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Abstract

A key research question in computer security is whether
one can implement software that offers some protection
against software attacks from its execution platform. While
code obfuscation attempts to hide certain characteristics of
a program P , white-box cryptography specifically focusses
on software implementations of cryptographic primitives
(such as encryption schemes); the goal of a white-box im-
plementation is to offer a certain level of robustness against
an adversary who has full access to and control over the
implementation of the primitive. Several formal models for
obfuscation have been presented before, but it is not clear if
any of these definitions can capture the concept of white-box
cryptography. In this paper, we discuss the relation between
obfuscation and white-box cryptography, and formalize the
notion of white-box cryptography by capturing the secu-
rity requirement using a ‘White-Box Property’ (WBP). In
the second part, we present positive and negative results on
white-box cryptography. We show that for interesting pro-
grams (such as encryption schemes, and digital signature
schemes), there are security notions that cannot be satisfied
when adversaries have white-box access, while the notion
is satisfied when the adversary has black-box access to its
functionality. On the positive side, we show that there exists
an obfuscator for a symmetric encryption scheme for which
a useful security notion (such as CPA security) remains sat-
isfied when an adversary has access to its white-box imple-
mentation.

1 Introduction

In recent years, we have witnessed a trend towards the
use of complex software applications with strong security
requirements. Think of banking applications, online games,

∗This work was initiated when the author was working at the University
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and digital multimedia players. Prominent building blocks
for these applications are cryptographic primitives, such as
encryption schemes, digital signature schemes, and authen-
tication mechanisms. Unfortunately, such building blocks
(e.g., the AES encryption scheme) are guaranteed to be se-
cure only when they are executed on a trustworthy system.
It is known that several cryptographic primitives become
insecure when the attacker has non-black-box (e.g., ‘white-
box’, or side-channel) access to the computation (see for
example [20]).

White-box cryptography (WBC) deals with protecting
cryptographic primitives embedded in a program that the
attacker has white-box access to. It aims to provide secu-
rity when the program is executing in a hostile environment
and the attacker can conduct non-black-box attacks (such
as code inspection, execution environment modification,
code modification, etc). Practical white-box implementa-
tions of DES and AES encryption algorithms were proposed
in [9, 10]. However, no formal definitions of white-box
cryptography were given, neither were there any proofs of
security. With their subsequent cryptanalysis [4, 15, 23],
it remains an open question whether or not such white-box
implementations exist. In this paper, we initiate a study of
rigorous security notions for the white-box setting.

One way to realize WBC is to obfuscate the executable
code of the algorithm and hope that the adversary cannot use
it in a non-black-box manner. What we would like is that an
obfuscator ensures that all the security notions are satisfied
in a white-box attack context when they are satisfied in the
black-box attack context. However, it is still not clear if any
existing definitions of obfuscation can be used to achieve
this goal. Hence, a natural question is:

Given an obfuscator O satisfying the virtual black-box
property for a program P (in some sense), and a crypto-
graphic scheme that is secure when the adversary is given
black-box access to P, can it be shown that the scheme re-
mains secure when the adversary is given white-box access
to the program O(P )?
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1.1 Our Contribution

The contributions of this work are two-fold. First, we
develop the foundations of white-box cryptography by for-
malizing the notion of security which cryptographic primi-
tives must satisfy. In order to do this, we define a white-box
property (WBP) that captures the security of an obfuscated
program with respect to some given security notion. The
WBP, if satisfied, will imply that the obfuscation does not
leak any useful information under that security notion (even
though it may leak useful information under a different se-
curity notion).

Second, we present some (im)possibility results about
reductions between WBP and obfuscation and answer the
above question in the negative – we show that under any
definition of obfuscation, the answer is, in general, no. In
other words, we show that for most programs P , there can-
not exist an obfuscator that satisfies the WBP for all secu-
rity notions in which P might be present. We also show
impossibility results for the composition of white-box im-
plementations. On the positive side, we show that under
reasonable computational assumptions, there exists an ob-
fuscator that satisfies the WBP with respect to a meaningful
security notion for a meaningful cryptographic primitive.
We also show that there exist obfuscators that satisfy the
WBP with respect to every security notion for a (contrived)
non-learnable, but approximate learnable family.

To understand our results, it is important to note that ob-
fuscation and WBC are two different concepts and should
not be confused with each other. Obfuscation is captured
using a Virtual Black-Box Property (VBBP), which is de-
fined with respect to a program alone [1, 19, 11, 14, 22],
while WBC is captured using a WBP, which is always de-
fined with respect to a program and a security notion.

1.2 Notation and Preliminaries

Denote by P the set of all polynomials with non-negative
integer coefficients and by TM the set of all Turing Ma-
chines (TMs). For X ∈ TM, |X| is the length of the string
description of X . A mapping f : x 3 N 7→ f(x) ∈ R is
negligible in x (written f(x) ≤ negl(x)) if ∀p ∈ P, ∃x′ ∈
N, ∀x > x′ : f(x) < 1/p(x).

Definition 1. In the following, unless otherwise stated, a
TM is assumed to have one input tape.

1. (Equality of TMs.) X, Y ∈ TM are equal (denoted
as X = Y ) if ∀a : X(a) = Y (a)

2. (Polynomial TM.) X ∈ TM is a Polynomial TM
(PTM) if there exists p ∈ P s.t. ∀a : X(a) halts in
at most p(|a|) steps. Let PTM be the set of all PTMs.

3. (PPT Algorithms.) A PPT algorithm (such as an ad-
versary or an obfuscator) is a PTM with an unknown
source of randomness input via an additional random
tape. We denote the set of PPT algorithms by PPT.
The running time of a PPT algorithm must be polyno-
mial in the length of the known inputs.

4. (TM Family.) A TM Family (TMF) is a TM having two
input tapes: a key tape and a standard input tape. Let
TMF be the set of all TMFs. For any Q ∈ TMF:

(a) Q[q] ∈ TM is the resulting TM when the key tape
of Q contains string q.

(b) KQ is the key-space (valid strings for the key
tape) of Q.

(c) The input-space (valid strings for the standard
input tape) of Q[q] is fully defined by the param-
eter |q|. We denote this space by IQ,|q|. Further-
more there must exist a polynomial PQ ∈ P s.t.:

∀q ∈ KQ, ∀x ∈ IQ,|q| : |x| = PQ(|q|) .

All TMFs in this paper are deterministic (i.e., for any
(Q, q) ∈ TMF×KQ the output of Q[q] is fully defined
by the input). For modeling probabilistic algorithms
using TMFs we assume that randomness is encoded in
q and/or the input.

5. (Polynomial TM Family.) Q ∈ TMF is a Polynomial
TMF (PTMF) if:

(a) There exists p ∈ P such that ∀q ∈ KQ,∀a ∈
IQ,|q| : Q[q](a) halts in at most p(|q|) steps.

(b) Deciding if some x
?∈ KQ is easy (or KQ ∈ P ).

We denote the set of all PTMFs by PTMF.

6. (Learnable Family.) Q ∈ TMF is learnable if

∃(L, p) ∈ PPT× P s.t. ∀k : Pr
[
q

R← {0, 1}k ∩ KQ;

X ← LQ[q](1|q|, Q) : X = Q[q]
]
≥ 1/p(k)

(the probability taken over the coin tosses of L) and:

(a) ∀a : if Q[q](a) halts after t steps then X(a) halts
after at most p(t) steps.

(b) |X| ≤ p(|q|).
Informally, a function Q is learnable when, by means
of a limited number of queries to its functionality, an
equivalent function X can be constructed. L is called
the learner for Q. LF is the set of all learnable fami-
lies.
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7. (Approximate Learnable Family.) Q ∈ TMF is ap-
proximate learnable if ∃(L, p) ∈ PPT× P s.t.

∀k : Pr
[
q

R← {0, 1}k ∩ KQ; a R← IQ,k;

X ← LQ[q](1|q|, Q) : X(a) = Q[q](a)
]
≥ 1/p(k)

(the probability taken over the coin tosses of L), and:

(a) ∀a : if Q[q](a) halts after t steps then X(a) halts
after at most p(t) steps.

(b) |X| ≤ p(|q|).
ALF denotes the set of all approximate learnable fam-
ilies.

2 Obfuscation

Informally, an obfuscator O is a probabilistic compiler
that transforms a program P into O(P ), a functionally
equivalent implementation of P which hides certain char-
acteristics of P .

2.1 Related Work

The notion of code-obfuscation was first given by
Hada [16], who introduced the concept of virtual black-box
property (VBBP) using computational indistinguishability.
In [1], Barak et al. defined obfuscation using the weaker
predicate-based VBBP and showed that there exist unobfus-
catable function families under their definition. Goldwasser
and Kalai [11] extend the impossibility results of [1] with
respect to auxiliary inputs.

On the positive side, Lynn et al. [21] show how point
functions can be obfuscated the random oracle model.
Wee [22] showed how to obfuscate point functions without
random oracles. Hohenberger et al. [19] used a stronger no-
tion of obfuscation (average-case secure obfuscation) and
showed how it can be used to prove the security of re-
encryption functionality in a weak security model (i.e.,
IND-CPA). They also presented a re-encryption scheme un-
der bilinear complexity assumptions. Hofheinz et al. [18]
discuss a related notion of obfuscation and show that IND-
CPA encryption and point functions can be securely obfus-
cated in their definition. Goldwasser and Rothblum [14]
define the notion of “best-possible obfuscation” in order to
give a qualitative measure of information leakage by an ob-
fuscation (however, they do not differentiate between “use-
ful” and “useless” information). Recently, Canetti and Dak-
douk [8] give an obfuscator for point functions with multi-
bit output for use in primitives called “digital lockers”. Fi-
nally, Herzberg et al. [17] introduce the concept of White-
Box Remote Program Execution (WBRPE) in order to give a
meaningful notion of “software hardening” for all programs
and avoid the negative results of [1].

2.2 Obfuscators

Denote by Q a family of cryptographic primitives (a
PTMF), for which their description is publicly known. De-
note by Q[q] a primitive instantiated with secret key q se-
lected from some distribution. We consider the obfuscation
of Q[q]. We capture the functionality of an obfuscator using
correctness property and the security using soundness.

2.2.1 Obfuscator (Correctness)

Definition 2. A PPT algorithm O : PTMF × {0, 1}∗ 7→
TM is an (efficient) obfuscator for Q ∈ PTMF if it satisfies
correctness defined using the following two properties:

1. Approximate functionality: ∀q ∈ KQ, ∀a ∈ IQ,|q| :

Pr [O(Q, q)(a) 6= Q[q](a)] ≤ negl(|q|),
the probability taken over the coin tosses of O.

2. Polynomial slowdown and expansion: There exists
p ∈ P s.t. ∀q ∈ KQ : |O(Q, q)| ≤ p(|q|), and ∀a,
if Q[q](a) halts in t steps then O(Q, q)(a) halts in at
most p(t) steps.

Remark 1. We consider the functionality of Q only in a de-
terministic sense and do not explicitly consider the notion
of obfuscation of “probabilistic functions” (used, for exam-
ple, in [18, 19]). However, our negative results (of Sect. 4.1)
also apply to probabilistic functions using an appropri-
ately defined notion of probabilistic PTMFs (PPTMFs) (and
a corresponding notion of approximate functionality for
PPTMFs). See Sect. 4.4.

2.2.2 Obfuscator (Soundness)

Several definitions of soundness have been proposed in
the literature, all based on a Virtual Black-Box Property
(VBBP) [1, 18, 19, 21, 22]. Let Q ∈ PTMF and let
q ∈ {0, 1}∗. Then, the VBBP requires that any informa-
tion about q a PPT adversary computes given the obfusca-
tion O(Q, q), a PPT simulator could also have computed
using only black-box access to Q[q]. All existing notions
of VBBP can be classified into one of two broad categories.
At one extreme (the weakest) are the predicate-based defi-
nitions, where the adversary and the simulator are required
to compute some predicate on q. At the other extreme (the
strongest) are definitions based on computational indistin-
guishability, where the simulator is required to output some-
thing that is indistinguishable from O(Q, q). We define
these two notions below.

Definition 3. An obfuscator O for Q ∈ PTMF satisfies
soundness for Q if at least one of the properties given below
is satisfied.
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Predicate Virtual black-box property (PVBBP): Let π be
an efficiently verifiable predicate. O satisfies PVBBP for Q
if ∀A ∈ PPT,∃S ∈ PPT : Advpvbbp

A,S,O,Q(k) ≤ negl(k),
where Advpvbbp

A,S,O,Q(k) =

max
π

∣∣∣∣∣∣∣∣∣∣

Pr

[
q

R← {0, 1}k ∩ KQ :
AQ[q](1k,O(Q, q)) = π(q)

]

−Pr

[
q

R← {0, 1}k ∩ KQ :
SQ[q](1k) = π(q)

]

∣∣∣∣∣∣∣∣∣∣

,

the probability taken over the coin tosses of O, A, S.

Computational Indistinguishability (IND): O satisfies
IND for Q if ∀A ∈ PPT, ∃S ∈ PPT : Advind

A,S,O,Q(k) ≤
negl(k), where Advind

A,S,O,Q(k) =

∣∣∣∣∣∣∣∣∣∣

Pr

[
q

R← {0, 1}k ∩ KQ :
AQ[q](1k,O(Q, q)) = 1

]

−Pr

[
q

R← {0, 1}k ∩ KQ :
AQ[q](1k, SQ[q](1k)) = 1

]

∣∣∣∣∣∣∣∣∣∣

,

the probability taken over the coin tosses of O, A, S.

We assumed above that the key q is selected uniformly.
To consider keys selected from a distribution different from
random, assume WLOG that the keys are selected uni-
formly from an appropriate subset of the original key-space.

2.3 Discussion

Although several definitions of obfuscation have been
proposed in the literature, none of them are accepted as a
standard. One of the problems is that in most cases, the
IND-soundness definition is too strong in practice to yield
any interesting results [19, 22], since deterministic func-
tions can only satisfy the obfuscation definition when they
are learnable. This intuition is formalized in Proposition 1.

Proposition 1. If there exists an obfuscator satisfying IND-
soundness for some Q ∈ PTMF then Q ∈ ALF.

This rules out an obfuscator satisfying IND-soundness
for most interesting (deterministic) function families such
as pseudorandom functions, encryption and digital signa-
ture schemes. Hofheinz et al. [18] extended this towards
approximate obfuscators for similar types of families.

On the other hand, it has been pointed out in several pa-
pers (e.g., [1, 19]) that the PVBBP-soundness definition is
too weak to capture any meaningful result, since useful non-
black-box information might still leak (a concrete example
of this is Theorem 1).

Nevertheless, it is conceivable that a definition of sound-
ness can be formulated falling somewhere between the two

extremes, which is neither too weak nor too strong, and can
be used for proving white-box security of arbitrary crypto-
graphic primitives. We show this is not the case. Specif-
ically, we show that, under every definition of soundness
we use, for every family Q /∈ ALF, there exist (contrived)
security notions for which white-box security fails but the
corresponding black-box construction is secure.

3 White-Box Cryptography (WBC)

In this section, we formalize the notion of WBC by defin-
ing a white-box property (WBP). We follow the basic prin-
ciples of various “game-based” approaches [2, 3, 12, 13]
where an attack is captured using an interactive game with
an adversary. Loosely speaking the WBP is defined using
two objects: a TMF (such as an encryption algorithm fam-
ily) and a security notion (such as IND-CPA). A security
notion (SN) is a formal description of the security desired
from a cryptographic scheme [2, 3]. It defines what capabil-
ities the attacker is given and what constitutes a successful
attack. For instance, in IND-CPA for a symmetric encryp-
tion scheme, the SN will define that the adversary has ac-
cess to the encryption oracle and needs to guess a secret bit.
For convenience, we make the following assumptions: (1) a
SN is specific to a cryptographic scheme (thus, for instance,
IND-CPA-Paillier, and IND-CPA-ElGamal are two differ-
ent SNs), (2) all interaction with the adversary is done via
oracle queries made by the adversary.

Definition 4. A Security Notion (SN) is a 5-tuple
(n, pin,Q,Extr, Win) ∈ N×P×PTMFn×PTM×PTM
such that:

• Q = (Q1, Q2, . . . , Qn) ∈ PTMFn is an array of (the
descriptions of) n PTMFs.

• Extr and Win are (the description of) PTMs of the type
{0, 1}pin(k) 7→ ×n

i=1KQi
and {0, 1}∗ 7→ {0, 1} re-

spectively.

We denote by SN the set of all security notions. For any
sn = (n, pin,Q, Extr, Win) ∈ SN and any Q ∈ PTMF,
we say Q ∈ sn if Q ∈ Q.

Definition 5. A Black-box Game is a TM describing an
interactive protocol with the adversary A ∈ PPT. It has
a standard structure given below. It takes as input a tuple
(1k, sn, r), where sn = (n, pin,Q, Extr, Win) ∈ SN is a
security notion, and r ∈ {0, 1}pin(k) is a string (represent-
ing randomness supplied to the game). It outputs 0 or 1.
The black-box game is given in Algorithm 1 (GameBBA).

Queries is a set representing oracle queries made by A
during the game. Each element j of this set is an ordered
tuple of the type

(tj , ij , inj ,outj) ∈ N×{1, 2, . . . , n}×{0, 1}∗×{0, 1}∗,
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input : 1k, sn, r
Parse sn as (n, pin,Q,Extr, Win)
Parse Q as (Q1, Q2, . . . , Qn)

/* extract keys for each family */
(q1, q2, . . . qn) ← Extr(r)

/* interact with adversary */

s ← AQ1[q1],Q2[q2],...,Qn[qn](1k, sn)
/* decide if adversary won */

result ← Win(r,Queries, s)
output: result

Algorithm 1: GameBBA(1k, sn, r)

indicating respectively, the time, oracle number, input, and
the output of each query.1 The game has two important
rules: (1) at any instant A can query at most one oracle,
and (2) each query by the adversary takes one unit time ir-
respective of the amount of computation involved.

Define the black-box advantage of an adversary A in the
black-box game, AdvBBsn

A (k) as

Pr
[
r

R← {0, 1}pin(k) : GameBBA(1k, sn, r) = 1
]

,

the probability taken over the coin tosses of A.

See Appendix A for an example of the IND-CCA2 se-
curity notion for encryption and Appendix B for the sUF-
CMA security notion for signatures.

Discussion. Let us recall the CCA2-type security no-
tions for a symmetric encryption scheme (see Appendix A).
The game with the adversary in the CCA2 notion consists
of three stages: (1) the adversary is allowed to query the en-
cryption/decryption oracles on arbitrary inputs; (2) the ad-
versary obtains a challenge ciphertext corresponding to an
unknown challenge plaintext; and, (3) the adversary queries
the oracles as in stage 1 except that decryption queries on
the challenge ciphertext are disallowed. The adversary wins
if it can guess some property of the challenge plaintext.

Let E = (G,E, D) be a CCA2-secure symmetric en-
cryption scheme, with the encryption/decryption key instan-
tiated to K. Then, D[K] cannot be obfuscated, since this
would render the corresponding asymmetric scheme E in-
secure under CCA2: once the adversary has obtained an
executable implementation of D[K], the third phase of the
CCA2 game cannot prevent the adversary querying the de-
cryption function on the challenge ciphertext (the adversary
does not even have to ‘break’ any obfuscation in order to do
this). On the other hand E[K] is a perfect candidate for ob-
fuscation since the winning condition does not depend on
what was queried to E[K]. Definition 6 is introduced to

1Note that the last element of this tuple (the output) is redundant be-
cause it is efficiently computable from the input alone. However, including
it makes some definitions simpler (for instance IND-CCA2 security).

address this issue, and captures when a cryptographic prim-
itive (i.e., family) is a suitable candidate for obfuscation.

Definition 6. For any sn ∈ SN and any PTMF Qi ∈ sn,
define Queriesi to be the following set:

{(tj , ij , inj ,outj)|(tj , ij , inj ,outj) ∈ Queries ∧ ij 6= i}

Qi is obfuscatable in sn (written Qi ∈obf sn) if it satisfies
the statelessness property given below:

∀r,Queries, s : Win(r,Queries, s) = Win(r,Queriesi, s).

Note: If Q /∈ sn then Q /∈obf sn.

In other words, Qi ∈obf sn if: (1) Qi ∈ sn, and (2)
in the corresponding black-box game, the output of Win is
invariant with respect to the entries of Queries for Qi[qi].

We claim that a meaningful notion of white-box security
cannot be obtained for a family under a security notion in
which it is not obfuscatable. For instance, white-boxing the
decryption function of a symmetric encryption scheme, or
the ‘signing’ function of a MAC scheme under any standard
security notion is not meaningful (however, it is possible
to construct specialized/contrived security notions in which
this becomes meaningful).

Definition 7. A White-Box Game is defined for the tuple
(A,O, Qi) by extending the black-box game. For a secu-
rity notion sn = (n, pin,Q, Extr,Win) ∈ SN with (Q =
(Q1, Q2, . . . , Qn), assume that Qi ∈obf sn (1 ≤ i ≤ n)
and that O ∈ PPT is an obfuscator for Qi. The white-box
game is given in Algorithm 2 (GameWBA,O,Qi ).

input : 1k, sn, r
Parse sn as (n, pin,Q, Extr, Win)
Parse Q as (Q1, Q2, . . . , Qn)

/* extract keys for each family */
(q1, q2, . . . qn) ← Extr(r)

/* interact with adversary */

s ← AQ1[q1],Q2[q2],...,Qn[qn](1k, sn, i,O(Qi, qi))
/* decide if adversary won */

result ← Win(r,Queries, s)
output: result

Algorithm 2: GameWBA,O,Qi(1
k, sn, r)

Denote by AdvWBsn
A,O,Qi

(k), the advantage of an adver-
sary in the white-box game, defined as

Pr
[
r

R← {0, 1}pin(k) : GameWBA,O,Qi(1
k, sn, r) = 1

]
,

the probability taken over the coin tosses of A.
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Definition 8. Let O be an obfuscator for Q ∈ PTMF and
let sn ∈ SN such that Q ∈ sn. The White-box Advantage
of O for (Q, sn), AdvWBsn

O,Q(k), is

∣∣∣∣ max
A∈PPT

AdvWBsn
A,O,Q(k)− max

A∈PPT
AdvBBsn

A (k)
∣∣∣∣ .

The WBA serves as a measure of useful information leakage
by an obfuscation.

The term ‘useful information’ within the context of the
security notion is any information that aids the adversary in
conducting a successful attack.

Definition 9. Let O be an obfuscator for Q ∈ PTMF and
let sn ∈ SN such that Q ∈ sn. O satisfies White-box
Property (WBP) for (Q, sn) if AdvWBsn

O,Q(k) ≤ negl(|k|).

This captures the notion of obfuscation, in the sense that
the best adversary in a white-box setting is not able to ex-
tract significantly more useful information than the best ad-
versary in a black-box setting.

Definition 10. Let O be an obfuscator for Q ∈ PTMF.
O satisfies Universal White-box Property (UWBP) for Q if
for every sn ∈ SN with Q ∈obf sn, O satisfies WBP for
(Q, sn).

Definition 9 and 10 give us a formal, sensible meaning
of what the objective of white-box cryptography is. The
WBP, if satisfed would imply that, given a cryptographic
primitive that is secure in the black-box sense, its white-
box implementation also remains secure with respect to the
desired security notion. In the next section, we investigate
what can be achieved within the context of our model.

4 (Im)possibility Results

In this section we give some useful relationships between
obfuscators, WBP and UWBP.

4.1 Negative Results

Barak et al. [1] gave several impossibility results on
obfuscation, some of them quite strong (for instance they
present an unobfuscatable encryption scheme). Our nega-
tive results are even stronger than theirs. To put our main
negative result in context with that of [1], we first mention
their result using our notation.

Proposition 2. (Barak et al. [1]) There exists a pair
(Q, sn) ∈ PTMF × SN with Q ∈obf sn such that every
obfuscator for Q fails to satisfy WBP for (Q, sn).

In other words, there cannot exist an obfuscator that sat-
isfies UWBP for every Q ∈ PTMF. However, their results
do not rule out an obfuscator that satisfies the UWBP for
some useful family Q. We show that even this is not possi-
ble unless Q is at least approximate learnable.

4.1.1 No UWBP for “Interesting” Families.

Obfuscators that satisfy the UWBP for “interesting” fami-
lies do not exist. That is, in Theorem 1, we show that any
non-approximately-learnable family, there exists a security
notion that cannot be satisfied when an adversary has white-
box access to the white-box implementation.

Theorem 1. For every family Q ∈ PTMF\ALF, there ex-
ists a (contrived) sn ∈ SN such that Q ∈obf sn but every
obfuscator for Q fails to satisfy the WBP for (Q, sn).

Proof. Let Q ∈ PTMF\ALF. Consider the security no-
tion guess-x = (2, pin, (Q,Q1), Extr,Win) ∈ SN, with
pin(k) = 2k + PQ(k) and other details in Algorithm 3.

Function Q1[q1] (Input Y1) {
/* Assume: Y1 ∈ PTM */

Parse q1 as (q, x, a);
if (Y1(a) = Q[q](a)) then output x else output 0;

/* Q is used as a black-box */
/* Let Q[q] halt in t steps */

/* Y1 is halted after p(t) steps */
/* for some (large) p ∈ P */

}
Function Extr(Input r) {

Parse r as (q, x, a);
/* Assume: q ∈ {0, 1}k

*/
/* Assume: x ∈ {0, 1}k

*/

/* Assume: a ∈ {0, 1}PQ(k)
*/

/* WLOG assume the following: */
/* Assume: q ∈ KQ */
/* Assume: a ∈ IQ,k */

set q1 ← (q, x, a)
output q, q1

}
Function Win(Input (r,Queries, s)) {

Parse r as (q, x, a);
if (s 6= x) ∨ (more than one query to Q1[q1]) then
output 0 else output 1

}
Algorithm 3: Q1, Extr and Win for guess-x.

Observe that Q ∈obf guess-x. Since Q /∈ ALF, there-
fore by virtue of Definitions 1(7) and 2(1), for sufficiently
large k, the following inequalities are guaranteed to hold:

∀A ∈ PPT : 0 ≤ AdvBBguess-x
A (k) < α(k)
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∃A ∈ PPT : 1 ≥ AdvWBguess-x
A,O,Q (k) ≥ 1− β(k),

where α, β are negligible functions. Hence, we have:

AdvWBguess-x
O,Q (k) > 1− α(k)− β(k),

which is non-negligible in k. This proves the theorem.

Remark 2. Although we define ALF to be the set of
families which can be approximately-learned with a non-
negligible advantage (which is quite broad), we note that
the above result can be further strengthened by narrow-
ing down the definition of ALF to only families that can be
approximately-learned with an overwhelming advantage.

Our next result deals with multiple obfuscations.

4.1.2 Simultaneous Obfuscation may be Insecure.

A desired property is the composition of obfuscations.
When two implementations are securely obfuscated, one
would desire that the combination of the two remains se-
cure, as this opens perspectives to many practical applica-
tions. Wee [22] and Canneti et al. [8] have investigated this
question for point functions, while Lynn et al. [21] have
found a negative answer to this question for generic pro-
grams. In Definition 11, we capture the concept of com-
position within the context of white-box cryptography. In
Theorem 2, we show that simultaneous white-boxing of two
families may be insecure even if white-boxing each family
is secure.

Definition 11. (Multiple obfuscations) Let sn ∈ SN be
a security notion and let Qi, Qj ∈obf sn for some 1 ≤
i, j ≤ n. Let O be an obfuscator for Qi, Qj . Extend
the white-box game GameWBsn

A,O,Qi
of Definition 7 by

defining a new game GameWB1sn
A,O,Qi,Qj

in which A gets
as input the tuple (1k, sn, i, j,O(Qi, qi),O(Qj , qj)). De-
note the advantage of an adversary for this new game as
AdvWBsn

A,O,Qi,Qj
(k) =

Pr
[
r

R← {0, 1}pin(k) : GameWB1sn
A,O,Qi,Qj

(1k, r) = 1
]

,

the probability taken over the coin tosses of A,O. The ob-
fuscator O satisfies WBP for ((Qi, Qj), sn) if

∣∣∣∣ max
A∈PPT

AdvWBsn
A,O,Qi,Qj

(k)− max
A∈PPT

AdvBBsn
A (k)

∣∣∣∣

is negligible in |k|.
Theorem 2. Let Qi, Qj ∈ PTMF\ALF. Then there exists
a sn ∈ SN with Qi, Qj ∈obf sn such that even if there ex-
ists an obfuscator for Q1, Q2 satisfying WBP for (Qi, sn)
and (Qj , sn), every obfuscator fails to satisfy WBP for
((Qi, Qj), sn)

The proof is similar to the proof of Theorem 1.

4.2 Positive Results

Although the above results rule out the possibility of ob-
fuscators satisfying UWBP for most non-trivial families,
they do not imply that a meaningful definition of security
for white-box cryptography cannot exist. In fact, any asym-
metric encryption scheme can be considered as a white-
boxed version of the corresponding symmetric scheme
(where the encryption key is also secret). We use this ob-
servation as a starting point of our first positive result. A
similar observation was used in the positive results of [18].

4.2.1 WBP for “Useful” Families.

In Theorem 3, we formally state that there exists a non-
approximately learnable family, and an obfuscator that sat-
isfies the WBP for that family for a useful security notion.

Theorem 3. There exists a tuple (O, Q, sn) ∈ PPT ×
PTMF\ALF×SN such that Q ∈obf sn andO is an obfus-
cator satisfying WBP for (Q, sn) under reasonable compu-
tational assumptions.

Before we prove Theorem 3, we describe a primitive
known as bilinear pairing in Definition 12, which we re-
quire for the proof.

Definition 12. (Bilinear pairing) Let G1 and G2 be two
cyclic multiplicative groups both of prime order w such that
computing discrete logarithms in G1 and G2 is intractable.
A bilinear pairing is a map ê : G1×G1 7→ G2 that satisfies
the following properties [5, 6, 7]:

1. Bilinearity: ê(ax, by) = ê(a, b)xy ∀a, b ∈ G1 and
x, y ∈ Zw.

2. Non-degeneracy: If g is a generator of G1 then ê(g, g)
is a generator of G2.

3. Computability: The map ê is efficiently computable.

Proof. (of Theorem 3) We prove this by construction.
We will use an encryption scheme based on the BF-IBE
scheme [5].
Define a symmetric encryption scheme E = (G,E, D) as
follows.

1. Key Generation (G): Let ê : G1 × G1 7→ G2 be a
bilinear pairing over cyclic multiplicative groups as
defined above (such maps are known to exist). Let
|G1| = |G2| = w (prime) such that blog2(w)c = l.
Pick random g

R← G1\{1} and define H : G2 7→
{0, 1}l to be a hash function. Pick x

R← G1 and
define K = (ê, G1, G2, w, g,H, x). The encryp-
tion/decryption key is K.
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2. Encryption (E): Parse K as (ê, G1, G2, w, g,H, x).
Let m ∈ {0, 1}l be a message and α ∈ Zw be a ran-
dom string. The encryption family E is defined as:

E[K] : {0, 1}l × Zw 7→ {0, 1}l ×G1

(m,α) 7→ (H(ê(xα, g))⊕m, gα) .

3. Decryption (D): Parse K as (ê, G1, G2, w, g,H, x).
The decryption family D is defined as:

D[K] : {0, 1}l ×G1 7→ {0, 1}l

(c1, c2) 7→ H(ê(c2, x))⊕ c1 .

It can be verified that D[K](E[K](m,α)) = m for valid
values of (m,α). The scheme can be proven to be CPA se-
cure if H is a random oracle and w is sufficiently large. We
construct an obfuscation of the E[K] oracle that converts E
into a CPA secure asymmetric encryption scheme under a
computational assumption.

The obfuscator O: The input is (E, K).

1. Parse K as (ê, G1, G2, w, g,H, x). Set y ← ê(x, g).

2. Set K ′ ← (ê, G1, G2, w, g,H, y) and define family F
with key K ′ as:

F [K ′] : {0, 1}l × Zw 7→ {0, 1}l ×G1

(m,α) 7→ (H(yα)⊕m, gα) .

3. Output F [K ′].

Claim 1. O is an efficient obfuscator for E satisfying WBP
for (E, sn), where sn := “IND-CPA security of E”, assum-
ing that the bilinear Diffie-Hellman assumption [5] holds in
(G1, G2) and H is a random oracle.

Proof. The IND-CPA security notion captures an adversary
that can only perform queries to an encryption oracle with
arbitrary plaintexts. The objective is to obtain the plaintext
corresponding to a challenge ciphertext. See Appendix A
for the IND-CCA2 security notion. The IND-CPA security
notion is a restricted version of this where the family D is
absent.

First note that the obfuscator satisfies correctness for E
because F [K ′] = E[K]. The proof of the above claim fol-
lows from the security of the BasicPUB encryption scheme
of [5].

Claim 2. If H is a one-way then E ∈ PTMF\ALF.

Proof. If H is a one-way function and x 6= 1 then it is easy
to prove that E /∈ ALF. We skip the details.

This completes the proof of Theorem 3.

Remark 3. To justify our choice of the particular scheme
(instead of RSA/ElGamal) in the above proof, observe that
RSA does not enjoy the security notion of IND-CPA, while
Encryption in ElGamal is learnable (to see this, consider
access to the ElGamal encryption oracle and obtain encryp-
tion of 1 using randomness 1).

4.3 UWBP for Non-Trivial Families

Let Q ∈ PTMF ∩ LF. Then it is easy to construct an
obfuscator satisfying UWBP for Q with a non-negligible
probability (same as that of learning Q). We call such fam-
ilies trivial.

Although Result 1 rules out the possibility of an ob-
fuscator satisfying UWBP for some Q ∈ PTMF\ALF
(which includes most non-trivial families), it does not rule
out the possibility of an obfuscator satisfying UWBP for
some non-trivial family Q ∈ PTMF ∩ ALF (i.e., Q ∈
PTMF ∩ ALF\LF). Our next positive result shows that,
under reasonable assumptions, this is indeed the case.

4.3.1 UWBP for a Non-Trivial Family.

(informal) There exists an obfuscator satisfying UWBP for
a non-trivial (but contrived) family Q. Formally,

Theorem 4. Under reasonable assumptions, there exists a
family Q ∈ PTMF ∩ ALF\LF and an obfuscator O for Q
that satisfies UWBP for Q.

Proof. For simplicity, we prove the above result in the ran-
dom oracle model. Let R|q| be a random oracle mapping
arbitrary strings to |q|-bit strings. Consider the family Q
defined using Algorithm 4:

Function Q[q] (Input Y ) {
if (R|q|(q||Y ) = q) then output 1 else output 0;

}
Algorithm 4: Family Q.

Observe that Q ∈ PTMF ∩ ALF\LF. It can be proved
that ∀D ∈ PPT (the distinguisher),
∣∣∣∣∣Pr

[
b

R← {0, 1}; q0, q1
R← {0, 1}k ∩ KQ

: DQ[qb](1k, q0, q1) = b

]
− 1

2

∣∣∣∣∣ ≤ negl(k),

(1)
the probability taken over the coin tosses of D. For any
k, let q

R← {0, 1}k ∩ KQ. Consider an obfuscator O that
takes in as input (Q, q) and simply outputs a description of
Q[q] as the obfuscation of Q[q]. Let sn ∈ SN be such that
Q ∈obf sn but O does not satisfy WBP for (Q, sn) w.r.t.
some adversary A ∈ PPT (that is, the white-box advantage
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of (O, Q, sn) is non-negligible), then A can be directly con-
verted into a distinguisher D such that Equation 1 does not
hold, thereby arriving at a contradiction.

4.4 Probablistic PTMFs

Our negative results apply because the approximate
functionality requirement for obfuscators (in the correct-
ness definition of Sect. 2) is defined only for deterministic
PTMFs. What about extended models (such as in [18, 19])
which allow probabilistic families? It turns out that similar
results can be obtained for such models using appropriately
extended definitions. We give an overview below.

We have two types of PPTMs considering the way ran-
domness is encoded: (1) randomness encoded in the in-
put tape as in the encryption oracle of the example in Ap-
pendix A, or (2) randomness encoded in the key tape as in
the challenge oracle of the same example. Our negative re-
sults assume that the obfuscated family is of Type (1). How-
ever, we can also talk about obfuscating Type (2) families
(this was considered in [18, 19]). We call a PTMF of the
latter type a probabilistic PTMF (PPTMF).

Intuitively, a PPTMF is simply an ordinary PTMF Q
with part of the key used for randomness, so that two differ-
ent keys are “equivalent” provided only their random bits
are different. Formally, a PPTMF is a pair (Q, τ), where
Q ∈ PTMF and τ is an equivalence relation on KQ that
partitions KQ into equivalence classes, s.t. ∀q1, q2 ∈ KQ :

τ(q1, q2) = 1 ⇐⇒ only random bits of q1, q2 are different.

The definitions of equality, (approximate) learnability,
approximate functionality and correctness for PTMFs can
be extended to PPTMFs using the relation τ .

Despite several known positive white-box results for
PPTMFs [18, 19], our negative results also extend to
such families assuming a ‘τ -decidability’ property, which
roughly says that for every equivalence class of Q in τ , there
must exist an efficient distinguisher that decides whether a
given PTM is an member of that class or not (any meaning-
ful PPTMF must satisfy this property). The correspond-
ing statement of our main negative result is: for every
PPTMF Q that is τ -decidable but not τ -approx. learn-
able, there exists sn ∈ SN such that Q ∈obf sn but ev-
ery τ -obfuscator for Q fails to satisfy the WBP for (Q, sn).
The τ -decidability property allows us to extend the counter-
example in the proof of Theorem 1. Details will be given in
a forthcoming extended version of this paper.

5 Conclusion

The objective of White-Box Cryptography (WBC) is to
implement cryptographic primitives in software in a secure

way. Since many software implementations are subject to
attacks from their execution hosts, WBC is of practical im-
portance. Unfortunately, it lacks a theoretical foundation.
This paper provides an initial step to bring the foundations
of white-box cryptography to a same level as obfuscation.

This work made several contributions in this regard. We
extended the notion of WBC to arbitrary cryptographic
primitives and initiated a formal study of WBC by intro-
ducing precise definitions of what it means for a white-box
implementation to be secure. To achieve this, we formalized
the White-Box Property (WBP). The WBP is defined for
a program family (e.g., encryption) with associated Secu-
rity Notion (e.g., IND-CPA), and describes how much ‘use-
ful information’ is leaked from the white-boxed program.
We also showed how to encode security notions in a formal
manner, which might be of independent interest.

This new theoretic model provides a context to investi-
gate the security of white-box implementations. We present
some (im)possibility results, and describe connections be-
tween WBC and obfuscation. Specifically, we show that
any obfuscator fails to satisfy the Universal White-Box
Property (UWBP) for non-learnable functions, in the sense
that there exists a (contrived) security notion that is satis-
fied in ‘black-box’ setting, but fails when an adversary has
white-box access to the obfuscated program. However, we
show that UWBP can be achieved for non-learnable, but
approximate learnable families. Furthermore, we show that
under reasonable computational assumptions, there exists
a non-learnable family and an obfuscator that satisfies the
WBP for that family under a meaningful security notion. In
particular, we described an obfuscator that turns a IND-CPA
secure symmetric scheme into an IND-CPA secure asym-
metric encryption scheme.
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A The IND-CCA2 Security Notion

Let E = (G,E, D) be a symmetric encryption scheme.
The key generation algorithm, G takes in as input the se-
curity parameter (1k) and a k bit random string. It out-
puts a k bit symmetric key K. As an example, we describe
Indistinguishability under Adaptive Chosen Ciphertext At-
tack (IND-CCA2) of E using security notion ind-cca2-E =
(3, pin,Q, Extr, Win), with pin(k) = 2k + 1 and Q =
(E,D,C) (see Algorithm 5).

Function E[K](Input (α, m)) {
/* This is encryption oracle */

/* K is encryption key */
/* α is randomness */
/* m is plaintext */

output E(K, α, m)
}
Function D[K](Input c) {

/* This is decryption oracle */
/* K is decryption key */

/* c is ciphertext */
output D(K, c)

}
Function C[(b,K, β)](Input (m0,m1)) {

/* This is challenge oracle */
/* b ∈ {0, 1} is a bit */

/* K is encryption key */
/* β is randomness */

/* m0,m1 are plaintexts */
if (|m0| = |m1|) then output E(K, β, mb) else
output 0.

}
Function Extr(Input r) {

/* Assume: r ∈ {0, 1}2k+1
*/

parse r as (γ, β, b)
/* Assume: γ ∈ {0, 1}k

*/
/* Assume: β ∈ {0, 1}k

*/
/* Assume: b ∈ {0, 1} */

K ← G(1|γ|, γ)
output K, K, (b,K, β)

}
Function Win(Input (r,Queries, s)) {

Parse r as (q, x, a);
if ((At most one query to C[(b,K, β)]) AND
(No query to D[K] on output of C[(b,K, β)] after
query to C[(b,K, β)]) AND (s = b))
then output 1 else output 0.

}
Algorithm 5: Security Notion ind-cca2-E

E ∈obf ind-cca2-E since the Win predicate does not

consider the queries made to the encryption oracle E[K].

B The sUF-CMA Security Notion

As another example, we give a security notion for signa-
tures called strong Unforgeability under Chosen Message
Attack (sUF-CMA), defined for probabilistic schemes. In
this, the adversary must output a valid (message, signature)
pair that is not the (input, output) pair of any sign query. In
fact, the notion we present is even stronger than standard
sUF-CMA because we allow the adversary to choose ran-
domness for the signing oracle.2

Let S = (G,S, V ) be a signature scheme. The key gen-
eration algorithm, G takes in as input the security parameter
(1k) and a k bit random string. It outputs a k bit signing
key Ks and a k bit verification key Kv . We define sUF-
CMA security of S using security notion suf -cma-S =
(2, pin,Q,Extr, Win), with pin(k) = k and Q = (S,V).
Details are given in Algorithm 6.

Function S[Ks](Input (α, m)) {
/* This is signing oracle */

/* Ks is signing key */
/* α is randomness */

/* m is message */
output S(Ks, α, m)

}
Function V[Kv](Input NULL) {

/* Kv is verification key */
/* output verification key */

output Kv

}
Function Extr(Input r) {

/* Assume: r ∈ {0, 1}k
*/

(Ks,Kv) ← G(1|r|, r)
output Ks,Kv

}
Function Win(Input (r,Queries, s)) {

(Ks,Kv) ← G(1|r|, r)
Parse s as (m,σ);
if ((V (Kv,m, σ) = True) AND
(6 ∃α : ((α,m), σ) is input, output pair of S[Ks]))
then output 1 else output 0.

}
Algorithm 6: Security Notion suf -cma-S

Observe that S /∈obf suf -cma-S .
2One way to define the weaker notion, where randomness is not se-

lected by adversary, is to assume that the adversary can make at most `
sign queries and replicate the signing oracle ` times. Then set each oracle
to use different randomness, which is now encoded in the key tape (as in
the challenge oracle of ind-cca2-E). Before declaring a win in the Win
predicate, ensure that each signing oracle was queried at most once.

11


