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Abstract. We perform a combinatorial analysis of SHA-2 compression function. This analysis explains in a
unified way the recent attacks against reduced round SHA-2. We start with a general class of local collisions
and show that the previously used local collision by Nikolić and Biryukov (NB) and Sanadhya and Sarkar
(SS) are special cases. The study also clarifies several advantages of the SS local collision over the NB local
collision. Deterministic constructions of up to 22-round SHA-2 collisions are described using the SS local
collision and up to 21-round SHA-2 collisions are described using the NB local collision. For 23 and 24-round
SHA-2, we describe a general strategy and then apply the SS local collision to this strategy. The resulting
attacks are faster than those proposed by Indesteege et al using the NB local collision. We provide colliding
message pairs for 22, 23 and 24-round SHA-2. Although these attacks improve upon the existing reduced
round SHA-256 attacks, they do not threaten the security of the full SHA-2 family.1
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1 Introduction

Collision resistant hash functions (CRHF) are of great practical importance in cryptography. Conse-
quently, over the years, a lot of effort has been expended in the design and analysis of such functions.
The most famous families of CRHFs are the SHA-families standardized by NIST [24] of USA and are
based on iterative Merkle-Damg̊ard (MD) [14, 5] type of hash functions designed by Rivest.

A CRHF maps arbitrarily long strings to a short fixed length string. Consequently, collisions are
bound to exist. Cryptanalysis of a CRHF consists of finding one such collision for the given CRHF. Since
the description of function is given, one needs to carefully analyse the structure of the function in order
to determine a collision. This necessitates a detailed combinatorial study of the function. One approach
is to linearize the function by replacing all non-linear components with their best linear approximation.
Finding a collision for such a linearized function is easy, but, the collision holds for the original function
only probabilistically. One then has to look for methods to increase the probability. Alternatively, one
could work directly with the nonlinear function itself. This makes the analysis more difficult, but the
probability of a collision is much higher.

Cryptanalysis of the MD-family and the SHA-family has been extensively studied with major suc-
cesses coming at infrequent intervals. The first major success was the cryptanalysis of MD4 by Dob-
bertin [6, 7] which led to actually exhibiting a colliding message pair. This was followed by partial attacks
on MD5 with full cryptanalysis of MD5 and other hash functions coming recently [28, 26]. The NIST
standard SHA-1 family was theoretically cryptanalysed in [27] (though, till date, a colliding message
pair for SHA-1 remains to be found). Earlier, partial cryptanalysis of SHA-0 was done in [3, 1]. Following

1 This work builds upon and subsumes previous work [22, 20, 16, 21] done by us. Whereas the previous works focussed on
obtaining collisions for fixed number of rounds, the current work provides the combinatorial framework for understanding
how such collisions arise.



the works in [28, 27], there have been attacks [11, 25] on MD5 with improved time complexities and/or
providing collisions of structured messages.

The SHA-2 family consists of two main hash functions, SHA-256 and SHA-512, and their truncated
versions SHA-224 and SHA-384. In view of the existing attacks, the only surviving family in the NIST
standard is the SHA-2 family. Consequently, it is of interest to analyse the SHA-2 family. Cryptanalysis
of SHA-2 family has recently gained momentum due to the important work of Nikolić and Biryukov [15].
Prior work on finding collisions for step reduced SHA-256 was done in [12, 13] and [19]. These earlier
works used local collisions valid for the linearized version of SHA-256 from [8] and [17]. On the other
hand, the work [15] used a local collision which is valid for the actual SHA-256.

The authors in [15] developed techniques to handle nonlinear functions and the message expansion
of SHA-2 to obtain collisions for up to 21-round SHA-256. The 21-round attack of [15] succeeded with
probability 2−19. Very recently, Indesteege et al [9] have developed attacks against 23 and 24-round
SHA-2 family. They utilize the local collision from [15] in these attacks. Following the work of [15] and
partly in parallel to [9], we have published several papers [22, 20, 16, 21] on finding SHA-2 collisions for
up to 24 steps with time complexities better than those obtained in [9]. The current work subsumes
our previous works and provides a unified combinatorial analysis of the attacks. More details are given
below.

Our contributions. We take a general approach to the analysis of SHA-2 family. The set of all
possible 9-round local collisions using additive differentials are analysed using a general and unified
framework. Simplification of the expressions are done in a systematic manner which lead us to the local
collisions from [15] and [22] as special cases. We will call these NB and SS local collisions respectively.

We show that it is possible to deterministically construct up to 22-round SHA-2 collisions using the
SS local collision and up to 21-round SHA-2 collisions using the NB local collision. A general method
for obtaining collisions for 23 and 24-round SHA-2 are described. This method can be applied with both
the NB and the SS local collisions. From the analysis it becomes clear that the SS local collision offers
certain advantages over the NB local collision. Hence, we focus on the SS local collision which leads
to 23 and 24-round collisions with better time complexities than those obtained using the NB local
collision. A summary of results on collision attacks against reduced SHA-2 family is given in Table 1.
Examples of 22, 23 and 24-round SHA-256 and SHA-512 collisions are presented in Appendix A.

We highlight the case of 23 and 24-round SHA-512 attacks from Table 1. These are considerably
improved in comparison to the existing attack of [9]. While [9] describes these attacks with reported
complexities of 244.9 and 253 calls to the corresponding functions, our attacks have complexities 216.5

and 232.5 calls. In fact, the improvement in the time complexity of the 24-round SHA-512 attack allows
us to provide the first message pair which collides for 24-round SHA-512.

Chronology of recent attacks on SHA-2. Nikolić and Biryukov [15] started the analysis of SHA-2
using nonlinear differentials and attacked up to 21-round SHA-256. Our work was motivated by theirs.
We generalize their technique and use a different local collision with certain advantages over the NB
local collision. Also, we extend the number of rounds that can be attacked to 24.

The work [9] and its different versions [10] (later published as [9]) was done independently and in
parallel to ours [22, 20, 16, 21]. This work used the NB local collision. The chronological sequence of
our work and that of the different versions of [10] for obtaining 22 to 24-round SHA-2 collisions is the
following.

1. Our work [16, 08-Mar-2008] provided the first example of colliding message pairs for 22-round SHA-2.
2. The version [10, 08-Apr-2008] provided the first examples of colliding message pairs for 23 and

24-round SHA-256.
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Table 1. Summary of results against reduced SHA-2 family. Effort is expressed as either the probability of success or as
the number of calls to the respective reduced round hash function.

Work Hash Function Steps Effort Local Collision Attack Type Example

Prob. Calls utilized provided

[12, 13] SHA-256 18 ∗ GH [8] Linear yes

[19] SHA-256 18 ∗∗ SS5 [17] ” yes

[15] SHA-256 20 1

3
NB [15] Non-linear yes

21 2−19 ” ” yes

[22] SHA-256/SHA-512 18,20 1 1 SS [22] ” yes

SHA-256 21 2−15 ” ” yes

[20] SHA-256/SHA-512 21 1 1 ” ” yes

[9] SHA-256 23 218 NB [15] ” yes

24 228.5 ” ” yes

SHA-512 23 244.9 ” ” yes

24 253 ” ” no

This work SHA-256/SHA-512 22 1 1 SS [22] ” yes

SHA-256 23 211.5 ” ” yes

24 228.5 ” ” yes

24 215.5 † ” ” no

SHA-512 23 216.5 ” ” yes

24 232.5 ” ” yes

24 222.5 ‡ ” ” no
∗ It is mentioned in [12, 13] that the effort is 20 but no details are provided.

∗∗ Effort is given as running a C-program for about 30–40 minutes on a standard PC.
† A table containing 232 entries, each entry of size 8 bytes, is required.
‡ A table containing 264 entries, each entry of size 16 bytes, is required.
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3. An earlier version of the present work [18, 12-Jun-2008] provided examples of colliding message pairs
for 23 and 24-round SHA-256 with improved time complexities.

4. The version [10, 14-Jul-2008] provided the first examples of colliding message pairs for 23-round
SHA-512 and a theoretical attack on 24-round SHA-512 with reported time complexity of 253 calls
to the compression function.

5. Our paper [21] provides example of a colliding message pair for 23-round SHA-512 with improved
time complexity; and the first example of a colliding message pair for 24-round SHA-512 (also with
improved time complexity).

As mentioned earlier, the current work subsumes our earlier works [22, 20, 16, 21] providing a unified
view of the attacks. More generally, the framework of our combinatorial analysis explains how things
fit together.

Another important difference between [10, 9] and ours is that we provide complete details of each
and every result and algorithm used in the attack. In contrast, the description of the attacks in [10, 9]
is rather incomplete and the time complexities are not properly explained. They describe the attacks
as two-phase procedures, where in the first phase a pseudo-collision is obtained which is then converted
to a collision. Our analysis shows that such a two-phase description is unnecessary.

We believe that the approach we take leads to a better understanding of the combinatorial structure
of the SHA-2 family.

Note. In a recent work [23], we have suggested modifications to the SHA-2 design to overcome the
attacks described in this work and in the works [15, 9]. The design given in [23] also introduces the idea
of multiple feedforward in the context of hash function design.

2 Preliminaries

We will use the following notation:

• Message words: Wi ∈ {0, 1}n, W ′
i ∈ {0, 1}n; n is 32 for SHA-256 and 64 for SHA-512.

• Colliding message pair: {W0, W1, W2, . . . W15} and {W ′
0, W ′

1, W ′
2, . . .W ′

15}.
• Expanded message pair: {W0, W1, W2, . . . WN−1} and {W ′

0, W ′
1, W ′

2, . . . W ′
N−1

}.
The number of steps N is 64 for SHA-256 and 80 for SHA-512.

• The internal registers for the two messages at step i: REGi = {ai, . . . , hi} and REG′
i = {a′i, . . . , h

′
i}.

• ROTRk(x): Right rotation of an n-bit string x by k bits.
• SHRk(x): Right shift of an n-bit string x by k bits.
• ⊕: bitwise XOR;
• +,−: addition and subtraction modulo 2n.
• δX = X ′ − X where X is an n-bit quantity.

2.1 SHA-2 Compression Function

The complete description of the SHA-2 hash family can be found from [24]. In this work, we will need
only the compression function. A description is given below.

The input to the compression function consists of 8 n-bit registers and a message block which consists
of 16 n-bit words. The output consists of 8 n-bit words. For the first message block, the values of the
input registers are given by 8 fixed n-bit words called the initialization vector and for later message
blocks, these values are the output of the previous invocation of the compression function.
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The message block is expanded from 16 n-bit words W0, . . . ,W15 to N n-bit words W0, . . . ,WN−1.
A round function is applied N times. Each application updates the values of the registers. In Step i
with 0 ≤ i ≤ N − 1, the 8 registers are updated from (ai−1, bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to
(ai, bi, ci, di, ei, fi, gi, hi) as follows. ((a−1, . . . , h−1) corresponds to the initial value of the registers.)

ai = Σ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

bi = ai−1

ci = bi−1

di = ci−1

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

fi = ei−1

gi = fi−1

hi = gi−1















































(1)

The functions fIF and the fMAJ are three variable boolean functions defined as:

fIF (x, y, z) = (x ∧ y) ⊕ (¬x ∧ z),
fMAJ(x, y, z) = (x ∧ y) ⊕ (y ∧ z) ⊕ (z ∧ x).

For SHA-256, the functions Σ0 and Σ1 are defined as:

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x),
Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x).

For SHA-512, the corresponding functions are:

Σ0(x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x),
Σ1(x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x).

Given the message words W0,W1, . . . ,W15; for i ≥ 16, Wi is computed as follows.

Wi = σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 (2)

For SHA-256, the functions σ0 and σ1 are defined as:

σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x),
σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x).

And for SHA-512, they are defined as:

σ0(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x),
σ1(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x).

The final output of the compression function is (a−1 + aN−1, . . . , h−1 + hN−1). Adding the initial
values (a−1, . . . , h−1) to the output of the final application of the round function is called feed-forward.

Reduced Round SHA-2. The value of N is fixed by the specification [24]. For the purpose of analysis,
one may work with a lower value of N . In this paper, we will work with N up to 24. Everything else
of the compression function, including the feed-forward, remain the same. Actually, we will not have
to bother about the feed-forward, since we will be obtaining collisions for several steps of the round
function itself.
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2.2 Cross Dependence Equation (CDE)

By the form of the round update function in (1), we have the following relation.

ei = ai + ai−4 − Σ0(ai−1) − fMAJ(ai−1, ai−2, ai−3). (3)

Later, we make extensive use of this relation. A special case of this equation was utilized in Section 6.1
of [22]. The equation in the form above was used in [20]. This equation can be used to show that the
SHA-2 state update can be rewritten in terms of only one state variable. This fact was independently
observed in [9].

The following result can be used to set registers to specific values.

Proposition 1. Suppose that (ai−1, . . . , hi−1) are known and α and β are any two n-bit words. Then
it is possible to choose Wi such that either ai = α or ei = β. In general, however, using only Wi, it is
not possible to simultaneously set both ai to α and ei to β.

Proof. This is an easy consequence of (1). Consider the equation for ai. This is given in terms of
(ai−1, . . . , hi−1) and Wi. So, if we set

Wi = α − (Σ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki),

then clearly ai = α is attained. Similarly for ei.

Note, however, that using Wi, we cannot simultaneously set the values of both ai and ei. ⊓⊔

Even though we cannot use Proposition 1 to simultaneously set the values of ai and ei, there is a
way out. This way is given by the CDE. Suppose, the values of ai−3, . . . , ai have already become fixed,
but, ai−4 is still free. Then by choosing a suitable value for ai−4 we can attain any desired value for ei.
Now, using Proposition 1, we can use Wi−4 to set ai−4 to the required value. So, in effect, we can use
Wi−4 to set ei to any desired value. This is something nice (from a cryptanalytic point of view) and
unexpected and we use this feature extensively.

2.3 Differential Properties of σ1

For the analysis of 23 and 24-round SHA-2, we will need to consider the differential properties of σ1

with respect to modular addition. The particular property that we require is discussed in this section.

SHA-256. Consider the distribution of δ = σ1(W ) − σ1(W − 1) as W ranges over all 232 values. This
distribution is highly skewed and was mentioned in Section 7.1 in [22]. Later, it has been independently
observed in [9] that δ takes only 6181 values and there are several values of δ which occur for more than
229 or more values of W .

Let freqδ be the number of W such that δ = σ1(W )− σ1(W − 1). It is quite easy to prepare a list of
(δ, freqδ) values. For each of the 232 values of W , compute δ = σ1(W ) − σ1(W − 1). If this δ has been
obtained earlier, then increment the frequency for this δ; else insert (δ, freqδ = 1) into the list. To do this
efficiently, we need a suitable index structure for searching and inserting into the list. A height balanced
tree (or AVL tree) is the optimal solution; but, for the current application, a simple (data structure)
hash technique is good enough and is the technique we implemented. Some values of (δ, freqδ) are given
in Table 2.

Note. Interestingly, we have observed that if freqδ is greater than 216, then δ is always even.
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Table 2. Some examples of high frequency values of δ = σ1(W ) − σ1(W − 1) for SHA-256.

δ freq
δ

δ freq
δ

ffff6000 229 + 226 + 225 0000a000 229 + 226 + 225

ffffa000 229 + 226 00006000 229 + 226

ff006001 216 ff005fff 216

SHA-512. In this case, n = 64 and it is not possible to exhaustively prepare a list of values for
δ = σ1(W ) − σ1(W − 1) for all possible 264 values of W . Instead, we created a list using 225 randomly
chosen values of W . This provides certain values of δ with certain frequencies. From these frequencies
we extrapolate to estimate the actual frequency of each delta among all the 264 choices of W . The
extrapolation is done in the following manner. If a particular difference δ occurs κ times in 225 random
trials, then we expect it to have a frequency freqδ of about κ × 264/225. Some of the observed and the
extrapolated frequencies are shown in Table 3.

Table 3. Some examples of high frequency values of δ = σ1(W )− σ1(W − 1) for SHA-512. The column freqo denotes the
observed frequencies among 225 random trials of computing δ. The column freq

δ
contains the extrapolated values of the

frequencies for the complete search space of 264.

δ freqo freqδ δ freqo freqδ

200000000008 4795491 261.5 8e000000003a9 22 243.5

ffffdffffffffff8 4793201 261.5 fff26000000000c9 22 243.5

1ffffffffff8 4792982 261.5 600000000237 18 243.5

3 A General Non-Linear Differential Path

We use a differential technique to find a 9-round local collision. The idea is to use modular differentials
which was first used for SHA-2 by Nikolić and Biryukov [15]. Given a word w, we define

x = −δΣi
0(w) − δf i

MAJ(w, 0, 0); y = −δf i+1

MAJ(0, w, 0); z = −δf i+2

MAJ(0, 0, w). (4)

For t-bit words α, β, γ and integer i, we use the following short-hands.

δΣi
1(α) = Σ1(ei + α) − Σ1(ei) = Σ1(e

′
i) − Σ1(ei).

δΣi
0(α) = Σ0(ai + α) − Σ0(ai) = Σ0(a

′
i) − Σ0(ai).

δf i
IF (α, β, γ) = fIF (ei + α, fi + β, gi + γ) − fIF (ei, fi, gi) = fIF (e′i, f

′
i , g

′
i) − fIF (ei, fi, gi).

δf i
MAJ(α, β, γ) = fMAJ(ai + α, bi + β, ci + γ) − fIF (ai, bi, ci) = fMAJ(a′i, b

′
i, c

′
i) − fIF (ai, bi, ci).

δσ0(δWi) = σ0(Wi + δWi) − σ0(Wi) = σ0(W
′
i ) − σ0(Wi).

δσ1(δWi) = σ1(Wi + δWi) − σ1(Wi) = σ1(W
′
i ) − σ1(Wi).































(5)

The general differential path and corresponding message differences are shown in Table 4. It can be
verified that the differential path holds for the stated message differences. We show the first step of the
computation, the other steps are similar. In the (i + 1)st step we want δai+1 = 0 and δei+1 = x. The
given values of x and δWi+1 ensure that these two conditions hold. Note that the values of the other
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registers are fixed by the values of the registers at the ith step.

δai+1 = a′i+1 − ai+1

= (Σ0(a
′
i) + fMAJ(a′i, b

′
i, c

′
i) + Σ1(e

′
i) + fIF (e′i, f

′
i , g

′
i) + h′

i + K ′
i+1 + W ′

i+1)

−(Σ0(ai) + fMAJ(ai, bi, ci) + Σ1(ei) + fIF (ei, fi, gi) + hi + Ki+1 + Wi+1)

= (Σ0(a
′
i) − Σ0(ai)) + (fMAJ(a′i, b

′
i, c

′
i) − fMAJ(ai, bi, ci))

+(Σ1(e
′
i) − Σ1(ei)) + (fIF (e′i, f

′
i , g

′
i) − fIF (ei, fi, gi)) + (W ′

i+1 − Wi+1)

= δΣi
0(w) + δf i

MAJ(w, 0, 0) + δΣi
1(w) + δf i

IF (w, 0, 0) + δWi+1

= −x + (δΣi
1(w) + δf i

IF (w, 0, 0)) + (x − δΣi
1(w) − δf i

IF (w, 0, 0))

= 0

δei+1 = e′i+1 − ei+1

= (Σ1(e
′
i) + fIF (e′i, f

′
i , g

′
i) + h′

i + K ′
i+1 + W ′

i+1)

−(Σ1(ei) + fIF (ei, fi, gi) + hi + Ki+1 + Wi+1)

= (Σ1(e
′
i) − Σ1(ei)) + (fIF (e′i, f

′
i , g

′
i) − fIF (ei, fi, gi)) + (W ′

i+1 − Wi+1)

= δΣi
1(w) + δf i

IF (w, 0, 0) + δWi+1

= δΣi
1(w) + δf i

IF (w, 0, 0) + x − δΣi
1(w) − δf i

IF (w, 0, 0)

= x.

Table 4. General 9-round nonlinear local collision for SHA-256.

Differential Path Message Word Differences

Step i δWi δai δbi δci δdi δei δfi δgi δhi

i − 1 0 0 0 0 0 0 0 0 0

i w w 0 0 0 w 0 0 0

i + 1 δWi+1 0 w 0 0 x w 0 0

i + 2 δWi+2 0 0 w 0 y x w 0

i + 3 δWi+3 0 0 0 w z y x w

i + 4 δWi+4 0 0 0 0 w z y x

i + 5 δWi+5 0 0 0 0 0 w z y

i + 6 δWi+6 0 0 0 0 0 0 w z

i + 7 δWi+7 0 0 0 0 0 0 0 w

i + 8 δWi+8 0 0 0 0 0 0 0 0

δWi = w;
δWi+1 = x − δΣi

1(w) − δf i

IF (w, 0, 0);
δWi+2 = y − δΣi+1

1 (x) − δf i+1

IF
(x, w, 0);

δWi+3 = z − δΣi+2

1 (y) − δf i+2

IF
(y, x, w);

δWi+4 = −w − δΣi+3

1 (z) − δf i+3

IF
(z, y, x);

δWi+5 = −x − δΣi+4

1 (w) − δf i+4

IF
(w, z, y);

δWi+6 = −y − δf i+5

IF
(0, w, z);

δWi+7 = −z − δf i+6

IF
(0, 0, w);

δWi+8 = −w.

The important thing to note about the differential path shown in Table 4 is that it puts no restrictions
on the actual message words Wi, . . . ,Wi+8. Starting at any value for the registers ai to hi, and using
any given non-zero w, and any Wi, . . . ,Wi+8, we simply run the compression function step-by-step and
define the words x, y, z, the respective δWis and consequently the respective W ′

i s. All the steps are
deterministic and hence with probability one, we obtain W ′

i s which collide with Wis. This gives rise to
a local collision.

Note. We have defined δX = X ′ − X and so δWi = w means W ′
i = Wi + w; if we had defined δX to

be X −X ′, then W ′
i would have been Wi −w. Consequently, without loss of generality one can assume

w > 0.
Specifying the values of (w, x, y, z) completely specifies message differences as well as the differences

in the register values at all the steps. Two special cases for (w, x, y, z) have been used.
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Nikolić-Biryukov (NB) [15]. (w, x, y, z) = (1,−1, 0, 0).

Sanadhya-Sarkar (SS) [22]. (w, x, y, z) = (1,−1,−1, 0).

The NB local collision was the first to be proposed and has been used for finding collisions in both [15]
and [10, 9]. The SS local collision was proposed later and was motivated by the analysis done in [15].
But, it turns out that the SS local collision is actually more attractive than the NB local collision. This
is due to the fact that the time complexities of collision attacks using the SS local collision is lesser than
the time complexities of collision attacks using the NB local collision. To understand why this is so, one
needs to go through the detailed combinatorial analysis of the SHA-2 round function carried out in this
work.

3.1 Simplifications

The differential path by itself is not useful for obtaining longer round collisions. To do this, we need
to simplify the expressions and obtain conditions. This is done using several rules which are actually
sufficient conditions. The rules and their consequences are described below.

Simplifying δΣ0. There is only one occurrence of Σ0 in all the expressions and that is in the expression
for x. In both SHA-256 and SHA-512, Σ0 is a linear function which is invariant only on 0 and −1.
Note that −1 = ffffffff for SHA-256 and −1 = ffffffffffffffff for SHA-512. Since δΣi

0(w) =
Σ0(ai + w)−Σ0(ai) an easy way to satisfy this is to ensure that both ai and ai + w are either 0 or −1.

Rule 1: Ensure that δΣi
0(w) = w by putting w = 1 and ai = −1.

Table 5. Different cases for (w, x, y, z).

(I) (II) (III) (IV)

(w,−w, 0, 0) (w,−w, 0,−w) (w,−w,−w, 0) (w,−w,−w,−w)

(V) (VI) (VII) (VIII)

(w,−2w, 0, 0) (w,−2w, 0,−w) (w,−2w,−w, 0) (w,−2w,−w,−w)

Simplifying Majority. If two of the inputs are equal, then the output of fMAJ() is equal to this input.
Based on this observation, we have the following rule.

Rule 2: Simplify each occurrence of fMAJ by making two of the inputs equal.

This rule has several consequences. The function fMAJ is used only in the definitions of x, y and z.
Consider, for example x which, after the application of Rule 1, is equal to

x = −w − fMAJ(ai + w, ai−1, ai−2) + fMAJ(ai, ai−1, ai−2).

There are three ways to apply Rule 2 to this occurrence of fMAJ . These are:

1. Set ai−1 = ai−2 which implies x = −w;

2. set ai−1 = ai + w, ai = ai−2 which implies that x = −2w;

3. set ai−2 = ai + w, ai = ai−1 which also implies that x = −2w.
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So applying Rule 2 to x implies that either x = −w (in which case ai−1 = ai−2) or x = −2w (in which
case either (ai−1 = ai + w and ai = ai−2) or (ai−2 = ai + w and ai = ai−1).

Similar reasoning applies to the expressions for y and z. Now, if we simultaneously apply Rule 2 to
all the three occurrences of fMAJ , then there are eight possible values of (w, x, y, z) which are listed as
Cases (I) to (VIII) in Table 5. The related sufficient conditions are given in Table 6.

These sufficient conditions specify certain values for the registers (ai−2, ai−1, ai, ai+1, ai+2) and
(ei+1, ei+2). Actually, the conditions on the a-register values are independent and the conditions on
the e-register values are obtained from these values using the CDE. Using Proposition 1, it is possible
to set the values of (Wi−2, . . . ,Wi+2) to ensure that the (ai−2, . . . , ai+2) obtain the required values.
Consequently, we can ensure that any of the cases in Table 6 can be made to hold with probability one.

Note. If w = 1, then Case (I) of Table 5 corresponds to the NB local collision and Case (III) of Table 5
corresponds to the SS local collision. As we proceed, we will see that the other cases become unusable.

Table 6. Result of applying Rules 1 and 2. For this table, we have w = 1 and ai = −1.

Case ai−2 ai−1 ai ai+1 ai+2 ei+2 ei+1

I α α −1 α α −Σ0(α) + α 1 + ai−3

II(a) 0 0 −1 0 −1 −1 1 + ai−3

II(b) −1 −1 −1 −1 0 1 1 + ai−3

III(a) −1 −1 −1 0 0 0 2 + ai−3

III(b) 0 0 −1 −1 −1 1 ai−3

IV(a) −1 −1 −1 0 −1 −1 2 + ai−3

IV(b) 0 0 −1 −1 0 2 ai−3

V(a) −1 0 −1 0 0 −1 2 + ai−3

V(b) 0 −1 −1 −1 −1 1 1 + ai−3

VI(a) −1 0 −1 0 −1 −2 2 + ai−3

VI(b) 0 −1 −1 −1 0 2 1 + ai−3

VII(a) −1 0 −1 −1 −1 0 1 + ai−3

VII(b) 0 −1 −1 0 0 1 2 + ai−3

VIII(a) −1 0 −1 −1 0 1 1 + ai−3

VIII(b) 0 −1 −1 0 −1 −1 2 + ai−3

3.2 Simplifying δWi+4 to δWi+7

The expression for δWi+4 involves δΣi+3
1

(z) and δf i+3

IF (z, y, x). Joint simplification of the above two
quantities is possible by ensuring that both ei+3 and ei+3 + z are either 0 or −1.

1. If z = 0, then ei+3 can be either 0 or −1.

2. If z = −w, then we choose ei+3 = 0 if w = 1; and ei+3 = −1 if w = −1.

Similarly, simplification of δWi+5 is possible by ensuring that both w and ei+4 + w are either 0 or −1.

For δWi+6 and δWi+7 we respectively ensure that ei+5 and ei+6 are either 0 or −1. The effect of
these simplifications are summarized in Tables 7 and 8. In particular, the simplifying conditions and
the resulting values of the respective δW s are shown. The condition on the values of e-register can be
achieved by setting the corresponding message word W (see Proposition 1). So, any of the conditions
in Tables 7 and 8 can be achieved.
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Table 7. Summary of simplifying conditions for δWi+4 and δWi+5. These simplifications require Rules 1 and 2 and so, in
particular w = 1 in all these cases.

δW Condition(s) Value of δW

δWi+4

z = 0, ei+3 = 0 −w − x

z = 0, ei+3 = −1 −w − y

w = 1, z = −w, ei+3 = 0 ei+1 − ei+2 + y

δWi+5 w = 1, ei+4 = −1 −w − x − y + ei+3 − ei+2

Table 8. Summary of simplifying conditions for δWi+6 and δWi+7. These simplifications do not require these Rules 1
and 2 and consequently, w can be any n-bit word.

δW Condition(s) Value of δW

δWi+6

ei+5 = 0 −y − z

ei+5 = −1 −y − w

δWi+7

ei+6 = 0 −w − z

ei+6 = −1 −z

4 Obtaining Up To 22-Round Collisions

The basic idea is the following. Choose a suitable value for i and place the local collision from Steps i
to i + 8. By placing we mean the following. Ensure that δW0, . . . , δWi−1 are all zeros and introduce the
required differences in δWi, . . . , δWi+8. This creates a collision from Steps i to i + 8. Ensure that there
are no further disturbances by setting δWi+9 to δW15 to be zero. This works well if we are interested in
up to 16-round collisions.

For obtaining collisions on r > 16 rounds, we need to consider the message expansion. The initial
words W0, . . . ,W15 are free and from W16 onwards, the words are computed using the message expansion
recursion given by (2). For clarity, some word differences are shown in Table 9. The differences in the
message words introduced in Steps i to i+8 can possibly affect δW16, δW17, . . . , δWr−1. We ensure that
the effects of these induced differences can be cancelled out and we have δW16 = δW17 = · · · = δWr−1 =
0. This results in an r-round collision.

Table 9. Message expansion from W16 to W23.

δW16 = δσ1(δW14) + δW9 + δσ0(δW1) + δW0

δW17 = δσ1(δW15) + δW10 + δσ0(δW2) + δW1

δW18 = δσ1(δW16) + δW11 + δσ0(δW3) + δW2

δW19 = δσ1(δW17) + δW12 + δσ0(δW4) + δW3

δW20 = δσ1(δW18) + δW13 + δσ0(δW5) + δW4

δW21 = δσ1(δW19) + δW14 + δσ0(δW6) + δW5

δW22 = δσ1(δW20) + δW15 + δσ0(δW7) + δW6

δW23 = δσ1(δW21) + δW16 + δσ0(δW8) + δW7

18-Round Collisions. Deterministic 18-round collisions are easy to obtain by setting i = 3 (i.e., the
local collision spans from i = 3 to i+8 = 11). So, we necessarily have δWj = 0 for j = 0, 1, 2, 12, 13, 14, 15.

Additionally, we need to ensure that δW16 = δW17 = 0. From Table 9, we see that in the expression
for δW16 the only possible non-zero term is δW9 = δWi+6. Similarly, in the expression for δW16,
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the only possible non-zero term is δW10 = δWi+7. By ensuring that δWi+6 = δWi+7 = 0, we will
obtain δW16 = δW17 = 0. But, ensuring δWi+6 = δWi+7 = 0 can be easily done by setting a suitable
condition from Table 8. For example, if y = z = 0, then the setting ei+5 = 0 and ei+6 = −1 ensures
δWi+6 = δWi+7 = 0 for any choice of w. Using Proposition 1, the required values of ei+5 and ei+6 can
be achieved by setting Wi+6 and Wi+7 to appropriate values. As a net result, we obtain deterministic
18-round collisions for any value of w.

20-Round Collisions. Set i = 5, i.e., the local collision spans from i = 5 to i+8 = 13, so that δWj = 0
for j = 0, . . . , 4, 14, 15. We need to ensure that δW16 = · · · = δW19 = 0. From Table 9, we see that this
can be achieved by setting δW9 = δW10 = δW11 = δW12 = 0.

Since i = 5, this means that we have to set δWi+4 = δWi+5 = δWi+6 = δWi+7 = 0. The conditions
for individually setting any of these to 0 are given in Tables 7 and 8. In the present case, we need to
consider how to simultaneously set all of these to 0. In this situation, some conditions become infeasible.
More precisely, certain conditions for obtaining δWi+4 = 0 are incompatible with certain conditions for
obtaining δWi+5 = 0. The possible conditions for ensuring these two δW s to be zero are given in
Table 10. In particular, we see that z = 0 in all cases. The conditions for setting δWi+6 = 0 and

Table 10. Conditions for setting δWi+4 = δWi+5 = 0.

Case w x y z ei+2 ei+3 ei+4 Extra Condition

A 1 −1 0 0 0 0 −1 Case I

B 1 −1 −1 0 1 0 −1 Case III (b)

C 1 −2 −1 0 1 0 −1 Case VII (b)

D 1 −1 −1 0 0 −1 −1 Case III (a)

E 1 −2 0 0 1 −1 −1 Case V (b)

F 1 −2 −1 0 1 −1 −1 Case VII (b)

δWi+7 = 0 do not cause any conflict with other conditions. The set of conditions required for setting
δWi+4 = δWi+5 = δWi+6 = δWi+7 = 0 are summarized in Table 11. Again achieving the appropriate
values of the a and e-registers can be done using Proposition 1.

Table 11. Conditions for setting δWi+4 = δWi+5 = δWi+6 = δWi+7 = 0.

A row of Table 10
AND

(ei+5 = 0 and y = −z) or (ei+5 = −1 and y = −w)
AND

ei+6 = −1.

Note. Tables 10 and 11 show that it is possible to deterministically set all the four δW s to zero in
Case (A) which is the NB local collision. Consequently, it is possible to obtain deterministic 20-round
collision using this local collision. This was not done in [15] but was later mentioned in [22].

21-Round Collisions. Set i = 6, i.e., the local collision spans from i = 6 to i + 8 = 14. We need to
ensure that δW16 = · · · = δW20 = 0. As in the case of 20-round collision, we set δWi+4 = δWi+5 =
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δWi+6 = δWi+7 = 0 by a suitable set of conditions given by Table 11. So, we have δWj = 0 for
j = 0, . . . , 5, 10, 11, 12, 13, 15. From Table 9, we see that if we can now achieve δW16 = 0, then we will
have achieved the condition δW16 = · · · = δW20 = 0.

From the structure of the differential path shown in Table 4, δW14 = δWi+8 = −w and so

δW16 = δσ1(δW14) + δW9. (6)

Consider δW9 = δWi+3 which by the differential path in Table 4 is equal to z−δΣi+2
1

(y)−δf i+2

IF (y, x,w).
To simplify this, we choose rows from Table 10 such that both ei+2 and ei+2 + y are either 0 or −1.
These are rows A and D.

In the case of row D, we have δW9 = −e7 + e6 + 2; whereas for row A, we get δW9 = −1. It is
possible to deterministically satisfy the case for row D. However, row A (which is the NB local collision)
cannot be used in the attack. This is due to the fact that there does not exist any word X such that
σ0(X) − σ0(X − 1) = −1 either for SHA-256 or for SHA-512.

Since i = 6, the row of Table 6 corresponding to row D of Table 10 ensure that a4, a5, a6, a7, a8 and
e8 are all fixed to particular values. Using CDE, we can now use a3 to set e7 to any specific value and
then use a2 to set e6 to any specific value.

Now, the following strategy is used to ensure that δW16 = 0. Choose an arbitrary value for W14 and
compute δ to be

δ = δσ1(δW14) = σ1(W14 + δW14) − σ1(W14) = σ1(W14 − w) − σ1(W14).

Choose W2 and W3 to set a2 and a3 such that e7− e6−2 = −δ. From (6), it now follows that δW16 = 0.
This gives a deterministic 21-round collision.

It is also possible to obtain deterministic 21-round collision by placing the local collision from
Steps 7 to 15. Set i = 7 so that the local collision spans steps i = 7 to i + 8 = 15. In this case, set
δWi+4 = δWi+5 = δWi+6 = 0 the sufficient condition for this being any row of Table 10 AND ((ei+5 = 0,
y = −z) or (ei+5 = −1, y = −w)). This ensures δW11 = δW12 = δW13 = 0. Now

δW16 = σ1(δW14) + δW9,

δW17 = σ1(δW15) + δW10.

We have δW15 = −w and by setting ei+6 = 0, we also have δW14 = −w. Also,

δW9 = δWi+2 = y − δΣi+1
1

(x) − δf i+1

IF (x,w, 0)

δW10 = δWi+3 = −δΣi+2
1

(y) − δf i+2

IF (y, x,w).

To simplify δW10 = δWi+3 we choose rows from Table 10 such that both ei+2 and ei+2 + y are either
0 or −1. These are rows A and D (which correspond to the NB and SS local collisions respectively).
Similarly, to simplify δW9 = δWi+2, in row A we choose ei+1 = 0; and in row D we choose ei+1 = −1.

The overall strategy is now the following. Choose arbitrary values for W14 and W15 and compute
δ1 = δσ1(δW14) and δ2 = δσ1(δW15), where δW14 = δW15 = −w. Now set δW9 = −δ1 and W10 = −δ2

using W3 and W4 to set a3 and a4 and hence, using CDE to set e7 and e8 to desired values. This can
be done deterministically.

We have sketched two ways of achieving deterministic 21-round collisions. In one case, the local
collision spans from Step 6 to Step 14 and in the second case, the local collision spans from Step 7 to
Step 15. For the first case, only the SS local collision can be used, while in the second case, both the
SS and the NB local collisions can be used. The fact that the NB local collision can be used to obtain
deterministic 21-round collisions was not mentioned in [15]; it was mentioned in [20].
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The sketches above can be developed into detailed algorithms. We do not describe these algorithms.
This is because below we describe in details a similar algorithm for constructing deterministic 22-round
collisions.

4.1 22-Round Collisions

Set i = 7 so that the local collision spans from i = 7 to i+8 = 15. Use sufficient conditions from Table 11
to ensure that δWi+4 = δWi+5 = δWi+6 = δWi+7 = 0. So δWj = 0 for j = 0, . . . , 6, 11, 12, 13, 14. If we
can now ensure that δW16 = δW17 = 0, then from Table 9, we will have δWj = 0 for j = 18, 19, 20, 21
which will give rise to a 22-round collision. Under the conditions, we have

δW16 = δW9

δW17 = δσ1(δW15) + δW10.

}

(7)

So, if we can achieve δW9 = δWi+2 = 0 and δσ1(δW15) + δW10 = 0, then we are done. Note that
δW15 = −w = −1.

First, consider the condition on δW17. To simplify δW10 = δWi+3 we need to choose both ei+2 and
ei+2 + y to be 0 or −1. These imply that we have to use either row A or row D of Table 10 (which
respectively correspond to the NB and the SS local collisions).

In case of row D, we have δW10 = −e8 + e7 = 2, whereas in the case of row A, we have δW10 = −1.
The computation for row D is as follows. (A similar computation shows the value of δW10 for row A.)

δW10 = −δf9
IF (−1,−1, 1) − δΣ1(−1)

= −fIF (e9 − 1, f9 − 1, g9 + 1) + fIF (e9, f9, g9) − Σ1(e9 − 1) + Σ1(e9)

= −fIF (e9 − 1, e8 − 1, e7 + 1) + fIF (e9, e8, e7) − Σ1(e9 − 1) + Σ1(e9)

= −fIF (−1, e8 − 1, e7 + 1) + fIF (0, e8, e7) − Σ1(−1) + Σ1(0)

= −(e8 − 1) + e7 − (−1) + 0

= −e8 + e7 + 2.

If we want to use row A, then from (7) we need to have a value for W15 such that σ1(W15+1)−σ1(W15) =
1. There is no such value for W15 for both SHA-256 and SHA-512. Hence, row A, which correspond to
the NB local collision, cannot be used.

So, we use row D which correspond to Case III(a) of Table 6. In this case, we see that e8 = ei+1 =
2 + ai−3 = 2 + a4. We set a4 = −2, so that e8 = 0 and δW10 = e7 + 2. Setting a4 to −2 is done using
W4 as in Proposition 1.

Choose an arbitrary value for W15 and set δ = −δσ1(δW15) where δW15 = −1. Then use W3 to set
a3 such that due to CDE, e7 gets set to a particular value required to ensure that e7 + 2 = δW10 = δ,
i.e., e7 = δ − 2. This computation is as follows.

δ = e7 + 2 = a3 + a7 − Σ0(a6) − fMAJ(a6, a5, a4) + 2

= a3 + (−1) − Σ0(−1) − fMAJ(−1,−1,−2) + 2

= a3 − 1 − (−1) − (−1) + 2

= a3 + 3.

So, using W3 we need to set a3 = δ − 3.
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Now consider the condition on δW16 given in (7), i.e., the condition δW9 = 0. Up to this point, the
values of a3 to a6 have been fixed as follows: a3 = δ − 3, a4 = −2, a5 = −1, a6 = −1. Noting that i = 7
and row D correspond to (w, x, y, z) = (1,−1,−1, 0), from Table 4, we have

δW9 = δWi+2 = y − δΣi+1
1

(x) − δf i+1

IF (x,w, 0)

= −y − Σ1(ei+1 + x) + Σ1(ei+1)

−fIF (ei+1 + x, ei + w, ei−1) + fIF (ei+1, ei, ei−1)

= −1 − (−1) + 0 − fIF (−1, e7 + 1, e6) + fIF (0, e7, e6)

= −e7 − 1 + e6

= 2 − δ − 1 + e6.

To obtain δW9 = 0, we need to have e6 = δ − 1. Using CDE, we have

e6 = a6 + a2 − Σ0(a5) − fMAJ(a5, a4, a3)

= −1 + a2 − (−1) − fMAJ(−1,−2, δ − 3)

So, setting a2 = δ − 1 + fMAJ(−1,−2, δ − 3) ensures, e6 = δ − 1 as required. This completes the
description. All of the above steps can be written more explicitly in an algorithmic form. We provide
this below.

Algorithm to Obtain 22-Round Collisions. We define two functions which return the required
message word Wi to set the register value ai or ei to desired values, say desired a and desired e, at
Step i. (See Proposition 1.) Equation 1 provides the definitions of these two functions.

1. W to set register A(Step i, desired a, Current State {ai−1, bi−1, . . . hi−1}) :
= (desired a −Σ0(ai−1) − fMAJ(ai−1, bi−1, ci−1) − Σ1(ei−1) − fIF (ei−1, fi−1, gi−1) − hi−1 − Ki)

2. W to set register E(Step i, desired e, Current State {ai−1, bi−1, . . . hi−1}) :
= (desired e −di−1 − Σ1(ei−1) −fIF (ei−1, fi−1, gi−1) − hi−1 − Ki)

Using these functions, the complete algorithm to obtain message pairs leading to deterministic 22-round
collisions for SHA-2 family is described in Table 12.

A Remark on the NB Local Collision. We have mentioned that if we place the local collision from
Steps 7 to 15, then row A of Table 10 cannot be used to obtain a deterministic 22-round collision. Row
A corresponds to the NB local collision.

We considered the issue of whether it is possible to place the NB local collision from Steps 8 to 16
to obtain a 22-round collision (which may not be deterministic). In this case, the local collision will end
at Step 16 and hence δW16 = −1. Recall from Table 9, that a difference in δW16 will affect δW18. We
would like to have δW18 = 0 so as to ensure that there are no differences after the local collision ends.
Again from Table 9 and the fact that the local collision spans Steps 8 to 16, to achieve δW18 = 0, we
need to have δσ1(δW16) + δW11 = 0.

More generally, we considered the situation, where the NB local collision spans Steps i to (i+8), with
i ≥ 8 and we require δWi+10 = 0. From Table 9, the last condition is achieved if δσ1(δWi+8)+δWi+3 = 0.
Note that δWi+8 = −1.

For SHA-512, using the NB local collision makes achieving the condition δσ1(δWi+8) + δWi+3 = 0
difficult. This is because of the fact that there is a “gap” in the values of |δWi+3| and |δσ1(δWi+8)|.
In Appendix B, we show that the probability of |δWi+3| ≥ 2j is less than 1/2j−1; and for any 64-bit
value for Wi+8, |σ1(Wi+8) − σ1(Wi+8 − 1)| ≥ 242 + 239 + 238 + 236 − 23. As a consequence, to achieve
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Table 12. Deterministic algorithm to obtain message pairs leading to collisions for 22-round SHA-2.

external W to set register A(Step i, desired a, Current State {ai−1, bi−1, . . . hi−1}) :
Returns the required message Wi to be used in step i so that ai is set to the given value.

external W to set register E(Step i, desired e, Current State {ai−1, bi−1, . . . hi−1}) :
Returns the required message Wi to be used in step i so that ei is set to the given value.

First Message words:
1. Select W0, W1, W14 and W15 randomly.
2. Set DELTA = σ1(W15) − σ1(W15 − 1).
3. Run Steps 0 and 1 of hash evaluation to define {a1, b1, . . . h1}.
4. Choose W2 = W to set register A(2, DELTA− 1 + fMAJ (−1,−2, DELTA− 3), {a1, b1, . . . h1}).
5. Run Step 2 of hash evaluation to define {a2, b2, . . . h2}.
6. Choose W3 = W to set register A(3, DELTA− 3, {a2, b2, . . . h2}).
7. Run Step 3 of hash evaluation to define {a3, b3, . . . h3}.
8. Choose W4 = W to set register A(4, −2, {a3, b3, . . . h3}).
9. Run Step 4 of hash evaluation to define {a4, b4, . . . h4}.
10. Choose W5 = W to set register A(5, −1, {a4, b4, . . . h4}).
11. Run Step 5 of hash evaluation to define {a5, b5, . . . h5}.
12. Choose W6 = W to set register A(6, −1, {a5, b5, . . . h5}).
13. Run Step 6 of hash evaluation to define {a6, b6, . . . h6}.
14. Choose W7 = W to set register A(7, −1, {a6, b6, . . . h6}).
15. Run Step 7 of hash evaluation to define {a7, b7, . . . h7}.
16. Choose W8 = W to set register A(8, 0, {a7, b7, . . . h7}).
17. Run Step 8 of hash evaluation to define {a8, b8, . . . h8}.
18. Choose W9 = W to set register A(9, 0, {a8, b8, . . . h8}).
19. Run Step 9 of hash evaluation to define {a9, b9, . . . h9}.
20. Choose W10 = W to set register E(10, −1, {a9, b9, . . . h9}).
21. Run Step 10 of hash evaluation to define {a10, b10, . . . h10}.
22. Choose W11 = W to set register E(11, −1, {a10, b10, . . . h10}).
23. Run Step 11 of hash evaluation to define {a11, b11, . . . h11}.
24. Choose W12 = W to set register E(12, −1, {a11, b11, . . . h11}).
25. Run Step 12 of hash evaluation to define {a12, b12, . . . h12}.
26. Choose W13 = W to set register E(13, −1, {a12, b12, . . . h12}).

Second message words:
27. Define δWi = 0 for i ∈ {0, 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14}.
28. Define δW7 = 1 and δW15 = −1.
29. Define δW8 = −1 − fIF (e7 + 1, f7, g7) + fIF (e7, f7, g7) − Σ1(e7 + 1) + Σ1(e7). (Refer Table 4.)
30. Define δW10 = −fIF (e9 − 1, f9 − 1, g9 + 1) + fIF (e9, f9, g9) − Σ1(e9 − 1) + Σ1(e9). (Refer Table 4.)
31. Compute W ′

i = Wi + δWi for 0 ≤ i ≤ 15.
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δσ1(δWi+8) + δWi+3 = 0, we need to have |δWi+3| > 242, an event which occurs with probability less
than 2−41.

The above probability computation is over uniform random choices of Wi+8 and Wi+3. In fact, this
was one of the factors that had led us to focus only on the SS local collision. It was shown in [9] that
the NB local collision can be used to obtain 23 and 24-round SHA-512 collision. However, the time
complexities of the NB local collision attack is more than that of the SS local collision attack. This fact
is possibly attributable to the “gap” in the values of |δWi+3| and |δσ1(δWi+8)| mentioned above.

5 A General Idea for Obtaining 23 and 24-Round Collisions

Obtaining deterministic collisions up to 22 rounds did not require the (single) local collision to extend
beyond Step 15. For obtaining collisions for more number of rounds, we will need to start the local
collision at Step 8 (or further) and hence the local collision will end at Step 16 (or further). This will
require us to analyze the message expansion more carefully.

For obtaining collisions up to 22 rounds, we also needed to consider message expansion. But, we
ensured that there were no differences in message words from Step 16 onwards. However, now that we
consider the local collision to end at Step 16 (or further), this will necessarily mean that one or more
δWi (for i ≥ 16) will be non-zero. This will require a modification of the strategy followed so far. Instead
of requiring δWi = 0 for i ≥ 16, we will require δWi = 0 for a few i’s after the local collision ends.
So, supposing that the local collision ends at Step 16 and we want a 23-round collision, then δW16 is
necessarily −w and we will require δW17 = · · · = δW22 = 0.

5.1 A Class of Local Collisions

A local collision of the type shown in Table 4 is completely determined by the values of w, x, y and z
which in turn determine the values of δWi to δWi+8. We need to consider some special values for the
δW s. Let

(δWi, . . . , δWi+8) = (w,−w, δ1, δ2, 0, 0, 0, u,−w) with w = 1. (8)

The value of u is either 0 or w and the values of δ1 and δ2 will be explained later. Using the form of
the δW s from Table 4, Equation 8 gives rise to the following 9 equations. We will refer to them as (9.1)
to (9.9).

(1) δWi = = w;
(2) δWi+1 = x − δΣi

1(w) − δf i
IF (w, 0, 0) = −w;

(3) δWi+2 = y − δΣi+1
1

(x) − δf i+1

IF (x,w, 0) = δ1;

(4) δWi+3 = z − δΣi+2
1

(y) − δf i+2

IF (y, x,w) = δ2;

(5) δWi+4 = −w − δΣi+3

1
(z) − δf i+3

IF (z, y, x) = 0;

(6) δWi+5 = −x − δΣi+4

1
(w) − δf i+4

IF (w, z, y) = 0;

(7) δWi+6 = −y − δf i+4

IF (0, w, z) = 0;

(8) δWi+7 = −z − δf i+4

IF (0, 0, w) = u;
(9) δWi+8 = = −w.



































































(9)

The values of x, y and z from (4) are the following.

x = −δΣi
0(w) − δf i

MAJ(w, 0, 0); y = −δf i+1

MAJ(0, w, 0); z = −δf i+2

MAJ(0, 0, w).
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We now set conditions on the values for a and the e registers to obtain desired values for x, y and z
and also to simplify the values of δW s. Using the kind of analysis done to obtain Rules 1 and 2, the
following are easy to verify.

1. If ai = −1 and ai−1 = ai−2 = α, then x = −1.
2. If ai+1 = ai−1, then y = 0; if ai+1 = ai−1, then y = −1.
3. If ai+2 = ai+1, then z = 0; if ai+2 = ai+1, then z = −1.

Note. In our analysis of up to 22-round SHA-2, we saw that z = 0 arose as a necessary condition.
Motivated by this, we will continue to work with z = 0. So, we will have ai+2 = ai+1. Let this common
value be β. Further, if β = α, then y = 0 and if β = α, then y = −1. These and other values of a and e
registers are shown in Table 13. We note the following.

1. If y = 0, then λ = α − Σ0(α).
2. If y = −1, then λ = α + α + 1 − Σ0(α) = −Σ0(α).

At later point in the analysis, we will be obtaining λ and will require to obtain a corresponding value

for α. In the case y = −1, α = Σ−1
0

(−λ) and it is easy to obtain α from λ. The case y = 0 is not
so simple. For SHA-256, one works with 32-bit words and then obtaining α from λ can be done by
exhaustive search; however, for SHA-512, one has to work with 64-bit words and then things become
more difficult. This is one of the reasons why it is more convenient to work with y = −1. (Note that
(w, x, y, z) = (1,−1, 0, 0) corresponds to the NB local collision, whereas (w, x, y, z) = (1,−1,−1, 0)
corresponds to the SS local collision.)

Table 13. Values of a and e register for the δW s given by (8) to hold. The value of u is either 0 or w. We have w = 1,
x = −1 and z = 0. If y = 0, then β = α, while if y = −1, then β = α. By CDE, we have λ = β+α−Σ0(β)−fMAJ (β,−1, α).
Thus, the independent quantities are α, γ and µ.

index i − 2 i − 1 i i + 1 i + 2 i + 3 i + 4 i + 5 i + 6

a α α −1 β β

e γ γ + 1 −1 µ λ λ + y −1 y −1 − u

The values shown in Table 13 have been chosen so that the conditions on δWi+1 and δWi+5 to δWi+7

hold with probability one. Consider, for example, δWi+1. From (9.2), we have

δWi+1 = x − δΣi
1(w) − δf i

IF (w, 0, 0)

= x − (Σ1(ei + w) − Σ1(ei)) − (fIF (ei + w, ei−1, ei−2) − fIF (ei, ei−1, ei−2))

= −1 − (0 − (−1)) − (ei−2 − ei−1)

= −2 − γ + γ + 1

= −1.

Similarly, Equations (9.6), (9.7) and (9.8) can be verified. Equations (9.3), (9.4) and (9.5) on the other
hand give rise to the following conditions on the values of α, γ and µ.

δ1 = y − Σ1(µ + x) + Σ1(µ) − fIF (µ + x, 0, γ + 1) + fIF (µ,−1, γ + 1)
δ2 = −Σ1(λ + y) + Σ1(λ) − fIF (λ + y, µ + x, 0) + fIF (λ, µ,−1)
w = −fIF (λ + y, λ + y, µ + x) + fIF (λ + y, λ, µ).







(10)
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The special case of these equations with y = 0 have been reported in [9] and a method for solving them
has been discussed. The method to solve these equations is different for SHA-256 and for SHA-512.
Next, we discuss methods to solve (10) for the case y = −1.

5.2 Solving (10) for y = −1

The following provides an outline of the method to solve (10) for µ, γ and λ when y = −1 and δ1 and
δ2 are given. From λ, we obtain α.

– The third equation holds with probability 1 if both λ and µ are odd.
– Given that λ and µ are odd, the second equation simplifies to δ2 = −Σ1(λ − 1) + Σ1(λ) + (λ − 1).

For a given odd value of δ2 occurring in the distribution of σ1(W )−σ1(W −1), it is possible to solve
this equation for odd λ.

– Given such a λ, it is easy to solve the equation λ = −Σ0(α) to obtain a suitable value of α, since
Σ0 is an invertible mapping for both SHA-256 and SHA-512.

– For the first equation, the term −fIF (µ − 1, 0, γ + 1) + fIF (µ,−1, γ + 1) is equal to µ, if γ is odd.
This term is equal to µ − 1 if γ is even. Further, we note that −Σ1(µ − 1) + Σ1(µ) is always even
for both SHA-256 and SHA-512. Thus taking an arbitrary odd value of γ, the first equation is in
the single variable µ and can be solved easily for a given δ1.

Now we provide proofs of the observations above.

Lemma 1 If y = −1, then the third equation of (10) is satisfied for any odd λ and odd µ.

Proof. We have to show that

1 = −fIF (λ − 1, λ − 1, µ − 1) + fIF (λ − 1, λ, µ).

The quantities λ and λ − 1 differ only in their least significant bit since λ is odd. Similarly, µ and
µ − 1 differ only in their least significant bit since µ is odd. Let xi denote the ith bit of x, then λ0=1,
(λ − 1)0 = 0, µ0 = 1 and (µ − 1)0 = 0. Let (λ − 1)i = λi = 1 and (λ − 1)j = λj = 0 for some non-zero
indices i and j. Also, let µi = b1 and µj = b2 for these bit positions i and j. Now we are ready to write
the bit patterns of the quantities occuring in the third equation.

bit 63 . . . i . . . j . . . 0

λ − 1 . . . . 1 . . . 0 . . . 0
λ . . . . 1 . . . 0 . . . 1
µ . . . . b1 . . . b2 . . . 1

fIF (λ − 1, λ, µ) . . . . 1 . . . b2 . . . 1

Similarly,

bit 63 . . . i . . . j . . . 0

λ − 1 . . . . 1 . . . 0 . . . 0
λ − 1 . . . . 1 . . . 0 . . . 0
µ − 1 . . . . b1 . . . b2 . . . 0

fIF (λ − 1, λ − 1, µ − 1) . . . . 1 . . . b2 . . . 0

From the two bit patterns above, we get that

fIF (λ − 1, λ, µ) − fIF (λ − 1, λ − 1, µ − 1) = 1.
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⊓⊔

Lemma 2 Let y = −1. For odd λ and odd µ, the second equation of (10) simplifies to δ2 = −Σ1(λ −
1) + Σ1(λ) + (λ − 1).

Proof. Consider the following expression

−fIF (λ − 1, µ − 1, 0) + fIF (λ, µ,−1).

Similar to the proof of the previous lemma, we consider the bit patterns of the quantities occuring in
the above equation. Let λi = 1 and λj = 0 for some non-zero i, j. Also, let µi = b1 and µj = b2. Then
the following bit patterns can be seen for the various quantities.

bit 63 . . . i . . . j . . . 0

λ . . . . 1 . . . 0 . . . 1
µ . . . . b1 . . . b2 . . . 1
−1 1 . . . 1 . . . 1 . . . 1

fIF (λ, µ,−1) . . . . b1 . . . 1 . . . 1

Similarly,

bit 63 . . . i . . . j . . . 0

λ − 1 . . . . 1 . . . 0 . . . 0
µ − 1 . . . . b1 . . . b2 . . . 0
0 0 . . . 0 . . . 0 . . . 0

fIF (λ − 1, µ − 1, 0) . . . . b1 . . . 0 . . . 0

From the two bit patterns above, we get that fIF (λ, µ,−1) and fIF (λ − 1, µ − 1, 0) will have the same
bit value whenever the corresponding bit of λ is 1 and different bit value whenever the corresponding
bit of λ is 0, except the least significant bit which will always be different. Comparing this difference
with the bit pattern λ − 1, we obtain

fIF (λ, µ,−1) − fIF (λ − 1, µ − 1, 0) = λ − 1.

This completes the proof.
⊓⊔

Lemma 3 Let y = −1. For odd µ and odd γ, the first equation of (10) simplifies to δ1 = −1 − Σ1(µ −
1) + Σ1(µ) + µ.

Proof. By considering the bit patterns of µ, µ − 1 and γ + 1 the following can be proved in a manner
similar to the previous two lemmas.

fIF (µ,−1, γ + 1) − fIF (µ − 1, 0, γ + 1) =

{

µ if γ is odd.
µ − 1 if γ is even.

Substituting the above value in the equation for δ1 gives the required proof.
⊓⊔

SHA-256. For SHA-256 we did not solve the second equation explicitly since random search is itself
good enough, producing a solution in few seconds. Solving all the three equations for α, γ and µ can be
done in a few seconds on a current PC. Examples of values of (δ1, δ2) and the solutions to (10) for λ, γ
and µ are provided in Table 14. The value of α is obtained from λ as explained earlier. The justification
for choosing these particular values for the δs as well as the explanation for the first column will be
provided later.
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Table 14. Values leading to collisions for different number of steps of SHA-256. The value of i denotes the start point of
the local collision, i.e., the local collision is placed from Step i to i + 8.

(# rnds, i) δ1 δ2 u α λ γ µ

(23, 8) 0 ff006001 0 32b308b2 051f9f7f 684e62b7 041fff81

(23, 9)
(24, 10)

00006000 ff006001 1 32b308b2 051f9f7f 98e3923b fbe05f81

SHA-512. It is possible to solve (10) for SHA-512 as well, although we require a different approach
than SHA-256. The main difference is in solving the first and the second equations. Since now 64-bit
quantities are involved, it is no longer possible to solve the first and second equations by exhaustive
search. We describe a method to solve the second equation with the aid of an example.

Examples of values of (δ1, δ2) and the solutions to (10) for λ, γ and µ are provided in Table 15 and
the value of α is obtained from λ as explained earlier. As in the case of SHA-256, the justification for
choosing these particular values for the δs as well as the explanation for the first column will become
clear later.

Table 15. Values leading to collisions for different number of steps of SHA-512. The value of i denotes the start point of
the local collision, i.e., the local collision is placed from Step i to i + 8.

(# rnds, i) δ1 δ2 u α λ γ µ

(23, 8) 0 600000000237 0 7201b90f9f8df85e 3e000007ffdc9 1 43fffff800001

(23, 9)
(24, 10)

200000000008 600000000237 1 7201b90f9f8df85e 3e000007ffdc9 1 45fffff800009

Solving the Second Equation of (10) For SHA-512. As shown in Lemma 2, for odd λ the second
equation simplifies to

δ2 = −Σ1(λ − 1) + Σ1(λ) + (λ − 1).

We need to get an odd λ satisfying the above equation for a given value of δ2. Since −Σ1(λ−1)+Σ1(λ)
is always even and (λ − 1) is odd due to our choice of odd λ, we require δ2 to be odd. This equation
can be solved by hand. We explain the method to solve this equation for δ2 = 600000000237.

First note that Σ1(x) is the XOR addition of 3 n-bit quantities which are rotated/shifted forms of
x. If λ is odd, then λ and λ − 1 differ only in the least significant bit. Therefore, the bit patterns of
Σ1(λ) and Σ1(λ − 1) will be same except at 3 bit positions. These 3 bit positions are indexed by 23,
46 and 50. By the structure of Σ1 function and using the fact that λ is odd (i.e. λ0 = 1), we have the
following

b1 = (Σ1(λ))23 = λ0 ⊕ λ37 ⊕ λ41 = 1 ⊕ λ37 ⊕ λ41,

b2 = (Σ1(λ))46 = λ0 ⊕ λ23 ⊕ λ60 = 1 ⊕ λ23 ⊕ λ60,

b3 = (Σ1(λ))50 = λ0 ⊕ λ4 ⊕ λ27 = 1 ⊕ λ4 ⊕ λ27.

Also, because (λ − 1)0 = 0, we have (Σ1(λ − 1))23 = b1, (Σ1(λ − 1))46 = b2 and (Σ1(λ − 1))60 = b3.

Now consider the bit pattern of various quantities as follows.
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bit 63 . . . 50 . . . 46 . . . 23 . . . 0

A = Σ1(λ − 1) . . . . b3 . . . b2 . . . b1 . . . .
B = Σ1(λ) . . . . b3 . . . b2 . . . b1 . . . .

A − B . . . . . . . . . . . . 1 0. . . 0
δ2 . . . . . . . . . . . . . . . . .

A − B + δ2 . . . . . . . . . . . . . . . . .

We require the quantity (A−B + δ2) to be equal to (λ − 1). It is clear from the bit pattern above that
the lowest 23 bits (indexed from 0 to 22) of (A − B + δ2) will be same as those of δ2. Equating these
bits to corresponding bits of (λ − 1), we immediately get the lowest 23 bits of λ.

Now consider the bits between 23 and 46 of (A − B). It is clear that all these bits will be equal.
Further, all these bits will be equal to 1 if b1 = 1 due to the borrow while subtracting B from A at bit
position 23. Similarly, all these bits of (A−B) will be equal to 0 if b1 = 0. Our choice of δ2 has all these
bits equal to zero, hence the term (A−B + δ2) will too have all these bits equal. But since this term is
equal to (λ − 1), all these bits of (λ − 1) will also be equal. Finally, note that λ and (λ − 1) differ only
in the lowest bit position, hence all the bits between 23 and 46 of λ will also be equal. In particular, we
will have λ37 = λ41, hence we have that b1 = 1 ⊕ λ37 ⊕ λ41 = 1.

Continuing reasoning on bit positions in this way, for any given δ2, either we can solve for λ or
determine that a solution does not exist. For δ2 = 600000000237 we obtained the solution λ =
3e000007ffdc9. Note that the method explained above does not require any particular structure of
the bits of δ2. As another example, we also solved for δ2 = 19ffffffffdd9 and obtained the solution
as λ = 2200000800227.

Note.

1. The first equation can be solved in a similar manner for µ for a given δ1.
2. It is possible to design an algorithm to do the task described above. But, such an algorithm will be

complicated. Since we are interested in solving for a single value of δ2, we chose not to describe and
implement an algorithm. The method of solving by hand is good enough.

6 Finding 23 and 24-Round Collisions

We show that by suitably placing a local collision of the type described in Section 5.1 and using proper
values for α, γ and µ, it is possible to obtain several 23 and 24-round collisions for SHA-2. For the
description below, we will be considering the SS local collision, i.e., (w, x, y, z) = (1,−1,−1, 0).

6.1 23-Round Collisions

There are two options of placing the SS local collision. From Step i = 8 to Step i + 8 = 16 and from
Step i = 9 to Step i + 8 = 17. This gives rise to two kinds of 23-round collisions for SHA-2.

Case i = 8. The local collision is started at i = 8 and ends at i = 16.
We have (w, x, y, z) = (1,−1,−1, 0) and β = α. Also, we set u = 0 and δ1 = 0. We need to choose a

suitable value for δ2 which is the value of δWi+3 = δW11. For this case, we let δ = δ2. The value of δ2

has to be chosen so that (10) has a solution. The time complexity of the algorithm depends on freqδ (see
Section 2.3 for the meaning of freqδ) as explained below, so, one would like to choose δ such that freqδ

is as high as possible. At the same time, we have to ensure that (10) can be solved for the particular
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value of δ. Our choices of δ given in the rows with (23, 8) of Tables 14 and 15 have the highest value of
freqδ for which it is possible to solve (10).

Since the local collision ends at Step 16, from Table 8 it necessarily follows that δW16 = −1. To
obtain a 23-round collision, we want to ensure that δW17 = · · · = δW22 = 0. From Table 9, (8) and the
fact that δWj = 0 for 0 ≤ j ≤ 7, it follows that the condition δW17 = · · · = δW22 = 0 is achieved if we
can ensure δW18 = 0. Again, from Table 9, we have

δW18 = δσ1(W16) + δW11. (11)

So, for δW18 to be zero, we need δ = δW11 = −δσ1(W16), so that δW11 should be one of the values
which occur in the distribution of σ1(W )−σ1(W − 1) for some W . (This is the reason why we analysed
the differential behaviour of σ1 in Section 2.3.) The word W16 is defined using message recursion and so,
we cannot control this word directly. Instead, we analyse which message words can be used to control
W16.

First, let us consider which register values need to be set to specific values. Since i = 8, from Table 13,
we see that a6 to a10 and e6 to e14 get defined. Using CDE, the value of e10 is actually determined by
the values of a6 to a10. Using CDE, the values of e9 down to e6 determine the values of a5 down to a2.
So, the values of a2 to a10 and the values of e11 to e14 are fixed.

From message recursion, the expression for W16 is the following.

W16 = σ1(W14) + W9 + σ0(W1) + W0.

From the update function of the e-register, we have

W14 = e14 − (Σ1(e13) + fIF (e13, e12, e11) + a10 + e10 + K14).

In this equation, all values other than W14 have already been fixed. So, W14 and hence σ1(W14) have
fixed values. Let us now consider W9. From the update function of the a-register, we can write

W9 = a9 − Σ0(a8) − fMAJ(a8, a7, a6) − Σ1(e8) − fIF (e8, e7, e6) − e5 − K9.

In the right hand side, all quantities other than e5 have fixed values. Using CDE,

e5 = a5 + a1 − Σ0(a4) − fMAJ(a4, a3, a2).

Again in the right hand side, all quantities other than a1 have fixed values. So, we can write W9 = C−a1,
where C is a fixed value. Now,

a1 = Σ0(a0) + fMAJ(a0, b0, c0) + Σ1(e0) + fIF (e0, f0, g0) + h0 + K1 + W1

where a0 and e0 depend on W0 whereas b0, c0, f0, g0 and h0 depend only on the initialization vector and
hence are constants. Thus, we can write a1 = Φ(W0) + W1, where

Φ(W0) = Σ0(a0) + fMAJ(a0, b0, c0) + Σ1(e0) + fIF (e0, f0, g0) + h0 + K1.

We write Φ(W0) to emphasize that this depends only on W0. At this point, we can write

W16 = σ1(W14) + W9 + σ0(W1) + W0

= σ1(W14) + C − Φ(W0) − W1 + σ0(W1) + W0

= D − Φ(W0) − W1 + σ0(W1) + W0. (12)
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We need to obtain W0 and W1 such that the value of W16 given by (12) satisfies the condition σ1(W16−
1) − σ1(W16) = −δ and then using (11) we obtain δW18 = 0 giving us the required condition of
δW17 = · · · = δW22 = 0.

Once W0,W1 have been obtained, a collision can be constructed in a manner similar to that for the
22-round case and as shown in Table 12. The idea is to first run SHA-2 for two steps using W0 and
W1. This determines the registers (a1, . . . , h1). Now, using Proposition 1, run SHA-2 step-by-step using
Wi to set ai to the desired value for 2 ≤ i ≤ 10. Then run SHA-2 step-by-step using Wi to set ei to
the desired value for 11 ≤ i ≤ 14. Finally, choose any value for W15. The values of W ′

i are determined
by the values of Wi and δWi for 0 ≤ i ≤ 15. This gives a colliding message pair (W0, . . . ,W15) and
(W ′

0, . . . ,W
′
15).

Estimate of Computation Effort. The main computational effort is in solving (12) for W0 and W1

such that σ1(W16 − 1) − σ1(W16) = −δ. We did not attempt an analytic solution. Instead, we tried
random choices of W0 and W1 until we found a suitable W16. There are freqδ values of W16 for which
σ(W16)−σ(W16−1) equals δ. On an average, success is obtained after freqδ trials. Each trial corresponds
to about a single step of SHA-2 computation. So, the total cost of finding suitable W0 and W1 is about
freqδ

24.5 tries of 23-round SHA-2 computations.

SHA-256. The value of δ given in Table 14 is such that freqδ = 216. (See Table 2 in Section 2.3.) So, the
complexity of finding 23-round SHA-256 collision is about 211.5 tries of 23-round SHA-256 computations.
A message pair colliding for 23-round SHA-256 is given in Table 18 of Section A.

SHA-512. In this case, we have estimates on freqδ. (Again, see Section 2.3 for discussion on this issue.)
For the particular value of δ given in Table 15, our estimate is freqδ ≈ 243. (See Table 3.) So, the effort

required is about freqδ

24.5 = 221

24.5 = 216.5 trials of 23-round SHA-512. A message pair colliding for 23-round
SHA-512 is given in Table 21 of Section A.

Case i = 9. It is possible to place the local collision from Step 9 to Step 17 and then perform an
analysis to show that it is possible to obtain 23-round collisions for both y = 0 and y = −1. We do not
provide these details, since a similar technique with an additional constraint is required for 24-round
collision for which we provide complete details. An example of a collision obtained using this method is
given in Table 19 of Section A.

6.2 24-Round Collisions

The SS local collision is placed from Step i = 10 to Step i+ 8 = 18, i.e. (w, x, y, z) = (1,−1,−1, 0). The
message differences are as given by (8) where we choose u = 1. The values of δ1, δ2 need to be suitably
chosen and then the values of λ, γ and µ can be found by solving (10) as explained in Section 5.2. From
λ, we find α as explained earlier.

Since the collision ends at Step 18 and u = 1, from (8) we have δW17 = 1 and δW18 = −1. To obtain
a 24-round collision, we need to ensure δW19 = · · · = δW23 = 0.

From Table 9, (8) and the fact that δWj = 0 for 0 ≤ j ≤ 9, we get that the conditions δW19 =
δW20 = 0 translate into the conditions

δ1 = δW12 = −(σ1(W17 + 1) − σ1(W17))
δ2 = δW13 = −(σ1(W18 − 1) − σ1(W18)).

}

(13)
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As in the case of 23-round collisions, based on the differential behaviour of σ1 (described in Section 2.3),
we should try to choose δ1 and δ2 such that freq−δ1

and freqδ2
are as high as possible.

Consider Table 13. This table tells us what the values of the different a and e-registers need to be.
The values of a8 to a12 and the values of e8 to e16 get defined. Using CDE, the values of e11 down to
e8 determine the values of a7 down to a4. Thus, the values of a4 to a12 and e13 to e16 are fixed. So,
the values of a0 to a3 are free. In particular, we see that e16 = −1 − u = −2. This can be achieved by
setting W16 to

W16 = e16 − Σ1(e15) − fIF (e15, e14, e13) − a12 − e12 − K16. (14)

Since all values on the right hand side are constants, we have that W16 is a constant value. On the other
hand, W16 is defined by message recursion. So, we have to ensure that W16 takes the correct value. This
is in addition to the requirement that the value of W17 and W18 satisfy (13).

We have already seen that W16 is a fixed value. Note that

W14 = e14 − Σ1(e13) − fIF (e13, e12, e11) − a10 − e10 − K14

W15 = e15 − Σ1(e14) − fIF (e14, e13, e12) − a11 − e11 − K15.

}

(15)

Since for both equations, all the quantities on the right hand side are fixed values, so are W14 and W15.
Using CDE twice, we can write

W9 = −W1 + C4 + fMAJ(a4, a3, a2) − Φ0

W10 = −W2 + C5 + fMAJ(a5, a4, a3) − Φ1

W11 = −W3 + C6 + fMAJ(a6, a5, a4) − Φ2







(16)

where

Ci = ei+5 − Σ1(ei+4) − fIF (ei+4, ei+3, ei+2) − 2ai+1 − Ki+5 + Σ0(ai)
Φi = Σ0(ai) + fMAJ(ai, bi, ci) + Σ1(ei) + fIF (ei, fi, gi) + hi + Ki+1.

}

(17)

Using the expressions for W9,W10 and W11 we obtain the following expressions for W16,W17 and W18.

W16 = σ1(W14) + C4 − W1 + fMAJ(a4, a3, a2) − Φ0 + σ0(W1) + W0

W17 = σ1(W15) + C5 − W2 + fMAJ(a5, a4, a3) − Φ1 + σ0(W2) + W1

W18 = σ1(W16) + C6 − W3 + fMAJ(a6, a5, a4) − Φ2 + σ0(W3) + W2.







(18)

We need to ensure that W16 has the desired value given by (14) and that W17 and W18 take values
which satisfy (13).

The only free quantities are W0 to W3 which determine a0 to a3. The value of C4 depends on e8,
e7 and e6, where e8 has a fixed value and e7 and e6 are in turn determined using CDE by a3 and a2.
Similarly, C5 is determined by e9, e8 and e7; where e9, e8 have fixed values and e7 is determined using
a3. The value of C6 on the other hand is fixed. Coming to the Φ values, Φ0 is determined only by W0;
Φ1 determined by W0 and W1; and Φ2 determined by W0,W1 and W2. Let

D = W16 − (σ1(W14) + C4 + fMAJ(a4, a3, a2) − Φ0 + W0). (19)

If we fix W0 and a3, a2, then the value of D gets fixed and we need to find W1 such that the following
equation holds.

D = −W1 + σ0(W1). (20)

A guess-then-determine algorithm can be used to solve this equation. This algorithm will be different
for SHA-256 and for SHA-512 since the σ0 function is different for the two. The guess-then-determine
algorithms for both SHA-256 and SHA-512 are described in Section 6.3.
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Solving (20) Using Table Look-Up. An alternative approach would be to use a pre-computed table.
For each of the 2n possible W1s (n is the word size 32 or 64), prepare a table of entries (W1,−W1+σ0(W1))
sorted on the second column. Then all solutions (if there are any) for (20) can be found by a simple
look-up into the table using D. The table would have 2n entries and if a proper index structure is used,
then the look-up can be done very fast. We have not implemented this method.

Given a1, b1, . . . , h1 and a2 the value of W2 gets uniquely defined; similarly, given a2, b2, . . . , h2 and
a3, the value of W3 gets uniquely defined. The equations are the following.

W2 = a2 − (Σ0(a1) + fMAJ(a1, b1, c1) + h1 + Σ1(e1) + fIF (e1, f1, g1) + K2)
W3 = a3 − (Σ0(a2) + fMAJ(a2, b2, c2) + h2 + Σ1(e2) + fIF (e2, f2, g2) + K3)

}

(21)

The strategy for determining suitable W0, . . . ,W3 is the following.

1. Make random choices for W0 and a2, a3.
2. Run SHA-2 with W0 and determine Φ0.
3. From a3 and a2 determine e7 and e6 using CDE.
4. Determine C4 using (17) and then D using (19).
5. Solve (20) for W1 using the guess-then-determine algorithm.
6. Run SHA-2 with W1 to define a1, . . . , h1.
7. Determine Φ1 using (17) and then W2 using (21).
8. Run SHA-2 with W2 to define a2, . . . , h2.
9. Determine Φ2 using (17) and then W3 using (21).
10. Compute W17 and W18 using (18).
11. If σ1(W17 + 1) − σ1(W17) = −δ1 and σ1(W18 − 1) − σ1(W18) = δ2, then return W0,W1,W2 and W3.

The values of W0,W1,W2 and W3 returned by this procedure ensure that the local collision ends
properly at Step 18 and that δWj = 0 for j = 19, . . . , 23. This provides a 24-round collision. The actual
construction of the collision is similar to the procedure for obtaining 22-round collisions described
in Table 12; using the obtained values of W0, . . . ,W3 run SHA-2 for 4 steps to define the values of
(a3, . . . , h3). Use Proposition 1 to set W4, . . . ,W12 to values so that a4, . . . , a12 get the required values.
Set W13,W14,W15 to ensure that e13, e14, e15 get the required values. Finally, set W ′

i = Wi + δWi for
i = 0, . . . , 15. Then the message pairs (W0, . . . ,W15) and (W ′

0, . . . ,W
′
15) provide a 24-round collision.

Estimate of Computation Effort. Let Step 5 involve a computation of g operations, where each
operation is much faster than a single step of SHA-2; by our assessment the time for each operation is
around 2−4 times the cost of a single step of SHA-2. Thus, the time for Step 5 is about g

24 single SHA-2
steps. Further, let the success probability of the guess-then-determine attack be p. Then Step 5 needs
to be repeated roughly 1

p
times to obtain a solution.

By the choice of δ1, the equality σ1(W17 + 1)− σ1(W17) = −δ1 holds roughly with probability
freqδ1

2n

while by the choice of δ2 the equality σ1(W18 − 1) − σ1(W18) = δ2 holds roughly with probability
freqδ2

2n

and we obtain success in Step 11 with roughly
freqδ1

×freqδ2

22n probability. So, the entire procedure needs

to be carried out around 22n

freqδ1
×freqδ2

times to obtain a collision.

The guess-then-determine step takes about g/24 single SHA-2 steps. The time for executing the
entire procedure once is about ( g

24 + 3) single SHA-2 steps which is about 2−4.5 × ( g
24 + 3) 24-round

SHA-2 computations. Since the entire process needs to be repeated 22n

freqδ1
×freqδ2

times for obtaining

success, the number of 24-round SHA-2 computations till success is obtained is about
(

22n

freqδ1
× freqδ2

)

×

(

2−4.5 ×
( g

24
+ 3

)

×
1

p

)

.
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If (20) is solved using a table look-up, then the cost estimate changes quite a lot. The cost of Step 5
reduces to about a single SHA-2 step so that the overall cost reduces to about

(

22n

freqδ1
× freqδ2

)

×

(

2−4.5 × 3 ×
1

p

)

24-round SHA-2 computations. The trade-off is that we need to use a look-up table having 2n entries.

SHA-256. We choose δ2 = ff006001 with freqδ2
= 216. Also, we choose δ1 = 00006000 so that

−δ1 = ffffa000 and freq−δ1 = 229 + 226. (See Table 2 in Section 2.3.) (For choices of δ2 with higher
value of freqδ2 there are no solutions to the second equation of (10).)

For these values of δ1 and δ2, it is possible to solve (10) to obtain suitable λ, γ and µ, which in turn
determine α. An example of these values is shown in Table 14 in the row (24, 9). (The same values also
hold for obtaining 23-round collision by placing a local collision from Step 9 to 17.)

The values of g, freqδ1
and freqδ2

are 218, 229 and 216 respectively. So, the time complexity is
about 228.5 24-round SHA-256 computations. In our experiments, we found that the computation effort
required to find W0, . . . ,W3 actually turns out to be less than the estimated effort of 228.5 24-round
SHA-256 computations. The value of 228.5 matches the figure given in [9], but [9] does not provide the
detailed analysis of their cost. A message pair colliding for 24-round SHA-256 is given in Table 20 of
Section A.

As already explained, if (20) is solved using a table look-up, then the cost reduces to about 215.5

24-round SHA-256 computations.

SHA-512. We choose δ2 = 600000000237 with freqδ2
≈ 243. Also, we choose δ1 = 200000000008 so

that freq−δ1
≈ 261.5. See Table 3 in Section 2.3 For these values of δ1 and δ2, it is possible to solve (10)

to obtain suitable λ, γ and µ, which in turn determine α. An example of these values is shown in the
row marked (24, 10) of Table 15.

The guess-then-determine attack for SHA-512 case requires g = 215 operations. Hence, the effort
required for 24-round SHA-512 attack is about

(

22×64

261.5 × 243

)

×

(

2−4.5 ×

(

215

24
+ 3

)

×
1

2−2.5

)

= 232.5

trials of 24-round SHA-512. In [9], the corresponding effort is 253 trials of 24-round SHA-512. This
significant improvement in the attack complexity allows us to provide the first example of a colliding
message pair for 24-round SHA-512. A message pair colliding for 24-round SHA-512 is given in Table 22
of Section A.

Note that using a table having 264 entries to solve (20) will reduce the computational effort to about
222.5 trials of 24-round SHA-512.

6.3 Guess-Then-Determine Algorithm for Solving (20)

For the ease of notation, in this section we will use W instead of W1.

For SHA-256. Consider Table 1 where the structure of W and σ0(W ) is shown for SHA-256. We have
−W + σ0(W ) = D, where D = (d31, . . . , d0) is a 32-bit constant. For 31 ≥ k ≥ l ≥ 0, we will use the
notation X[k, l] to denote bits xk, . . . , xl of the 32-bit quantity X.
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We explain how the guess-then-determine algorithm proceeds. Suppose that we guess W [14, 0]. Let
X = D + W and Y = (W [14, 0] ≫ 3) ⊕ (W [14, 0] ≫ 7). Then W [25, 18] = (X ⊕ Y )&(ff). Having
determined W [25, 18] we next determine W [29, 26] using positions 22 to 19 of Table 1. This time,
however, there may have been a possible carry into the 19th bit and we need to account for that. Let
c0 be a bit. Define X = (D ≫ 19) + (W [25, 18] ≫ 1) + c0 and Y = (W [14, 0] ≫ 5) ⊕ (W [25, 18] ≫ 4).
Then W [29, 26] = (X ⊕ Y )&(f). This illustrates the general idea and can be extended to determine the
other bits. Once the entire W has been determined we need to determine whether −W + σ0(W ) = D.
The entire algorithm is shown in Figure 2. This algorithm involves guessing W [14, 0] and bits c0, c1, c2,

Fig. 1. Structure of W and σ0(W ) for SHA-256.

W w31 w30 w29 w28 w27 w26 w25 w24 w23 w22 w21 w20 w19 w18 w17 w16

W ≫ 3 0 0 0 w31 w30 w29 w28 w27 w26 w25 w24 w23 w22 w21 w20 w19

W ≫ 7 w6 w5 w4 w3 w2 w1 w0 w31 w30 w29 w28 w27 w26 w25 w24 w23

W ≫ 18 w17 w16 w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3 w2

W w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3 w2 w1 w0

W ≫ 3 w18 w17 w16 w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3

W ≫ 7 w22 w21 w20 w19 w18 w17 w16 w15 w14 w13 w12 w11 w10 w9 w8 w7

W ≫ 18 w1 w0 w31 w30 w29 w28 w27 w26 w25 w24 w23 w22 w21 w20 w19 w18

Fig. 2. A guess-then-determine algorithm for solving D = −W + σ0(W ) for SHA-256.

1. Guess W [14, 0].
2. Let X = D + W and Y = (W [14, 0] ≫ 3) ⊕ (W [14, 0]) ≫ 7

and set W [25, 18] = (X ⊕ Y )&(ff).
3. Guess c0.
4. Let X = (D ≫ 19) + (W [25, 18] ≫ 1) + c0 and Y = (W [14, 0] ≫ 5) ⊕ (W [25, 18] ≫ 4)

and set W [29, 26] = (X ⊕ Y )&(f).
5. Guess c1.
6. Let X = (D ≫ 23) + (W [25, 18] ≫ 6) + c1 and Y = (W [14, 0] ≫ 9) ⊕ (W [29, 26] ≫ 4)

and set W [31, 20] = (X ⊕ Y )&(3).
7. Guess c2.
8. Let X = (D ≫ 8) + (W [14, 0] ≫ 8) + c2 and Y = (W [14, 0] ≫ 11) ⊕ (W [29, 26])

and set W [31, 20] = (X ⊕ Y )&(7).
9. If −W + σ0(W ) = D, then output W as one solution.

which is a total of 18 bits. If the equation D = −W + σ0(W ) does not have any solution, then none
will be returned by this algorithm; on the other hand, if there is a solution or there are more than one
solutions, then all solutions will be returned. A total of 218 operations are required. The time for each
operation is significantly less than the time for a single SHA-256 step and by our assessment it is about
2−4 times the time for a single SHA-256 step.

Note. In [9], it has been remarked that “by guessing the least 15 bits of W1 the entire W1 can be
reconstructed and with probability 2−14 it is going to be correct”. No details are provided. In particular,
the guess-then-determine algorithm that we have described is not present in [9].

In our experiments with SHA-256, we found that for almost every other value of D, (20) has solutions,
the number of solutions being one or two. So, for a random choice of D, we consider (20) to hold with
probability p ≈ 1.
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For SHA-512. Consider Table 3 where the structure of W and σ0(W ) is shown for SHA-512. We have
−W + σ0(W ) = D, where D = (d63, . . . , d0) is a 64-bit constant. For 63 ≥ k ≥ l ≥ 0, we will use the
notation X[k, l] to denote bits xk, . . . , xl of the 64-bit quantity X.

We explain how the guess-then-determine attack proceeds. Suppose that we guess W [7, 0]. So we
know the 7 bits W [7, 1] and W [6, 0]. Now, consider the lowest 7 bits of D+W . We need D+W to be equal
to σ0(W ). The term σ0(W ) consists of 3 quantities XOR’ed, one of which, W [7, 1], is already known.
The other two quantities are W [13, 7] and W [14, 8]. So we can compute X = W [13, 7] ⊕ W [14, 8] =
(D + W )⊕W [7, 1]. Now, consider the least significant bit of X. This is the XOR of W [7] and W [8]. We
already know W [7], so it is possible to compute W [8]. Once W [8] is known, we can compute W [9] by
considering the second least significant bit of X. Continuing this way, we can get W [14, 7].

Now consider the quantity (D + W ) ⊕ (W ≫ 1) for bit positions 7 to 13. If the possible carry bit
into the addition D +W at bit position 7 can be guessed, then W [21, 15] can be determined. Extending
this reasoning further, we need to guess 7 carry bits and the initial 8 bits of W to completely determine
W . If the obtained value of W satisifies −W + σ0(W ) = D, then we have the correct solution. The
entire algorithm is shown in Figure 4.

In the algorithm, we use a function GTD, which takes low order 7i bits of W as input and produces
low order 7i + 7 bits of W . This function is described at the end of the figure.

This algorithm involves guessing W [7, 0] and bits c1, c2, . . . c7, which is a total of 15 bits. If the
equation D = −W + σ0(W ) does not have any solution, then none will be returned by this algorithm;
on the other hand, if there is a solution or there are more than one solutions, then all solutions will be
returned. A total of 215 operations are required. The time for each operation is significantly less than
the time for a single SHA-512 step and by our assessment it is about 2−4 times the time for a single
SHA-512 step.

7 Concluding Remarks

The method of attack described so far cannot be meaningfully extended beyond 24 steps as already
mentioned in [9]. This is due to the fact that every extra step will introduce a new condition on the
previous message words. The 24-round collision already utilized the freedom in the first message word
W0. To have a 25-round collision by starting the local collision at Step i = 11, will introduce impossibility
in ensuring that the message word difference δW16 = 0. This is explained below.

As shown in Section 5.1, the local collision is {w,−w, δ1, δ2, 0, 0, 0, u, w}. If we start this local collision
at Step i = 11, then δW15 = δW16 = δW17 = 0. Now from the message recursion of SHA-2, we have:

W16 = σ1(W14) + W9 + σ0(W1) + W0.

All the terms in the above equation, except W14, are zero. Therefore this equation cannot be satisfied
by this local collision. Similar reasons apply for longer round collisions.

Perhaps more fundamentally the problem is that, we are using only a single local collision. Since
the local collision is nonlinear in nature, it is difficult to combine two or more such collisions. Further
progress in analysis of step-reduced SHA-256 collisions will require some method to combined more
than one (linear or non-linear) local collision.
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A Colliding Message Pairs

Examples of colliding message pairs for 22, 23 and 24-round SHA-256 and SHA-512 using the standard
IV are shown in Tables 16 to 22.

Table 16. Colliding message pair for 22-round SHA-512 with standard IV. These messages have been generated using the
algorithm of Table 12.

W1 0-3 0000000000000000 0000000000000000 c2bc8e9a85e2eb5a 6d623c5d5a2a1442

4-7 cd38e6dee1458de7 acb73305cddb1207 148f31a512bbade5 ecd66ba86d4ab7e9

8-11 92aafb1e9cfa1fcb 533c19b80a7c8968 e3ce7a41b11b4d75 aef3823c2a004b20

12-15 8d41a28b0d847692 7f214e01c4e96950 0000000000000000 0000000000000000

W2 0-3 0000000000000000 0000000000000000 c2bc8e9a85e2eb5a 6d623c5d5a2a1442

4-7 cd38e6dee1458de7 acb73305cddb1207 148f31a512bbade5 ecd66ba86d4ab7ea

8-11 90668fd7ec6718ee 533c19b80a7c8968 dfce7a41b11b4d76 aef3823c2a004b20

12-15 8d41a28b0d847692 7f214e01c4e96950 0000000000000000 ffffffffffffffff

Table 17. Colliding message pair for 22-round SHA-256 with standard IV. These messages have been generated using the
algorithm of Table 12.

W1 0-7 00000000 00000000 0be293bf 99c539c9 1c672194 99b6a58a 5bf1d0ae 0a9a18d3

8-15 0c18cf1c 329b3e6e dc4e7a43 ab33823f 8d41a28d 7f214e03 00000000 00000000

W2 0-7 00000000 00000000 0be293bf 99c539c9 1c672194 99b6a58a 5bf1d0ae 0a9a18d4

8-15 07d56809 329b3e6e dc0e7a44 ab33823f 8d41a28d 7f214e03 00000000 ffffffff

B A Property of the NB Local Collision for SHA-512

The NB local collision has (w, x, y, z) = (1,−1, 0, 0); δWi = 1, δWi+8 = −1 and δWj = 0, for j =
i + 4, i + 5, i + 6, i + 7. Here 8 ≤ i ≤ 10. The message word differences δWi+1, δWi+2 and δWi+3 are
given by the following equations:

δWi+1 = −1 − δf i
IF (1, 0, 0) − δΣ1(ei),

δWi+2 = −δf i+1

IF (−1, 1, 0) − δΣ1(ei+1),

δWi+3 = −δf i+2

IF (0,−1, 1).







(22)
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Table 18. Colliding message pair for 23-round SHA-256 with standard IV. These messages utilize a single local collision
starting at Step i = 8.

W1 0-7 122060e3 000f813f d92d3fc6 ea4a475f fb0c6581 dc4558c4 d86428b4 6e2ca576

8-15 c8d597bf 6372d4c2 ddbd721c 79d654c4 f0064002 a894b7b6 91b7628e 3224db20

W2 0-7 122060e3 000f813f d92d3fc6 ea4a475f fb0c6581 dc4558c4 d86428b4 6e2ca576

8-15 c8d597c0 6372d4c1 ddbd721c 78d6b4c5 f0064002 a894b7b6 91b7628e 3224db20

Table 19. Colliding message pair for 23-round SHA-256 with standard IV. These messages utilize a single local collision
starting at Step i = 9.

W1 0-7 c201bef2 14cc32c9 3b80da44 d8212037 8987161d a790cb4a 53b8d726 89e9a288

8-15 3edd76e0 05f41ddc 9ebc0fc3 e099698a 2eaec58f e7060b78 95d7030d 6bf777c0

W2 0-7 c201bef2 14cc32c9 3b80da44 d8212037 8987161d a790cb4a 53b8d726 89e9a288

8-15 3edd76e0 05f41ddd 9ebc0fc2 e099c98a 2daf2590 e7060b78 95d7030d 6bf777c0

Table 20. Colliding message pair for 24-round SHA-256 with standard IV. These messages utilize a single local collision
starting at Step i = 10.

W1 0-7 657adf63 06c066d7 90f0b709 95a3e1d1 c3017f24 fad6c2bf dff43685 6abff0da

8-15 e6cfc63f de8fb4c1 c20ca05b f74815cc c2e789d9 208e7105 cc08b6cf 70171840

W2 0-7 657adf63 06c066d7 90f0b709 95a3e1d1 c3017f24 fad6c2bf dff43685 6abff0da

8-15 e6cfc63f de8fb4c1 c20ca05c f74815cb c2e7e9d9 1f8ed106 cc08b6cf 70171840

Table 21. Colliding message pair for 23-round SHA-512 with standard IV. These messages utilize a single local collision
starting at Step i = 8.

W1 0-3 b9fa6fc4729ca55c 8718310e1b3590e1 1d3d530cb075b721 99166b30ecbdd705

4-7 27ed55b66c090b62 754b2163ff6feec5 6685f40fd8ab08f8 590c1c0522f6fdfd

8-11 b947bb4013b688c1 d9d72ca8ab1cac04 69d0e120220d4edc 30a2e93aeef24e3f

12-15 84e76299718478b9 f11ae711647763e5 d621d2687946e862 0ee57069123ecc8b

W2 0-3 b9fa6fc4729ca55c 8718310e1b3590e1 1d3d530cb075b721 99166b30ecbdd705

4-7 27ed55b66c090b62 754b2163ff6feec5 6685f40fd8ab08f8 590c1c0522f6fdfd

8-11 b947bb4013b688c2 d9d72ca8ab1cac03 69d0e120220d4edc 30a3493aeef25076

12-15 84e76299718478b9 f11ae711647763e5 d621d2687946e862 0ee57069123ecc8b

Table 22. Colliding message pair for 24-round SHA-512 with standard IV. These messages utilize a single local collision
starting at Step i = 10.

W1 0-3 dedb689cfc766965 c7b8e064ff720f7c c136883560348c9c 3747df7d0cf47678

4-7 855e17555cfedc5f 88566babccaa63e9 5dda9777938b73cd b17b00574a4e4216

8-11 86f3ff48fd12ea19 cd15c6f8d6da38ce 5e2c6b7b0411e70b 36ed67e93a794e66

12-15 1b65e96b02767821 04d0950089db6c68 5bc9b9673e38eff3 b05d879ad024d3fa

W2 0-3 dedb689cfc766965 c7b8e064ff720f7c c136883560348c9c 3747df7d0cf47678

4-7 855e17555cfedc5f 88566babccaa63e9 5dda9777938b73cd b17b00574a4e4216

8-11 86f3ff48fd12ea19 cd15c6f8d6da38ce 5e2c6b7b0411e70c 36ed67e93a794e65

12-15 1b66096b02767829 04d0f50089db6e9f 5bc9b9673e38eff3 b05d879ad024d3fa
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Suppose that the NB local collision is placed between Step i and Step i+8, i = 8, 9, 10; and it is desired
to obtain a collision for i + 14 steps. Since the local collison ends at Step i + 8, from the differential
path of the local collision in Table 4, we require the difference in the message word δWi+8 to be −1.

The basic idea is to ensure that the message word differences are all zero after the local collision
ends. This will ensure that the two messages will not introduce any difference in the registers. Therefore,
δWi+9 = δWi+10 = . . . = δWi+14 = 0. From Table 9 it follows that we require δσ1(δWi+8) + δWi+3 = 0
to ensure that δWi+10 = 0.

We now show for SHA-512, it is difficult to find values of δWi+3 and δσ1(Wi+8) which are of the
same order of magnitude. The values of δWi+3 are biased towards small magnitudes. In contrast, the
values of σ1(Wi+8) − σ1(Wi+8 − 1) for SHA-512 are biased towards large magnitudes. This makes it
difficult to achieve equality of the two terms as required to ensure δWi+10 = 0.

In the discussion that follows, we use Xi to denote the ith bit of a 64-bit quantity X. We also use
the convention that the index of the least significant bit is 0.

Proposition 1 Pr[Pj 6= (P + 1)j ] = 1/2j , where the probability is taken over random P .

Proof. The necessary and sufficient condition for the jth bit of P and P + 1 to differ is that all the bits
from 0 to (j − 1) in P are 1. This happens with probability 1/2j , hence proved. ⊓⊔

Proposition 2 If two numbers X and Y are such that Xi 6= Yi and Xi−1 = Yi−1, then |X − Y | ≥
2i−1 + 1.

Proof. Without loss of generality, suppose Xi = 1 and Yi = 0. Let Z = X − Y . If Zi = 1, then clearly
Z ≥ 2i and we are done.

So, suppose Zi = 0 and consider the process of binary subtraction of Y from X to obtain Z. Since
Xi = 1 and Yi = 0, the result Zi = 0 can happen only if the subtraction of Yi−1Yi−2 . . . Y0 from
Xi−1Xi−2 . . . X0 produces a carry. But since Xi−1 = Yi−1, this implies the following two things.
1. Zi−1 = 1.
2. The subtraction of Yi−2Yi−3 . . . Y0 from Xi−2Xi−3 . . . X0 produces a carry.

1. Zi−1 = 1.
2. The subtraction of Yi−2Yi−3 . . . Y0 from Xi−2Xi−3 . . . X0 produces a carry.

The second point implies that at least one bit of Zi−2Zi−3 . . . Z0 must be 1. This together with the first
point Zi−1 = 1 implies that Z ≥ 2i−1 + 1. Hence proved. ⊓⊔

Next we prove that the probability that the absolute value of δWi+3, in the NB local collision is
larger than 2j is bounded above by 1/2j−1.

Lemma 4 If the NB local collision is started at Step i, then Pr[|δWi+3| ≥ 2j ] < 1/2j−1.

Proof. Since the local collision is started from step i, the message difference δWi+3 is given by Equa-
tion 22. This equation gives:

δWi+3 = −δf i+2

IF (0,−1, 1),
= −fIF (ei+2, fi+2 − 1, gi+2 + 1) + fIF (ei+2, fi+2, gi+2),
= −fIF (ei+2, ei+1 − 1, ei + 1) + fIF (ei+2, ei+1, ei).

The two fIF terms in the computation above have the same first argument ei+2. The second and the
third arguments have a modular difference of ±1. If the jth bit of ei+2 is 1 then the two fIF functions
will select the corresponding bit from the middle argument, else from the third argument.
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Let A = fIF (ei+2, ei+1 − 1, ei + 1) and B = fIF (ei+2, ei+1, ei). Further, let Pn be the event that
An 6= Bn. The event δWi+3 ≥ 2j can happen if and only if at least one of the bits j, j + 1, . . . 63 of
δWi+3 is 1, i.e., if and only if at least one of the events Pj , Pj+1, . . . P63 holds.

Now we are ready to bound the probability of the required event. In the fourth step below, we use
the fact that fIF (a, b, c) = b if a = 1 and = c if a = 0.

Pr[δWi+3 ≥ 2j ] = Pr[
⋃

i≥j

Pi]

≤
∑

i≥j

Pr[Pi]

=
∑

i≥j

(Pr[(ei+2)i = 0] · Pr[Pi|((ei+2)i = 0)] + Pr[(ei+2)i = 1] · Pr[Pi|((ei+2)i = 1)])

=
∑

i≥j

(

1

2
· Pr[(ei + 1)i 6= ei] +

1

2
· Pr[(ei+1 − 1)i 6= ei+1]

)

=
1

2
·
∑

i≥j

(

1

2i
+

1

2i

)

(Using Proposition 1)

<
1

2j−1
.

This proves the result. ⊓⊔

We now look at the distribution of values of σ1(W ) − σ1(W − 1) for random choices of W .

Lemma 5 For the function σ1 used in SHA-512,

|σ1(W ) − σ1(W − 1)| ≥ (242 + 239 + 238 + 236 − 23),

where W is any 64-bit word.

Proof. The function σ1 is defined for SHA-512 as:

σ1(W ) = ROTR19(W ) ⊕ ROTR61(W ) ⊕ SHR6(W ). (23)

Let the 64-bit word W be specified as (w63, w62, . . . , w1, w0) where w0 is the least significant bit of W .
Then σ1(W ) can be expressed as bit-wise XOR of three quantities having bit pattern shown below.

Bit Index 63 62 . . . 58 57 . . . 45 44 . . . 0

ROTR19 w18 w17 . . . w13 w12 . . . w0 w63 . . . w19

ROTR61 w60 w59 . . . w55 w54 . . . w42 w41 . . . w61

SHR6 0 0 . . . 0 w63 . . . w51 w50 . . . w6

Let W ′ = W − 1. Then similar structure for σ1(W
′) can also be visualized. We are interested in the

magnitude of σ1(W ) − σ1(W
′).

Let j be the least index such jth bit of W is 1. That is, wj = 1 and wi = 0 for all i ≤ j − 1. Then
we have, wi 6= w′

i for i ≤ j and wi = w′
i for i > j. Now we consider two cases for j.

Case 1: 0 ≤ j ≤ 40. In this case, we have that wi = w′
i for i = 63, 51, 50, 42, 41 and w0 6= w′

0. From
the structure of σ1(W ) and σ1(W

′), we note that their 45th bits will be unequal but their 44th bits
will be equal. Using Proposition 2 we get, |σ1(W ) − σ1(W

′)| ≥ 244 + 1.
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Case 2: j ≥ 41. We need to consider the individual cases j = 41, 42, . . . 63 here. Consider the case
j = 41 first. In this case, we know the exact bit pattern in W and W ′ up to 41 bits. Only the high
order bits from 42 to 63 are unknown in these two quantities. We also know that these high order bits
are the same in W and W ′. Since these are only 22 bits, we can exhaustively search this space and
compute the value |σ1(W )−σ1(W

′)| for the case j = 41. As j is increased, the same idea can be used
with even smaller search space. The size of the complete search space is 1+2+22+. . .+222 = 223−1.
A C program running on an ordinary PC takes a fraction of a second to traverse this space.
Using exhaustive search, we found the minimum vale of |σ1(W )−σ1(W−1)| to be 000004cffffffff8
which occurred for j = 42. This value is equal to (242 + 239 + 238 + 236 − 23).

We have left one particular case of W undiscussed. This is the special case when all the bits in W are
zero. In this case, we can compute the difference directly since σ1(0) = 0 and σ1(−1) = 1+2+ . . .+257.
Thus, we have the difference = 258 − 1.

Combining all the cases, the result is proved. ⊓⊔
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