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Abstract

We present new techniques for achieving adaptive security in broadcast encryption systems.
Previous work on fully

collusion resistant broadcast encryption with short ciphertexts was limited to considering
only static security.

First, we present a new definition of security that we call semi-static security and show a
generic “two-key” transformation from semi-statically secure systems to adaptively secure sys-
tems that have comparable-size ciphertexts. Using bilinear maps, we then construct broadcast
encryption systems that are semi-statically secure in the standard model and have constant-size
ciphertexts. Our semi-static constructions work when the number of indices or identifiers in the
system is polynomial in the security parameter.

For identity-based broadcast encryption, where the number of potential indices or identifiers
may be exponential, we present the first adaptively secure system with sublinear ciphertexts.
We prove security in the standard model.

1 Introduction

Broadcast encryption systems [17] allow a sender, who wants to send a message to a dynamically
chosen subset S ⊆ [1, n] of users, to construct a ciphertext such that only users in S can decrypt; the
sender can then safely transmit this ciphertext over a broadcast channel to all users. It is preferable
if the system is public key (anybody can encrypt), permits stateless receivers (users do not need
to update their private keys), and is fully collusion resistant (even if all users outside of S collude,
they cannot decrypt). Typically in this paper, when we speak of a broadcast encryption system, we
will assume that it has these properties. The main challenge in building efficient broadcast systems
is to encrypt messages with short ciphertexts.

Traditionally, broadcast encryption systems have relied on combinatorial techniques. Such sys-
tems include a collusion bound t, where using larger t values impacts system performance. If an
adversary compromises more than t keys, the system would no longer guarantee security even for
encryptions solely to uncompromised users. Among systems that are fully collusion resistant, the
ciphertext typically grows linearly with either the number of privileged receivers (in the broadcast
subset) or the number of revoked users [22, 15, 20, 19, 24]. Recently, Boneh, Gentry, and Waters [8]
broke through this barrier. They presented new methods for achieving fully collusion resistant
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systems with short (i.e., O(λ), where λ is the security parameter) ciphertexts by applying compu-
tational techniques using groups with bilinear maps. However, they used a static model of security
in which an adversary declares the target set S∗ of his challenge ciphertext before even seeing the
system parameters.

Unfortunately, the weaker static model of security does not capture the power of several types of
attackers. Attackers might choose which keys to attempt to compromise and ciphertexts to attack
based on the system parameters or the structure of previously compromised keys. To capture
general attackers we must use an adaptive definition of security.

Adaptive Security We would like to achieve a system that is provably fully collusion resistant
under adaptive attacks. Arguably, this is the “right” model for security in broadcast encryption
systems.

Achieving this goal, however, seems challenging. In a security reduction, intuitively, we would
expect that a simulation must know all the private keys requested by the attacker, but not know
any of the private keys for S∗, the set encrypted to in the challenge ciphertext. Once the public
parameters are published, the simulator is essentially bound to what keys it knows. Therefore, in
the adaptive setting it might appear that the best we can do in a reduction is to simply guess what
keys the adversary might request. Unfortunately, for a system with n users a reduction might guess
correctly only a negligible (in n) amount of the time.

One approach for achieving adaptive security is to apply a hybrid argument. Instead of doing a
reduction in one step, one can break the reduction into n + 1 hybrid experiments H0, . . . ,Hn, such
that hybrid games Hi and Hi+1 are indistinguishable to the adversary. In this reduction in Hybrid
Hi the challenge ciphertext is to set S∗/[1, i], where S∗ is the challenge specified by the adversary.
Since each reduction in the hybrid games lops off only one user at a time, the reduction needs only
to guess whether user i + 1 will be in S∗ when distinguishing between Hi and Hi+1, thus avoiding
an exponential drop-off.

The key leverage that this solution needs is the ability to reduce the target set anonymously.
This can be done with O(λ · |S|) size ciphertexts. Recently, Boneh and Waters [10] achieved
O(λ ·

√
n) size ciphertexts. They combine the BGW broadcast techniques with the private linear

broadcast techniques of Boneh, Sahai, and Waters [9] (that were originally designed for building
traitor tracing techniques). Unfortunately, the

√
n factor seems to be inherent in this approach

with groups that have bilinear (as opposed to say trilinear) maps.

Our Methods First, we introduce a new general technique for proving systems adaptively secure.
The first component of our methodology is the introduction of the semi-static model of security.
In the semi-static model of security an attacker must first commit to a set S̃ before setup, but then
can later attack any set S∗ that is a subset of S̃. This gives the attacker more flexibility than the
static model, in which it had to exactly commit to the set it attacks.

At first glance the semi-static model might appear as simply a minor variant of the static model.
However, we will also show a generic transformation from semi-static security to adaptive security.
Suppose a ciphertext in the semi-static scheme was of size C for a set S of users; then in our
transformation the ciphertexts will be of size 2 ·C plus |S| bits. At the heart of our transformation
is a two-key technique where two keys are assigned to each user, but the user is given only one of
them. We note that our techniques are partially inspired from those used by Katz and Wang [21]
to achieve tight security for IBE systems in the random oracle model.
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Using this transformation we might simply hope to prove the BGW system to be semi-statically
secure. Unfortunately, the BGW proof of security requires an “exact cancellation” and there is not
an obvious way to prove BGW to be semi-statically secure. Instead, we provide two new construc-
tions with constant-size ciphertexts, and prove semi-static security in the standard model. The first
construction is a variant of the BGW that still has short ciphertexts, but that requires longer-size
private keys. Like the BGW encryption system, we prove our security under the decisional Bilinear
Diffie-Hellman Exponent (BDHE) assumption.

Our first construction has two principal limitations. First, it has long private keys. Second, our
semi-static transformation work only when n = poly(λ), since the time complexities of the security
reductions are at least linear in n. For identity-based broadcast encryption (IBBE), where n may
be exponential in λ, we use a different approach.

To solve these problems we use techniques from the Gentry IBE system [18]. We begin by
building an “initial” identity-based broadcast encryption system with core component of size O(λ)
plus an additional “tag” of size O(|S| · λ). The tag represents a random polynomial in Zp. The
public key is of size O(` · λ) for when we can broadcast to at most ` users.

While a system with ciphertexts of size O(|S| · λ) is not immediately useful, we can build on
this in several ways.

• First, we show that for standard (non-identity-based) broadcast systems we can omit the tag
and achieve O(λ) size ciphertexts and private keys.

• Second, we show how in the random oracle model the tag can be generated from a short O(λ)
size seed and get adaptively secure ID-based broadcast encryption with O(λ) size ciphertexts.

• Finally, in the standard model we show how to achieve ID-based encryption with O(λ ·
√
|S|)

size ciphertexts. In this approach we essentially perform
√
|S| encryptions to

√
|S| of the

recipients, but share one tag polynomial across all these encryptions.

We prove the security of this base scheme and its derivatives under a new non interactive
assumption.

1.1 Related Work

Dodis and Fazio [16] showed how to build an adaptively secure revocation system building upon
the techniques of Cramer and Shoup [12] and Naor and Pinkas [23]. In their system the ciphertext
size grows linearly with the maximum number of possible revoked users.

Delerablée, Paillier, and Pointcheval [14] describe a system that is somewhat incomparable to
ours and the others discussed here; it allows the adversary to wait until just before each dynamic
join operation to declare whether it is joining as an honest or corrupt party (the challenge broadcast
is for the honest parties), but then each join operation triggers a change to the public key.

The concept of identity-based broadcast encryption (IBBE) was proposed in [13] (and indepen-
dently in [27]). This concept is related to identity-based encryption [25], in which the maximal
size of a broadcast group is ` = 1. It is also related to multi receiver ID-based KEM (mID-KEM),
introduced in [26] and further developed in [4, 5, 11, 2]. We also note that Panjwani [1] considered
adaptive corruptions, but in the context of stateful protocols such as Logical Key Hierarchy.

3



2 Adaptive Security in Broadcast Encryption

We present background material on broadcast encryption systems. Then we show our main trans-
formation; we describe how to build adaptive securely broadcast encryption systems from those
that are secure against a “semi-static” adversary.

2.1 Broadcast Encryption Systems

We begin by formally defining what is a secure public-key broadcast encryption system. For sim-
plicity we define broadcast encryption as a key encapsulation mechanism. In addition, we make
our definition general enough to capture identity-based encryption systems.

A broadcast encryption system is made up of four randomized algorithms:

Setup(n, `) Takes as input the number of receivers n and the maximal size ` ≤ n of a broadcast
recipient group. It outputs a public/secret key pair 〈PK, SK〉.

KeyGen(i, SK) Takes as input an index i ∈ {1, . . . , n} and the secret key SK. It outputs a private
key di.

Enc(S, PK) Takes as input a subset S ⊆ {1, . . . , n} and a public key PK. If |S| ≤ `, it outputs a
pair 〈Hdr,K〉 where Hdr is called the header and K ∈ K is a message encryption key.

Let Esym be a symmetric encryption scheme with key-space K, and algorithms SymEnc and
SymDec. Let M be a message to be broadcast to the set S, and let CM

R← SymEnc(K, M)
be the encryption of M under the symmetric key K. The broadcast to users in S consists of
〈S, Hdr, CM 〉.

Dec(S, i, di,Hdr, PK) Takes as input a subset S ⊆ {1, . . . , n}, an index i ∈ {1, . . . , n}, a private
key di for i, a header Hdr, and the public key PK. If |S| ≤ ` and i ∈ S, then the algorithm
outputs the message encryption key K ∈ K. The key K can then be used to decrypt CM to
obtain M .

As usual, we require that the system be correct, namely, that for all S ⊆ {1, . . . , n} and all i ∈ S,
if 〈PK, SK〉 R← Setup(n), di

R← KeyGen(i, SK), and 〈Hdr,K〉 R← Enc(S, PK), then
Dec(S, i, di,Hdr, PK) = K.

Our goal is to illustrate the issues for adaptive security. For simplicity, we define security
against chosen plaintext attacks. However, our definitions can readily be extended to reflect chosen-
ciphertext attacks.

2.2 Security Definitions

Arguably, the “correct” definition for security in broadcast encryption systems is that of adaptive
security. In an adaptively secure system, the adversary is allowed to see PK and then ask for
several private keys before choosing the set of indices that it wishes to attack.

Adaptive security in broadcast encryption is defined using the following game between an attack
algorithm A and a challenger. Both the challenger and A are given n and ` as input.

Setup. The challenger runs Setup(n, `) to obtain a public key PK, which it gives to the
adversary.
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Key Query Phase. AlgorithmA adaptively issues private key queries for indices i ∈ {1, . . . , n}.
Challenge. The adversary then specifies a challenge set S∗, such that for all private keys

i queried we have that i /∈ S∗. The challenger sets 〈Hdr∗,K0〉
R← Enc(S∗, PK) and

K1
R← K. It sets b

R← {0, 1} and gives (Hdr∗,Kb) to algorithm A.
Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

We define A’s advantage in attacking the broadcast encryption system BE with parameters (n, `)
and security parameter λ as

AdvBrA,BE,n,`(λ) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
We may omit the system name when it can be understood from the context.

Definition 2.1. We say that a broadcast encryption system BE is adaptively secure if for all
poly-time algorithms A we have that AdvBrA,BE,n,`(λ) = negl(λ).

In addition, to the adaptive game for broadcast security we consider two other weaker security
notions. The first is static security, where the adversary must commit to the set S∗ of identities that
it will attack in an “Init” phase before the setup algorithm is run. This is the security definition
that is used by recent broadcast encryption systems [8].

We also propose a new security definition called semi-static security. In this game the adversary
must commit to a set S̃ of indices at the Init phase. The adversary cannot query a private key for
any i ∈ S̃, and it must choose a target group S∗ for the challenge ciphertext that is a subset of
S̃. A semi-static adversary is weaker than an adaptive adversary, but it is stronger than a static
adversary, in that its choice of which subset of S̃ to attack can be adaptive.

2.3 Transforming Semi-Static Security to Adaptive Security

At first the benefits of achieving semi-static security versus just static security might appear incre-
mental. Indeed, in both games, the adversary is forced to restrict its queries before it even sees the
public key.

Despite this apparent shortcoming, we will show that the semi-static security definition is a very
useful tool for achieving adaptive security. We will show how to transform any semi-static broadcast
encryption scheme to one secure under adaptive attacks with a modest increase in overhead.

Our main idea is to apply a simulation for a two-key technique. In such a system each user
will be associated with two potential private keys; however, the authority will give it only one of
the two. An encryptor (that does not) know which private key the receiver possesses will need to
encrypt the ciphertext twice, once for each key. This technique was used by Katz and Wang [21] to
create tightly secure signature and identity-based encryption systems in the random oracle model.

The main benefit is that a simulator will have the private keys for every identity. In the Katz-
Wang constructions this enabled tight security reductions. In the context of broadcast encryption,
the impact will be much stronger, since trying to guess S∗ would otherwise result in an exponen-
tial loss of security in the reduction. We now show how to apply the two-key idea to broadcast
encryption.

Suppose we are given a semi-static secure broadcast system BESS with algorithms SetupSS,
KeyGenSS, EncSS, DecSS. Then we can build our adaptively secure broadcast system BEA as
follows.

5



Setup(n, `): Run 〈PK ′, SK ′〉 R← SetupSS(2n, `). Set s
R← {0, 1}n. Set PK ← PK ′ and SK ←

(SK ′, s). Output 〈PK, SK〉.

KeyGen(i, SK): Run d′i
R← KeyGenSS(2i− si, SK ′). Set di ← 〈d′i, si〉. Output di.

Enc(S, PK): Generate a random set of |S| bits: t← {ti
R← {0, 1} : i ∈ S}. Generate K

R← K. Set

S0 ← {2i− ti : i ∈ S} , 〈Hdr0, κ0〉
R← EncSS(S0, PK ′) , C0

R← SymEnc(κ0,K) ,

S1 ← {2i− (1− ti) : i ∈ S} , 〈Hdr1, κ1〉
R← EncSS(S1, PK ′) , C1

R← SymEnc(κ1,K)

Set Hdr← 〈Hdr0, C0,Hdr1, C1, t〉. Output 〈Hdr,K〉.

Dec(S, i, di,Hdr, PK): Parse di as 〈d′i, si〉 and Hdr as 〈Hdr0, C0,Hdr1, C1, t〉. Set S0 and S1 as
above. Run

κsi⊕ti ← DecSS(Ssi⊕ti , i, d
′
i,Hdrsi⊕ti , PK ′)

Run K ← SymDec(κsi⊕ti , Csi⊕ti). Output K.

Note that, aside from the string t, the BEA ciphertext is only about twice as long as a BESS

ciphertext. Suppose that we have a semi-static broadcast encryption system in which ciphertexts are
“constant-size” – i.e., O(λ) for security parameter λ. Then, our transformation gives an adaptively
secure broadcast encryption system with ciphertexts that are O(λ + |S|), versus O(λ · |S|). In
particular, the ciphertext size in BEA increases only one bit per additional recipient.

It is easy to see that, assuming BEA is adaptively secure, we can get adaptively secure broadcast
encryption system with truly constant-sized O(λ) ciphertexts in the random oracle model as follows.
Put a hash function H : {0, 1}O(λ) × {1, . . . , n} → {0, 1} in the public key. The sender encrypts as
before, except that it generates t by setting u

R← {0, 1}O(λ) and ti ← H(u, i); it replaces t by u in
the ciphertext. The recipient decrypts as before, except that it recovers t from u using H.

We now show that BEA is secure if BESS is secure.

Theorem 2.2. Let A be an adaptive adversary against BEA. Then, there exist algorithms B1, B2,
B3, and B4, each running in about the same time as A, such that

AdvBrA,BEA,n,`(λ) ≤ AdvBrSSB1,BESS,2n,`(λ) + AdvBrSSB2,BESS,2n,`(λ)
+ AdvSymB3,Esym

(λ) + AdvSymB4,Esym
(λ)

Proof. We present the proof as a sequence of games. Let Wi denote the event that A wins game i.
Game 0. The first game is identical to the adaptive security game given above. Thus,∣∣∣∣Pr[W0]−

1
2

∣∣∣∣ = AdvBrA,BEA,n,`(λ) (1)

Game 1. Game 1 is identical to Game 0, except that the challenger generates C0 in the challenge
ciphertext as follows: set κ†0

R← K and then C0
R← SymEnc(κ†0,K0).

We claim that there exists an algorithm B1, whose running time is about the same as A, such
that

|Pr[W1]− Pr[W0]| = AdvBrSSB1,BESS,2n,`(λ) (2)
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To break BESS , B1 sets s
R← {0, 1}n and S̃ ← {2i − (1 − si) : i ∈ {1, . . . , n}}. It sends S̃ to the

challenger, which sends back PK ′. B sets PK ← PK ′ and forwards PK to A.
When A queries the BEA private key for i ∈ {1, . . . , n}, B queries the challenger for the BESS

private key for 2i− si. The challenger sends back d′i; B sends (d′i, si) to A.
A requests a challenge ciphertext on some S∗ ⊆ {1, . . . , n}. B sets t ← {ti ← 1 − si : i ∈ S∗}.

It sets S0 ← {2i − ti : i ∈ S∗} and S1 ← {2i − (1 − ti) : i ∈ S∗}, and queries the challenger for a
challenge ciphertext on S0. The challenger sends back (Hdr0, κ

(b)
0 ), where b denotes the bit flipped

by the challenger. B sets (Hdr1, κ1)
R← Enc(S1, PK ′). It generates K0,K1

R← K, b†
R← {0, 1},

C0
R← SymEnc(κ(b)

0 ,K0) and C1
R← SymEnc(κ1,K0). It sets Hdr← 〈Hdr0, C0,Hdr1, C1, t〉. It sends

(Hdr,Kb†) to A.
Eventually, A outputs a bit b′. If b′ = b†, B sends 0 to the challenger; else, it sends 1.
If b = 0, A’s view is as in Game 0. The private keys sent by B are appropriately distributed.

The string t appears to be uniformly random, since A’s private key queries reveal only the values
of si for i /∈ S∗. Also, κ

(0)
0 is generated correctly, and so the dependent values are as well. If b = 1,

A’s view is as in Game 1. The claim follows.
Game 2. Game 2 is identical to Game 1, except that the challenger sets κ1

R← K when constructing
the challenge ciphertext. By an analysis similar to above, we conclude that there exists an algorithm
B2, which runs in about the same time as A, for which

|Pr[W2]− Pr[W1]| = AdvBrSSB2,BESS,2n,`(λ) (3)

Game 3. Game 3 is identical to Game 2, except that the challenger sets K†
0

R← K and C0
R←

SymEnc(κ†0,K
†
0). We claim that there exists an algorithm B3, which runs in about the same time

as A, for which

|Pr[W3]− Pr[W2]| = AdvSymB3,Esym
(λ) (4)

This follows, since it is straightforward to construct B3 as an algorithm that attacks the semantic
security of Esym.

Game 4. Game 4 is identical to Game 3, except that the challenger sets K†
1

R← K and C1
R←

SymEnc(κ†1,K
†
1). As above, we obtain

|Pr[W4]− Pr[W3]| = AdvSymB4,Esym
(λ) (5)

Finally, the theorem follows if the following claim is true:∣∣∣∣Pr[W4]−
1
2

∣∣∣∣ = 0 (6)

This claim follows since, in Game 4, Hdr is independent of Kb, and hence b.

3 BE Construction with Small Ciphertexts

Now that we have our transformation of semi-static security to adaptive security, we would like to
leverage it to create new adaptively secure broadcast encryption systems. One obvious candidate
to examine is the Boneh-Gentry-Waters [8] broadcast encryption system. Unfortunately, it was
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proven only to be statically secure and there does not appear to be an obvious way to make the
proof semi-static.1

To prove semi-static security we will need to use a variant of the BGW system. We first describe
our construction. Then we describe the decisional-BDHE assumption (the same one used by BGW).
Then we prove our system to be semi-statically secure under this assumption.

3.1 Our Construction

Let GroupGen(λ, n) be an algorithm that, on input security parameter λ, generates groups G and
GT of prime order p = p(λ, n) > n with bilinear map e : G×G→ GT .

Setup(n, n): Run 〈G, GT , e〉 R← GroupGen(λ, n). Set α
R← Zp and g, h1, . . . , hn

R← Gn+1. Set PK
to include a description of 〈G, GT , e〉, as well as

g , e(g, g)α , h1 , . . . , hn.

The secret key is SK ← gα. Output 〈PK, SK〉

KeyGen(i, SK): Set ri
R← Zp and output

di ← 〈di,0, . . . , di,n〉 where di,0 ← g−ri , di,i ← gαhri
i , ∀j 6=i di,j ← hri

j

Enc(S, PK): Set t
R← Zp and

Hdr← 〈C1, C2〉 where C1 ← gt , C2 ← (
∏
j∈S

hj)t

Set K ← e(g, g)α·t. Output 〈Hdr,K〉.

Dec(S, i, di,Hdr, PK): If i ∈ S, parse di as 〈di,0, . . . , di,n〉 and Hdr as 〈C1, C2〉 and output

K ← e(di,i ·
∏

j∈S\{i}

di,j , C1) · e(di,0, C2)

Correctness: We check that decryption recovers the correct value of K.

e(di,i ·
∏

j∈S\{i}

di,j , C1) · e(di,0, C2) = e(gα · (
∏
j∈S

hj)ri , gt) · e(g−ri , (
∏
j∈S

hj)t) = e(g, g)α·t

as required.
1The BGW reduction depends upon an exact cancellation between a value embedded by the simulator in the

parameters and a function of the target set S∗.
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3.2 The BDHE Assumption

We base the security of the above system on the decision BDHE assumption, used in [8]. The
decision BDHE problem is as follows.

Definition 3.1 (Decision BDHE problem (for m)). Let G and GT be groups of order p with
bilinear map e : G × G → GT , and let g be a generator for G. Set a, s

R← Z∗
p and b

R← {0, 1}. If
b = 0, set Z ← e(g, g)am+1·s; else, set Z

R← GT . The problem instance consists of gs, Z, and the set

{gαi
: i ∈ [0,m] ∪ [m + 2, 2m]}

The problem is to guess b.

We define AdvBDHEA,m(λ) in the expected way. We have the following theorem.

Theorem 3.2. Let A be a semi-static adversary against the above system. Then, there is an
algorithm B, which runs in about the same time as A, such that

AdvBrA,n,n(λ) = AdvBDHEB,n(λ)

We provide the proof in Appendix A.

3.3 Semi-Static BE with Small Ciphertexts and Private Keys

In the semi-static system described in Section 3, the public key and private keys are of size O(λ ·n).
However, we have an alternative construction that has a public key of size O(λ · `) and constant-
sized private keys (i.e., O(λ)). This construction is a special case of the identity-based broadcast
encryption system that we provide in Section 4.1. We provide more details in Section 4.3.

4 Identity-Based BE with Small Ciphertexts and Private Keys

The essential property of an identity-based broadcast encryption (IBBE) system is that it remains
efficient when n is exponential in the security parameter λ. Adaptive security is even more chal-
lenging in this setting. In particular, our semi-static constructions do not give adaptively secure
IBBE, since the time complexities of the reduction algorithms are at least linear in n.

Here we first describe an initial IBBE system with adaptive security, where the ciphertext size
is constant aside from a random “tag” that has length proportional to the recipient group size |S|.
This long tag is needed by the simulator to handle the fact that the adversary chooses the target
set S∗ adaptively. The public key has size O(λ · `), and private keys are constant size (i.e., O(λ)).
This system is an extension of Gentry’s IBE system [18].

At first, a system with such a long tag appears to be pointless. However, there are several ways
to address this apparent problem. First, for polynomial-size n, we show that the system is semi-
statically secure if we replace the random tag with a constant tag; the ciphertext size then becomes
constant. Second, we make the straightforward observation that, in the random oracle model, we
obtain an adaptively secure IBBE system with constant-size ciphertexts if we generate the tag
from the random oracle. Finally, we construct an adaptively secure IBBE system (in the standard
model) that, for a recipient group of size k ≤ `, has O(λ ·

√
k)-size ciphertexts, a O(λ ·

√
`)-size

public key, and still constant-size private keys, by reusing the same O(λ ·
√

k)-size tag in O(
√

k)
separate sub ciphertexts from the initial system. As far as we know, this is the first IBBE system
with sub linear ciphertexts secure against adaptive adversaries.
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4.1 An Initial IBBE Construction

Let GroupGen(λ, n, `) be an algorithm that outputs suitable bilinear group parameters 〈G, GT , e〉,
where G is of order p ≥ n + `.

Setup(n, `): Run 〈G, GT , e〉 R← GroupGen(λ, n, `). Set g1, g2
R← G. Set α, β, γ

R← Zp. Set ĝ1 ← gβ
1

and ĝ2 ← gβ
2 . PK contains a description of 〈G, GT , e〉, the parameters n and `, along with

gγ
1 , gγ·α

1 and the set

{gαj

1 , ĝαj

1 , gαk

2 , ĝαk

2 : j ∈ [0, `], k ∈ [0, `− 2]}

Generate a random key κ for a PRF Ψ : [1, n]→ Zp. The private key is SK ← (α, γ, κ).

KeyGen(i, SK): Similar to Gentry’s IBE system, set ri ← Ψκ(i) and output the private key

di ← 〈ri, hi〉 , where hi ← g
γ−ri
α−i

2

Enc(S, PK): Run τ
R← TagGen(S, PK). Output 〈Hdr,K〉 R← TagEncrypt(τ, S, PK).

TagGen(S, PK): Let k = |S|. Set F (x) ∈ Zp[x] to be a random (` − 1)-degree polynomial such
that F (n + j) = 1 for j ∈ [k + 1, `]. Output τ ← F (x).

Note that τ can be expressed by k values in Zp – e.g., {F (i) : i ∈ S}; F (x) can be interpolated
from these values and {F (n + j) = 1 : j ∈ [k + 1, `]}.

TagEncrypt(τ, S, PK): Parse τ as F (x) and S as {i1, . . . , ik}. Set ij ← n + j for j ∈ [k + 1, `].
Set P (x) =

∏`
j=1(x− ij). Set t

R← Zp and set K ← e(g1, ĝ2)γ·α`−1·t. Next, set

Hdr ← 〈C1, . . . , C4〉 ← 〈ĝP (α)·t
1 , gγ·t

1 , g
F (α)·t
1 , e(g1, ĝ2)α`−1·F (α)·t〉 .

Output 〈τ,Hdr,K〉.

Dec(S, i, di, τ, Hdr, PK): Suppose i ∈ S = {i1, . . . , ik}. Parse di as 〈ri, hi〉, τ as F (x), and Hdr as
〈C1, . . . , C4〉. Define P (x) as above. Let

Pi(x) = x`−1 − P (x)
(x− i)

, Fi(x) =
F (x)− F (i)

x− i
, and ei = − ri

F (i)
.

Set

K ← e(C1, hi · gei·Fi(α)
2 ) · e(C2 · Cei

3 , ĝ
Pi(α)
2 )/Cei

4 (7)

Note that the recipient can compute g
Fi(α)
2 and ĝ

Pi(α)
2 from PK, since Fi(x) and Pi(x) are

polynomials of degree `− 2.

Correctness: We verify that decryption recovers the message. First, we note that K = K1 ·K2,
where we gather the terms containing a γ in K1, and the other terms in K2. (Recall hi =
g

γ/(α−i)
2 · g−ri/(α−i)

2 .)

K1 = e(C1, g
γ
2 )1/(α−i) · e(C2, ĝ

Pi(α)
2 ) , K2 = e(C1, g

−ri/(α−i)+ei·Fi(α)
2 ) · e(C3, ĝ

Pi(α)
2 )ei/Cei

4
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We have that

K
1/t
1 = e(g1, ĝ2)γ(P (α)/(α−i)+Pi(α)) = e(g1, ĝ2)γ·α`−1

We also have that

K
1/t
2 = e(g1, ĝ2)−ri·P (α)/(α−i)+ei·P (α)·Fi(α)+ei·Pi(α)·F (α)−ei·α`−1·F (α)

= e(g1, ĝ2)ei·P (α)·F (α)/(α−i)+ei·Pi(α)·F (α)−ei·α`−1·F (α)

= e(g1, ĝ2)ei·F (α)(P (α)/(α−i)+Pi(α)−α`−1)

= e(g1, ĝ2)0 = 1

as required.

4.2 Security of the Initial IBBE Construction

Below, we define a class of assumptions that is narrower than the general bilinear DH exponent
“uber-assumption” defined by Boneh et al. [6], but broad enough to cover some frequently used
assumptions. One reason that we think carving out this class of assumptions is useful is that it is
much easier to glance at an assumption in this class and verify that it at least superficially makes
sense than it is for some of the wilder assumptions within general BDHE.

Definition 4.1 (The Decision BDHE Sum Problem for (S, m)). Let S ⊂ Z, m ∈ Z\ (S +S).
Let G and GT be groups of order p with bilinear map e : G×G→ GT , and let g be a generator for
G. Set α

R← Z∗
p and b

R← {0, 1}. If b = 0, set Z ← e(g, g)αm
; otherwise, set Z

R← GT . Output

{gαi
: i ∈ S} and Z

The problem is to guess b.

In the decision n-BDHI problem, S = [0, n] and m = −1. One can reduce the Decision BDHE Sum
problem for S = [0, n] ∪ [n + 2, 2n] ∪ [3n] and m = 4n + 1 to the decision BDHE problem for n –
i.e., s in the BDHE problem is replaced by α3n.

Although we do not use it in this paper, we mention an obvious (possibly easier) variant of the
problem:

Definition 4.2 (The Decision BDHE Sum Problem for (S, m) (variant)). As above, except
Z is replaced in the instance by random (z1, z2) ∈ G2 satisfying e(z1, z2) = Z.

A recent paper [3] builds the first adaptively secure hierarchical identity based encryption
(HIBE) system that allows a polynomial number of levels by building on our IBBE system and
using this variant of the Decision BDHE Sum problem.

We base the security of our system on the Decision BDHE Sum problem for m = 4d + 4` − 1
and

S = [0, `− 2] ∪ [d + `, 2d + `− 1] ∪ [2d + 2`, 2d + 3`− 1] ∪ [3d + 3`, 4d + 3`] ∪ [4d + 4`, 5d + 4` + 1]

where d = q + 2`, q and ` non-negative. We define AdvBDHESA,q,`(λ) in the expected way, using
these particular values of S and m.

We have the following theorem.
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Theorem 4.3. Let A be an adaptive adversary against the above initial IBBE system that makes
at most q queries. Then, there exist algorithms B1 and B2 such that

AdvBrA,n,`(λ) ≤ AdvPRFB1,Ψ(λ) + AdvBDHESB2,q,`(λ) + (` + 2)/p (8)

where B1 runs in about the same time as A, and B2 runs in time t(A) +O((q + `)2 · λ3), assuming
exponentiations take time O(λ3).

We provide the proof in Appendix B.

4.3 Variants of the IBBE Construction

4.3.1 Semi-Static BE with Constant-Size Ciphertexts and Private Keys

When n = poly(λ), we obtain a semi-statically secure variant of the above system with constant-size
ciphertexts by making the following simple change.

TagGen(S, PK): Output τ ← F (x)← 1.

Since τ is always 1, we do not need to include it in the ciphertext. Also, some terms in PK become
unnecessary – in particular, {gαi

2 : i ∈ [0, `− 2}}.
We have the following theorem. Let q = n.

Theorem 4.4. Let A be a semi-static adversary against the above system. Then, there exist
algorithms B1 and B2 such that

AdvBrA,n,`(λ) ≤ AdvPRFB1,Ψ(λ) + AdvBDHESB2,q,`(λ) + (` + 2)/p (9)

where B1 runs in about the same time as A and B2 runs in time t(A) +O((q + `)2 · λ3), assuming
exponentiations take time O(λ3).

We prove this simultaneously with Theorem 4.3 in Appendix B.

4.3.2 Adaptively Secure IBBE with Constant-Size Ciphertexts in the ROM

In the random oracle model, the obvious way to modify the initial IBBE system to obtain constant-
size ciphertexts is to generate τ using a hash function H : {0, 1}O(λ) × [1, n] → Zp. In particular,
we make the following modification.

TagGen(S, PK): Output τ ← {0, 1}O(λ).

In TagEncrypt and Dec, F (x) is set to be the (` − 1)-degree polynomial that interpolates F (i) =
H(τ, i) for i ∈ S and F (i) = 1 for i ∈ [n + j] with j ∈ [k + 1, `]. The ciphertext size is constant,
since the size of τ is constant (i.e., O(λ)). We omit the easy tight reduction from an adversary that
breaks the initial system to an adversary that breaks this system.
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4.3.3 Adaptively Secure IBBE with Sublinear-Size Ciphertexts

Let ` = `1 · `2. Below, we describe a system that builds on the initial IBBE system and allows one
to encrypt to a set S with |S| = k1 · k2, k1 ≤ `1, k2 ≤ `2.

SetupSL(n, `): Run (PK ′, SK ′) ← Setup(n, `2). Set PK ← (PK ′, `1) and SK ← SK ′. Output
〈PK, SK〉.

KeyGenSL(i, SK): Run di
R← KeyGen(i, SK ′). Output di.

EncryptSL(S, PK): Partition S into k1 ≤ `1 sets 〈S1, . . . , Sk1〉 of size k2 ≤ `2. Run τ
R←

TagGen(S1, PK ′). Generate K
R← K. For j ∈ [1, k1], set

〈Hdrj , κj〉
R← TagEncrypt(τ, Sj , PK ′) , cj ← SymEnc(κj ,K)

Set Hdr← 〈Hdr1, c1, . . . ,Hdrk1 , ck1〉. Output 〈τ,Hdr,K〉.

DecryptSL(S, i, di, τ, Hdr, PK): Parse S as 〈S1, . . . , Sk1〉 and Hdr as 〈Hdr1, c1, . . . ,Hdrk1 , ck1〉. Sup-
pose i ∈ Sj . Run

κj ← Dec(Sj , i, di, τ, Hdrj , PK ′) and K ← SymDec(κj , cj)

Output K.

We have the following theorem.

Theorem 4.5. Let A be an adaptive adversary against this system that makes at most q queries.
Then, there exist algorithms B1 and B2, the former being an adversary against the initial IBBE
system that makes at most q queries, each algorithm running in about the same time as A, such
that

AdvBrA,n,`(λ) ≤ `1 ·
(
AdvBrB1,n,`2

(λ) + AdvSymB2,Esym
(λ)

)
(10)

As before Esym is a symmetric encryption scheme. We omit the proof, since it is a simple hybrid
argument similar to the proof of Theorem 2.2.

It is easy to handle the case where |S| cannot be expressed as a product k1 · k2 with k1, k2 =
O(

√
|S|). Let S′ consist of the first k1 · k2 identities in S, where k1 = k2 = b

√
|S|c. Encrypt to

S′ using the above system, and to S \ S′ using any reasonable system – e.g., the initial system.
The overall size of the ciphertext is still O(λ ·

√
|S|). One can prove the security of this double

encryption by a sequence of games similar to the proof of Theorem 2.2.
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A Proof of Theorem 3.2

B receives the problem instance, which includes gs, Z, and the set

{gai
: i ∈ [0, n] ∪ [n + 2, 2n]}

Init A commits to a set S̃ ⊆ [1, n].

Setup B generates y0, . . . , yn
R← Zp. It sets

hi ← gyi for i ∈ S̃

hi ← gyi+ai
for i ∈ [1, n] \ S̃

Formally, B sets α← y0 · an+1. It sets PK to include a description of 〈G, GT , e〉, as well as

g , e(g, g)α , h1 , . . . , hn

where e(g, g)α can be computed as e(ga, gan
)y0 . B sends PK to A.
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Private Key Queries A is allowed to query the private key only for indices i ∈ [1, n] \ S̃. To
answer the query, B generates zi

R← Zp and formally sets ri ← zi − y0 · an+1−i. It outputs

di ← 〈di,0, . . . , di,n〉 where di,0 ← g−ri , di,i ← gαhri
i , ∀j 6=i di,j ← hri

j

Notice that B can compute all these terms from the instance, in particular

di,i = gαhri
i = gy0·an+1+(yi+ai)(zi−y0·an+1−i)

which can be computed since the an+1 term in the exponent cancels out.

Challenge A chooses a subset S∗ ⊂ S̃. B sets

Hdr← 〈C1, C2〉 where C1 ← gs , C2 ← (
∏

j∈S∗

hj)s

It sets K ← Z. It sends 〈Hdr,K〉 to A.
Notice that B can compute these terms from the instance. C1 and K come directly from the

instance. B can compute C2 since it knows DLg(hi) for all i ∈ S∗; in particular,

C2 = (
∏

j∈S∗

hj)s = (
∏

j∈S∗

gyj )s = (gs)
P

j∈S∗ yj

Guess Eventually, A outputs a bit b′. B sends b′ to the challenger.

Perfect Simulation From A’s perspective, B’s simulation has exactly the same distribution
as the semi-static game defined in Section 2.2. The public and private keys are appropriately
distributed, since α and the values {DLg(hi)} and {ri} are uniformly random.

When b = 0 in the semi-static game, 〈Hdr,K〉 is generated according to the same distribution
as in the real world. This is also true in B’s simulation: when b = 0, K = e(g, g)α·s, and so the
challenge is valid ciphertext under randomness s. When b = 1 in the semi-static game, 〈Hdr,K ′〉 is
generated as in the real world, but K ′ is replaced by K

R← K, and 〈Hdr,K〉 is sent to the adversary.
This distribution is identical to that of B’s simulation, where Hdr is valid for randomness s, but
K = Z is a uniformly random element of GT .

From this, we see that B’s advantage in deciding the BDHE instance is precisely A’s advantage
against BESS , and we are done.

B Proof of Theorems 4.3 and 4.4

First, a lemma. Let p(x)q(x)|i denote the coefficient of xi in p(x)q(x).

Lemma B.1. Let f1(x), f2(x) ∈ Fp[x] be polynomials of degrees d1 and d2, respectively, whose
resultant is nonzero. Let d3 ← d1 + d2 − 1 and i ∈ {d1, . . . , d3}. There exists a polynomial
t(x) ∈ Fp[x] of degree d3 such that t(x)f1(x)|i = 1, t(x)f1(x)|j = 0 for j ∈ {d1, . . . , d3} \ {i}, and
t(x)f2(x)|j = 0 for j ∈ {d2, . . . , d3}.
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Lemma B.1. Consider the Sylvester matrix S of f1(x) and f2(x). The condition on t(x) is equivalent
to S ·(t0, . . . , td3)

T = (0, . . . , 0, 1, 0, . . . , 0)T , where ti = t(x)|i. Since the resultant of f1(x) and f2(x)
is nonzero, the Sylvester matrix is invertible. Set (t0, . . . , td3)

T ← S−1 · (0, . . . , 0, 1, 0, . . . , 0)T and
t(x) =

∑
i tix

i.

The complexity of computing t(x) is O(d2(d1 + d2)) arithmetic operations over Zp.

Proof. (Theorems 4.3 and 4.4) We use a sequence of games to prove the two theorems simulta-
neously, since the games are largely identical. However, the reader might want to follow one of
the two threads at a time. We will use BESS and BEA to occasionally differentiate between the
semi-static and adaptive systems (and the attacks against them).

Let Wi denote the event that A wins game i.
Game 0. The first game is identical to the adaptive (resp. semi-static) security game given in
Section 2.2. Thus, ∣∣∣∣Pr[W0]−

1
2

∣∣∣∣ = AdvBrA,n,`(λ) (11)

Game 1. Game 1 is identical to Game 0, except that the challenger replaces the pseudorandom
function Ψ with a truly random function (which it generates incrementally). We conclude that
there exists an algorithm B1, whose running time is about the same as A, such that

|Pr[W1]− Pr[W0]| = AdvPRFB1,Ψ(λ) (12)

Game 2. Game 2 is identical to Game 1, except that the challenger replaces Kb in the challenge
with K† R← K. We claim that ∣∣∣∣Pr[W2]−

1
2

∣∣∣∣ = 0 (13)

This follows since the challenge (and the rest of A’s view) is independent of Kb, and hence b.
We also claim that there exists an algorithm B2, which runs in time t(A) +O((d + `)2 · λ3), for

which

|Pr[W2]− Pr[W1]| ≤ AdvBDHESB2,q,`(λ) + (` + 2)/p (14)

If this claim is true, then the theorem follows.
B2 runs as follows. It is given an instance of the Decision BDHE Sum problem, which consists

of Z ∈ GT and the values {gαj
: j ∈ S}, where

S = [0, `− 2] ∪ [d + `, 2d + `− 1] ∪ [2d + 2`, 2d + 3`− 1] ∪ [3d + 3`, 4d + 3`] ∪ [4d + 4`, 5d + 4` + 1]

and d = q + 2`. B2’s goal is to decide whether Z = e(g, g)4d+4`−1 or is a random element of GT . It
interacts with A as follows.

Init In BESS , A selects S̃ ⊆ [1, n] and sends S̃ to B. For notational convenience, in BEA, we will
set S̃ ← ∅.
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Setup B2 sets a0, a1, a2, z
R← Z∗

p. It chooses a random polynomial f(x) ∈ Zp[x] of degree d such
that f(i) = z for i ∈ [n + 1, n + `]. In BESS , it picks f(x) with the additional constraint that
f(i) = z for i ∈ S̃. Formally, it sets

β ← a0 · α−d−` , γ ← f(α)

It sets
g1 ← ga1·α4d+4`

, g2 ← ga2·αd+`
, ĝ1 ← gβ

1 , ĝ2 ← gβ
2

From the instance, B2 can compute all the values in PK – namely, gγ
1 , gγ·α

1 , and the set

{gαj

1 , ĝαj

1 , gαk

2 , ĝαk

2 : j ∈ [0, `], k ∈ [0, `− 2]} .

It sends PK to A.

Private Key Queries When A makes a key generation query on some i ∈ [1, n] \ S̃, B2 first
checks that i 6= α (e.g., by checking that gi

1 6= gα
1 ). If equality holds, B2 now possesses α and

can solve the Decision BDHE Sum problem directly, and B2 aborts. Otherwise, B2 sends to A the
private key

di ← 〈ri, hi〉 where ri ← f(i) and hi ← g
γ−ri
α−i

2

Notice that fi(x) ← (f(x) − f(i))/(x − i) is a polynomial of degree d − 1 (without denominator),
that

g
γ−ri
α−i

2 = g
f(α)−f(i)

α−i

2 = g
fi(α)
2

and that the final term can be computed from the instance.

Challenge To simplify things notationally, let g3 = gα−d−`

1 = ga1·α3d+3`
. Let ĝ3 = gβ

3 . Note that
B can compute the following values from the instance

{gαj

3 , ĝαk

3 : j ∈ [0, d] ∪ [d + `, 2d + ` + 1] , k ∈ [0, `− 1] ∪ [d + `, 2d + `]}

We will eventually construct the challenge ciphertext out of these values.
A sends a set S∗ = (i∗1, . . . , i

∗
k) ⊆ [1, n] with k ≤ ` to B2. In BESS , it is required that S∗ ⊆ S̃.

In BEA, B2 sets S̃ ← S. B2 sets i∗j ← n + j for j ∈ [k + 1, `]. As in the query phase, if i∗j = α for
some j, B2 solves the Decision BDHE Sum problem and aborts.

If the resultant of P (x)←
∏`

j=1(x− i∗j ) and f(x) is zero in Zp, then B2 aborts. Otherwise, B2

finds a polynomial t(x) of degree d + `− 1 such that

t(x)f(x)|i = 0 if i ∈ [d + 1, d + `− 1] and t(x)f(x)|d = z (15)
t(x)P (x)|i = 0 if i ∈ [`, d + `− 1] (16)

(This is possible by Lemma B.1.) It also sets the following polynomials

F (x) ← z−1 · f(x) mod P (x)
r(x) ← x`−1t(x)f(x)− z · xd+`−1

R(x) ← x`−1t(x)F (x)− xd+`−1
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B2 now sets the ciphertext values:

Hdr∗ ← 〈C1, C2, C3, C4〉 ← 〈ĝP (α)·t(α)
3 , g

f(α)·t(α)
3 , g

F (α)·t(α)
3 , Z · e(g3, ĝ2)R(α)〉

It sets τ∗ ← F (x) and K ← Zz · e(g3, ĝ2)r(α). It outputs 〈τ∗,Hdr∗,K〉. In BEA, it sets S̃ ← S.
Note that F (i∗j ) = 1 for j ∈ [k + 1, `] as required. Also, note that in BESS we also have that

F (i∗j ) = 1 for j ∈ S∗; in particular, since F has degree `− 1, this implies that F (x) = 1.
We confirm that B2 can compute the elements of the challenge. It is easy to see that B2 can

compute C1, given which terms {ĝαj

3 } B2 can compute, given Equation 16, and given the degree of
t(x). For similar reasons, B2 can compute C2. For the remaining terms, notice that

t(x)F (x)|i = 0 if i ∈ [d + 1, d + `− 1] and t(x)F (x)|d = 1 (17)
r(x)|d+`−1 = 0 (18)
R(x)|d+`−1 = 0 (19)

Equation 17 follows from Equations 15 and 16 the fact that F (x) = z−1f(x)−Q(x)P (x) for some
polynomial Q(x) of degree d−`. For any polynomial Q(x) of degree d−`, note that Q(x)P (x)t(x)|i =
0 if i ∈ [d, d+`−1]. Equations 18 and 19 follow trivially from Equations 15 and 17. From Equations
17, 18 and 19, it is straightforward to verify that B2 can compute C3, K, and C4.

Guess Eventually, A outputs a bit b′. B2 sends b′ to the challenger.

Almost Perfect Simulation We verify that B2’s simulation appears perfect to A if B2 does not
abort – in the sense that the simulation’s distribution is either identical to Game 1 or identical to
Game 2. By the uniformity of a0, a1, a2, z, α, PK is appropriately distributed.

The private keys in B2’s simulation are completely dictated by the polynomial f(x). Everything
that A knows about f(x) – from PK, the set of private key queries Q ⊆ [1, n]q, and the challenge
– can be summed up in the following congruences.

f(α) = DLg2(g
γ
2 ) (20)

f(i) = ri for i ∈ Q (21)
f(i) = z · F (i) for i ∈ S̃ (22)
f(i) = z for i ∈ [n + 1, n + `] (23)

Note that, in BESS , |Q| + |S̃| ≤ n = q. In BEA, |Q| + |S̃| ≤ q + `. So, in either case, there are at
most q + 2` + 1 equations above. As long as d = deg(f) ≥ q + 2`, these evaluations seem random
and independent, even if z were known. Thus, the private keys seem uniformly distributed, by the
uniformity of f(x). For this value of d, z also remains uniformly random in Zp

∗ given the above
equations.

When Z = e(g, g)4d+4`−1, the challenge is valid – i.e., the distribution is the same as in Game
2. In particular, it is a valid ciphertext under randomness t(α) ·DLg1(g3) = α−d−` · t(α).

Suppose Z is random. Specifically, suppose Z = e(g, g)δ+α4d+4`−1
for random δ ∈ Zp. Then,

K = e(g, g)δ·z ·K ′, where K ′ is the “correct” key for Hdr∗. When δ = 0, there is only one possible
value of K; when δ 6= 0, there are p − 1 equally probable values of K, depending on the nonzero
value of z. Overall, the statistical difference from uniform is less than 2/p; this is also the statistical
difference of the distribution of B2’s simulation in this case from Game 3.
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Probability of Abort In certain circumstances – namely, when A queries the private key
of α or when α ∈ S∗ – B2 aborts; however, this only increases B2’s advantage against the
Decision BDHE Sum problem. The only event that causes an abort and potentially decreases
B2’s advantage is if the resultant of f(x) and P (x) is zero – i.e, if f(i∗j ) = 0 for some j ∈ [1, `].
Given the uniformity of f , there is at most a `/p probability that this event occurs. Overall, taking
into account the statistical difference above, B2’s advantage is at least |Pr[W1]−Pr[W2]|−(`+2)/p.

Running Time of Simulation The running time is dominated by the computation of g
fi(α)
2 ,

which requires O(d) = O(q + `) exponentiations for each of the O(q) private key queries. Another
potentially expensive step is computing t(x) – i.e., one column of a (d + `− 1)-dimension Sylvester
matrix (for d = O(q + `)). Currently, we know only of a O(`(q + `)) algorithm for this step. So,
overall, the complexity is O(q2 + `2).

20


