
Certificate-Based Signature Schemes
without Pairings or Random Oracles

Joseph K. Liu1, Joonsang Baek1, Willy Susilo2, and Jianying Zhou1

1 Cryptography and Security Department
Institute for Infocomm Research, Singapore

{ksliu, jsbaek, jyzhou}@i2r.a-star.edu.sg
2 Centre for Computer and Information Security (CCISR)

School of Computer Science and Software Engineering
University of Wollongong, Australia

wsusilo@uow.edu.au

Abstract. In this paper, we propose two new certificate-based signa-
ture (CBS) schemes with new features and advantages. The first one
is very efficient as it does not require any pairing computation and its
security can be proven using Discrete Logarithm assumption in the ran-
dom oracle model. We also propose another scheme whose security can
be proven in the standard model without random oracles. To the best
of our knowledge, these are the first CBS schemes in the literature that
have such kind of features.

1 Introduction

Public Key Infrastructure (PKI). In a traditional public key cryptography
(PKC), a user Alice signs a message using her private key. A verifier Bob verifies
the signature using Alice’s public key. However, the public key is just merely a
random string and it does not provide authentication of the signer by itself. This
problem can be solved by incorporating a certificate generated by a trusted party
called the Certificate Authority (CA) that provides an unforgeable signature
and trusted link between the public key and the identity of the signer. The
hierarchical framework is called the public key infrastructure (PKI), which is
responsible to issue and manage the certificates (chain). In this case, prior to the
verification of a signature, Bob needs to obtain Alice’s certificate in advance and
verify the validity of her certificate. If it is valid, Bob extracts the corresponding
public key which is then used to verify the signature. In the point of view of a
verifier, it takes two verification steps for independent signatures. This approach
seems inefficient, in particular when the number of users is very large.
Identity-Based cryptography (IBC). Identity-based cryptography (IBC), in-
vented by Shamir [1] in 1984, solves the aforementioned problem by using Alice’s
identity (or email address) which is an arbitrary string as her public key while
the corresponding private key is a result of some mathematical operation that
takes as input the user’s identity and the master secret key of a trusted author-
ity, referred to as “Private Key Generator (PKG)”. This way, the certificate is

2 Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

implicitly provided and the explicit authentication of public keys is no longer
required. The main disadvantage of identity-based cryptography is an uncondi-
tional trust to the PKG. Hence, the PKG can impersonate any user, or decrypt
any ciphertexts. Hence, IBC is only suitable for a closed organization where the
PKG is completely trusted by everyone in the group.

Certificate-Based cryptography (CBC). To integrate the merits of IBC
into PKI, Gentry [2] introduced the concept of certificate-based encryption (CBE).
A CBE scheme combines a public key encryption scheme and an identity based
encryption scheme between a certifier and a user. Each user generates his/her
own private and public keys and requests a certificate from the CA while the
CA uses the key generation algorithm of an identity based encryption (IBE) [3]
scheme to generate the certificate. The certificate is implicitly used as part of the
user decryption key, which is composed of the user-generated private key and
the certificate. Although the CA knows the certificate, it does not have the user
private key. Thus it cannot decrypt any ciphertexts. In addition to CBE, the
notion of certificate-based signature (CBS) was first suggested by Kang et al.
[4]. However, one of their proposed schemes was found insecure against key re-
placement attack, as pointed out by Li et al. [5]. They also proposed a concrete
scheme. In parallel to their construction, Au et al. [6] proposed a certificate-
based ring signature scheme. Nevertheless, all the above schemes require pairing
operations and can be only proven in the random oracle model. To date, it is
unknown whether the existence of pairing based cryptography is essential for
the construction of CBS schemes.

We remark that certificateless cryptography [7] is another stream of research,
which is to solve the key escrow problem inherited by IBC. Although at the first
glance certificateless cryptography shares several similarities with certificate-
based cryptography, each notion has its own merit and distinct features.

Our Contributions. In this paper, we propose two CBS schemes. The first
scheme does not require any pairing operations, which is regarded as costly
operations compared to other operations such as exponentiation. According to
the current MIRACL implementation [8], a 512-bit Tate pairing takes 20 ms
whereas a 1024-bit prime modular exponentiation takes 8.8 ms. Without pairing,
our scheme is more efficient than all of the previous schemes proposed so far [4–
6]. This distinct and interesting property enables our scheme to be implemented
in some power-constrained devices, such as wireless sensor networks.

In addition, our second scheme can be proven in the standard model without
random oracles. All previous schemes mentioned above rely on the random oracle
model to prove their security. It is generally believed that cryptographic schemes
relaying on the random oracles may not be secure if the underlying random
oracles are realized as hash functions in the real world. For some applications
that require very high security, it is believed that only those schemes that can be
proven in the standard model without random oracles must be employed. Hence
our second scheme can be suitable for those particular applications.

Certificate-Based Signature Schemes without Pairings or Random Oracles 3

2 Preliminaries

2.1 Notations

Pairing . Let e be a bilinear map such that e : G × G → GT such that it has
the following properties:

– G and GT are cyclic multiplicative groups of prime order p.
– each element of G and GT has unique binary representation.
– g is a generator of G.
– (Bilinear) ∀x, y ∈ G and a, b ∈ Zp, e(xa, yb) = e(x, y)ab.
– (Non-degenerate) e(g, g) 6= 1.

2.2 Mathematical Assumptions

Definition 1 (Discrete Logarithm (DL) Assumption). Given a group G
of prime order q with generator g and elements A ∈ G, the DL problem in G is
to output α ∈ Zq such that A = gα.

An adversary B has at least an ε advantage if

Pr[B(g,A) = α | A = gα] ≥ ε

We say that the (ε, t)-DL assumption holds in a group G if no algorithm running
in time at most t can solve that DL problem in G with advantage at least ε.

Definition 2 (Generalized Computational Diffie-Hellman (GCDH) As-
sumption). Given a group G of prime order p with generator g and elements
ga, gb ∈ G where a, b are selected uniformly at random from Z∗p, the GCDH
problem in G is to output (gabc, gc), where gc ∈ G.

An adversary B has at least an ε advantage if

Pr[B(g, ga, gb) = (gabc, gc)] ≥ ε

We say that the (ε, t)-GCDH assumption holds in a group G if no algorithm
running in time at most t can solve the GCDH problem in G with advantage at
least ε.

It is a strictly weaker assumption than the Generalized Bilinear Diffie-Hellman
(GBDH) assumption [7], which is defined as follow:

Definition 3 (Generalized Bilinear Diffie-Hellman (GBDH) Assump-
tion). Given a group G of prime order p with generator g and elements ga, gb, gb

′ ∈
G where a, b, b′ are selected uniformly at random from Z∗p, the GBDH problem
in G is to output (e(gc, g)abb

′
, gc), where gc ∈ G.

An adversary B has at least an ε advantage if

Pr[B(g, ga, gb, gb
′
) = (e(gc, g)abb

′
, gc)] ≥ ε

We say that the (ε, t)-GBDH assumption holds in a group G if no algorithm
running in time at most t can solve the GBDH problem in G with advantage at
least ε.

4 Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

Lemma 1. The GCDH assumption is strictly weaker than the GBDH assump-
tion.

Proof. Assume there is a GCDH adversary A. We construct another adver-
sary B to solve the GBDH problem. Given (g, ga, gb, gb

′
) as the GBDH problem

instance, B gives (g, ga, gb) to A. A outputs (gabc, gc) with probability ε and
time t. B outputs (e(gb

′
, gabc), gc) as the solution to the GBDH problem. Since

e(gb
′
, gabc) = e(gc, g)abb

′
, it is a valid solution. Thus B can solve GBDH problem

with time t and probability ε.

Definition 4 (Many-DH Assumption [9] (Simplified Version) 3). Given
a group G of prime order p with generator g and elements ga, gb, gc, gab, gac, gbc ∈
G where a, b, c are selected uniformly at random from Z∗p, the Many-DH problem
in G is to output gabc.

An adversary B has at least an ε advantage if

Pr[B(g, ga, gb, gc, gab, gac, gbc) = gabc] ≥ ε

We say that the (ε, t)-Many-DH assumption holds in a group G if no algorithm
running in time at most t can solve the Many-DH problem in G with advantage
at least ε.

3 Security Model

Definition 5. A certificate-based signature (CBS) scheme is defined by six al-
gorithms:

– Setup is a probabilistic algorithm taking as input a security parameter. It
returns the certifier’s master key msk and public parameters param. Usually
this algorithm is run by the CA.

– UserKeyGen is a probabilistic algorithm that takes param as input. When
run by a client, it returns a public key PK and a secret key usk.

– Certify is a probabilistic algorithm that takes as input (msk, τ, param,PK, ID)
where ID is a binary string representing the user information. It returns
Cert′τ which is sent to the client. Here τ is a string identifying a time pe-
riod.

– Consolidate is a deterministic certificate consolidation algorithm taking as
input (param, τ, Cert′τ) and optionally Certτ−1. It returns Certτ , the cer-
tificate used by a client in time period τ .

– Sign is a probabilistic algorithm taking as input (τ, param,m,Certτ , usk)
where m is a message. It outputs a ciphertext σ.

– Verify is a deterministic algorithm taking (param,PK, ID, σ) as input in
time period τ . It returns either valid indicating a valid signature, or the
special symbol ⊥ indicating invalid.

3 In the original version presented in [9], the number of input tuples can be as much
as O(log k) for some security parameter k. Here we simplify it for just enough to our
scheme.

Certificate-Based Signature Schemes without Pairings or Random Oracles 5

We require that if σ is the result of applying algorithm Sign with intput (τ, param,
m,Certτ , usk) and (usk, PK) is a valid key-pair, then valid is the result of ap-
plying algorithm Verify on input (param,PK, ID, σ), where Certτ is the output
of Certify and Consolidate algorithms on input (msk, param, τ, PK). That is, we
have

VerifyPK,ID(Signτ,Certτ ,usk(m)) = valid

We also note that a concrete CBS scheme may not involve certificate consolida-
tion. In this situation, algorithm Consolidate will simply output Certτ = Cert′τ .

In the rest of this paper, for simplicity, we will omit Consolidate and the time
identifying string τ in all notations.

The security of CBS is defined by two different games and the adversary
chooses which game to play. In Game 1, the adversary models an uncertified
entity while in Game 2, the adversary models the certifier in possession of the
master key msk attacking a fixed entity’s public key. We use the enhanced model
by Li et al. [5] which captures key replacement attack in the security of Game
1.

Definition 6 (CBS Game 1 Existential Unforgeability). The challenger
runs Setup, gives param to the adversary A and keeps msk to itself. The adver-
sary then interleaves certification and signing queries as follows:

– On user-key-gen query (ID), if ID has been already created, nothing is to
be carried out. Otherwise, the challenger runs the algorithm UserKeyGen to
obtains a secret/public key pair (uskID, PKID) and adds to the list L. In
this case, ID is said to be ‘created’. In both cases, PKID is returned.

– On corruption query (ID), the challenger checks the list L. If ID is there, it
returns the corresponding secret key uskID. Otherwise nothing is returned.

– On certification query (ID), the challenger runs Certify on input (msk,
param, PK, ID), where PK is the public key returned from the user-key-gen
query, and returns Cert.

– On signing query (ID, PK,m), the challenger generates σ by using algorithm
Sign.

A can replace any user ID public key with his own choice, but once it has replaced
the public key, it cannot obtain the certificate of the false public key from the
challenger. Finally A outputs a signature σ∗, a message m∗ and a public key
PK∗ with user information ID∗. The adversary wins the game if

– σ∗ is a valid signature on the message m∗ under the public key PK∗ with
user information ID∗, where PK∗ might not be the one returned from user-
key-gen query.

– ID∗ has never been submitted to the certification query.
– (ID∗, PK∗,m∗) has never been submitted to the signing query.

We define A’s advantage in this game to be Adv(A) = Pr[A wins].

6 Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

Definition 7 (CBS Game 2 Existential Unforgeability). The challenger
runs Setup, gives param and msk to the adversary A. The adversary interleaves
user-key-gen queries, corruption queries and signing queries as in Game 1. But
different from Game 1, the adversary is not allowed to replace any public key.

Finally A outputs a signature σ∗, a message m∗ and a public key PK∗ with
user information ID∗. The adversary wins the game if

– σ∗ is a valid signature on the message m∗ under the public key PK∗ with
user information ID∗.

– PK∗ is an output from user-key-gen query.
– ID∗ has never been submitted to corruption query.
– (ID∗, PK∗,m∗) has never been submitted to the signing query.

We define A’s advantage in this game to be Adv(A) = Pr[A wins].

We note that our model does not support security against Malicious Certifier.
That is, we assume that the certifier generates all public parameters honest,
according to the algorithm specified. The adversarial certifier is only given the
master secret key, instead of allowing to generate all public parameters. Although
malicious certifier has not been discussed in the literature, similar concept of
Malicious Key Generation Centre (KGC) [10] has been formalized in the area
of certificateless cryptography.

4 A CBS without Pairing

Our scheme is motivated from Beth’s identification scheme [11].

Setup. Let G be a multiplicative group with order q. The PKG selects a random
generator g ∈ G and randomly chooses x ∈R Z∗q . It sets X = gx. Let H :
{0, 1}∗ → Z∗q be a cryptographic hash function. The public parameters param
and master secret key msk are given by

param = (G, q, g,X,H) msk = x

UserKeyGen. User selects a secret value u ∈ Z∗q as his secret key usk, and com-
putes his public key PK as (gu, Xu, πu) where πu is the following non-interactive
proof-of-knowledge (PoK) 4:

PK{(u) : U1 = gu ∧ U2 = Xu}

Certify. Let h̃ = H(PK, ID) for user with public key PK and binary string ID
which is used to identify the user. To generate a certificate for this user, the CA
randomly selects r ∈R Z∗q , computes

R = gr s = r−1(h̃− xR) mod q

4 For the details of notation and implementation of PoK, please refer to [12].

Certificate-Based Signature Schemes without Pairings or Random Oracles 7

The certificate is (R, s). Note that a correctly generated certificate should fulfill
the following equality:

RsXR = gh̃ (1)

Sign. To sign a message m ∈ {0, 1}∗, the signer with public key PK (and user
info ID) , certificate (R, s) and secret key u, randomly selects y ∈R Z∗q , computes

Y = R−y h = H(Y,R,m) z = y + h s u mod q

and outputs (Y,R, z) as the signature σ.
Verify. Given a signature σ = (Y,R, z) for a public key PK on a message m,
a verifier first checks whether πu is a valid PoK. If not, output ⊥. Otherwise
computes h = H(Y,R,m), h̃ = H(PK, ID), and checks whether

(gu)hh̃ ?= RzY (Xu)hR (2)

Output valid if it is equal. Otherwise, output ⊥.

4.1 Security Analysis

Correctness. It is easy to see that the signature scheme is correct, as shown
in following:

RzY (Xu)hR = Ry+hsuR−yXuhR = grhsuguxhR

= grhu
(
r−1(h̃−xR)

)
+uxhR = ghuh̃−huxR+uxhR = (gu)hh̃

Theorem 1 (Unforgeability against Game 1 Adversary). The CBS scheme
without pairing is (ε, t)-existential unforgeable against Game 1 adversary (defined
in Section 3) with advantage at most ε and runs in time at most t, assuming
that the (ε′, t′)-DL assumption holds in G, where

ε′ =
(

1− qh(qe + qs)
q

)(
1− 1

q

)(1
qh

)
ε, t′ = t+O(qe + qs)E

and qe, qs, qh are the numbers of certification queries, signing queries and hashing
queries the adversary is allowed to make and E is the time for an exponentiation
operation.

Proof. Here we follow the idea from [13, 14]. Assume there exists a forger A.
We construct an algorithm B that makes use of A to solve discrete logarithm
problem. B is given a multiplicative group G with generator g and order q, and
a group element A ∈ G. B is asked to find α ∈ Zq such that gα = A.
Setup: B chooses a hash function H : {0, 1}∗ → Zq which behaves like a random
oracle. B is responsible for the simulation of this random oracle. B assigns X = A
and outputs the public parameter param = (G, q, g,X,H) to A.

8 Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

User-Key-Gen / Corruption Query: B generates the secret and public key pair ac-
cording to the algorithm and stores in the table and outputs the public key. On
the corruption query, B returns the corresponding secret key.
Certification Query: A is allowed to make certification query for a public key
PK with identification string ID. B simulates the oracle as follow. It randomly
chooses a, b ∈R Zq and sets

R = Xagb s = −a−1R mod q H(PK, ID) = bs mod q

Note that (R, s) generated in this way satisfies the equation (1) in the Certify
algorithm. It is a valid certificate. B outputs (R, s) as the certificate of PK, ID
and store the value of (R, s,H(PK, ID), PK, ID) in the table for consistency.
Later if A queries the H random oracle for PK, ID, B outputs the same value. If
PK, ID is not found in the table, B executes the certification oracle simulation,
stores the value (R, s,H(PK, ID), PK, ID) in the table and outputs H(PK, ID)
only.
Signing Query: A queries the signing oracle for a message m and a public key
PK = (gu, Xu, πu) with identification string ID. B first checks that whether πu
is a valid PoK for (gu, Xu). If not , output⊥. Else further checks whether PK, ID
has been queries for the H random oracle or extraction oracle before. If yes, it
just retrieves (R, s,H(PK, ID), PK, ID) from the table. Let h̃ = H(PK, ID). It

also randomly generates h, z ∈R Zq, and sets Y = (gu)hh̃

Rz(Xu)hR
and assigns the value

h to the random oracle query of H(Y,R,m). It outputs the signature (Y,R, z)
for the message m and stores the value h, corresponding to H(Y,R,m) in the
hash table for consistency. If PK, ID has not been queried to the random oracle
or certification oracle, B executes the simulation of the certification oracle and
uses the corresponding certificate to sign the message by the above algorithm.
Output Calculation: Finally the adversary A outputs a forged signature σ∗(1) =
(Y ∗, R∗, z∗(1)) on message m∗ and public key PK∗ with identification string ID∗.
B rewinds A to the point it just queries H(Y ∗, R∗,m∗) and supplies with a
different value (corresponding to the same input value to the hash query). A
outputs another pair of signature σ∗(2) = (Y ∗, R∗, z∗(2)). B repeats twice and
obtains σ∗(3) = (Y ∗, R∗, z∗(3)) and σ∗(4) = (Y ∗, R∗, z∗(4)). Note that Y ∗ and R∗

should be the same every time. We let c1, c2, c3, c4 be the output of the random
oracle queries H(Y ∗, R∗,m∗) for the first, second, third and forth time.

We also denote u, r, x, y ∈ Zq such that gr = R∗ , gx = X, gy = Y ∗ and
PK∗ = (gu, Xu). From equation (2), we have

ciuH(PK∗, ID∗) = rz∗(i) + y + xuciR
∗ mod q for i = 1, 2, 3, 4

In these equations, only r, y, x, u are unknown to B. B solves for these values
from the above 4 linear independent equations, and outputs x as the solution of
the discrete logarithm problem.
Probability Analysis: The simulation of the random oracle fails if the oracle as-
signment H(PK, ID) causes inconsistency. It happens with probability at most

Certificate-Based Signature Schemes without Pairings or Random Oracles 9

qh/q. Hence the simulation is successful qe + qs times (since H(PK, ID) may
also be queried in the signing oracle if PK, ID has not been queried in the
certification oracle) with probability at least(

1− qh
q

)qe+qs
≥ 1− qh(qe + qs)

q

Due to the ideal randomness of the random oracle, there exists a queryH(Y ∗, R∗,m∗)
with probability at least 1 − 1/q. B guesses it correctly as the point of rewind,
with probability at least 1/qh. Thus the overall successful probability is(

1− qh(qe + qs)
q

)(
1− 1

q

)(1
qh

)
ε

The time complexity of the algorithm B is dominated by the exponentiations
performed in the certification and signing queries, which is equal to t+O(qe +
qs)E ut

Theorem 2 (Unforgeability against Game 2 Adversary). The CBS scheme
without pairing is (ε, t)-existential unforgeable against Game 2 adversary (defined
in Section 3) with advantage at most ε and runs in time at most t, assuming
that the (ε′, t′)-DL assumption holds in G, where

ε′ =
(

1− qhqs
q

)(
1− 1

q

)(1
qh

)(1
qu

)
ε, t′ = t+O(qs)E

and qs, qh, qu are the numbers of signing queries, hashing queries and user-key-
gen queries the adversary is allowed to make and E is the time for an exponen-
tiation operation.

Proof. Assume there exists a forger A. We construct an algorithm B that makes
use of A to solve discrete logarithm problem. B is given a multiplicative group
G with generator g and order q, and a group element A ∈ G. B is asked to find
α ∈ Zq such that gα = A.

Setup: B chooses a hash function H : {0, 1}∗ → Zq which behaves like a random
oracle. B is responsible for the simulation of this random oracle. B randomly
chooses x ∈R Zq and sets X = gx. It outputs the public parameter param =
(G, q, g,X,H) to A.

User-Key-Gen Query: B chooses a particular query ID′ and assign the public key
PK ′ = (A,Ax, π′) where π′ can be simulated by the control of the random oracle.
For the other queries, B generates the secret and public key pair according to
the algorithm and stores the value in the table.

Corruption Query: If the query is not ID′, B outputs the corresponding secret
key from the table. Otherwise B aborts.

Signing Query: It can be simulated in the same way as in Game 1, which also
does not require the knowledge of the secret key.

10 Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

Output Calculation: Finally the adversary A outputs a forged signature σ∗(1) =
(Y ∗, R∗, z∗(1)) on message m∗ and public key PK∗ with identification string ID∗.
If PK∗ 6= PK ′, B aborts. Otherwise B rewinds A to the point it just queries
H(Y ∗, R∗,m∗) and supplies with a different value (corresponding to the same
input value to the hash query). A outputs another pair of signature σ∗(2) =
(Y ∗, R∗, z∗(2)). B repeats and obtains σ∗(3) = (Y ∗, R∗, z∗(3)). Note that Y ∗ and R∗

should be the same every time. We let c1, c2, c3 be the output of the random
oracle queries H(Y ∗, R∗,m∗) for the first, second and third.

We also denote u, r, y ∈ Zq such that gr = R∗ , gy = Y ∗ and PK∗ = (gu, Xu).
From equation (2), we have

ciuH(PK∗, ID∗) = rz∗(i) + y + xuciR
∗ mod q for i = 1, 2, 3

In these equations, only r, y, u are unknown to B. B solves for these values from
the above 3 linear independent equations, and outputs u as the solution of the
discrete logarithm problem.
Probability Analysis: The simulation of the random oracle fails if the oracle assign-
ment H(PK, ID) causes inconsistency. It happens with probability at most qh/q.

Hence the simulation is successful qs times with probability at least
(

1− qh
q

)qs
≥

1− qhqs
q Due to the ideal randomness of the random oracle, there exists a query

H(Y ∗, R∗,m∗) with probability at least 1 − 1/q. B guesses it correctly as the
point of rewind, with probability at least 1/qh. In addition, B needs to guess cor-
rectly that PK ′ = PK∗, which happens with probability 1/qu. Thus the overall
successful probability is

(
1 − qhqs

q

)(
1 − 1

q

)(
1
qh

)(
1
qu

)
ε The time complexity of

the algorithm B is dominated by the exponentiations performed in the signing
queries, which is equal to t+O(qs)E ut

5 A CBS without Random Oracles

Our scheme is motivated from the identity-based encryption scheme from Waters
[15]. Let Hu : {0, 1}∗ → {0, 1}nu and Hm : {0, 1}∗ → {0, 1}nm be two collision-
resistant cryptographic hash functions for some nu, nm ∈ Z.
Setup. Select a pairing e : G × G → GT where the order of G is p. Let g be a
generator of G. Randomly select α ∈R Zp, g2 ∈R G and compute g1 = gα. Also
select randomly the following elements:

u′,m′ ∈R G ûi ∈R G for i = 1, . . . , nu m̂i ∈R G for i = 1, . . . , nm

Let Û = {ûi}, M̂ = {m̂i}. The public parameters param are (e,G,GT , p, g, g1, g2,
u′, Û ,m′, M̂) and the master secret key msk is gα2 .
UserKeyGen. User selects a secret value x ∈ Zp as his secret key usk, and com-
putes his public key PK as (pk(1), pk(2)) = (gx, gx1).
Certify. Let u = Hu(PK, ID) for user with public key PK and binary string
ID which is used to identify the user. Let u[i] be the i-th bit of u. Define U ⊂
{1, . . . , nu} to be the set of indicies such that u[i] = 1.

Certificate-Based Signature Schemes without Pairings or Random Oracles 11

To construct the certificate, the CA randomly selects ru ∈R Zp and computes(
gα2
(
U
)ru

, gru
)

= (cert(1), cert(2)) where U = u′
∏
i∈U

ûi

Sign. To sign a message m ∈ {0, 1}∗, the signer with identity PK (and user
information ID) , certificate (cert(1), cert(2)) and secret key usk, compute m =
Hm(m). Let m[i] be the i-th bit of m and M ⊂ {1, . . . , nm} be the set of
indicies i such that m[i] = 1. Randomly select rπ, rm ∈R Zp, compute u =
Hu(PK, userinfo), U = u′

∏
i∈U ûi and

σ =

((
cert(1)

)usk(
U
)rπ(

m′
∏
i∈M

m̂i

)rm

,
(

cert(2)
)usk

grπ , grm

)
= (V,Rπ, Rm)

Verify. Given a signature σ = (V,Rπ, Rm) for a public key PK and user informa-
tion ID on a message m, a verifier first checks whether e(gx, g1) = e(gx1 , g). If not,
outputs ⊥. Otherwise computes m = Hm(m), u = Hu(PK, ID), U = u′

∏
i∈U ûi

and checks whether

e(V, g) ?= e(g2, gx1) e(U,Rπ) e(m′
∏
i∈M

m̂i, Rm)

Output valid if it is equal. Otherwise output ⊥.

5.1 Security Analysis

Correctness. The correctness of the scheme is as follows.

e(V, g) = e

(
gαx2 Urux Urπ

(
m′
∏
i∈M

m̂i

)rm
, g

)
= e(gx2 , g

α) e(Urux+rπ , g) e
((
m′
∏
i∈M

m̂i

)rm
, g
)

= e(g2, gx1) e(U, grux+rπ) e(m′
∏
i∈M

m̂i, g
rm)

= e(g2, gx1) e(U,Rπ) e(m′
∏
i∈M

m̂i, Rm)

Theorem 3 (Unforgeability against Game 1 Adversary). The CBS scheme
without random oracles is (ε, t)-existential unforgeable against Game 1 adversary
(defined in Section 3) with advantage at most ε and runs in time at most t, as-
suming that the (ε′, t′)-GCDH assumption holds in G, where

ε′ ≥ ε

16(qe + qs)(nu + 1)qs(nm + 1)
, t′ = t+O

((
qenu+qs(nu+nm)

)
ρ+(qe+qs)τ

)
where qe is the number of queries made to the Certification Query, qs is the
number of queries made to the Signing Query, and ρ and τ are the time for a
multiplication and an exponentiation in G respectively.

12 Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

The proof is given in Appendix A.

Theorem 4 (Unforgeability against Game 2 Adversary). The CBS scheme
without random oracles is (ε, t)-existential unforgeable against Game 2 adversary
(defined in Section 3) with advantage at most ε and runs in time at most t, as-
suming that the (ε′, t′)-Many-DH assumption holds in G, where

ε′ ≥ ε

16qs(nu + 1)qs(nm + 1)qk
, t′ = t+O

((
qs(nu + nm)

)
ρ+ (qk + qs)τ

)
where qs is the number of queries made to the Signing Queries, qk is the number
of queries made to the User-key-gen Queries and ρ and τ are the time for a
multiplication and an exponentiation in G respectively.

The proof is given in Appendix B.

6 Concluding Remarks

In this paper, we proposed two certificate-based signature schemes. The first one
does not require any pairing operations. Thus, it is very efficient and particularly
suitable to be implemented in some power-constrained devices, such as wireless
sensor networks. The second one does not require random oracles for proving its
security. It may be suitable for applications that require a high level of security
with regard to the fact that cryptographic schemes using the random oracles may
not be secure if the random oracles are replaced by conventional hash functions
in reality.

References

1. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: CRYPTO
’84. Vol. 196 of LNCS., Springer (1984) 47–53

2. Gentry, C.: Certificate-based encryption and the certificate revocation problem.
In: EUROCRYPT ’03. Vol. 2656 of LNCS, Springer-Verlag (2003) 272–293

3. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. In:
CRYPTO ’01. Vol. 2139 of LNCS., Springer (2001) 213–229

4. Kang, B.G., Park, J.H., Hahn, S.G.: A certificate-based signature scheme. In:
Ct-RSA ’04. Vol. 2964 of LNCS., Springer (2004) 99–111

5. Li, J., Huang, X., Mu, Y., Susilo, W., Wu, Q.: Certificate-based signature: Security
model and efficient construction. In: EuroPKI ’07. Vol. 4582 of LNCS., Springer
(2007) 110–125

6. Au, M., Liu, J., Susilo, W., Yuen, T.: Certificate based (linkable) ring signature.
In: ISPEC ’07. Vol. 4464 of LNCS., Springer (2007) 79–92

7. Al-Riyami, S.S., Paterson, K.: Certificateless public key cryptography. In: ASI-
ACRYPT ’03. Vol. 2894 of LNCS., Springer (2003) 452–473

8. MIRACL: http://www.shamus.ie/.
9. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-

DDH separation. In: CRYPTO ’04. Vol. 2442 of LNCS., Springer (2002) 597–612

Certificate-Based Signature Schemes without Pairings or Random Oracles 13

10. Au, M., Chen, J., Liu, J., Mu, Y., Wong, D., Yang, G.: Malicious KGC attacks in
certificateless cryptography. In: ASIACCS 2007, ACM Press (2007) 302–311

11. Beth, T.: Efficient Zero-Knowledged Identification Scheme for Smart Cards. In:
EUROCRYPT ’88. Vol. 330 of LNCS., Springer (1988) 77–86

12. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups
(Extended Abstract). CRYPTO ’97. Vol. 1294 of LNCS., Springer (1997) 410–424

13. Bellare, M., Namprempre, C., Neven, G.: Security Proofs for Identity-Based Iden-
tification and Signature Schemes. In: EUROCRYPT ’04. Vol. 3027 of LNCS.,
Springer (2004) 268–286

14. Bellare, M., Namprempre, C., Neven, G.: Security Proofs for Identity-Based Iden-
tification and Signature Schemes (Full version). Cryptology ePrint Archive, Report
2004/252 (2004) http://eprint.iacr.org/.

15. Waters, B.: Efficient identity-based encryption without random oracles. In: EU-
ROCRYPT ’05. Vol. 3494 of LNCS., Springer (2005) 114–127

16. Paterson, K., Schuldt, J.: Efficient identity-based signatures secure in the standard
model. In: ACISP ’06. Vol. 4058 of LNCS., Springer (2006) 195–206

A Proof of Theorem 3

Proof. Assume there exists a Game 1 adversary A. We are going to construct
another PPT B that makes use of A to solve the GCDH problem with probability
at least ε′ and in time at most t′. We use a similar approach as in [16].
B is given a problem instance as follow: Given a group G, a generator g ∈ G,

two elements ga, gb ∈ G. It is asked to output two elements gabc, gc ∈ G. In
order to use A to solve for the problem, B needs to simulate a challenger and all
oracles for A. B does it in the following way.
Setup. Let lu = 2(qe + qs) and lm = 2qs. B randomly selects two integers ku and
km such that 0 ≤ ku ≤ nu and 0 ≤ km ≤ nm. Also assume that lu(nu + 1) < p
and lm(nm+ 1) < p for the given values of qe, qs, nu and nm. It randomly selects
the following integers:

x′ ∈R Zlu ; z′ ∈R Zlm ; y′, w′ ∈R Zp
x̂i ∈R Zlu , for i = 1, . . . , nu
ẑi ∈R Zlm , for i = 1, . . . , nm
ŷi ∈R Zp, for i = 1, . . . , nu
ŵi ∈R Zp, for i = 1, . . . , nm
Let X̂ = {x̂i}, Ẑ = {ẑi}, Ŷ = {ŷi}, Ŵ = {ŵi}

We further define the following functions for binary strings u and m where
u = Hu(ID) for an identity ID and m = Hm(m) for a message m, as follow:

F (u) = x′ +
∑
i∈Uj

x̂i − luku J(u) = y′ +
∑
i∈Uj

ŷi

K(m) = z′ +
∑
i∈M

ẑi − lmkm L(m) = w′ +
∑
i∈M

ŵi

14 Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

B constructs a set of public parameters as follow:

g1 = ga, g2 = gb u′ = g−luku+x′

2 gy
′
, ûi = gx̂i2 g

ŷi for 1 ≤ i ≤ nu
m′ = g−lmkm+z′

2 gw
′
, m̂i = gẑi2 g

ŵi for 1 ≤ i ≤ nm

Note that the master secret will be gα2 = ga2 = gab and we have the following
equations:

U = u′
∏
i∈U

ûi = g
F (u)
2 gJ(u) and m′

∏
i∈M

m̂i = g
K(m)
2 gL(m)

All public parameters are passed to A.
Oracles Simulation. B simulates all oracles as follow:
(User-key-gen / Corruption Query.) B simulates thess oracle queries in a nature
way, by running algorithm UserKeyGen and maintains a list L. It retrieves the
secret key from L for the corruption query.
(Certification Query.) Upon receiving a query for a certificate of a public key
PK, B retrieves corresponding user information ID from L, and computes u =
Hu(PK, ID). Although B does not know the master secret, it still can construct
the certificate by assuming F (u) 6= 0 mod p. It randomly chooses ru ∈R Zp and
computes

(cert(1), cert(2)) =
(
g
− J(u)
F (u)

1

(
U
)ru

, g
− 1
F (u)

1 gru
)

By letting r̃u = ru− a
F (u) , it can be verifier that cert is a valid certificate, shown

as follow:

cert(1) = g
− J(u)
F (u)

1

(
U
)ru = g

− J(u)
F (u)

1 (gF (u)
2 gJ(u))ru = g−

aJ(u)
F (u) (gF (u)

2 gJ(u))ru

= g−
aJ(u)
F (u) (gF (u)

2 gJ(u))
a

F (u) (gF (u)
2 gJ(u))−

a
F (u) (gF (u)

2 gJ(u))ru

= g−
aJ(u)
F (u) gabg

aJ(u)
F (u) (gF (u)

2 gJ(u))r̃u

= gab(gF (u)
2 gJ(u))r̃u = ga2 (gF (u)

2 gJ(u))r̃u = ga2
(
U
)r̃u

and
cert(2) = g

− 1
F (u)

1 gru = gru−
a

F (u) = gr̃u

To the adversary, all certificates given by B are indistinguishable from the those
generated by the true challenger.

If F (u) = 0 mod p, since the above computation cannot be performed (divi-
sion by 0), the simulator aborts. To make it simple, the simulator will abort if
F (u) = 0 mod lu. The equivalency can be observed as follow. From the assump-
tion lu(nu + 1) < p, it implies 0 ≤ luku < p and 0 ≤ x′ +

∑
i∈Uj x̂i < p (∵ x′ <

lu, x̂i < lu, |U| ≤ nu). We have −p < F (u) < p which implies if F (u) = 0 mod p
then F (u) mod lu. Hence, F (u) 6= 0 mod lu implies F (u) 6= 0 mod p. Thus the
former condition will be sufficient to ensure that a private key can be computed
without abort.

Certificate-Based Signature Schemes without Pairings or Random Oracles 15

(Signing Query.) For a given query of a signature on a public key PK with
user information ID and a message m, B first computes u = Hu(PK, ID) and
m = Hm(m). If the public key has been replaced with public key (pk(1), pk(2))
(that is, the corresponding secret key is not in the list L), it computes the
signature in the following way. Assume K(m) 6= 0 mod lm. Using the argument
mentioned above, it implies K(m) 6= 0 mod p provided that lm(nm + 1) < p.
The signature can be constructed by first randomly selecting rπ, rm ∈R Zp, and
computing

σ =

((
U
)rπ(pk(2)

)− L(m)
K(m)

(
m′
∏
i∈M

m̂i

)rm

, grπ ,
(
pk(2)

)− 1
K(m) grm

)

=

(
gax2

(
U
)rπ(

m′
∏
i∈M

m̂i

)r̃m
, grπ , gr̃m

)
=
(
V,Rπ, Rm

)
where r̃m = rm − ax

K(m) . If K(m) = 0 mod lm, the simulator aborts.
The correctness can be shown as follow:

V =
(
U
)rπ(pk(2)

)− L(m)
K(m)

(
m′
∏
i∈M

m̂i

)rm
=
(
U
)rπ

g
−L(m)x
K(m)

1 (gK(m)
2 gL(m))rm

=
(
U
)rπ

g−
axL(m)
K(m) (gK(m)

2 gL(m))rm

=
(
U
)rπ

g−
axL(m)
K(m) (gK(m)

2 gL(m))
ax
K(m) (gK(m)

2 gL(m))−
ax
K(m) (gK(m)

2 gL(m))rm

=
(
U
)rπ

g−
axL(m)
K(m) gabxg

axL(m)
K(m) (gK(m)

2 gL(m))r̃m =
(
U
)rπ

gabx(gK(m)
2 gL(m))r̃m

=
(
U
)rπ

gax2 (gK(m)
2 gL(m))r̃m =

(
U
)rπ(

ga2
)x(

m′
∏
i∈M

m̂i

)r̃m
and Rm =

(
pk(2)

)− 1
K(m) grm = grm−

ax
K(m) = gr̃m . The signature generated in this

way is indistinguishable to the real one.
If the public key has not been replaced, it retrieves the corresponding secret

key from L. If F (u) 6= 0 mod lu, B constructs a certificate as in the certificate
query, then it just uses the Sign algorithm to create a signature on ID, PK and
m.

If F (u) = 0 mod lu, B tries to construct the signature in a similar way as
above (the case that the public key has been replaced). Assume K(m) 6= 0 mod
lm. Using the argument mentioned above, it implies K(m) 6= 0 mod p provided
that lm(nm+1) < p. The signature can be constructed by first randomly selecting
rπ, rm ∈R Zp, getting the secret key x from L and computing

σ =

((
U
)rπ

g
− L(m)
K(m)x

1

(
m′
∏
i∈M

m̂i

)rmx

, grπ , g
− x
K(m)

1 grmx

)

=

(
gax2

(
U
)rπ(

m′
∏
i∈M

m̂i

)r̃m
, grπ , gr̃m

)

16 Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

where r̃m = rmx− a
K(m)x. If K(m) = 0 mod lm, the simulator aborts.

Output Calculation. If B does not abort, A will return a public key PK∗ with
user information ID∗ and a messagem∗ with a forged signature σ∗ = (V,Rπ, Rm)
on ID∗, the current public key PK∗ and m∗ with probability at least ε. B checks
whether the following conditions are fulfilled:

1. F (u∗) = 0 mod p, where u∗ = Hu(PK∗, ID∗).
2. K(m∗) = 0 mod p , where m∗ = Hm(m∗).

If not all the above conditions are fulfilled, B aborts. Otherwise B computes and
outputs

V

R
J(u∗)
π R

L(m∗)
m

=
gax2

(
U
)rπ(

m′
∏
i∈M m̂i

)rm

gJ(u∗)rπgL(m∗)rm

=
gax2

(
g
F (u∗)
2 gJ(u∗)

)rπ(
g
K(m∗)
2 gL(m∗)

)rm

gJ(u∗)rπgL(m∗)rm

= gax2 = gabx

B outputs (gabx, pk(1)) = (gabx, gx) as the solution to the GCDH problem in-
stance.
Probability Analysis. For the simulation to complete without aborting, we re-
quire the following conditions fulfilled:

1. Certification Queries on an identity ID have F (u) 6= 0 mod lu, where u =
Hu(PK, ID).

2. Signing Queries (ID, PK,m) will either have F (u) 6= 0 mod lu, or K(m) 6=
0 mod lm where m = Hm(m), if the public key PK has not been replaced.
Otherwise, it requires K(m) 6= 0 mod lm.

3. F (u∗) = 0 mod lu and K(m∗) = 0 mod lm.

In order to make the analysis simpler, we will bound the probability of a subcase
of this event.

Let u1, . . . , uqI be the output of the hash function Hu appearing in either
Certification Queries or in Signing Queries not involving any of the challenge
identity ID∗, and let m1, . . . ,mqM be the output of the hash function Hm in the
sign queries involving the challenge list. We have qI ≤ qe + qs and qM ≤ qs. We
also define the events Ai, A∗, B`, B∗ as follow:

Ai : F (ui) 6= 0 mod lu where i = 1, . . . , qI A∗ : F (u∗) = 0 mod p
B` : K(m`) 6= 0 mod lm where ` = 1, . . . , qM B∗ : K(m∗) = 0 mod p

The probability of B not aborting is:

Pr[not abort] ≥ Pr
[(qI∧

i=1

Ai ∧A∗
)
∧
(qM∧
`=1

B` ∧B∗
)]

Certificate-Based Signature Schemes without Pairings or Random Oracles 17

Note that the events
(∧qI

i=1Ai ∧A∗
)

and
(∧qM

`=1B` ∧B∗
)

are independent.
The assumption lu(nu + 1) < p implies if F (u) = 0 mod p then F (u) =

0 mod lu. In addition, it also implies that if F (u) = 0 mod lu, there will be a
unique choice of ku with 0 ≤ ku ≤ nu such that F (u) = 0 mod p. Since ku, x′

and X̂ are randomly chosen,

Pr[A∗] = Pr[F (u∗) = 0 mod p ∧ F (u∗) = 0 mod lu]
= Pr[F (u∗) = 0 mod lu] Pr[F (u∗) = 0 mod p | F (u∗) = 0 mod lu]

=
1
lu

1
nu + 1

On the other hand, we have:

Pr
[qI∧
i=1

Ai|A∗
]

= 1− Pr
[qI∨
i=1

Ai | A∗
]
≥ 1−

qI∑
i=1

Pr[Ai | A∗]

where Ai denote the event F (ui) = 0 mod lu.
Also note that the events F (ui1) = 0 mod lu and F (ui2) = 0 mod lu are

independent, where i1 6= i2, since the outputs of F (ui1) and F (ui2) will differ
in at least one randomly chosen value. Also since the events Ai and A∗ are
independent for any i, we have Pr[Ai|A∗] = 1/lu and

Pr
[qI∧
i=1

Ai ∧A∗
]

= Pr[A∗] Pr
[qI∧
i=1

Ai|A∗
]

=
1

lu(nu + 1)

(
1− qI

lu

)
≥ 1
lu(nu + 1)

(
1− qe + qs

lu

)
=

1
2(qe + qs)(nu + 1)

(
1− 1

2

)
(by setting lu = 2(qe + qs))

=
1

4(qe + qS)(nu + 1)

Using similar analysis technique for signing queries we can have:

Pr
[qM∧
`=1

B` ∧B∗
]
≥ 1

4qs(nm + 1)

By combining the above result, we have

Pr[not abort] ≥ Pr
[(qI∧

i=1

Ai ∧A∗
)
∧
(qM∧
`=1

B` ∧B∗
)]

≥ 1
16(qe + qs)(nu + 1)qs(nm + 1)

18 Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

If the simulation does not abort, A will produce a forged signature with probabil-
ity at least ε. Thus B can solve for the GCDH problem instance with probability

ε′ ≥ ε

16(qe + qs)(nu + 1)qs(nm + 1)

Time Complexity Analysis. The time complexity of B is dominated by the expo-
nentiation and multiplication operations for large values of nu and nm performed
in the partial secret key extraction and signing queries.

There are O(nu) and O(nu + nm) multiplications and O(1) and O(1) expo-
nentiations in the certification query and singing query respectively. The time
complexity of B is t+O

((
qenu + qs(nu + nm)

)
ρ+ (qe + qs)τ

)
ut

B Proof of Theorem 4

Proof. Assume there exists a Game 2 adversary A. We are going to construct
another PPT B that makes use of A to solve the Many-DH problem with prob-
ability at least ε′ and in time at most t′.
B is given a problem instance as follow: Given a group G, a generator g ∈ G,

6 elements ga, gb, gx, gab, gax, gbx ∈ G. It is asked to output an element gabx ∈ G.
In order to use A to solve for the problem, B needs to simulate a challenger and
all oracles for A. B does it in the following way.

Setup. Let lu = 2(qe + qs) and lm = 2qs. B randomly selects two integers ku and
km such that 0 ≤ ku ≤ nu and 0 ≤ km ≤ nm. Also assume that lu(nu + 1) < p
and lm(nm + 1) < p for the given values of qs, nu and nm. It randomly selects
the following integers:

x′ ∈R Zlu ; z′ ∈R Zlm ; y′, w′ ∈R Zp
x̂i ∈R Zlu , for i = 1, . . . , nu
ẑi ∈R Zlm , for i = 1, . . . , nm
ŷi ∈R Zp, for i = 1, . . . , nu
ŵi ∈R Zp, for i = 1, . . . , nm
Let X̂ = {x̂i}, Ẑ = {ẑi}, Ŷ = {ŷi}, Ŵ = {ŵi}

We further define the following functions for binary strings u and m where
u = Hu(PK, ID) for a public key PK with user identity ID and m = Hm(m)
for a message m, as follow:

F (u) = x′ +
∑
i∈Uj

x̂i − luku J(u) = y′ +
∑
i∈Uj

ŷi

K(m) = z′ +
∑
i∈M

ẑi − lmkm L(m) = w′ +
∑
i∈M

ŵi

Certificate-Based Signature Schemes without Pairings or Random Oracles 19

B constructs a set of public parameters as follow:

g1 = ga, g2 = gb, (g2)α = gab

pk*(1) = gx, pk*(2) = gax, u′ = g−luku+x′

2 gy
′

ûi = gx̂i2 g
ŷi for 1 ≤ i ≤ nu,

m′ = g−lmkm+z′

2 gw
′
, m̂i = gẑi2 g

ŵi for 1 ≤ i ≤ nm

for a randomly chosen public key PK∗ (with the corresponding identity infor-
mation ID∗), and we have the following equations:

U = u′
∏
i∈U

ûi = g
F (u)
2 gJ(u) and m′

∏
i∈M

m̂i = g
K(m)
2 gL(m)

All public parameters and master secret key gα2 = gab are passed to A.

Oracles Simulation. B simulates all oracles as follow:

(User-key-gen Queries.) B keeps the list L of user secret-public key. It first puts
the public key of the identity ID∗ into L. Upon receiving a query for a public
key of an identity ID, B looks up its database L to find out the corresponding
entry. If it does not exits, B runs UserKeyGen to generate a secret and public
key pair. It stores the key pair in its database and returns the public key as the
query output.

(Corruption Queries.) If the adversary asks for the secret key of ID∗, B aborts.
Otherwise, it returns the corresponding entry from L.

(Signing Queries) For a given query of a signature on public key PK with the
corresponding identity information ID and a message m, B first checks if the
identity is equal to ID∗. If yes, computes the signature in the following way.
Assume K(m) 6= 0 mod lm. Using the argument mentioned above, it implies
K(m) 6= 0 mod p provided that lm(nm+1) < p. The signature can be constructed
by first randomly selecting rπ, rm ∈R Zp, and computing

σ =

((
U
)rπ(pk*(2))− L(m)

K(m)

(
m′
∏
i∈M

m̂i

)rm

, grπ ,
(
pk

(2)
ID∗
)− 1

K(m) grm

)

=

(
gax2

(
U
)rπ(

m′
∏
i∈M

m̂i

)r̃m
, grπ , gr̃m

)
=
(
V,Rπ, Rm

)

where r̃m = rm − ax
K(m) . If K(m) = 0 mod lm, the simulator aborts.

20 Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

The correctness can be shown as follow:

V =
(
U
)rπ(pk*(2))− L(m)

K(m)
(
m′
∏
i∈M

m̂i

)rm
=
(
U
)rπ

g
−L(m)x
K(m)

1 (gK(m)
2 gL(m))rm

=
(
U
)rπ

g−
axL(m)
K(m) (gK(m)

2 gL(m))rm

=
(
U
)rπ

g−
axL(m)
K(m) (gK(m)

2 gL(m))
ax
K(m) (gK(m)

2 gL(m))−
ax
K(m) (gK(m)

2 gL(m))rm

=
(
U
)rπ

g−
axL(m)
K(m) gabxg

axL(m)
K(m) (gK(m)

2 gL(m))r̃m

=
(
U
)rπ

gabx(gK(m)
2 gL(m))r̃m

=
(
U
)rπ

gax2 (gK(m)
2 gL(m))r̃m

=
(
U
)rπ(

ga2
)x(

m′
∏
i∈M

m̂i

)r̃m
and Rm =

(
pk*(2))− 1

K(m) grm = grm−
ax
K(m) = gr̃m . The signature generated in

this way is indistinguishable to the real one.
If it is not equal to ID∗, it computes u = Hu(PK, ID) and m = Hm(m).
If F (u) 6= 0 mod lu, B just construct a certificate using the knowledge of msk,

then it checks from L whether the secret key of ID has been created or not. If
it has not been created, run the UserKeyGen algorithm and stores the secret /
public key pair in L. If it has been created, it just uses the Sign algorithm to
create a signature on PK, ID and m.

If F (u) = 0 mod lu, B tries to construct the signature in a similar way as
above (the case that the public key has been replaced). Assume K(m) 6= 0 mod
lm. Using the argument mentioned above, it implies K(m) 6= 0 mod p provided
that lm(nm+1) < p. The signature can be constructed by first randomly selecting
rπ, rm ∈R Zp, getting the secret key x from L (if it has not been created, run
UserKeyGen algorithm first) and computing

σ =

((
U
)rπ

g
− L(m)
K(m)x

1

(
m′
∏
i∈M

m̂i

)rmx

, grπ , g
− x
K(m)

1 grmx

)

=

(
gax2

(
U
)rπ(

m′
∏
i∈M

m̂i

)r̃m
, grπ , gr̃m

)

where r̃m = rmx− a
K(m)x. If K(m) = 0 mod lm, the simulator aborts.

Output Calculation. If B does not abort, A will return a public key PK∗ with
the corresponding identity ID∗ and a message m∗ with a forged signature σ∗ =
(V,Rπ, Rm) on ID∗, the current public key PK∗ and m∗ with probability at
least ε. B checks whether the following conditions are fulfilled:

1. F (u∗) = 0 mod p, where u∗ = Hu(PK∗, ID∗).
2. K(m∗) = 0 mod p , where m∗ = Hm(m∗).

Certificate-Based Signature Schemes without Pairings or Random Oracles 21

If not all the above conditions are fulfilled, B aborts. Otherwise B computes and
outputs

V

R
J(u∗)
π R

L(m∗)
m

=
gax2

(
U
)rπ(

m′
∏
i∈M m̂i

)rm

gJ(u∗)rπgL(m∗)rm

=
gax2

(
g
F (u∗)
2 gJ(u∗)

)rπ(
g
K(m∗)
2 gL(m∗)

)rm

gJ(u∗)rπgL(m∗)rm

= gax2 = gabx

B outputs gabx as the solution to the Many-DH problem instance.
Probability Analysis. For the simulation to complete without aborting, we re-
quire the following conditions fulfilled:

1. Signing queries (ID, PK,m) will either have F (u) 6= 0 mod lu, or K(m) 6=
0 mod lm where m = Hm(m), if ID 6= ID∗. Otherwise, it requires K(m) 6=
0 mod lm.

2. F (u∗) = 0 mod lu and K(m∗) = 0 mod lm.

In addition, in order to get the desired result, it is required that A has chosen
PK∗ with ID∗ for the signature forgery.

To make the analysis simpler, we will bound the probability of a subcase of
this event.

Let u1, . . . , uqI be the output of the hash function Hu appearing in Signing
queries not involving any of the challenge identity ID∗, and let m1, . . . ,mqM

be the output of the hash function Hm in the sign queries involving the chal-
lenge list. We have qI ≤ qs ≤ qe + qs and qM ≤ qs. We also define the events
Ai, A

∗, B`, B
∗ as follow:

Ai : F (ui) 6= 0 mod lu where i = 1, . . . , qI A∗ : F (u∗) = 0 mod p
B` : K(m`) 6= 0 mod lm where ` = 1, . . . , qM B∗ : K(m∗) = 0 mod p

The probability of B not aborting is:

Pr[not abort] ≥ Pr
[(qI∧

i=1

Ai ∧A∗
)
∧
(qM∧
`=1

B` ∧B∗
)]

Note that the events
(∧qI

i=1Ai ∧A∗
)

and
(∧qM

`=1B` ∧B∗
)

are independent.
The assumption lu(nu + 1) < p implies if F (u = 0 mod p then F (u) =

0 mod lu. In addition, it also implies that if F (u) = 0 mod lu, there will be a
unique choice of ku with 0 ≤ ku ≤ nu such that F (u) = 0 mod p. Since ku, x′

and X̂ are randomly chosen,

Pr[A∗] = Pr[F (u∗) = 0 mod p ∧ F (u∗) = 0 mod lu]
= Pr[F (u∗) = 0 mod lu] Pr[F (u∗) = 0 mod p | F (u∗) = 0 mod lu]

=
1
lu

1
nu + 1

22 Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

On the other hand, we have:

Pr
[qI∧
i=1

Ai|A∗
]

= 1− Pr
[qI∨
i=1

Ai | A∗
]
≥ 1−

qI∑
i=1

Pr[Ai | A∗]

where Ai denote the event F (ui) = 0 mod lu.
Also note that the events F (ui1) = 0 mod lu and F (ui2) = 0 mod lu are

independent, where i1 6= i2, since the outputs of F (ui1) and F (ui2) will differ
in at least one randomly chosen value. Also since the events Ai and A∗ are
independent for any i, we have Pr[Ai|A∗] = 1/lu and

Pr
[qI∧
i=1

Ai ∧A∗
]

= Pr[A∗] Pr
[qI∧
i=1

Ai|A∗
]

=
1

lu(nu + 1)

(
1− qI

lu

)
≥ 1
lu(nu + 1)

(
1− qe + qs

lu

)
=

1
2(qe + qs)(nu + 1)

(
1− 1

2

)
(by setting lu = 2(qe + qs))

=
1

4(qe + qS)(nu + 1)

Using similar analysis technique for signing queries we can have:

Pr
[qM∧
`=1

B` ∧B∗
]
≥ 1

4qs(nm + 1)

By combining the above result, we have

Pr[not abort] ≥ Pr
[(qI∧

i=1

Ai ∧A∗
)
∧
(qM∧
`=1

B` ∧B∗
)]

≥ 1
16(qe + qs)(nu + 1)qs(nm + 1)

If the simulation does not abort, A will produce a forged signature with proba-
bility at least ε. In addition, B needs to guess which identity A is going to forge
the signature, and assign the problem instance element as the public key of this
identity. The probability of guessing correctly is 1/qk. Thus B can solve for the
Many-DH problem instance with probability

ε′ ≥ ε

16(qe + qs)(nu + 1)qs(nm + 1)qk

Time Complexity Analysis. It is similar to the proof of Game 1 Adversary except
the removal of the certificate query in Game 2 Adversary. We skip here.

ut

