
Searching for Low Weight Codewords in Linear Binary Codes

Somitra Kumar Sanadhya⋆ and Palash Sarkar

Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata,

India 700108.
somitra r@isical.ac.in, palash@isical.ac.in

Work in Progress

9th April 2008

Abstract. In this work we revisit the known algorithms for searching for low weight codewords
in linear binary codes. We propose some improvements on them and also propose a new efficient
heuristic.

1 Introduction

The general problem of determining the least weight of a linear binary code is known to be NP-
complete [1]. The motivation to study such a property in linear codes stems not only from the
theoretical important and challenging open questions in coding theory but also due to its practical
ramifications in cryptography.

The general problem being NP-complete, researchers have developed several algorithms to
quickly find low weight codewords which are possibly close to the least weight of a given code.
Some such algorithms were proposed in [4], [5] and [3]. We briefly explain these methods and then
propose some improvements to them. We also propose a new method to search for low weight
codewords. Some of the algorithms discussed in this work are used to find a low weight codeword
for the linearized version of 23-step SHA-256 hash function. We hope to do detailed comparison
of all the algorithms using some standard codes in coming days.

2 Overview of Existing Algorithms

Let G be the generator matrix and H be the parity check matrix of a code C. Let the length of a
codeword in C be n and the dimension of the code be k. Then the order of G is (k × n) and the
order of H is ((n − k) × n).

2.1 Generator Matrix Based Approaches

The following two algorithms use generator matrix of the code.

⋆ This author is supported by the Ministry of Information Technology, Govt. of India.



Leon’s Algorithm [4] This algorithm by Leon [4] starts with randomly permuting the columns
of the generator matrix Gk×n. A Gaussian operation is performed on G next to obtain an identity
matrix Ik at beginning of the modified G. Let the matrix after the Gaussian be G′, then G′ =
(Ik, Zk×(n−k)). The initial permutation of the columns which gives rise to such a decomposition
of G′ defines a k-element information set and a (n − k)-element redundant set for the code C.

The algorithm uses a punctured code C′ in which an L column selection from the redundant
set is made. The rows are divided into two parts, each containing k/2 rows. Let the two parts
be called set X and set Y . A linear combination of all p row combinations from X is computed
punctured code and a list L1 restricted to the L columns is prepared. Similarly, another list L2 is
prepared using the set Y . Matching pairs from the two lists are then found. Each matching pair
gives a 2p row combination which produces a codeword vanishing on the L columns. Each such
row combination when applied over the full code C will produce a codeword having weight 2p
over the information set part, 0 over the chosen L columns and some weight over the rest of the
redundant set part. If the aim is to find a codeword having weight w, then the contribution of the
last part must be w − 2p. If a row combination producing this weight exists, then the algorithm
produces the codeword and stops, otherwise the process is repeated with different random initial
permutations for the columns.

When the aim is to obtain a low weight codeword, then the least weight obtained in many
iterations of the process above is produced. The parameters L and p are usually kept to be about
20 and 3 respectively for codes of length 500 or 1000. The main cost of the algorithm is in the
Gaussian step.

Canteaut and Chabaud’s Algorithm [3] Canteaut and Chabaud [3] modified Leon’s algo-
rithm such that the Gaussian step is done only once. They select one column from the redundant
set and exchange it with a column from the information set. This process is repeatedly applied
with the swap of randomly selected columns from the information set and the redundant set.
After each swap, the weight on the L columns is computed similar to Leon’s method. When this
weight vanishes over the chosen L columns then the weight for the full code C is computed. With
this modification, they show that the Gaussian step can be eliminated and that the algorithm
still converges. They also provide detailed of analysis of rate of convergence of their algorithm.

2.2 Check Matrix Based Approach

To our knowledge, there is only one algorithm for finding low weight codewords using parity check
matrix. This algorithm is described next.

Stern’s Algorithm [5] This algorithm by Stern [5] predates the Canteaut-Chabaud algorithm
described above. In this method, first the columns of the check matrix are permuted randomly.
Then a Gaussian step is performed to obtain identity matrix In−k in the beginning of the check
matrix. As in the cases described previously, the column permutation defines an information set
of size (n−k) and a redundant set of size k columns. The redundant set is divided into 2 parts, say
X and Y . Each of these sets contain n/2 columns. A list L1 of linear combinations of p columns
along L rows from X is constructed. Similarly, another list L2 of linear combinations of p columns
along L rows from Y is constructed. Then matches from the two lists restricted to these L rows
are found. Each match in the two lists gives a combination of L rows producing a codeword which
has weight 2p along the redundant set. Each such codeword is examined along the information
set and those codewords are selected which contribute weight w − 2p from this part, where w is
the desired weight. This algorithm is run repeatedly with different initial column permutations.



To look for low weight codeword, one simply reports the lowest weight found using this ap-
proach without using a weight w in the algorithm a-priori. It is reported in [5] that this approach
produces low weight codewords with significant probability for moderate sized codes.

3 Our Improvements to the Implementation of the Algorithms

We next describe our implementation level improvements to the algorithms described previously.
These improvements are discussed with respect to the generator matrix based approach. We
applied them for the check matrix based approach as well.

3.1 Word Oriented Approach

We use a 32-bit word oriented approach in the implementation of all the algorithms discussed.
One principal cost of the algorithms is in computing the linear combination of rows. The step
requiring linear combination of rows is implemented by a for loop which runs as many times as
the length of the column. We represent 32 columns as one 32-bit word. With this word oriented
approach, the linear combination of one row with another becomes 32 times faster because a word
can be linearly combined with another word in one computer clock cycle.

In our implementation of the Canteaut-Chabaud algorithm, the swap of a column from the
redundant set with a column from the information set is not done explicitly. Instead, only the
part of the matrix restricted to the redundant set is modified so as to reflect the effect of the swap
and the row operations which would be required to obtain identity matrix in the first part after
the swap. We implement all these operation over 32-bit words.

3.2 Increasing the Number of Row Combinations

We experiment with obtaining a larger number of columns L from the redundant set such that
the weight of the punctured code vanishes on them. As this number is increased, the probability
for obtaining vanishing punctured code reduces. To be still able to obtain sufficient candidate row
combinations of 2p rows to be tried on the full code C, we need more rows to be linearly combined.
Increasing the number of rows to combine makes sense even when the size of the punctured code
is not increased. In this latter case, the quality of candidate row combinations may improve on
the full code C.

4 Our Improvements to the Techniques

We now discuss our improvements to the techniques of the algorithms described earlier.

4.1 Using Wagner’s Generalized Birthday Attack

The algorithms discussed earlier use two lists, each of which is prepared by linear combinations
of p rows of the generator (or check) matrix. The problem with increasing the number of rows to

combine, for example p in the previous case, is that it is not practically feasible to attempt (
k/2
p )

combinations when p is more than 3 or 4 for moderate values of k. To handle larger values of p,
we incorporate a technique from [6]. The method in [6], which was earlier used in a special case
in [2], is an extension of the birthday paradox in cryptography.

This time we create four lists of linear combinations of p rows on four disjoint sets of L
columns from the redundant set. Using the tree based matching techniques of [6], we then find



matching pairs restricted to the L columns from these four lists. Each matching pair gives us a
combination of 4p rows which vanish on a punctured code of length L. Each of these matches is
a good candidate for low weight codeword for the full code C.

We can extend the approach outlined above and create 8, 16, . . . 2t lists and then use a tree
based method described in [6] to find matches in the lists. This will produce combinations of 2tp
rows, each of which vanishes on a punctured code of size L. This method can be useful when the
length of the full code C is quite large. We investigated creation of up to 4 lists in the redundant
set since the example codes we considered were not larger than length 512.

4.2 Closeness Parameterization of the Punctured Code

If the length of the punctured code is increased without increasing the number of row combina-
tions, the probability of obtaining a codeword which vanishes on the punctured code is lowered.
This means that some good candidate row combinations will not be considered while examining
the full code. To handle this, we do not require the codewords to vanish completely on the punc-
tured code, rather we look for a low weight punctured code. We implement this by a closeness

parameter. A row combination which produces a codeword of weight less than closeness parameter

in C′ is examined as a candidate for low weight code for the full code C.
The same technique can also be used in the multi-list approach discussed in Section 4.1. In

that situation, the number of rows to combine have increased but we may not wish to lose on the
candidate row combinations which produce a very low weight in the punctured code. We use a
measure of closeness of match to keep such close matches in the candidate list for the full code.

5 A New Efficient Heuristic

The proposed heuristic works on the parity check matrix of the code. It starts with a random
ordering of the columns of the check matrix H(n−k)×n. We attempt to obtain a weight w = 2w1

using the proposed method.
We first partition the columns of the check matrix into two sets, say X and Y . The two sets

contain n/2 columns each. We then create a list L1 by linearly combining w1 columns from X. Each
element of the list is a column vector of length (n − k). Since the number of all w1 combinations

of n/2 columns is (
n/2
w1

), it may not be feasible to attempt all such combinations exhaustively.
Therefore we propose to use a parameter l for the size of this list. We shortly describe a suitable
value for this parameter. Similarly, we create a list L2 by linearly combining w1 columns from Y .
We propose to use the same size l for the list L2 as well.

If we can find a match in the two lists L1 and L2, then we have obtained 2w1 columns whose
linear combination is zero and hence we have a codeword of weight w = 2w1. In this case the
heuristic is successful. If it is not, then we restart the search by randomizing the column ordering
again. To obtain success, we need to ensure that the two lists have some intersection. Since there
are a total of 2(n−k) possible column vectors, birthday bound requires the size of the lists l to
satisfy the bound l × l ≥ 2(n−k). Thus we need l ≥ 2(n−k)/2.

The above bound for l may still be large and it may be difficult to prepare lists this long. In
such a case, we can extend the two list approach and prepare 4 or 8 or . . . 2t lists, and look for a
match among these lists by using Wagner’s tree-based approach [6]. The advantage of our method
is that it does not require any Gaussian to be performed. The cost of the algorithm is only in
the preparation and matching of the lists, hence a single iteration of our algorithm is likely to be
more efficient than a single iteration of other algorithms. We plan to do analysis of the rate of
convergence of our algorithm later.



6 Results and Conclusions

We tested the algorithms of Leon, Stern and Canteaut-Chabaud on a code prepared by linearizing
the 23-step SHA-256 hash function. In the linearization, all additions were replaced by XOR
and the non-linear 3-input boolean functions fIF and fMAJ were approximated by their middle
arguments. In the SHA-256 hash function, one block (512-bit) message is mapped to 8 registers of
32-bits each. Thus, its linearized version corresponds to a code having generator matrix of order
256 × 512. We tested the algorithms with improvements described in Sections 3 and 4. We found
that the algorithm by Canteaut and Chabaud gave the best results. In a code of size 512, the
method could produce a codeword of weight 79 which is detailed in hexadecimal in Table 1. The
corresponding differential path is shown in Table 2. We are still implementing our new method
described in Section 5.

Table 1. Least weight codeword of weight 79 for 23-step linearized version of SHA-256 found
using Canteaut-Chabaud algorithm [3] with p = 2 and L = 10. The 16 words of 32-bit each are
listed in hexadecimal.

0-3 c0080020 a0900121 40010212 0100088a

4-7 00100800 80020818 80808d02 40082000

8-11 42000682 92002000 409a0200 10200002

12-15 00590020 28025081 44100100 10520050

References

1. Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg, On the Inherent Intractability of Certain

Coding Problems, IEEE Transactions on Information Theory 24 (1978), 384–386.
2. Paul Camion and Jacques Patarin, The Knapsack Hash Function proposed at Crypto’89 can be broken, Advances

in Cryptology - Eurocrypt ’91, Workshop on the Theory and Application of of Cryptographic Techniques,
Brighton, UK, April 8-11, 1991, Proceedings (Donald W. Davies, ed.), Lecture Notes in Computer Science, vol.
547, Springer, 1991, pp. 39–53.

3. Anne Canteaut and Florent Chabaud, A New Algorithm for Finding Minimum-Weight Words in a Linear Code:

Application to McEliece’s Cryptosystem and to Narrow-Sense BCH Codes of Length 511, IEEE Transactions on
Information Theory 44 (1998), no. 1, 367–378.

4. Jeffrey S. Leon, A probabilistic algorithm for computing minimum weights of large error-correcting codes, IEEE
Transactions on Information Theory 34 (1988), no. 5, 1354–1359.

5. Jacques Stern, A Method for Finding Codewords of Small Weight, Coding Theory and Applications (Gérard D.
Cohen and Jacques Wolfmann, eds.), Lecture Notes in Computer Science, vol. 388, Springer, 1988, pp. 106–113.

6. David Wagner, A Generalized Birthday Problem, Advances in Cryptology - Crypto 2002, 22nd Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings (Moti Yung,
ed.), Lecture Notes in Computer Science, vol. 2442, Springer, 2002, pp. 288–303.



Table 2. The 23-step SHA-256 differential path for the codeword given in Table 1. In this table
∆X stands for X ′ ⊕ X.

Step i δai δbi δci δdi δei δfi δgi δhi

IV 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

1 c0080020 00000000 00000000 00000000 c0080020 00000000 00000000 00000000

2 328cb309 c0080020 00000000 00000000 23883041 c0080020 00000000 00000000

3 6e95ef29 328cb309 c0080020 00000000 48bb7364 23883041 c0080020 00000000

4 c544699a 6e95ef29 328cb309 c0080020 829a704c 48bb7364 23883041 c0080020

5 7cb5d3f3 c544699a 6e95ef29 328cb309 3e0967aa 829a704c 48bb7364 23883041

6 2aa14c82 7cb5d3f3 c544699a 6e95ef29 4a90cab1 3e0967aa 829a704c 48bb7364

7 3a6a0d29 2aa14c82 7cb5d3f3 c544699a 43c13f73 4a90cab1 3e0967aa 829a704c

8 eebce7f7 3a6a0d29 2aa14c82 7cb5d3f3 8ebe361c 43c13f73 4a90cab1 3e0967aa

9 dc9de18b eebce7f7 3a6a0d29 2aa14c82 adcdacf1 8ebe361c 43c13f73 4a90cab1

10 8a397f75 dc9de18b eebce7f7 3a6a0d29 c2db67ff adcdacf1 8ebe361c 43c13f73

11 63946125 8a397f75 dc9de18b eebce7f7 f9bc55b9 c2db67ff adcdacf1 8ebe361c

12 58c5a5d0 63946125 8a397f75 dc9de18b 3c0aac36 f9bc55b9 c2db67ff adcdacf1

13 42f9c68c 58c5a5d0 63946125 8a397f75 d3d4a818 3c0aac36 f9bc55b9 c2db67ff

14 c7d14da2 42f9c68c 58c5a5d0 63946125 d6ebc061 d3d4a818 3c0aac36 f9bc55b9

15 4bd49e42 c7d14da2 42f9c68c 58c5a5d0 f36ddf16 d6ebc061 d3d4a818 3c0aac36

16 00000000 4bd49e42 c7d14da2 42f9c68c ad8a9869 f36ddf16 d6ebc061 d3d4a818

17 00000000 00000000 4bd49e42 c7d14da2 092d58ce ad8a9869 f36ddf16 d6ebc061

18 00000000 00000000 00000000 4bd49e42 c7d14da2 092d58ce ad8a9869 f36ddf16

19 00000000 00000000 00000000 00000000 4bd49e42 c7d14da2 092d58ce ad8a9869

20 00000000 00000000 00000000 00000000 00000000 4bd49e42 c7d14da2 092d58ce

21 00000000 00000000 00000000 00000000 00000000 00000000 4bd49e42 c7d14da2

22 00000000 00000000 00000000 00000000 00000000 00000000 00000000 4bd49e42

23 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000


	Searching for Low Weight Codewords in Linear Binary Codes

