inefficient, so their results
do not imply equivalences in our setting. They do provide fiicient reduction from B-SSS to A-SSS

31



A-CSS A-SSS__ A-CSS A-SSS

| npE P

B-CSS IND B-SSS B-CSS IND B-SSS

‘\
Ny |
BB-CSS BB-SSS~ BB-CSS BB-SSS

Figure 12: (Left) Diagram illustrating implications shown in [20]. Dashedds are implications relying
on an inefficient reduction. The dotted line represents gulid@tion relying on an unnatural adversarial
constraint.(Right) Diagram illustrating implications shown in [17, 18].

when the probability of the most likely output of the partiaflormation function has a certain relation to
the adversary advantage, but this does not show that theatioa nimplies the other in general. The left
diagram in Figure 12 diagrams these results. Note that we #h€SS, B-CSS, and BB-CSS and their
associated trivial implications in the diagram for comefedss, but these were not considered in [20].

QUANTUM ENTROPIC SECURITY Desrosiers [17] and Desrosiers and Dupuis [18] adapted@atsecurity

to the quantum setting. Moreover, they define notions amalego A-CSS and B-CSS. As above, these are
single-message definitions. They provide an efficient réolnshowing that A-CSS implies A-SSS. (For
completeness we also give a theorem and its proof for thasgsitiforward implication; see Appendix C.)
They use a Goldreich-Levin predicate as the main tool of Acierft reduction showing that B-CSS implies
A-CSS. Of greater technical interest is their proof that IMplies B-CSS. Here they aim to build an
IND-adversaryl = (I, In, ;) from a boolean SS-adversary = (A., Am, A;). Associate toA,, the
(implicitly defined) message distributiaf and the (implicitly defined) boolean functioh Let M, be

M but conditioned on a message being in the preimagg foir . Ideally, I,,,, when run with input bit

b, could sample a message frai, and return it. However, sincd, and thereforef, are not balanced,
M, might be low entropy. Instead, they halig sample from a convex combination 6f;, and M, which
ensures high min-entropy, but nevertheless alléw® utilize A, to infer the bitb with probability close to
A’s advantage. Note that this does not change the balanfehott cleverly modifies the way messages are
chosen byA,, to compensate fof’s lack of balance. The reduction is efficient as long as thmldpation

of M, and M is efficiently sampleable, which appears to be the case [29].

The right diagram of Figure 12 shows the relationships distaa in [17, 18]. Note that we show
BB-CSS, B-SSS, and BB-SSS and their associated trivialid@bns in the diagram for completeness, but
these were not considered in [17, 18]. Indeed, their impboahat IND implies B-CSS (as sketched above)
side-steps the issue of balanced predicates entirely.

In light of the implications provided by [17, 18], one mightkawhy bother with the BB notions at all,
since IND can apparently be shown equivalent to the othetisowi them. There are several reasons we
nevertheless consider them. The work of [20], and also optigations, highlight balance as a useful tool
for understanding the relationships between securityonstior deterministic encryption. Most importantly,
the BB-CSS and BB-SSS notions are conceptually close to @8dbthe balance feature allows an obviously
efficient reduction from IND to BB-CSS. (Whereas adapting [th7, 18] reduction from IND to B-CSS to
the computationally-efficient setting requires a non-obgisampling algorithm.) Moreover, intuition might
predict that the BB notions are not as strong as their boabearbitrary counterparts. Our results show
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otherwise. Finally, we expect that these notions might kefulign future applications of deterministic
encryption.

PERFECTLY ONEWAY HASH FUNCTIONS. Canetti introduced perfectly one-way hash functions (R
[13], which were further studied by Canetti, Micciancio,daReingold [14]. These are randomized hash
functions that produce publically-verifiable outputs.(igiven a message and a hash value, any party can
check if the hash corresponds to the message). The seceqiyred is that no adversary, given only the
output of the hash applied to some unpredictable messag@ddbe able to compute any partial information
about the message. In [13] a notion analogous to B-SSS adinted. Several other definitions are offered
in [13, 14], along with some equivalences, but these dedimsti and the implications, are only meaningful
for randomized primitives. Our definitions and equivalencan be adapted to work in this setting.
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