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Abstract. SMS4 is a 128-bit block cipher with a 128-bit user key and 32
rounds, which is used in WAPI, the Chinese WLAN national standard.
In this paper, we present a linear attack and a differential attack on a 22-
round reduced SMS4; our 22-round linear attack has a data complexity
of 2117 known plaintexts, a memory complexity of 2109 bytes and a time
complexity of 2109.86 22-round SMS4 encryptions and 2120.39 arithmetic
operations, while our 22-round differential attack requires 2118 chosen
plaintexts, 2123 memory bytes and 2125.71 22-round SMS4 encryptions.
Both of our attacks are better than any previously known cryptanalytic
results on SMS4 in terms of the number of attacked rounds. Furthermore,
we present a boomerang and a rectangle attacks on a 18-round reduced
SMS4. These results are better than previously known rectangle attacks
on reduced SMS4. The methods presented to attack SMS4 can be applied
to other unbalanced Feistel ciphers with incomplete diffusion.

Keywords : Block Cipher, SMS4, Linear Attack, Differential Attack, Boomerang
Attack, Rectangle Attck

1 Introduction

The Chinese national standard for Wireless Local Area Networks (WLANs),
WLAN Authentication and Privacy Infrastructure (WAPI) standard is an al-
ternative to the security mechanisms for wireless networks that are specified in
IEEE 802.11i [16]. It has been submitted to the International Standards Or-
ganization ISO by Chinese Standards Association SAC. Both WAPI and IEEE
802.11i have been proposed as security amendments to the ISO/IEC 8802-11
WLAN standard. The two schemes use two different block ciphers for encryp-
tion of data; the WAPI uses the SMS4 block cipher [15] while the IEEE 802.11i
uses the AES block cipher [14]. In contrast with AES, SMS4 did not guarantee a
security by logical and formula analysis since an exact algorithm of SMS4 was not
made public at the first time. In March 2006, IEEE 802.11i was approved as the
ISO/IEC 8802-11 WLAN standard, while WAPI was rejected partially because
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Table 1. Summary of cryptanalytic results on SMS4

Attack Type Rounds Complexity
Data Memory Time

Differential [18] 21 2118 CP 2123 2126.6 Enc.
Rectangle [18] 16 2125 CP 2125 2116 Enc.

Impossible differential [11] 16 2105 CP 2109 2107 Enc.
Rectangle [11] 14 2121.82 CP 2125.82 2116.66 Enc.
Integral [10] 13 216 CP 220 2114 Enc.

Linear (this paper) 22 2117 KP 2109 2109.86 Enc. +2120.39 A.O.
Differential (this paper) 22 2118 CP 2123 2125.71 Enc.
Boomerang (this paper) 18 2120 ACPS 2123 2116.83 Enc.
Rectangle (this paper) 18 2124 CP 2128 2112.83 Enc.

KP - Known plaintexts, CP - Chosen plaintexts
ACPS - Adaptive Chosen plaintexts and ciphertexts
Memory is measured in Bytes
Enc - Encryption units, A.O. - Arithmetic operation

of uncertainties regarding the security of the undisclosed SMS4 cipher. However,
because WAPI is still officially mandated for Chinese national standard, WAPI
continues to be used in the Chinese WLAN industry and many international
corporations, such as SONY, which support WAPI in relevant products.

The SMS4 cipher [15], which was released in January 2006, is a 128-bit block
cipher with a 128-bit user key and 32 rounds. So far, there have been several
attacks on reduced SMS4; a 21-round differential attack, 16-round impossible dif-
ferential and rectangle attacks, and a 13-round integral attack. The best known
cryptanalytic result on SMS4 prior to this work is a differential attack on a
21-round reduced SMS4 using a 18-round differential characteristic [18]. In this
paper, we present a linear and a differential attacks on a 22-round reduced SMS4
whose cryptanalytic results are better than the previously best known attack. In
our 22-round linear and differential attacks, we exploit a new 18-round linear ap-
proximation and a previously known 18-round differential (used in the previous
21-round differential attack). Furthermore, we present a boomerang [17] and a
rectangle attacks [4] on a 18-round reduced SMS4 which are better than the best
known rectangle attack. In order to conduct these attacks, we first devise new
15-round boomerang and rectangle distinguishers and then extend them to 16-
round distinguishers using special properties of the unbalanced Feistel structure
of SMS4. All our distinguishers used are mainly due to a slow diffusion effect of
SMS4. The complexities of our new attacks along with previously known attacks
are summarized in Table 1.

The outline of this paper is as follows: in Sect. 2, we introduce the notation
used throughout this paper and describe the SMS4 algorithm as well as the
methods of linear, differential, boomerang and rectangle attacks. In Sects. 3-5,
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we present our linear, differential attacks and boomerang, rectangle attacks on
reduced SMS4, and finally we conclude the paper in Sect. 6.

2 Preliminaries

2.1 Notation

We use the following notation throughout this paper, where the right most bit
is referred to as the 0-th bit, i.e., the least significant bit.

– ⊕ : bitwise logical exclusive OR (XOR).
– ≪ : left cyclic shift operation.
– ? : arbitrary 32-bit word.
– ‖ : Concatenation.
– Sbox(·) : 8 × 8 bijective S-box used in SMS4.
– X · Y : bitwise inner product between two 32-bit word vectors X and Y .

2.2 A description of the SMS4 block cipher

SMS4 is a 32-round unbalanced Feistel network whose block and key sizes are
both 128 bits. The plaintext is represented as four 32-bit words P = (P0, P1, P2, P3)
and Xi denotes the output of the i-th round, where i = 1, 2, ..., 32. The encryp-
tion procedure of SMS4 is then as follows:

1. Input the plaintext X0 = P = (P0, P1, P2, P3),
2. For i (= 1, 2, ..., 32)

– Pi+3 = Pi−1 ⊕ F (Pi ⊕ Pi+1 ⊕ Pi+2 ⊕ RKi) = Pi−1 ⊕D(S(Pi ⊕ Pi+1 ⊕
Pi+2 ⊕RKi)),

– Xi = (Pi, Pi+1, Pi+2, Pi+3),
3. Output the ciphertext X32 = (P32, P33, P34, P35),

i
RK

D

)(a )(b
Pi Pi+2Pi-1 Pi+1

Pi Pi+2Pi+1 Pi+3

Pi Pi+1 Pi+2 RKi

Pi-1 Pi+3

Fig. 1. (a) i-th Round of SMS4, (b) F Function
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Table 2. S-box table of SMS4 (e.g., Sbox(0x01) = 0x90)

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 d6 90 e9 fe cc e1 3d b7 16 b6 14 c2 28 fb 2c 05

0x1 2b 67 9a 76 2a be 04 c3 aa 44 13 26 49 86 06 99

0x2 9c 42 50 f4 91 ef 98 7a 33 54 0b 43 ed cf ac 62

0x3 e4 b3 1c a9 c9 08 e8 95 80 df 94 fa 75 8f 3f a6

0x4 47 07 a7 fc f3 73 17 ba 83 59 3c 19 e6 85 4f a8

0x5 68 6b 81 b2 71 64 da 8b f8 eb 0f 4b 70 56 9d 35

0x6 1e 24 0e 5e 63 58 d1 a2 25 22 7c 3b 01 21 78 87

0x7 d4 00 46 57 9f d3 27 52 4c 36 02 e7 a0 c4 c8 9e

0x8 ea bf 8a de 40 c7 38 b5 a3 f7 f2 ce f9 61 15 a1

0x9 e0 ae 5d a4 9b 34 1a 55 ad 93 32 30 f5 8c b1 e3

0xa 1d f6 e2 2e 82 66 ca 60 c0 29 23 ab 0d 53 4e 6f

0xb d5 db 37 45 de fd 8e 2f 03 ff 6a 72 6d 6c 5b 51

0xc 8d 1b af 92 bb dd bc 7f 11 d9 5c 41 1f 10 5a d8

0xd 0a c1 31 88 a5 cd 7b bd 2d 74 d0 12 b8 e5 b4 b0

0xe 89 69 97 4a 0c 96 77 7e 65 b9 f1 09 c5 6e c6 84

0xf 18 f0 7d ec 3a dc 4d 20 79 ee 5f 3e d7 cb 39 48

where RKi is the 32-bit round key for the i-th round, D is the linear diffusion
function defined as D(x) = x ⊕ (x ≪ 2) ⊕ (x ≪ 10) ⊕ (x ≪ 18) ⊕ (x ≪ 24)
and S is the nonlinear confusion function which applies a same 8 × 8 bijective
S-box four times in parallel (see Table 2 for the S-box and Fig. 1 for a schematic
description of the SMS4 round function).

The key schedule of SMS4 operates in a similar way to the encryption func-
tion. The difference is that the diffusion function D′(x) = x⊕ (x ≪ 13)⊕ (x ≪
23) is used instead of D(x). The 128-bit user key MK is first masked with a
so-called system parameter T and the resultant key is used in the key schedule
function. The j-th round key RKj is then generated as follows:

1. Input (K0,K1, K2,K3) = (MK0 ⊕ T0, MK1 ⊕ T1,MK2 ⊕ T2,MK3 ⊕ T3, ),
where T0 = 0xa3b1bac6, T1 = 0x56aa3350, T2 = 0x677d9197, T3 = 0xb27022dc.

2. Output RKj = Kj+3 = Kj−1 ⊕ D′(S(Kj ⊕ Kj+1 ⊕ Kj+2 ⊕ CKj)), where
the constant CKj = ((28 · j), (28 · j + 7), (28 · j + 14), (28 · j + 21)) which
consists of four bytes operated in Z256.

2.3 The Linear Attack

Linear cryptanalysis [12], introduced by Matsui in 1993, is one of the most
powerful known plaintext (or known ciphertext) attacks in symmetric-key cryp-
tography (especially, in block ciphers and stream ciphers). It is known that this
attack has similar properties to the differential attack when analyzing some block
cipher structures: [2] shows that if an r-round Feistel structure is provably secure
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against the differential attack, then it is also provably secure against the linear
attack, and vice versa.

This attack investigates a correlation between the inputs and outputs for the
cipher E. If for the n-bit cipher E there exists a linear approximation ΓX → ΓY

with bias ε such that ε > 2−
n
2 · c 1

2 (or c · ε−2 < 2n), where c > 1, i.e.,

|PrX,K [ΓX ·X ⊕ ΓY · EK(X) = 0]− 1
2
| = ε,

where ΓX · X and ΓY · EK(X) are both bit-wise inner products. Then the E
can be distinguished from a random permutation, as the linear attack requires
O(ε−2) to work by the Matsui’s Algorithm 2.

2.4 The Differential Attack

Differential cryptanalysis [5], introduced by Biham and Shamir in 1990, is one of
the most powerful chosen plaintext (or chosen ciphertext) attacks in symmetric-
key cryptography (i.e., in block ciphers, stream ciphers, hash functions and MAC
algorithms). After this attack was introduced, it has been applied effectively to
many known ciphers and various variants of this attack have been proposed such
as the truncated differential attack [8], the square attack [8, 7], the differential-
linear attack [9], the impossible differential attack [3], the boomerang attack [17]
and the rectangle attack [4].

This attack investigates a distribution of differences of output pairs for the
cipher E when their input pairs of E have all the same difference. We assume
that for the n-bit cipher E there exists a differential ∆ → ∇ with probability p
larger than 2−n, i.e.,

PrX,K [EK(X)⊕ EK(X ⊕∆) = ∇] = p > 2−n,

where PrX,K [·] is an average probability over the input X and the key K. Then
the E can be distinguished from a random permutation, as the differential holds
with probability 2−n for a random cipher.

2.5 The Boomerang and Rectangle Attacks

The boomerang attack [17] is based on two consecutive differentials with rel-
atively high probabilities which are independent of each other. The underly-
ing cipher E : {0, 1}n × {0, 1}k → {0, 1}n is treated as a cascade of two sub-
ciphers E = E1 ◦E0, where {0, 1}k and {0, 1}n are the key space and the plain-
text/ciphertext space, respectively. We assume that for E0 there exists a differ-
ential ∆ → ∆∗ with probability p and for E1 there exists a differential ∇∗ → ∇
with probability q. Then, these consecutive differentials can be used effectively
to the following boomerang distinguisher:

– Ask for the encryption of a pair of plaintexts (P 1, P 2) such that P 1⊕P 2 = ∆
and denote the corresponding ciphertexts by (C1, C2).
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– Calculate C3 = C1⊕∇ and C4 = C2⊕∇, and ask for the decryption of the
pair (C3, C4). Denote the corresponding plaintexts by (P 3, P 4).

– Check whether P 3 ⊕ P 4 = ∆.

For a random permutation the probability that the last condition is satisfied
is 2−n. For E, however, this probability is differently computed by the two differ-
entials. The probability that the plaintext pair (P 1, P 2) is a right pair with re-
spect to the first differential ∆ → ∆∗ is p, and the probability that the ciphertext
pairs (C1, C3), (C2, C4) are both right pairs with respect to the second differen-
tial is q2. If all these are right pairs, then they satisfy E1

−1(C3)⊕ E1
−1(C4) =

∆∗ = E0(P 3)⊕E0(P 4) as E1
−1(C1)⊕E1

−1(C3) = E1
−1(C2)⊕E1

−1(C4) = ∇∗
and E1

−1(C1)⊕E1
−1(C2) = ∆∗ and thus, with probability p, P 3 ⊕ P 4 = ∆ by

the first differential (note that a regular differential has a same probability for
the encryption and decryption). Therefore, the total probability that the quartet
of plaintexts and ciphertexts satisfies the boomerang conditions is no less than
(pq)2, and thus, pq > 2−n/2 must hold for the boomerang distinguisher to work.

The rectangle attack was introduced in [4]. This is a method for eliminating
the need of adaptive chosen ciphertext queries from the boomerang process.
Given the same differentials the rectangle distinguisher goes as follows:

– Choose two random n-bit plaintexts P 1 and P 3 and compute two other
plaintexts P 2 = P ⊕∆ and P 4 = P 2 ⊕∆.

– With a chosen plaintext attack scenario, obtain the corresponding cipher-
texts C1, C2, C3 and C4.

– Check if C1 ⊕ C3 = C2 ⊕ C4 = ∇ or C1 ⊕ C4 = C2 ⊕ C3 = ∇
The probability that the ciphertext quartet (C1, C3), (C2, C4) satisfies the last
∇ test is computed as follows: let X1, X2, X3 and X4 denote the encrypted
values of P 1, P 2, P 3 and P 4 under E0. Then, the probability that X1 ⊕X2 =
X3 ⊕X4 = ∆∗ is about p2 for E0 by the first differential. In the above process,
we randomly choose two plaintexts P 1 and P 3, so we expect X1⊕X3 = ∇∗ with
probability 2−n. Once the two above events occur, X2⊕X4 = (X1⊕X2)⊕(X3⊕
X4)⊕(X1⊕X3) = ∆∗⊕∆∗⊕∇∗ = ∇∗ with probability 1. Since the probability
of the second differential ∇∗ → ∇ for E1 is q, X1 ⊕ X3 = X2 ⊕ X4 = ∇∗
goes to C1 ⊕ C3 = C2 ⊕ C4 = ∇ with a probability of about q2. Similarly, we
also expect X1 ⊕X4 = ∇∗ with probability 2−n, which implies X2 ⊕X3 = ∇∗
with probability 1 (under X1 ⊕X2 = X3 ⊕X4 = ∆∗ with probability p2) and
C1 ⊕ C4 = C2 ⊕ C3 = ∇ with probability q2. Therefore, the total probability
that the last ∇ test in the above process is satisfied is no less than 2−n+1 ·p2 ·q2.

On the other hand, for a random permutation, the ∇ test holds with prob-
ability 2−2n+1 and thus if the above probability is larger than 2−2n+1, i.e., if
p · q > 2−n/2, the rectangle distinguisher 1 can be used to distinguish E from a
random permutation.

Note: The actual probabilities of the boomerang and the rectangle distin-
guishers are expected to be higher than the aforementioned probabilities. This

1 More strictly, the distinguisher is called boomerang amplifier.
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is due to the fact that the distinguishers hold with any intermediate differences
∆∗ and ∇∗ (even any four intermediate differences whose xor sum is zero can
be contributed to the distinguishers). However, in our attacks, we only take spe-
cific ∆∗ and ∇∗ into account, since there is a negligible difference in our attacks
between when considering specific ∆∗ and ∇∗ and when considering all possible
intermediate differences.

3 Linear Attack on 22-Round SMS4

In this section, we first construct an 18-round linear approximation with bias
2−57.28 and then exploit it to devise a key recovery linear attack on 22-round
SMS4.

3.1 18-round linear approximation with bias 2−57.28

All the components used in SMS4 are linear except only for the 8 × 8 bijective
S-box. So in order to apply linear cryptanalysis to SMS4, one should first study
on linear approximations of S-box. According to the linear distribution table
(obtained by our computer program), the best linear approximations of the SMS4
S-box hold with bias 2−4 and the next with bias 2−4.19.

How can we apply these linear approximations to rounds of SMS4? Due
to a structural property of the unbalanced Feistel network employed in SMS4,
a same input and output mask for the F function can effectively be used in
making good linear approximations for consecutive rounds of SMS4. We have
performed simulations over all possible same input and output masks for the F
functions, and found that the same input and output mask Γα = [0, 64, 6f, fe]
offers the best bias of 2−10.38. In this approximation, the input mask Γα goes to
Γγ = [0, 6d, 13, 3] through the non-linear layer S with biases 2−4.19, 2−4.19 and
2−4 in the active S-boxes, and Γγ goes to Γα again through the diffusion layer
D. This approximation is applied to rounds 5, 6, 10, 11, 15 and 16 for designing
our 18-round linear approximation for rounds 2-19. See Fig. 2 for a schematic
description of our linear approximations for each of rounds 2-19. We can also
mathematically express them as follows:

Γα · (P5 ⊕ P6 ⊕ P7 ⊕RK5) = Γα · F (P5 ⊕ P6 ⊕ P7 ⊕RK5); round 5,
Γα · (P6 ⊕ P7 ⊕ P8 ⊕RK6) = Γα · F (P6 ⊕ P7 ⊕ P8 ⊕RK6); round 6,

Γα · (P10 ⊕ P11 ⊕ P12 ⊕RK10) = Γα · F (P10 ⊕ P11 ⊕ P12 ⊕RK10); round 10,
Γα · (P11 ⊕ P12 ⊕ P13 ⊕RK11) = Γα · F (P11 ⊕ P12 ⊕ P13 ⊕RK11); round 11,
Γα · (P15 ⊕ P16 ⊕ P17 ⊕RK15) = Γα · F (P15 ⊕ P16 ⊕ P17 ⊕RK15); round 15,
Γα · (P16 ⊕ P17 ⊕ P18 ⊕RK16) = Γα · F (P16 ⊕ P17 ⊕ P18 ⊕RK16); round 16,
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Since F (Pi ⊕ Pi+1 ⊕ Pi+2 ⊕RKi) is equal to Pi−1 ⊕ Pi+3, these approximations
are summarized as

Γα · P5 ⊕ Γα · P6 ⊕ Γα · P7 ⊕ Γα ·RK5 = Γα · P4 ⊕ Γα · P8, (1)
Γα · P6 ⊕ Γα · P7 ⊕ Γα · P8 ⊕ Γα ·RK6 = Γα · P5 ⊕ Γα · P9, (2)

Γα · P10 ⊕ Γα · P11 ⊕ Γα · P12 ⊕ Γα ·RK10 = Γα · P9 ⊕ Γα · P13, (3)
Γα · P11 ⊕ Γα · P12 ⊕ Γα · P13 ⊕ Γα ·RK11 = Γα · P10 ⊕ Γα · P14, (4)
Γα · P15 ⊕ Γα · P16 ⊕ Γα · P17 ⊕ Γα ·RK15 = Γα · P14 ⊕ Γα · P18, (5)
Γα · P16 ⊕ Γα · P17 ⊕ Γα · P18 ⊕ Γα ·RK16 = Γα · P15 ⊕ Γα · P19. (6)

Thus, we sum over Eqs. (1), (2),...,(6) to obtain the following 18-round linear
approximation;

Γα · P4 ⊕ Γα · P19 = Γα ·RK5 ⊕ Γα ·RK6

⊕ Γα ·RK10 ⊕ Γα ·RK11 ⊕ Γα ·RK15 ⊕ Γα ·RK16. (7)

Note that each of Eqs. (1)-(6) has a bias of 2−10.38, and P4 and P19 are output
words of rounds 1 and 19, respectively (see Fig. 2). This linear approximation has
a bias 2−57.28(= 25 · (2−10.38)6) which is computed by the Pilling-up lemma [12].
The success rate of linear cryptanalysis depends significantly on the amount
of the plaintexts by the Matsui’s algorithm [12]. To give a high success rate
(≈ 0.96), we prepare 2117(≈ 23 · (2−57.28)−2) plaintexts and get their 22-round
SMS4 ciphertexts C = (C0, C1, C2, C3) with a known plaintext attack scenario.

3.2 Attack procedure

We conduct the Matsui’s Algorithm 2 [12] to SMS4 and apply the techniques
introduced in [6, 13]. The general description of the Matsui’s Algorithm 2 is that
an (r − r′)-round linear approximation is applied to an r-round linear attack
after a partial decryption of the last r′ rounds is performed by guessing the key
bits involved in output mask of the (r − r′)-round linear approximation, which
results in the recovery of all the guessed key bits. Our key recovery linear attack
is applied for rounds 1-22; for rounds 2-19 our linear approximation is applied,
and for the first round and the last 3 rounds the partial key guessing phase is
applied which recovers a partial key of rounds 1, 20, 21 and 22 (4R-Attack),
and then the exhaustive search phase for the remaining key bits is performed to
recover the master key.

Matsui also proposed in [13] an improvement of the Algorithm 2 which con-
siderably reduces the time complexity of the attack; in this improved attack, the
time complexity depends only on active S-boxes in the subkey guessing phase.
This improvement is applied in our linear attack. In our attack, the number of
active S-boxes is 6 for rounds 1, 20, and 8 for rounds 21, 22, therefore, we need
2112 subkey guesses in total to evaluate the bias of our linear approximation of
SMS4; we decrypt only the ciphertext bits corresponding to the active S-boxes
while the original linear attack decrypts all the collected ciphertexts.
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First of all, we extend Eq. (7) to the expression of a plaintext (P0, P1, P2, P3),
its 22-round ciphertext C = (C0, C1, C2, C3) and a subkey of rounds 1, 20, 21 and
22 (RK1, RK20, RK21, RK22); the extended expression of Eq. (7) is as follows:

Γα · P0 ⊕ Γα · C1 ⊕ Γα · F (P1 ⊕ P2 ⊕ P3 ⊕RK1)
⊕Γα · F (C0 ⊕ C2 ⊕ C3 ⊕RK20 ⊕ F (C0 ⊕ C1 ⊕ C2 ⊕RK22)

⊕F (C0 ⊕ C1 ⊕ C3 ⊕RK21 ⊕ F (C0 ⊕ C1 ⊕ C2 ⊕RK22))) = K(RK), (8)

where K(RK) is the right side of Eq. (7). We represent Eq. (8) as the following
form of equation:

g(P,C)⊕ f(RK, C) = K(RK), (9)

where g is a function which evaluates a parity of the expression composed of
a plaintext and its 22-round SMS4 ciphertext (the first and second terms of
Eq. (8)) and f is a function composed of F functions (the rest of the left side
of Eq. (8)). The value of f depends on 112 bits of the ciphertext and the round
subkey, respectively, because 48 bits from (P1 ⊕ P2 ⊕ P3) and (C0 ⊕ C2 ⊕ C3)
are involved due to 6 active S-boxes for rounds 1 and 20 (recall Γα goes to
Γγ = [0, 6d, 13, 3] through the inverse of the diffusion layer D−1) while 64 bits
from (C0 ⊕ C1 ⊕ C2) and (C0 ⊕ C1 ⊕ C3) are involved due to 8 active S-boxes
for rounds 21 and 22. Precisely, the parity of f is determined by the following
two 112-bit vectors; γ = 112 bits of (RK1, RK20, RK21, RK22), δ = 112 bits of
(P1⊕P2⊕P3, C0⊕C2⊕C3, C0⊕C1⊕C3, C0⊕C1⊕C2). Let Z = Z3‖Z2‖Z1‖Z0

be 112 bits representing the bits of γ ⊕ δ where Z0 = RK22 ⊕ C0 ⊕ C1 ⊕ C2,
Z1 = RK21 ⊕ C0 ⊕ C1 ⊕ C3, and Z2 = 24 bits of RK20 ⊕ C0 ⊕ C2 ⊕ C3, Z3 =
24 bits of RK1 ⊕ P1 ⊕ P2 ⊕ P3. Consequently, f(RK, C) is represented as the
following equation.

f(RK, C) = Γα · F (Z3)⊕ Γα · F (Z2 ⊕ F (Z0)⊕ F (Z1 ⊕ F (Z0))) (10)

We then evaluate the bias of our approximation Eq. (9) for each key candidate
using Eq. (10) and 2117 plaintext/ciphertext pairs. The 4R-Attack of the SMS4
is as follows:

1. Initialize a vector X composed of 2112 elements corresponding to 112 plain-
text/ciphertext bits of δ used in f .

2. For each value of γ (related to subkeys) and δ (related to texts), compute
the parity of the f(γ, δ) (parity is 1 if f(γ, δ) is 0, and -1 otherwise). Keep
this value in a 2112× 2112 matrix M, i.e., M[γ][δ] = f(γ, δ) (γ is for the row
and δ for the column).

3. For each plaintext/ciphertext pairs, compute the parity of g. If the parity
of g is 1, increase the involved counter in X by 1, otherwise, decrease the
counter in X by 1 (recall that entries of X correspond to 112 of δ used in f).

4. Compute the bias ε for each key candidate (for each value of γ) by the
matrix-vector product M · X (ε for each key candidate is proportional to
the corresponding entry of M · X).

5. Let εmax be the maximal value and εmin be the minimal value of all ε biases.
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– If |εmax| > |εmin|, then adopt the key candidate corresponding to εmax

and guess K(RK) = 0.
– If |εmax| < |εmin|, then adopt the key candidate corresponding to εmin

and guess K(RK) = 1.
6. Once the 113-bit subkey of RK1, RK20, RK21, RK22 and K(RK) is ex-

tracted, do an exhaustive search over all possible values for the remaining
15 subkey bits for the correct master key.

In order to keep vector X composed of 2112 elements, 2112-bit memory is re-
quired, equivalently 2108-byte memory. In step 2, due to a circulant structure
of the matrix M [6], one can the M much efficiently than the straightforward
computation requiring 2112 × 2112 operations; for each value of Z, we compute
the parity of the f(γ, δ) and keep this value to compute the values in the relevant
positions of M. In this phase, 2109.8(≈ 2112 · 5 · 1

22 ) 22-round SMS4 encryptions
are required, for f calls of five F functions, and 2112-bit memory is required,
equivalently 2108-byte memory (note that one does not need to keep every of M,
instead, he keeps 2112 bits according to Z and accesses the relavant values in
the computation of M · X). During step 3, simple operations like bit extractions
and incrementations are performed, which require approximately 2117 arithmetic
operations. In step 4, the time complexity for the evaluation of the experimental
biases is 2224(= 2112 ·2112) operations as it implies a matrix-vector product with
size 2112. However, the fact that the matrix M has a circulant structure allows us
to significantly reduce the number of operations required to evaluate the vector
of the bias ε. B. Collard et al. first presented in [6] this method by using Fast
Fourier Transform; it is possible that the matrix M is diagonalizable by Discrete
Fourier Transform matrix, which implies that the bias can be computed using
three matrix-vector product involving the Discrete Fourier Transform matrix.
The multidimensional Fast Fourier Transform allows us to quickly compute the
matrix-vector product. Consequently, we can perform step 4 with a complex-
ity of 2120.39(≈ 3 · 112 · 2112) arithmetic operations. In step 6, the exhaustive
search has a time complexity of 215(= 2128−113) encryptions by the key schedul-
ing structural property. Thus, the total time complexity is about 2109.8 22-round
SMS4 encryptions and 2120.39 arithmetic operations. To summarize, this attack
requires 2117 known plaintexts, 2109 memory bytes and 2109.8 encryptions and
2120.39 arithmetic operations.

4 Differential Attack on 22-Round SMS4

In this section, we present a 18-round differential characteristic of SMS4 pre-
sented in [18] and show that it can be used to devise a key recovery differential
attack on 22-round SMS4.

4.1 18-round differential characteristic with probability 2−126 [18]

Similarly to the linear attack, the differential attack of SMS4 starts by studying
on the nonlinear layer S, precisely, on the XOR difference distribution of the 8×8
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S-box. For each input difference value, there are 127 output difference values of
the S-box; one input/output difference pair holds a probability 2−6 and the
others have a probability 2−7. This fact is easily proved by computer program
[11]. As in our linear approximation, a same input and output difference for the
F function can effectively be used to construct good differential characteristics.
Zhang found 7905 (≈ 213) possible values of α which satisfy that the difference
α goes to the same difference α through F with probability 2−21 [18]. The first
bytes of all the 213 possible α are 0 and the rest bytes are all nonzeroes. Each
nonzero byte of α holds a probability 2−7 through the S-box. This property
allows to make a 5-round iterative differential characteristic with probability
2−42 (see Fig. 3).

In [18], Zhang constructed an 18-round differential characteristic with prob-
ability 2−126 (= (2−42)3) by iterating this 5-round differential three and half
times. The 18-round differential characteristic is described in Table 3.

Table 3. 18-round Differential characteristic and the last 4-round differential after the
characteristic

Round Input Cumulative Prob.

0 (α, α, α, 0) 1

5 (α, α, α, 0) 2−42

10 (α, α, α, 0) 2−84

15 (α, α, α, 0) 2−126

16 (α, α, 0, α) 2−126

17 (α, 0, α, α) 2−126

18 (0, α, α, α) 2−126

19 (α, α, α, Λα) 2−126

20 (α, α, Λα, ?) 2−126

21 (α, Λα, ?, ?) 2−126

22 (Λα, ?, ?, ?) 2−126

4.2 Attack procedure

We extend the Zhang’s 21-round differential attack [18] to a key recovery dif-
ferential attack on 22-round SMS4. The main idea behind the extension of the
attack is on the early abort techniques; we guess smaller portions of subkeys
and discard all the disqualified texts earlier than usual. We apply the 18-round
differential characteristic to rounds 1-18, retrieve subkeys of rounds 19, 20, 21
and 22, and then the master key. In the later analysis, Diff denotes the set
{(0, α, α, α)}, where α are the aforementioned 213 possible values, and ∗ denotes
an unknown word. Our key recovery differential attack is applied to 22-round
SMS4 as follows:
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1. Select 246 structures of 272 plaintexts each, where in each structure the 56
bits of bytes 0, 4, 8, 12, 13, 14, 15 are fixed, and all the other 72 bits take all
the possible values. Then each structure generates about (272)2/2 = 2143

plaintext pairs with difference ((0, ∗, ∗, ∗), (0, ∗, ∗, ∗), (0, ∗, ∗, ∗), (0, 0, 0, 0)).
Check if the difference of each plaintext pair belongs to set Diff. If this is not
the case, discard the pair. After this test, about 2130 (= 246 ·2143 · (213/272))
plaintext pairs are expected to remain.

2. For each remaining pair (P i, P j), compute the plaintex difference and de-
note it as ((0, u, v, w), (0, u, v, w), (0, u, v, w), (0, 0, 0, 0)). Let Λα denote the
set of all the (27)3 (≈ 1273) possible 32-bit differences {F (X) ⊕ F (X ⊕
(0, u, v, w))|X : any 32-bit values}. Compute the difference of each corre-
sponding ciphertext pair (Ci, Cj), and check if the first word of the cipher-
text difference belongs to set Λα (see Table 3). After this test there remains
2119 (= 2130 · (221/232)).

3. Guess the least significant 1-byte subkey RK22,0, and compute the output
difference of each remaining ciphertext pair after the first S-box in the F
function with the guessed RK22,0;

γ = Sbox([Ci
0 ⊕ Ci

1 ⊕ Ci
2][0]⊕RK22,0)⊕ Sbox([Cj

0 ⊕ Cj
1 ⊕ Cj

2 ][0] ⊕RK22,0),

δ = [D−1(Ci
3 ⊕ Cj

3)][0],

where [X]j is the j-th least significant byte of a 32-bit word X. When the
guessed key (RK20,0) is right, the value of γ is equal to δ for right pairs. If
the two values are different, discard the ciphertext pairs used in the com-
putation. Otherwise, the probability is 2−8 randomly. Hence, the number of
the remaining ciphertext pairs after this step is about 2111 (= 2119 · 2−8).

4. For each of the remaining byte subkeys in rounds 22, 21 and 20, compute γ
and δ similarly to step 3. Discard all the ciphertext pairs such that γ 6= δ.
Up to this step, the number of the remaining ciphertext pairs is about 223

(= 2111 · (2−8)11).
5. Guess an 1-byte subkey RK19,0, compute γ and δ with the guessed subkey,

and then again discard ciphertext pairs in the same manner. We have already
used a filtering probability of approximately 1

2 , which implies that ciphertext
pairs are filtered with a probability of about 2−7(≈ 1

127 ). For each RK19,1 and
RK19,2, repeat this step. Thus the expectation of the remaining ciphertext
pairs for a wrongly guessed key is about 22 (= 223 · (2−7)3). On the other
hand, if the right key is guessed, the expectation of the ciphertext pairs
after this step is 16 (= 2130 · 2−126). Keep the RK19,0, RK19,1, RK19,2,
RK20, RK21, RK22 as the candidates of the right subkey, if the number of
the remaining ciphertexts is larger than or equal to 15.

6. If the subkey RK19,0, RK19,1, RK19,2, RK20, RK21, RK22 is survived, do
an exhaustive search over all possible values for the remaining 8 subkey bits
for the correct master key.

The data complexity of this attack is about 2118 chosen plaintexts and
the memory complexity is 2123(= 2118 · 16 · 2) byte as it stores 2118 plain-
text/ciphertext pairs in a table.
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The time complexity of this attack is analyzed as follows. In step 3, we
partially encrypt 2119 ciphertext pairs through one S-box with 28 guessed keys
for RK22,0, so its time complexity is 2121.54 (≈ 2119 ·28 ·2 · 1

22 · 1
4 ) 22-round SMS4

encryptions. In step 4, since the number of the ciphertext pairs discarded is the
same as the number of the keys guessed additionally, the time complexity is the
same 2121.54 encryption for each 8-bit guessing phase in step 4 which results in
12·2121.54 encryption in total for steps 3-4. In step 5, the time complexity is 2122.54

for each 8-bit key guessing phase as it uses a filtering probability of approximately
1
2 for remaining ciphertexts, and thus the time complexity up to step 5 is about
2125.71 (≈ 12 · 2121.54 + 3 · 2122.54) 22-round SMS4 encryptions. By the Poisson
distribution X ∼ Poi(λ = 22), PrX [X > 14] ≈ 2−15.61, the expectation of wrong
subkeys suggested in step 5 is about 2104.39 (= 2120 · 2−15.61). The exhaustive
search in step 6 has a time complexity of 2112.39 (= 2104.39 · 28) encryptions
by the structural property of the key schedule. Thus, the total time complexity
of this attack is approximately 2125.71 22-round SMS4 encryptions. The success
rate of this attack is 0.6 due to the fact that PrX [X > 14] ≈ 0.6 by the Poisson
distribution X ∼ Poi(λ = 24) for the right key.

5 Boomerang and Rectangle Attacks on 18-Round SMS4

In this section, we introduce 16-round boomerang and rectangle distinguishers
of SMS4 and show that they can be used to devise key recovery boomerang and
rectangle attacks on 18-round SMS4.

5.1 15-round boomerang and rectangle distinguishers of SMS4

The boomerang and rectangle distinguishers are both based on two short dif-
ferential characteristics with high probabilities. In order to keep the number of
active S-boxes in our differential characteristics as low as possible, we use the
following two differentials through the F function;

(i) α → β (HWb(α) = 1, HWb(β) = 4 ),
(ii) α⊕ β → α (HWb(α⊕ β) = 4),

where HWb(X) is the Hamming Weight of a 32-bit word X in byte. When
α → β through F is applied, we have one active S-box, while we have four
active S-boxes when α ⊕ β → α through F is applied (this is due to the fact
that the branch number of D is 5). In order to find these characteristics whose
multiplied probability is maximal over all values corresponding to α and β, we
have experimented over all possible 256 difference values of α, and found several
α to produce the maximal probability (for case (i) 2−6, for case (ii) 2−28). In
our attack we adopt α = 00 00 00 09x and β = 72 cd cd bfx. Using these
two characteristics of the F function we can make a first 9-round differential
characteristic with probability 2−46. Its specified differences to each of 9 rounds
along with their probabilities are presented in Table 4.
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Our second 6-round differential characteristic with probability 2−12 can be
constructed by chopping the 9-round differential characteristic at the both ends,
and it is used for E1 (see Table 5 for details of the second characteristic). There-
fore, we can combine them to construct a 15-round boomerang distinguisher
with probability 2−116 (= (2−46)2 · (2−12)2) and a rectangle distinguisher with
probability 2−244 (= 2−128 · (2−46)2 · (2−12)2). As for a random permutation,
the probabilities of our distinguishers are 2−128 (< 2−116) and 2−256 (< 2−244),
respectively.

Table 4. 9-round differential characteristic of SMS4

Round Input Prob. case

i ∆ = (0, α⊕ β, 0, β) 1

i + 1 (α⊕ β, 0, β, β) 2−6 (i)

i + 2 (0, β, β, α⊕ β) 1

i + 3 (β, β, α⊕ β, α) 2−28 (ii)

i + 4 (β, α⊕ β, α, β) 1

i + 5 (α⊕ β, α, β, β) 1

i + 6 (α, β, β, α) 2−6 (i)

i + 7 (β, β, α, α⊕ β) 2−6 (i)

i + 8 (β, α, α⊕ β, β) 1

i + 9 ∆∗ = (α, α⊕ β, β, β)

Table 5. 6-round differential characteristic of SMS4

Round Input Prob. case

j ∇∗ = (β, β, α⊕ β, α) 1

j + 1 (β, α⊕ β, α, β) 1

j + 2 (α⊕ β, α, β, β) 1

j + 3 (α, β, β, α) 2−6 (i)

j + 4 (β, β, α, α⊕ β) 2−6 (i)

j + 5 (β, α, α⊕ β, β) 1

j + 6 ∇ = (α, α⊕ β, β, β)

5.2 Extension to a 16-round boomerang distinguisher of SMS4

In this subsection, we extend the 15-round boomerang distinguisher to a 16-round
distinguisher with a same probability 2−116 by taking advantage of unbalanced
Feistel structure. Denote the 16 rounds of SMS4 by E = E1 ◦ E∗ ◦ E0, where
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E0 is rounds 1–9, E∗ is round 10 and E1 is rounds 11–16. Let P 1, P 2 be the
plaintexts which follow our 9-round differential characteristic, i.e., P 1⊕P 2 = ∆
and the output difference after 9 rounds of P 1 and P 2 = ∆∗. Denote the output
values after 9 rounds of P 1 and P 2 by (x0, x1, x2, x3) and (x0 ⊕ α, x1 ⊕ α ⊕
β, x2 ⊕ β, x3 ⊕ β), respectively, then the output values after 10 rounds of P 1

and P 2 are X1 = (x1, x2, x3, t), X2 = (x1 ⊕ α ⊕ β, x2 ⊕ β, x3 ⊕ β, t′), where
t ⊕ t′ = F (x1 ⊕ x2 ⊕ x3 ⊕ RK10) ⊕ F (x1 ⊕ x2 ⊕ x3 ⊕ α ⊕ β ⊕ RK10) ⊕ α.
Assume that on the two other faces of the boomerang we have difference ∇∗
coming from below (see Fig. 4). Let X3 and X4 be the intermediate values
after 10 rounds of the plaintexts P 3 and P 4 whose corresponding ciphertexts
C3 = C1 ⊕ ∇ and C4 = C2 ⊕ ∇, where C1 and C2 are the ciphertexts of P 1

and P 2. Then by our assumption X3 = (x1 ⊕ β, x2 ⊕ β, x3 ⊕ α ⊕ β, t ⊕ α) and
X4 = (x1 ⊕ α, x2, x3 ⊕ α, t′ ⊕ α). As a consequence, their intermediate values
after 1 round decryption are as follows:

E∗−1(X3) = (t⊕ α⊕ F (x1 ⊕ x2 ⊕ x3 ⊕ α⊕ β ⊕RK10), x1 ⊕ β, x2 ⊕ β, x3 ⊕ α⊕ β),

E∗−1(X4) = (t′ ⊕ α⊕ F (x1 ⊕ x2 ⊕ x3 ⊕RK10), x1 ⊕ α, x2, x3 ⊕ α).

Thus E∗−1(X3) ⊕ E∗−1(X4) = ∆∗ which is the output difference of the first
characteristic (the first word of α difference is due to the fact that t ⊕ t′ =
F (x1 ⊕ x2 ⊕ x3 ⊕RK10)⊕F (x1 ⊕ x2 ⊕ x3 ⊕α⊕ β ⊕RK10)⊕α). This 16-round
boomerang distinguisher has a same probability 2−116 (= (2−46)2 · (2−12)2) as
the 15-round boomerang distinguisher. Latter, it is used to mount a key recovery
attack on 18-round SMS4.
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Fig. 4. The free pass of the boomerang through E∗
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5.3 Extension to a 16-round rectangle distinguisher of SMS4

Similarly to the process of the extension to the 16-round boomerang distin-
guisher, we can interleave for free a 1-round differential into our 15-round rect-
angle distinguisher. Given the same 16-round SMS4 denoted by E = E1◦E∗◦E0,
we assume that (P 1, P 2) and (P 3, P 4) are two plaintext pairs which follow the
first 9-round differential characteristic for E0. Denote the output values after 9
rounds of P 1, P 2, P 3 and P 4 by X1 ,X2, X3 and X4, then by our assumption,

X1 = (x1, x2, x3, x4)

X2 = (x1 ⊕ α, x2 ⊕ α⊕ β, x3 ⊕ β, x4 ⊕ β)

X3 = (x′1, x
′
2, x

′
3, x

′
4)

X4 = (x′1 ⊕ α, x′2 ⊕ α⊕ β, x′3 ⊕ β, x′4 ⊕ β)

where xi and x′i are determined by the plaintexts and key. It follows that their
output values after 1 round encryption are as follows:

E∗(X1) = (x2, x3, x4, x1 ⊕ F (x2 ⊕ x3 ⊕ x4 ⊕RK10))

E∗(X2) = (x2 ⊕ α⊕ β, x3 ⊕ β, x4 ⊕ β, x1 ⊕ α⊕ F (x2 ⊕ x3 ⊕ x4 ⊕ α⊕ β ⊕RK10))

E∗(X3) = (x′2, x
′
3, x

′
4, x

′
1 ⊕ F (x′2 ⊕ x′3 ⊕ x′4 ⊕RK10))

E∗(X4) = (x′2 ⊕ α⊕ β, x′3 ⊕ β, x′4 ⊕ β, x′1 ⊕ α⊕ F (x′2 ⊕ x′3 ⊕ x′4 ⊕ α⊕ β ⊕RK10))

If E∗(X1)⊕E∗(X3) = ∇∗ with probability 2−128, then the following conditions
are obtained;

x2 ⊕ x′2 = β (11)
x3 ⊕ x′3 = β (12)
x4 ⊕ x′4 = α⊕ β (13)

x1 ⊕ x′1 ⊕ F (x2 ⊕ x3 ⊕ x4 ⊕RK10)⊕ F (x′2 ⊕ x′3 ⊕ x′4 ⊕RK10) = α (14)

It is easy to check that summing over Eqs. (11) (12) and (13) induces the
following Eq. (15)

x2 ⊕ x3 ⊕ x4 = x′2 ⊕ x′3 ⊕ x′4 ⊕ α⊕ β. (15)

By applying Eq. (15) to Eq. (14) we have

x1 ⊕ F (x2 ⊕ x3 ⊕ x4 ⊕ α⊕ β ⊕RK10))⊕
x′1 ⊕ F (x′2 ⊕ x′3 ⊕ x′4 ⊕ α⊕ β ⊕RK10)) = α (16)

Thus, by Eqs. (11), (12), (13) and (16), E∗(X2) ⊕ E∗(X4) = ∇∗. See Fig. 5
for an illustration of this effect. This 16-round rectangle distinguisher has a
same probability 2−244 (= 2128 · (2−46)2 · (2−12)2) as the 15-round rectangle
distinguisher. Later, it is used to mount a key recovery attack on 18-round
SMS4.
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Fig. 5. The free pass of the rectangle through E∗

5.4 Boomerang attack procedure

In this subsection, we introduce a boomerang attack on 18-round SMS4. We
apply our 16-round boomerang distinguisher to rounds 3–18, retrieve subkeys
of rounds 1 and 2, and then recover the master key. First of all, we collect
plaintext structures; the plaintext pairs in each structure have a difference of
the form (∗, ∗, 0, α ⊕ β). Then, we ask for encryption and decryption of each
structure with a boomerang attack scenario. The key guessing phase is similar
to a differential attack; based on the 8-bit filtering property, our key recovery
attack is applied to 18-round SMS4. Let Λ denote the set of all the (27)4(≈ 1274)
possible values of {F (X)⊕F (X ⊕α⊕β)⊕β|X : any 32-bit values}. The attack
algorithm goes as follows:

1. Generate a structure G = (S1, S2) of 265 plaintexts, where S1 and S2 are the
sets of 264 plaintexts each whose forms are of (∗, ∗, A, B) and (∗, ∗, A,B ⊕
α ⊕ β) for any fixed 32-bit words A and B, respectively. We prepare 254

structures by changing the values of A and B (note that 254 structures
generate about 2182 (= 254 · (264)2) plaintext pairs whose differences are of
the form (∗, ∗, 0, α⊕β), equivalently, 2118 (= 2182 ·2−64) encrypted plaintext
pairs with difference ∆ after 2 rounds).

2. Ask for the encryption of G and compute E(G)⊕∇.
3. Ask for the decryption of E(G) ⊕ ∇, and denote these plaintext sets by

H = (S3, S4).
4. For all the plaintext pairs P 3 ∈ S3 and P 4 ∈ S4 in H, compute P 3 ⊕ P 4,

and check if the last three words belong to {(Λ, 0, α ⊕ β)} (see Table 6). If
not, discard corresponding the pair. After this test, there remains 2114(=
2182 · 2−4 · 2−32 · 2−32) plaintext pairs in H, equivalently 2114 quartets in G
and H, denoted (P 1, P 2, P 3, P 4), where P i ∈ Si.

5. Guess the least significant 1-byte subkey RK1,0, and compute the output
difference of each remaining plaintext pair (P 3, P 4) after the first S-box in
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the F function;

γ = Sbox([P 3
1 ⊕ P 3

2 ⊕ P 3
3 ][0]⊕RK1,0)⊕ Sbox([P 4

1 ⊕ P 4
2 ⊕ P 4

3 ][0] ⊕RK1,0),

δ = [D−1(P 3
0 ⊕ P 4

0 )][0].

When the guessed key (RK1,0) is right, the value of γ is equal to δ for right
quartets. If the two values are different, discard the plaintext quartets used
in the computation. Otherwise, the probability is 2−8 randomly. Hence, the
number of the remaining plaintext quartets after this step is about 2106(=
2114 · 2−8).

6. For the RK1,0 guessed in step 5, compute the output difference of each of the
plaintext pairs (P 1, P 2) in G corresponding to the remaining pairs (P 3, P 4)
(i.e., P i ∈ Si) after the first S-box in the F function;

γ = Sbox([P 1
1 ⊕ P 1

2 ⊕ P 1
3 ][0]⊕RK1,0)⊕ Sbox([P 2

1 ⊕ P 2
2 ⊕ P 2

3 ][0] ⊕RK1,0),

δ = [D−1(P 1
0 ⊕ P 2

0 )][0].

Similarly to the above step, if the two values are different, discard the plain-
text quartets used in the computation. Hence, the number of the remaining
quartets after this step is about 298(= 2106 · 2−8).

7. For each of the remaining byte subkeys in round 1, compute γ and δ pair by
pair similarly to steps 5 and 6. Discard all the plaintext quartets such that
γ 6= δ. Up to this step, the number of the remaining plaintext quartets is
about 250(= 298 · (2−8)6).

8. Guess an 1-byte subkey RK2,0, compute γ and δ, and then again discard
plaintext quartets in the same manner. We have already used a filtering
probability of approximately 1

2 , which implies that plaintext quartets are
filtered with probability 2−7(≈ 1

127 ) at this stage. For each of RK2,1, RK2,3

and RK2,3, repeat this step. Thus the expectation of the remaining plaintext
quartets for a wrongly guessed key is about 2−6(= 250 · (2−7)8). On the
other hand, if the right key is guessed, the expectation of the remaining
quartets after this step is 4 (= 2118 · 2−116) due to our 16-round boomerang
distinguisher. Keep the RK1 and RK2 as the candidates of the right subkey,
if the number of the remaining quartets is larger than or equal to 3.

9. If the subkey RK1 and RK2 is survived, do an exhaustive search over all
possible values for the remaining 64 subkey bits for the correct master key.

Table 6. First two-round differential before our boomerang distinguisher

Round input difference Prob.

1 (?, Λ, 0, α⊕ β) 1

2 (Λ, 0, α⊕ β, 0) 1

3 (0, α⊕ β, 0, β)
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The data complexity of this attack is about 2120 chosen plaintexts and
adaptive chosen ciphertexts as it collect 254 structures of 265 plaintexts each
and 254 structures of 265 ciphertexts each, and the memory complexity is 2123

(= 254 · 265 · 16) bytes as it stores 2119 plaintexts of H in a table.
Step 5 encrypts 2114 plaintext pairs in the remaining quartets through one

S-box with 28 guessed keys for RK1,0, and thus its time complexity is 2116.83

(≈ 2114 ·28 ·2 · 1
18 · 1

4 ) 18-round SMS4 encryptions. In step 6, we partially encrypt
2106 pairs in the remaining quartets with a guessed key for RK1,0, so its time
complexity is 2108.83 (≈ 2106 · 28 · 2 · 1

18 · 1
4 ) 18-round SMS4 encryptions. In

steps 7 and 8, the time complexity is much smaller than 2116.83 for each 8-bit
key guessing phase, therefore, the time complexity up to step 8 is about 2116.83

18-round SMS4 encryptions. By the Poisson distribution X ∼ Poi(λ = 2−6),
PrX [X > 2] ≈ 2−20.6, the expectation of wrong subkeys suggested in step 9 is
about 243.4 (= 264·2−20.6). It follows that the exhaustive search performed in step
9 has a time complexity of 2107.4(= 243.4 · 264) encryptions. Thus, the total time
complexity of this attack is approximately 2116.83 18-round SMS4 encryptions,
and the success rate of this attack is 0.7 due to the fact that PrX [X > 2] ≈ 0.7
by the Poisson distribution X ∼ Poi(λ = 22) for the right key.

5.5 Rectangle attack procedure

In our 18-round rectangle attack, we can also conduct a 8-bit filtering process in
a same manner. We apply our 16-round rectangle distinguisher to rounds 1–16,
retrieve subkeys of rounds 17, 18 and then recover the master key. First of all,
we choose 2123 plaintext pairs with a difference ∆, which generate 2245 quartets.
Then we compute the differences of the ciphertext quartets (C1, C3) and (C2, C4)
whose corresponding plaintext quartets satisfy P 1⊕P 2 = P 3⊕P 4 = ∆, and we
check if the first three words of the ciphertext differences belong to {(β, β, Λ)}
(see Table 7 for the differential propagation after our rectangle distinguisher,
and see Sect. 5.4 for Λ). After this initial filtering, there remains about 2109

(= 2245 · (2−32 · 2−32 · 228/232)2) ciphertext quartets. The attack procedure is
similar to our boomerang attack except that we conduct a 8-bit filtering precess
with ciphertext quartets instead of plaintext quartets; for each of the guessed
8-bit subkey for rounds 18 and 17, we check whether the computed differences γ
equals δ with another ciphertext pairs (C1, C3) in the quartets, and repeat it with
ciphertext pairs (C2, C4) in the quartets. Since we conduct a filtering process
16 times for a 64-bit subkey RK18 and RK17, the expectation of the remaining
ciphertext quartets is about 2−11 (= 2109 · (2−8)8 · (2−7)8) (note that a filtering
probability is 2−7 for each 8-bit subkey of round 17 due to the usage of the initial
filtering process). We repeat this process with another 2109 ciphertext quartets
(C1, C4) and (C2, C3) obtained by the initial filtering process of (C1, C4) and
(C2, C3). If the right key is guessed, the expectation of the remaining quartets
after the second iteration is about 4 (= 2245 ·2−244 +2245 ·2−244), otherwise 2−10

(= 2−11+2−11) randomly. If the number of the remaining quartets is larger than
or equal to 3, we keep the RK18 and RK17 as the candidates of the right subkey,
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and output the materkey by doing an exhaustive search over all possible values
for the remaining 64 subkey bits.

Table 7. Last two-round differential after our rectangle distinguisher

Round input difference Prob.

17 (α, α⊕ β, β, β) 1

18 (α⊕ β, β, β, Λ) 1

19 (β, β, Λ, ?)

The data complexity of this attack is about 2124 chosen plaintexts and the
memory complexity is 2128 (= 2123 · 16 · 2) bytes as it stores 2123 ciphertext
pairs in a table. Similarly to our boomerang attack, the time complexity of
this attack is dominated by the first 8-bit subkey guessing phase; we partially
encrypt 2109 pairs in the remaining quartets through one S-box with 28 guessed
keys for RK18,0, which leads to 2112.83 (≈ 2 · 2109 · 28 · 2 · 1

18 · 1
4 ) 18-round SMS4

encryptions. Note that the expectation of wrong subkeys loaded to the last step
is about 231.42 (= 264 · 2−32.58) by the Poisson distribution X ∼ Poi(λ = 2−10),
PrX [X > 2] ≈ 2−32.58. It results in a time complexity of 295.42 (= 231.42 · 264)
encryptions for the exhaustive search phase. Therefore, the time complexity of
this attack is 2112.83 18-round SMS4 encryptions, and the success rate of this
attack is 0.7 due to the fact that PrX [X > 2] ≈ 0.7 by the Poisson distribution
X ∼ Poi(λ = 22) for the right key.

6 Conclusion

In this paper, we have presented a linear and a differential attacks on 22-round
reduced SMS4, a boomerang and a rectangle attacks on 18-round reduced SMS4.
To summarize, our 22-round linear attack requires 2117 known plaintexts, 2109

memory bytes, 2109.86 encryptions and 2120.39 arithmetic operations, while our
22-round differential attack has a data complexity of 2118 chosen plaintexts, a
memory complexity of 2123 bytes and a time complexity of 2125.71 encryptions.
All these attacks are better than the previously best known attack on SMS4.
Futhermore, we have presented best known boomerang and rectangle attacks
on SMS4; our 18-round boomerang attack requires 2120 chosen plaintexts and
adaptive chosen ciphertexts, 2123 memory and 2116.83 encryptions while our 18-
round rectangle attack has a data complexity of 2124 chosen plaintexts, a memory
complexity of 2128 bytes and a time complexity of 2112.83 encryptions. We believe
that the cryptanalytic techniques presented in this paper would be useful for the
future analysis of SMS4 and for other unbalanced Feistel cipher with incomplete
diffusion. It should be clear, however, that none of these attacks presents a
realistic threat to the security of full 32-round SMS4.
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